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Abstract

Using a symmetric 2-person prisoners’ dilemma as the base game, each player

receives a signal for the number of rounds to be played with the same partner.

The actual number of rounds (the length of the supergame) is determined by

the maximal signal where each player expects the other’s signal to be smaller,

respectively larger, by a fixed number of rounds with 50% probability. In the

tradition of Folk Theorems we show that both, mutual defection and mutual

cooperation until the individually perceived last round, are subgame perfect

equilibrium outcomes. We find experimental evidence that many players do in

fact cooperate beyond their individual signal period.
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1 Introduction

Many strategic situations exhibit a conflict between efficiency and individual rationality.

Examples for this include the well-known prisoners’ dilemma as well as all standard

market games in which individual rationality prevents players from reaching an efficient

outcome. In such situations it is often possible to establish cooperation as a non-

cooperative equilibrium outcome if the game is repeated infinitely often since the threat

to play another equilibrium strategy1 is sufficient to stabilize cooperation, at least if the

players are patient enough. For this logic to hold it is necessary that the game have

no commonly known, predetermined end. When rational players know the last decision

period, they must play competitively in this period, and a simple backward induction

argument implies that rational players will compete from the very first period. To reach

cooperative outcomes with rational players, it is therefore necessary to allow players to

believe that the game continues (at least with a positive probability).

Experiments, however, have a limited duration. Thus, whenever we want to test exper-

imentally whether cooperative behavior emerges in repeated games, we have to rely on

some approximation of an open-ended strategic situation. The most common way to do

so is a long finite horizon in which human players seem to ignore the end as long as

it is sufficiently far away. This, however, does not avoid endgame effects since coopera-

tion typically collapses as the end of the game comes close. Selten and Stoecker (1986)

have already shown that people learn to anticipate the endgame effect, but the point of

departure from mutual cooperation is moving cyclically rather than monotonically ear-

lier when the supergame is repeated several times.2 Game theoretically, such a process

should unravel all the way until there is no cooperation from the very beginning;3 but

even limited unraveling questions the approximation of cooperative behavior throughout.

1We will embed such equilibrium stabilization of voluntary cooperation more generally in the litera-
ture on punishment behavior in our conclusion.

2For a learning direction explanation of such cyclical behavior see Selten (1991).
3Similar effects were confirmed in Brosig et al. (2007), and in Bruttel and Kamecke (2007).
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There have been several approaches to overcome the problem how to approximate

infinity in the lab. The most popular method is the random stopping rule which poses

two basic problems. First, it is not easy to implement because the experimenter has

no control over the duration of the experiment. Second, credibility of the infinite

repetition is difficult to sustain, because participants do not believe that there is a

realistic chance that they will spend more than a couple of hours in the lab (see Selten

et al., 1997). As a consequence, participants may lose confidence in the experimen-

tal setup, becoming less willing to cooperate as the game proceeds. An alternative

implementation of Markov strategies (see Bruttel and Kamecke, 2007) turned out to

solve this problem, but the procedure was so complicated that individual behavior

was considerably less systematic than in comparable repeated games. The approach

closest to the one presented here is a public good experiment of Gonzáles et al. (2005)

who only provide interval information about the actual duration and find that asym-

metric information about the number of rounds reduces the frequency of endgame effects.

Here we propose another procedure to establish an open-ended interaction by considering

a finitely repeated prisoners’ dilemma game with uncertainty about the duration of the

repeated game. Both players receive a signal each about the number of rounds played

in the supergame, but only one of these two signals indicates the correct number of

rounds R, while the other signal is R-5. Both players receive the correct signal with

50% probability so that both are aware of a minimum duration at the beginning of the

supergame. At some point in time, when the supergame lasted longer than the smaller

signal, one participant learns that the other must have received the correct signal.

Being aware of the distance between signals, this participant now also knows the actual

duration of the supergame. The opponent with the larger signal, however, does not

know the actual duration until the supergame stops.

3
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With this setup we combine elements of the long, but finite horizon – as one participant

can know the end of the game – with elements of a random stopping rule as both

players must take an infinite regress on larger round numbers into account. We expect

human players to rely on the 50% chance that the game stops when their own signal is

reached. They will thus compare the expected payoff if they defect in this round with

that if they continue to cooperate, yielding further cooperative outcomes also with an

expected 50% chance. Although this is not in line with Bayesian rationality, we will

show in section 2 that cooperation (except for the last round of the game) is indeed an

equilibrium outcome if the prior uncertainty about of the final round is sufficiently diffuse.

Our experimental data indeed reveal the expected effect. We often observe joint

cooperation until the second last round of the game. Initially, some participants defect

already when their signal is reached, but this endgame effect does not unravel to earlier

periods when the supergame is repeated and disappears completely when we repeat the

experiment with experienced participants. Unfortunately, we cannot entirely avoid the

disadvantages of the random treatment as there exists a robust trend to a lower willing-

ness to cooperate in longer supergames. It seems that participants become increasingly

suspicious whether a very large number of rounds will actually be performed. Needless

to say that the very long plays were actually implemented as described in the instructions.

2 The experimental setup with constant continua-

tion probability and almost diffuse priors

Consider a symmetric 2-person prisoners’ dilemma with stage game strategies “cooper-

ate” and “defect” and the payoff matrix from Table 1,

4
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Cooperate Defect

Cooperate c, c l, d
Defect d, l n, n

Table 1: Payoff matrix

with cooperation as the upper, respectively left, strategy and defection as the bottom

row, respectively right, column, and with the usual conditions l < n < c < d (dominance

of defect) and d+ l < 2c (efficiency of (cooperate, cooperate)). We rely on this game as

the stage game for our supergame analysis.

In a Bayesian world one captures a random end of the game by a probability distri-

bution for this end. If the number of rounds R ∈ [R;∞) is determined by a random

variable with a constant continuation probability ψ,4 the (conditional) probability

ρ (R) for a last round R ≥ R (after round R − 1) is given by % (R = R) = 1 − ψ,

% (R = R + 1) = ψ (1− ψ) , and similarly % (R) = ψR−R (1− ψ) for R > R + 1 (with

ρ (R) = 0 for R < R).

At the beginning of the game, let one player i receive signal si = R while the other

player j 6= i receives signal sj = R − Q with Q ≤ R such that both possible signal

assignments, (s1, s2) = (R−Q,R) and (s1, s2) = (R,R−Q), have the same probability.

This captures the intuition that the largest possible number of rounds is determined by

the experimenter and that participants have no (objective) information how this is done.

We will show more formally that the distribution of termination rounds converges to a

uniform distribution as ψ → 1. This limit (which is not a distribution) can be interpreted

as an approximation of a “diffuse prior” in the usual sense (better approximations seem

possible but are more complicated).

4This, of course, raises the question whether experimenters can actually (believe to be able to)
determine the final round accordingly. We do not claim this but admit how we have actually determined
R in ways guaranteeing that no excessively large R has to be implemented (see section 3 below).
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If player i receives signal si ≥ R, either si or si + Q is the true number R of rounds.

The posterior distribution of these two events is readily computed with Bayes’ rule as

follows. The ex ante probability for R = si is ρ (si) = ψsi−R (1− ψ) while the ex ante

probability for R = si +Q is ρ (si +Q) = ψsi+Q−R (1− ψ). Hence the posteriors are

P (si = R) =
ψsi−R (1− ψ)

ψsi−R (1− ψ) + ψsi+Q−R (1− ψ)
=

1

1 + ψQ

P (si = R +Q) =
ψsi+Q−R (1− ψ)

ψsi−R (1− ψ) + ψsi+Q−R (1− ψ)
=

ψQ

1 + ψQ
.

Obviously, P (si = R) > 0.5 and limψ→1 P (si = R) = 0.5. In other words, signal si is,

with more than 50% probability, the final round of the game, but the difference vanishes

for diffuse priors.

Next, we derive the condition for both players i cooperating in round r as long as both

have cooperated in the past and as long as r < si + Q, and defecting otherwise. If i is

the first and only one to defect, he gets d once and n for the rest of the game instead

of d or l in the last round and c before. When i has received signal si, player i knows

that the game cannot last longer than si +Q rounds. In a round r with si < r < si +Q

he therefore knows that the game will continue for Q − r periods. Hence a defection in

r gives d + (Q− r − 1)n instead of (Q− r − 1) c + d. Thus, it does not pay to deviate

from the cooperative strategy.

A defection in round r = si has two possible consequences: if si is the correct number of

rounds (with probability 1/
(
1 + ψQ

)
), player i gets n instead of l because the opponent

defects. However, if the game lasts for si + Q rounds (with probability ψQ/
(
1 + ψQ

)
),

he receives d once and Q times n instead of Q times c and d once. Stability therefore

requires that

6
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1

1 + ψQ
(n− l) +

ψQ

1 + ψQ
((d+Qn)− (Qc+ d)) ≤ 0

(n− l) + ψQ (Qn−Qc) ≤ 0

ψQ ≥ n− l

Q (c− n)
.

Defecting one round earlier, in r = si − 1, yields d instead of c once with certainty, n

instead of l once if si is the correct number of rounds, and Q + 1 times n instead of Q

times c and one defection payoff d if the game lasts for si +Q rounds. Stability therefore

requires that

d− c+
1

1 + ψQ
(n− l) +

ψQ

1 + ψQ
((Q+ 1)n− (Qc+ d)) ≤ 0(

1 + ψQ
)
(d− c) + (n− l) + ψQ (Q (n− c) + (n− d)) ≤ 0

ψQ (d− c+Q (n− c) + (n− d)) + n− l + d− c ≤ 0

ψQ ≥ n− l + d− c

(Q+ 1) (c− n)
, (1)

a condition which is more restrictive than the former. In earlier rounds a defection yields

n instead of c once more without further gains. This establishes that requirement (1) is

the most restrictive stability condition. It is easy to see from (1) that the difference Q

in the signals weakens the requirement for equilibrium cooperation considerably.

Of course, this new round structure does not alter anything about the conclusion that

universal defection by both players, i.e., the play of (defect, defect) in all subgames,

constitutes an equilibrium benchmark solution with low payoffs R · n. More interesting,

however, is the symmetric cooperative solution in which both participants select their

strategies v = (v1, v2) according to the rule

7
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• defect in round si +Q.

• cooperate in all earlier rounds if so far only (cooperate, cooperate) has been used;

defect otherwise.

Proposition If condition (1) is satisfied, v = (v1, v2) is a subgame perfect equilibrium

of the supergame, yielding the payoff of (R− 1)c+ l for the player with the larger signal

and (R− 1)c+ d for the player with the smaller signal.

3 Experimental design

In the experiment, we use the payoff matrix from Table 2.

Cooperate Defect

Cooperate 80, 80 0, 140
Defect 140, 0 10, 10

Table 2: Parameterization of the payoff matrix

The payoff matrix is designed to facilitate initial cooperative play since we want to study

timing of defection. Initial cooperation hopefully helps us to detect whether in fact a

considerable share of subjects follows our cooperative prediction and defects only in the

last round of a supergame. The payoff structure tries to induce this in two ways: First, we

have a considerable cooperation incentive c−n due to the large difference of 70 between

the payoffs from joint cooperation and joint defection; second, the relative gain d − l

from being first in defecting from mutual cooperation is, with 60, quite large. Note that

(1) can also be expressed as

8
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1 + ψQ (Q+ 1) ≥ d− l

c− n

(
=

6

7

)
, (2)

revealing how the large cooperation incentive helps to satisfy (1), whereas increasing

the relative gain from defection would question (1).

In each of our supergames, the difference between the two signals is equal to Q = 5. For

the above payoff matrix the binding stability condition is therefore satisfied if

ψ ≥ Q

√
n− l + d− c

(Q+ 1) (c− n))
=

5

√
1

6
= 0.6988.

Both players i = 1, 2 receive an integer signal si before playing the first round of a

supergame where it is commonly known that |s1 − s2| = Q and that the actual number

of rounds for successively playing the base game with the same partner is

R = max{s1, s2}. (3)

Payoffs in the supergame are simply the sum of periodic payoffs ui in the t = 1, ..., R

rounds for i = 1, 2. We assume that all previous moves in the history of the supergame

are commonly known.

Of course, our setup does not avoid the usual inconsistency of a random stopping rule

as our argument only works if there is no certain end to the game. In reality we have to

impose such an end, and for the experiment we generate signals s1 and s2 according to

the following process:

9
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• We determine one signal R ∈ [10; 30].

• We generate s = R−Q (where Q = 5) as the other signal.

• We set either (s1, s2) = (s, R) or (s1, s2) = (R, s) with 50% probability each.

We tried to select the true number of rounds R approximating a random continuation

rule with a sufficiently high continuation probability. For this purpose we started with

a set of R′s drawn with an underlying continuation probability of 95%, yielding an

expected duration of 20 periods. However, to keep the game within reasonable time

limits, we excluded all values of R smaller than 10 and larger than 30. This, of course,

was not told to the participants. Instead, the instructions said that the signals R were

determined arbitrarily without any further specification about the specific mechanism.

We expect that this procedure is a sufficiently good approximation to a situation in

which both players i = 1, 2 expect ex ante si > sj as well as si < sj for j 6= i with

nearly equal probability. Of course, this ignorance is dissolved if round si + 1 is reached,

because then player i knows that R = si + Q is the last round and that his partner is

not aware of this since sj > si must hold.

To provide a reference point with which we can compare our data, we conduct a baseline

treatment where the actual duration of each supergame is known to all participants.

Furthermore, we repeat the treatment with uncertain horizon with experienced partici-

pants to check the robustness of our results. From three different experimental studies

(Selten and Stoecker, 1986; Brosig et al., 2007; Bruttel and Kamecke, 2007) with a recall

of participants for a second session we know that a drastic change of behavior often

occurs after sufficient time of reflection, e.g., when participants had time to reconsider

their decisions at home. In particular, the experiment of Selten and Stoecker was

conducted in two sessions on two different days, and the forward shift in defection time

was only observed when we compared the first and second session. Simply repeating a

10
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supergame within one session does not trigger such learning since participants have no

time to thoroughly consider alternative strategies. Thus, inviting experienced players for

the second time, we have a stronger test how robust our results are. Finally, we conduct

one session in the video lab with two participants in each cabin assuming the role of one

player. This experiment contains fewer supergames than the other sessions and is not

included in the general data analysis. Its main purpose is to listen to the interaction of

the matched participants to learn about their motivation of choices. Table 3 provides an

overview of the treatments.

Treatment Description
Experienced

# Subjects # Ind. Obs.
Subjects?

KNOWN Known duration No 30 4
UNCERTAIN Duration signal No 72 9
UNCERTAIN2 Duration signal Yes 32 4
UNCERTAIN VIDEO Duration signal No 12 1

Table 3: Treatments

The actual duration of the supergames selected by our random procedure are listed in

Table 4. To facilitate the comparison between treatments with known and uncertain

horizons, we maintained the duration of supergames in those sessions. Only for the

repetition of the treatment with uncertain horizon we did generate new random

sequences.

Participants were undergraduates recruited from different disciplines. After the experi-

ment participants answered an ex-post questionnaire. Sessions took place in the computer

laboratory at the Humboldt-University Berlin (pilot session) and the Max Planck Insti-

tute Jena (main sessions). The experiment was conducted using z-tree software (Fis-

chbacher, 2007). All in all, 146 subjects participated in the experiment, 32 per main

session (8 in the pilot and 12 in the video lab). In treatment UNCERTAIN2, we rein-

vited 32 participants, who had already gained experience in an earlier main session of

11
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Horizon UNCERTAIN KNOWN
Inexperienced Experienced Video Inexperienced

12 11 23 12
16 19 26 16
14 28 21 14
30 14 12 30
11 15 13 11
23 10 12 23
12 22 17 12
25 24 24 25
10 14 25 10
14 18 16 14
13 17 - 13
26 23 - 26
14 11 - 14
24 15 - 24
26 17 - 26
14 14 - 14
29 18 - 29
24 28 - 24
10 19 - 10
18 10 - 18

Table 4: Duration of the supergames

this treatment. On average, participants earned 15.88 euros for their participation in

one session. All sessions lasted on average two hours, including the time for reading

the neutrally framed instructions (see Appendix for an English translation) and answer-

ing the post-experimental questionnaire. In all treatments participants were randomly

rematched with another opponent after each supergame. They participated in 20 su-

pergames (10 supergames in the video lab) of different lengths. The 32 participants of

one main session were partitioned into four matching groups of eight participants each

so that we collected four independent group observations per session.5 Participants were

not aware of this restricted rematching. The instructions allude to different opponents

in different supergames.

5In one matching group of treatment KNOWN we had only six participants instead of eight.
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4 Results

Figure 1 depicts the cooperation rates in the last 10 periods of all three treatments.6

After the initial five supergames high cooperation rates of more than 90% persist in

all sessions. In treatment UNCERTAIN2, we even find 100% cooperation most of the

time. Thus, our payoff parameterization successfully encourages initial cooperation of

experienced participants. In our data analysis we therefore concentrate on the long run

reliability of these cooperation rates. What we mean by this will be demonstrated for

the benchmark treatment with a known end in the following subsection.

4.1 Benchmark treatment

The first diagram of Figure 1 depicts the cooperation rates in the last 10 periods of

treatment KNOWN. In this baseline treatment, we find the usual endgame effect with

cooperation rates decreasing to about 15% in the final period of a supergame. Even more

important is the observation that this endgame effect begins earlier in later supergames.

In particular, we find that cooperation rates in the third and second last rounds of the

final five supergames of a session are significantly lower than in the same rounds of the

first five supergames (Wilcoxon signed rank test, one-sided, p-value = 0.0625). In the

final round, this difference is not significant. On average, defection occurs 1.5 periods

earlier in the final five than in the first five supergames. Note that this relatively small

forward shift of the endgame effect occurs within one session.

From Selten and Stoecker (1986) as well as from Bruttel and Kamecke (2007) we know

that unraveling of cooperation becomes stronger when reinviting participants for a

second session. Illustrating this crucial effect, Figure 2 shows the average cooperation

6We decided to consider 10 periods which is the minimum duration of the supergames in order to
facilitate the comparison of supergames having different lengths.
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KNOWN: Average Cooperation Rate
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Figure 1: Average cooperation rate in each treatment
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rates of Bruttel and Kamecke’s experiment concerning a related repeated prisoners’

dilemma supergame.7 Performing two successive sessions with the same participants

on different days strongly shifts forward the endgame effect in the second session.

Thus, learning under a known finite horizon qualitatively confirms backward induction,

indicating that limited cooperation could be caused by the unraveling endgame effect.

Cooperation Rate KNOWN (Supergames 1-20)
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Cooperation Rate KNOWN (Supergames 21-40)

0

10

20

30

40

50

60

70

80

90

100

R1 R2 R3 R4 R5 R6 R7 Round

% Cooperation

SG 21-25
SG 26-30
SG 31-35
SG 36-40

Figure 2: Cooperation rates in Bruttel and Kamecke (2007), treatment with known
horizon

7The main differences of their framework to the experiment presented here are a shorter duration of
the supergames with constantly seven periods and another payoff table.
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4.2 Reliable cooperation

We expect our treatment with uncertain horizon to overcome the unraveling problem of

the finite benchmark treatment. Consequently, we are mainly interested in the time when

cooperation collapses during a supergame. In the two treatments with uncertain horizon,

the two possible periods where one might expect cooperation rates to drop are the two

different signal periods. According to our cooperative equilibrium prediction, only the

participants with the smaller signals should defect in the final period R of a supergame

(they know that this is the final period), whereas we expect high cooperation rates

close to 100% in all earlier periods. However, since the cooperative equilibrium requires

some sophisticated and complex thoughts, we expect this pattern to show up especially in

treatment UNCERTAIN2 with experienced participants. Inexperienced participants may

pursue a more natural strategy by simply deviating in their own signal period. Therefore,

we expect cooperation rates to drop five periods before the end when the lower signal

period is reached in treatment UNCERTAIN, in particular in the initial supergames of

this treatment. These expectations are expressed in the following hypotheses:

1. Cooperation: Cooperation collapses mainly in the final period of a supergame.

Participants with the smaller signal (less than the actual number of periods) defect

in the final period while participants with the larger signal continue to cooperate.

2. Learning: Cooperation rates increase as the experiment proceeds. They are sig-

nificantly higher in UNCERTAIN2 than in UNCERTAIN.

3. No unraveling: The unraveling observed in treatment KNOWN does not appear,

especially not in UNCERTAIN2.

The second diagram in Figure 1 illustrates the cooperation rates over the last 10 rounds

of treatment UNCERTAIN. The curve drops in the fifth last period when reaching the

first signal, which does not trigger a monotonic decline of cooperation rates, however.
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In contrast, average cooperation increases again although the actual duration should

now be clear also to the participants having received the higher signal. In our view, this

indicates some willingness to forgive similar to tit-for-tat strategies rather than grim

strategies. This pattern of cooperation rates is very stable over time. Although in the

first five supergames participants cooperate significantly8 less than in later supergames,

there is no difference in the behavior in later (than the fifth) supergames.

In contrast to treatment KNOWN, in UNCERTAIN2 (the third diagram of Figure 1)

there is a slight decline of cooperation rates only five periods before the end. Nearly 100%

cooperation persists until R-2 with a sharp drop in cooperation to about 30% in the final

period. We think that subjects reconsidered the game at home after their first participa-

tion and concluded, as suggested by our cooperative equilibrium prediction, that it would

be best to cooperate four periods longer than their own signal. There is significantly more

cooperation in the final 10 periods (except for the last period) in UNCERTAIN2 than

in UNCERTAIN (Wilcoxon-Mann-Whitney test, one-sided, p-values: p(R0) = 0.1301,

p(R − 1) = 0.0220, p(R − 2) = 0.0067, p(R − 3) = 0.0034, p(R − 4) = 0.0042). This

supports the hypothesis that the endgame effect in treatment UNCERTAIN2 is more

concentrated in the final period. However, across all supergames the decline of the

average cooperation rates from periods 7 to 6, 6 to 5, 3 to 2, 2 to 1, 1 to 0 (counted

from the final round) is also in this treatment significant at the 10% level of significance.9

The difference between the cooperation rates in treatments KNOWN and UNCERTAIN2

is also reflected in the average profits. Table 5 presents the average profits in each of our

treatments in the final seven periods. Average profits in UNCERTAIN2 are higher (but

not significantly) than in KNOWN. Thus, the sharper endgame effect in UNCERTAIN2,

8We tested the difference between earlier (first to fifth) and later (sixth to twentieth) supergames in
a Wilcoxon signed rank test for each of the final 10 periods. The difference is significant at the 5% or
even at the 1% level (one-sided test) in all except the final two periods, where cooperation drops in all
20 supergames.

9Note that 6.25% is the maximum possible significance with only four independent observations.
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which does – in contrast to the case of a known finite horizon – not move to earlier

periods in later supergames, seems also to pay off. Again, the difference is only visible

between KNOWN and UNCERTAIN2 (with experienced participants) but not between

KNOWN and UNCERTAIN.

Treatment
Matching Group UNCERTAIN UNCERTAIN2 KNOWN

1 62.32 67.00 67.25
2 61.96 70.07 63.98
3 59.48 71.21 60.39
4 57.23 69.55 57.55
5 60.46 - -
6 62.27 - -
7 62.09 - -
8 68.05 - -
9 65.45 - -

Average 62.15 69.46 62.61

Table 5: Average profits

4.3 Consequences of early deviation

Participants having received the smaller signal know the actual number of rounds R as

soon as the supergame continues after their signal period. Thus, five periods later, they

can defect in the final period without having to fear later punishment by their opponent.

The other participants (larger signal) do not have this information and, in contrast,

might expect that they could be punished during further five periods when deviating

in their signal period. Therefore, we predict more participants who received the larger

signal to cooperate in the final period than those having received the smaller signal. In

the data we find that in treatment UNCERTAIN2 (UNCERTAIN) 53.13% (36.25%) of

the participants having received the larger signal cooperate in the final period compared

to only 9.37% (14.03%) of those having received the smaller signal. The difference is

much more pronounced in the treatment with experienced participants.
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However, quite naturally the recipients of the small signal are tempted to defect

when their own signal period is reached. In fact, 21.9% of participants who received a

small signal in treatment UNCERTAIN reveal their information by deviating in R-5

(after cooperating in R-6).10 Yielding to this temptation has severe consequences for

cooperation in the successive last five periods of the supergame. The usual backward

induction argument applies, and the only rational continuation after this move is

defection for the rest of the game. As in KNOWN, we would not expect this to occur

immediately, but again we expect an unraveling of cooperation to begin. Indeed, 64.6%

of the opponents who received the high signal defect already in R-1 after a deviation

of their opponent in R-5 in order not to be exploited in R, while only 21.8% of the

opponents who received the high signal defect in R-1 when the recipient of the small

signal cooperated in R-5.

In order to better understand the drop in cooperation in the fifth last period in treatments

UNCERTAIN and UNCERTAIN2, we distinguish pairs according to the behavior of

recipients of the small signal in the fifth last period (see Figure 3). According to the

equilibrium prediction, the recipients of the small signal should continue cooperating until

the second last round and defect only in the last period. Of the recipients of the small

signal in treatment UNCERTAIN (UNCERTAIN2) 63.1% (83.4%) indeed cooperate in

R-5. In these cases, cooperation remains on a very high level until the second last period.

The remaining 36.9% (16.6%) of the recipients of the small signal defect in R-5. Deviating

in the fifth last period causes cooperation to drop – after a moderate recovery to about

50% in periods R-4 and R-3 – below 10% by the end of the supergame. In treatment

UNCERTAIN2, behavior is again more systematic than in UNCERTAIN. In particular,

more recipients of the small signal follow the predicted cooperative strategy, cooperation

mainly collapses in the fifth last period and recovers to a lesser degree in the final periods,

indicating that unraveling is better understood by more experienced recipients.

10Here, we do not consider the (14.9% of the) cases where the recipients of the small signal already
defected in R-6.
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4.4 Stationary cooperation in long supergames?

In a treatment with random continuation, Bruttel and Kamecke (2007) found that par-

ticipants do not believe in large repetition numbers. Instead, a continuation is considered

less likely, the more periods have been played, triggering declining cooperation rates

over time. To analyze whether subjects in our experiment similarly distinguish between

supergames with less and more than 20 periods, Figure 4 depicts the cooperation rates

over the last 10 rounds of the respective supergames.

In treatment KNOWN there is no significant difference in the cooperation rates of short-

er and longer supergames. In the two treatments with uncertain horizon, however, the

curves do not show the same pattern in supergames with less and more than 20 peri-

ods. In particular, in UNCERTAIN2, participants, having already experienced that the

interval of possible durations extends from 10 to 30 periods, cooperate less in the final

periods of a supergame lasting more than 20 periods. In supergames with more than 20

periods, cooperation rates begin decreasing in the sixth period before the end and re-

main about 15% points below that in supergames with less than 20 periods. In treatment

UNCERTAIN with inexperienced participants, this difference is less obvious; here the

cooperation rates in supergames with less than 20 periods are only slightly lower than

in longer supergames, although the drop in cooperation in the fifth last period is more

pronounced in supergames with more than 20 periods. This indicates that for R > 20,

participants are less inclined to believe that the supergame will continue after their signal

period. In other words, they seem to reason that their signal equals R and that their

opponent, having received a smaller signal, already knows this and will surely defect in

their signal period.
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Figure 4: Average cooperation rate, depending on the length of a supergame
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5 Discussion

To avoid a straightforward finite horizon, we introduce uncertainty about the true

duration of a repeated prisoners’ dilemma game. Each participant receives a signal

about the duration of the supergame, knowing that this signal is only correct with

50% probability. With the remaining 50% probability the opponent received the correct

information. This mechanism allows for equilibrium cooperation in the repeated game –

except for the last round – even if its duration is limited in advance. We find that this,

in contrast to a finite horizon, prevents the endgame effect shifting to earlier periods,

not only (game) theoretically but also experimentally and more so in later supergames.

However, we also find less final cooperation when the supergames last longer than

participants on average expect.

Let us, finally, relate our specific study to the more general context of efficiency en-

hancing retribution,11 meaning that the anticipation of punishment stabilizes voluntary

cooperation. One has to distinguish between equilibrium and non-equilibrium punish-

ment. That non-equilibrium threats can guarantee not only efficiency but also fairness is

convincingly and robustly demonstrated by many ultimatum experiments (see Camerer,

2003, for a survey), showing that many responders turn down substantial but seemingly

unfair offers12 which, if anticipated by proposers, prevents such proposals in the first

place. Assuming a prisoners’ dilemma as a base game for repeated interaction as we

do is a way to explore equilibrium punishment since defecting is a strictly dominant

strategy in the base game. The idea here is that retribution is an aspect of (subgame

perfect) equilibria but not necessarily of (subgame perfect) equilibrium play. Whereas

Folk Theorems (see Aumann, 1981, for an older survey, and Neyman, 1999, for a more

11By restricting retribution to the purpose of efficiency enhancement, one rules purely ex-post inter-
pretations of retributive emotions as expressed in the principle “an eye for an eye, ...” Here the hurt is
accepted as a fact and the question is only whether its victim, and possibly also society, desires revenge.

12Similar evidence is provided by public goods experiments with an additional subsequent punishment
phase (e.g., Fehr and Gächter, 2000; Güth et al., 2007, study a more natural punishment institution).
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recent theoretical study of “infinite” horizon games) can avoid inefficiency altogether, we

explored a situation where this is possible in all but the last round of interaction.13 In

this sense, we have studied equilibrium retribution to enhance efficiency, a rather familiar

topic in game theory but much less explored experimentally.

6 Appendix: Instructions

(Translated from the German)

Thank you for participating in this experiment.

These instructions are identical for all participants. Please read them carefully. Raise

your hand if you have any questions regarding the experiment. We will then come

directly to your place. Please be quiet during the experiment and do not talk to other

participants.

You will participate in the following supergame 20 times. Your payment depends on

your decisions and on the decisions of other participants. You will not learn who the

other participants are, and they will not learn about your identity.

Each of the 20 supergames will consist of several periods. [KNOWN: The supergames

have different lengths. At the beginning of each supergame you and the other participant

will be informed about the duration of the current supergame.] In each supergame,

you play against the same opponent during all periods, but you play against different

opponents in different supergames. After having participated in 20 supergames with

13This is similar to Folk Theorems for finite horizon repeated games, assuming base games with
multiple equilibria (see Benoit and Krishna, 1985)
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different opponents, we will add up your profits of all 20 supergames which determine

your payoff. Your gains and losses during the experiment are counted in points. The

exchange rate is 1,700 points for 1 euro. You will receive your payoff directly after the

end of the experiment.

In each period you have to choose one out of two alternative decisions, X and Y.

Depending on the decision of your opponent, your payoff is then determined according

to the table below. You find your own payoff at the first position of each item and the

payoff of your opponent in the second position. At the end of each period, you learn

about both your and your opponent’s decision as well as your own payoff in points.

Other’s decision
X Y

Your decision X 80;80 0; 140
Y 140; 0 10;10

• If you and the other participant both choose X, each of you receives 80 points.

• If you and the other participant both choose Y, each of you receives 10 points.

• If one of you chooses X and the other Y,

– the one who chooses X gets 0 points

– and

– the one who chooses Y gets 140 points.

[UNCERTAIN: The supergames have different lengths. At the beginning of each su-

pergame you and the other participant will receive a message n about the duration of the

current supergame. You only know your own message but not the message of the other
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participant. One of these messages contains the actual number of rounds, whereas the

other message contains a number minus five rounds. Suppose, for example, you received

the message N = 73. In this case, the other participant either received the (wrong)

message n′ = 68, and the actual number of rounds is R = 73 - or the other participant

received the (correct) message n′ = 78, and the actual number of rounds is R = 78. Since

you do not know the message of the other participant, your message n = 73 therefore

tells you only that the supergame lasts either 73 or 78 rounds.

How are the messages being determined?

Previous to this experiment, the actual number of rounds R was arbitrarily determined

for each of the supergames. With 50% probability your message contains the number

R, and the other participant receives the message n′ = R − 5. With the remaining 50%

probability you receive the message n = R − 5 while the other participant receives the

actual number of rounds R. Of course, your message does not give any information

whether your number contains R or R− 5.
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