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Abstract

This Monte-Carlo study investigates sensitivity of the Wilcoxon signed rank test to certain
assumption violations in small samples. Emphasis is put on within-sample-dependence,
between-sample dependence, and the presence of ties. Our results show that both assumption
violations induce severe size distortions and entail power losses. Surprisingly, these
consequences do vary substantially with other properties the data may display. Results
provided are particularly relevant for experimental settings where ties and within-sample
dependence are frequently observed.
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1 Introduction

The Wilcoxon rank tests constitute widely used nonparametric tests of sample dissimilarities
based on ranked differences (Feltovic 2003, p. 274). Their virtues comprise a small number of
assumptions (for an overview see Hollander/Wolfe 1999, p. 46) as well as the comparability
of subjects at two points in time, thus allowing for the comparison of related samples.
Wilcoxon rank tests rely on the continuity of investigated variables and therefore absence of
ties, and second, the independence of observations within one sample. In what is to follow we
investigate the impact of exclusive as well as simultaneous violations of these assumptions on

both size and power properties for the Wilcoxon signed rank test.

The Wilcoxon signed rank test is routinely applied in experimental economics where both
assumptions are frequently violated. Within experimental settings, there are several threats to
continuity of response variables. First, the definition range of responses is not only finite, but
frequently quite narrowly restricted, for example within [0,10] (ChlaB3 et al. 2006) or even
within [0,1] (Dittrich et al. 2005). Second, actually observable responses are often
furthermore reduced in variety by, for example, the response being restricted in decimals,
different subjects using similar decision heuristics, or different subjects simultaneously
playing the dominant strategy in each of the two points (situations) in time. Equal differences
(ties) may thus frequently result and require consideration. Breaking of ties, e.g. via mid ranks
(Hollander/Wolfe 1999, pp. 109), solves the problem only partially, since the question how
differences could have been ranked, if more continuous responses had been possible or if
subjects had thought to answer in a more continuous way cannot be answered. A more
reliable approach therefore seems to consider whether the frequency of ties severely questions
the validity of test results and then rather to opt for a test on discrete data (e.g. a * test),
putting up with some loss of information. This, however, requires more detailed knowledge

on the impact of ties - knowledge we wish to provide.

Dependence of observations within experimental settings does not only originate from
repeatedly measuring the same individual’s responses, but also from interaction of
participants or latent variables in general. Thus, data possibly remain dependent even on an
aggregated level, often rendering only the entire experimental session an independent
observation. Only controlling for no interaction at all between several subgroups of subjects
provides a larger number of independent observations. Within those subgroups, however, the

problem of aggregation remains. Therefore, a considerable amount of data and information is
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lost, decreasing overall test power and interpolating temporal trends whose investigation
might be of interest as well. There are, of course, empirical methods, e.g. random or mixed
effect models which account for dependence within samples and provide efficient and
unbiased estimates for such cases. However, these estimates do not allow for any causal
statistical interpretation in for which one would need information on the true conditional
(in)dependence relations. Obtaining causal information, however, is the very aim of
controlled experiments. As a consequence, dependence of observations might provide a
valuable indicator of failures within an experimental design and thus serves as a control
mechanism that should be retained rather than being accounted for statistically. Hence, it is,
from a specification point of view, valuable to assess the impact of dependence on an estimate

rather than to provide for it.

Our study investigates the effects of ties and dependent observations on size and power
properties of the Wilcoxon signed rank test, determining actual p-values under each of the
above-mentioned assumption violations. It aims at providing decision support as to what
degree of violations the test remains a reliable tool and when its outcomes cannot be trusted.
We proceed by reviewing hitherto obtained results regarding the Wilcoxon test in section 2,
detail our simulation design in section 3, discuss our findings in sections 4 and 5 and conclude

in section 6.

2 Literature Review

Let us first give an impression of hitherto conducted studies and the insights obtained so far
regarding the Wilcoxon tests in general. Starting point of this literature is the study of Hodges
and Lehmann (1956) who provide an early comparison of the Wilcoxon rank sum test and
some other nonparametric alternatives to the t-test, analyzing asymptotic efficiency. They
establish a lower threshold for relative Pitman efficiency of 0.864 in comparing Wilcoxon and
t-test. Thus, in testing against shifts, the efficiency loss of the former as compared to the latter
is bounded, while efficiency gains on the contrary may be infinite. However, the same
comparison shows other rank tests, e.g. by Fisher and Yates (1948) and van der Waerden

(1953), to reach relative asymptotic power of unity.

Turning to Monte-Carlo studies, Tanizaki (1997) assesses and compares power properties of
the Wilcoxon rank sum and other rank-based tests to the t-test under various distributional

assumptions. These comprise normal, Cauchy, logistic, chi-square and uniform distributions.

3
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The results indicate that in small samples, the Wilcoxon test has highest overall power,

performs better than other rank-based tests and clearly outperforms the t-test.

Zimmerman (1998) provides a Monte Carlo comparison of the Wilcoxon rank sum test with a
modification of the t-test featuring various violations of normality and different standard
deviations of the samples. Though for equal standard deviations the Wilcoxon test maintains
its exact size as opposed to the t-test, neither test does so for unequal dispersions. In case of
heavy-tailed distributions, different standard deviations and different sample sizes the
Wilcoxon test may be more severely distorted than the t-test. The study does not investigate

power properties.

Zimmerman (2000) provides a detailed Monte-Carlo investigation confined to the size
properties of the Wilcoxon rank sum test. Given normally distributed samples and unequal
dispersions the test systematically overrejects the null hypothesis if dispersions are unequal
while the t-test appears to overreject less pronouncedly. These differences are due to the fact
that the Wilcoxon test tests the equality of entire distributions instead of only considering

their location parameters.

Freidlin and Gastwirth (2000) compare power properties of the Wilcoxon rank sum test to a
variety of competing nonparametric tests for different underlying distributions and situations
with equal or unequal sample sizes. They find the Wilcoxon rank sum test to have optimal
power properties given logistic distributions. Comparative performance is rather discouraging
under fat-tailed slash, Cauchy and t(2) distributions, while the test still demonstrates sound

power for normal and double exponential distributions.

Finally, Feltovich (2003) in an extensive study assesses both size and power of the Wilcoxon
rank sum test for a variety of situations and additionally provides a comparison to the robust-
rank-order test of Fligner and Policello (1981). The situations investigated cover different
sample sizes which may be equal or unequal, differing standard deviations and asymmetry of
the underlying distributions. Furthermore compared are exact statistics and their normal
approximations. A detailed assessment of size properties finds the robust-rank-order test to
react more sensitively than the Wilcoxon rank sum test. For asymmetrically distributed data,
both tests are found to perform poorly and tend to overreject, with an outperforming
Wilcoxon rank sum test for unequal sample sizes. Power analysis is limited to the case with
different central tendencies and equal dispersions of samples, no substantial differences being

observed between the two tests.
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The findings reviewed here find the Wilcoxon test a competitive testing method in many
situations. The assumption violations investigated are limited to different dispersions and
distributional asymmetry. Two further violations of assumptions required by the test having
not yet received any attention remain tied observations and within-sample dependence. While
for ties, remedying techniques have been proposed, such as the algorithm by Streitberg and
Rohmer (1986, 1987), we show that their consequences persist nevertheless. Within-sample
dependence on the other hand, has not yet received any attention at all. Considering the fact
that especially in the context of experimental data, both phenomena often occur jointly, we

also investigate simultaneous assumption violations.

While previous studies have focused on the Wilcoxon (rank sum) test for unrelated samples,
we will concentrate on the procedure for related samples and additionally inquire to what

extent the degree of sample relatedness matters.

3 Simulation Design

Our baseline scenario starts by simulating a series {v,} of identically and independently

distributed random draws from a normal distribution with mean zero and standard deviation

o,. The sample size is chosen by taking into account the fraction of ties 4 €[0,1) that will be

induced later on, so that a total of An random draws of v are simulated to achieve a sample

size of n. Note that 4 and n are appropriately chosen so that An is always integer. From {v, }
a series {x,} is constructed via a simple stationary first-order autoregressive process AR (1)
with autocorrelation parameter p_<[0,1) where one period influences only a limited number
of future periods. This amounts to simulating x, = p x, , +v,, allowing for a certain burn-in

phase. Since we actually want to control the variance of the process {x,}, we control for o

throughout the simulations and compute o, via o, = _/1—p> .

In a subsequent step a series {y,} is constructed from {x,} using a simple linear relationship
¥, =0+ px, +u, where {u,} represents another series of identically and independently
distributed draws from a normal distribution with mean zero and standard deviation o, .

Within these simulations we control for the standard deviation of y, ¢ , (in addition to the

y?o

standard deviation of x, o) and the correlation coefficient between x and y, p, . This is
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implemented by computing f by f=p -0, /o, and o, by 6, =/} — f*c. . Thus, we are
able to allow for different variances of the series {x,} and {y,} as well as for different
degrees of dependence between them. Since {y,} originates from {x,}, the properties of the

latter carry over to the former so that {y,} equally exhibits stationary properties with a first-

order autocorrelation coefficient p, = p, pfy .

The mean difference between {x,} and {y,} is controlled by choosing J such that the value
of Hedges g represents no, small, medium or large differences. Hedges g (Hedges, Olkin

1985) is a measure similar to the more widely known Cohen’s d (see Cohen 1988, p.23).
Taking sample size into account, it allows for a better judgement of small, medium and large
effects within comparisons of test power. In our case with equal sample sizes this just

amounts to making an adjustment to the overall effect size based on the sample size.

Specifically, we control ¢ by fixing g and computing § = g-,/(0; +0.)/2 / (1-3/(81n-9)),

reflecting equal sample sizes for x and y.

Ties are induced in two different forms. The first variant randomly draws (1—A)n values
from the An simulated values of x and y with replacement and adds them to the sample,
resulting in a total sample size of n. The second variant draws a single value out of the An
simulated values of x and y and adds this value (1—1)n times to the sample, resulting again in
a total sample size of n. These variants are called the “many-small-ties variant” and the “one-
big-tie variant”, respectively. Of course, this way of inducing ties results in a total sample of
values displaying different time series properties from those originally specified by o, o,
p, and p . Thus, whenever ties are present, all subsequent interpretations of our results e.g.
with respect to different degrees of dependence are only suggestive and should be viewed as

qualitative statements regarding relatively higher or lower degrees of dependence.

Parameters are specified as follows. We consider four different sample sizes

n € {10,20,30,40} and four different fractions of ties A€ {0,0.2,0.5,0.8}. The standard

deviation of x is fixed at unity, o, =1, and that of y takes values o, €{1,2,3,4}. For the
autocorrelation of x we investigate four different values p < {0,0.2,0.5,0.8} as we do for the

correlation between x and y, p,, €{0,0.2,0.5,0.8} . Finally, Hedges g is specified in relation
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to Cohen’s d as g €{0,0.2,0.5,0.8}, representing no, small, medium and large effects as
suggested by Cohen (1988 p.25).

We simulate 10000 replications for each of the 4096 possible combinations of parameter
values and afterwards apply the Wilcoxon signed rank test to each of the simulated samples of
x and y. A two-sided test is performed by comparing the test statistic to the respective critical
values for a nominal significance level of a = 0.05 which will be used throughout this paper.

Finally recorded is the fraction of rejections out of the 10000 replications for each parameter

combination.
Departing from our baseline scenario introduced above, we specifically modify the underlying
distribution of samples {v,} in order to investigate how fat tails or asymmetry of the

distribution affect the test properties under assumption violations. As representative examples
for distributions with large tails and asymmetry t and gamma distributions were chosen. The

first case corresponds to a series being drawn from a t distribution with three degrees of
freedom. A subsequent division by its standard deviation V3 and scaling by o, yields an
eITOr process {v,} with mean zero and variance o. Regarding parameters for the gamma
distribution controlling shape a and scale b we first require the variance being fixed at unity,

o2 =ab® =1 and second, prespecify skewness via y =2/+/a . This results in @ = (2/y)* and

b=+/1/a . A subsequent subtraction of the mean ensures a zero-mean error process {v,}. To

shed light on the impact of skewness, parameter a is set to take values a € {1,2,3,4}.

Furthermore, we investigate the impact of specific kinds of dependence running simulations
with a first order moving-average, or MA(1), process x, =v, +6v, , where each period
influences infinitely many future periods. This specification relies on inverting the first-order

autocorrelation coefficient p, =6/(1+6%) for computing € and then using this value to

compute the variance of {v,} by o> = /(1+67%).

Finally, all constellations mentioned above are investigated in their impact on size and power
properties for the exact version of the Wilcoxon signed rank test which, in the presence of
ties, 1s implemented using the algorithm proposed in (Streitberg/Rohmer 1986, 1987). Our

questions are first, whether ties still show a residual impact and second, whether the impact of
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within-sample dependence differs anyhow compared to the standard test. To summarize this

chapter, figure 1 reviews all treatment combinations investigated.

g normal o, Standard é 001 g AR many small ties

= o < — =)

= > IS Q 0 .
< t3) = = 2 = .2 one large random tie
&

Rz & 8 £ oy
=  gamma exact w005 8 MA one large median tie

Figure 1: Treatment combinations investigated.

4 Simulation Results

Table 1 presents rejection frequencies for a first scenario constituting our baseline case. It

introduces a normal distribution, an intermediary degree of dependence p,, =0.5, equal
variances ¢, =0, =1, AR(1) errors and many small ties, drawn with replacement from the

simulated values. With the samples showing no difference and in absence of any assumption
violation, the test maintains its size level quite exactly. Power increases with both accruing
deviation from the null hypothesis g and sample size and becomes quite considerable for
larger sample sizes. However, power persists on a sometimes considerably low level for both
small and medium size effects, first rising above what is recommended in (Cohen 1988, p. 53)

for {g =0.5,n =40}.

As a first assumption violation, let us now investigate the impact of discontinuity in the
investigated variables entailing tied observations on both size and power properties. The first

four rows with p =0 and e {0,0.2,0.5,0.8} indicate that, when within-sample-dependence

is absent but ties' are present to various degrees, the test rejects a true null hypothesis more

often than it should, the problem persisting with increasing sample size. For 4 =0.2, that is,

' The effects of both ties and within-sample dependence on size as mentioned here are not immediately obtained

by visual inspection of the tables provided. To give an example, the tie effect on size A ;\ =Tt} is calculated
i=A,n=n
by Af\{l—/f o= (@=(@=b)=(c=(c=d)) with a=(f|ig=gn=mA=2.px=0, b=flig=0n=n2=7pc=0},
A=y

c:=(f,| {g=g,n=n,A=0,p, =0}, d :=_f,|{ g=0,n=n,A=0,p, =0} where f. denotes the respective rejection frequency
displayed in the corresponding table. The impact of ties on size- adjusted power is calculated the following way:

Af‘ GeTmei) = frlid=2,n=n,py =0}— f,[{A=0,n=0,p, =0} . Intuitively, we subtract from the initial rejection
=A,n=n

frequency all those parts that are due to a variation in parameters beside the one of interest. We analogously
proceed for within-sample dependence.
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20% ties within the sample, nominal critical p-values should be lowered by [0.03,0.05]%. The
test may thus still respect a weak significance level (remember the baseline reference here

being chosen a =0.05 %). Maximal errors in indicated size are of 0.4 {g=0,4=08,n=10}.

Tied observations entail a loss in size-adjusted power, this decrease being more pronounced
for larger effects. Interestingly, power declines more pronouncedly with increasing sample
size for small and medium effects, though in absolute terms, the number of untied
observations increases and one therefore would likely expect the reverse. Only for large
effects, increasing sample size may actually help reducing power losses. Maximal power

losses are of 0.54 {g =0.5, A =0.8, n =40} .

Within-sample dependence, our second assumption violation investigated, equally leads to an
overrejection which turns out to be less pronounced than in the presence of ties only.
Interestingly, the problem rather worsens with increasing sample size. For a low level of

within-sample dependence p = 0.2, the test may still be applied by lowering critical nominal
p-values by [0.01,0.02]. Intermediary levels of within-sample dependence p = 0.5 demand a

lowering of critical nominal p-values by [0.04,0.06] , thus only allowing for weak significance

levels (recall the nominal significance level of a = 0.05). Maximal errors in indicated size of

0.2 occur for {g =0, p, =0.8, n =40} .

Power losses entailed are roughly half as important as for tied observations, its dependence on
sample size displaying the same pattern. Interestingly, weak degrees of within sample
dependence may actually help structuring the sample and thus improve power properties, if

the effect itself is small. Maximal power losses of 0.31 occur for {g =0.5,p =0.8, n =40}.

When both within-sample dependence and ties are present a mutual reinforcement of the
adverse size effects from both violations of the test assumptions can be observed. This
tendency towards overrejection declines only very slowly with increasing sample size and

recognizably only for large fractions of ties and high degrees of within-sample-dependence.

* The interval is defined by the smallest and largest correction necessary for different sample sizes.

* For an induced significance level of 0.01, the impact of assumption violations on size is roughly half as
important as for 0.05. The corrections suggested here may thus serve as an upper bound. The impact of
assumption violations on power under 0.01, however, is more severe for small and medium effects. Note that
effect size and significance level are related: small and medium but yet highly significant effects alone are
already difficult to identify for our small sample sizes. For the same degree of assumption violations, such
effects are therefore more difficult to identify than effects of intermediate significance. Consistently, this
difference in impact of assumption violations under 0.01 and 0.05 disappears for large effect sizes.

9
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Regarding power, large fractions of ties appearing together with high degrees of dependence
entail the most severe power losses. Interestingly, power losses under simultaneous
assumption violations are an increasing function of the sample size for small and medium
effects. Only for large effects, power losses are again U-shapedly dependent on sample size.

However, the larger the effect size, the more pronounced overall power losses.

Let us proceed with a second scenario of unequal variances with ¢, =40, displayed in table

2. With no other assumption being violated, the test slightly underrejects the null hypothesis
for n=1{10,20} and starts overrejecting it somewhat for n € {30,40} for all effects. Unequal

variances entail power losses, depending U-shapedly on effect size. While for small effect
sizes only slight power losses occur though increasing with sample size, large amounts of
power are lost for medium effect size. For large effects losses disappear with increasing n,
being negligible for n € {20,30} . The tie effect’ on size is reinforced in this scenario. For
levels of 4€{0.2,0.5,0.8; the test overrejects a null by maximally additional
{0.014, 0.05,0.07} as compared to the baseline. Considering actual significance levels under
this simultaneous assumption violation, a weak significance level might still be respected for
A=0.2 where nominal critical p-values should systematically be lowered by 0.04 up to 0.05.
Regarding size-adjusted power, unequal sample variances may substantially reduce power
losses entailed by ties, this reduction being an increasing function of sample size except for
large effects. Furthermore, the larger the fraction of ties, the higher the power loss reduction

entailed by differences in variance.

Turning to within-sample dependence, its impact is weakened by unequal variances.
Overrejection diminishes, entailing a need for lowering nominal critical p-values by

maximally but {0.007, 0.014, 0.064} for p  €{0.2, 0.5, 0.8} . Regarding size-adjusted power

* The impact of a particular scenario is quantified by including one further condition in our calculations. To
analyze the effect of unequal standard deviations on the impact ties show, this requires the following
modification:

O'y=4(7x

A = ((d|{oy, =40} - (d|{oy =40}~ blioy, =40, }) - (d{oy =404}~ (d{oy, =40y} —d|ioy, =40 }) ~ (a = (@ =)~ (¢ = (c =)

{|{A=2 n=n}
for the example above. Changes in the impact ties exert on size-adjusted power, are now calculated as follows:

oy=40 — _ — — — —
v =(fi[{d=2n=1.p =0,0, =40} - f[{A=0.n=71.py =0.0, =40, }) — (f,[{d=A.n=7.pc =0} - f[{A=0.n=7,p, =0}),

vh o _
f|{A=2.n=n}
the subtrahend in either equation corresponding to the baseline case with o, =0, . This latter condition is not

mentioned again for reasons of space.

11
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slight improvements are observed for p < {0.2,0.5} while under p_ =0.8, power gains as

compared to the scenario with equal variances reach up to 0.23. Turning to a last constellation
where both ties and within-sample dependence are present, the tie impact on size under
unequal variances dominates for small levels of within sample dependence. That is,

overrejection increases as compared to the baseline.

However, for accruing within-sample dependence the latter effect takes lead and overrejection
for simultaneous assumption violations under unequal sample variances diminishes in
comparison to the baseline. Regarding the impact on power, an overall improvement is
observed. Thus, power losses decrease as compared to the reference case and more
pronouncedly do so for both increasing within-sample dependence and tie fraction. However,

power losses decrease decisively faster with increasing within-sample dependence.

A third scenario as shown in table 3 allows us to investigate a possible impact of the very
nature of within-sample dependence and for this purpose introduces an MA rather than an

AR structure. While for p =0.2, the impact on size is manifested by a slightly increased

overrejection, the reverse holds for stronger within-sample dependence: in presence of an MA

structure overrejection diminishes by [0.02;0.03] for p =0.5 as compared to an AR

structure. Power improves for the same degree of within-sample dependence up to 0.046 and
increasingly does so for larger sample sizes. Again, power improvements become more

visible for p =0.5 and display an increasing dependence on sample size. Thus, the kind of

within-sample dependence equally affects the relationship between power and sample size.
Furthermore, when both ties and within-sample dependence are present, power properties
improve slightly with increasing g. riven by this effect, overrejection entailed by simultaneous

assumption violation slightly declines.

A fourth scenario associated with table 4 subsequently investigates the impact of the nature
of ties by introducing one large tie instead of many small. With respect to size, the impact is
tremendous. For the smallest fraction 4=0.2, overrejection entailed by ties increases by

additional [0.03,0.05,0.08,0.07] for n e {10,20,30,40}. Thus, weak significance levels

cannot even be respected for the smallest fraction of ties investigated. Rejection frequency
with samples displaying no difference reaches certainty for 1 =0.8. In presence of both ties
and within-sample dependence, overrejection increases beyond the tie-driven effect by
[0.04, 0.07, 0.08, 0.09] for n € {10,20,30,40} .

13
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The impact on power is less unanimous. For weak effects of g =0.2, a small fraction 41 =0.2
of a larger tie helps structuring the sample, and does so more efficiently than smaller ties
improving power by additional [0.01,0.03,0.04,0.06] for n €{10,20,30,40} . Power gains for
g =0.2 as compared to small ties are furthermore increasing with sample size. However,
larger fractions of large ties entail additional power losses for all situations both with
increasing sample size and drastically so for larger effect sizes. Maximally incurred additional
power losses of 0.5 are observed for {g =0.8,n =40,1=0.8}. Both ties and within-sample

dependence yield subadditively increased power losses for low fraction of ties, for high

fraction of ties however, power losses exceed the sum of the two single effects.

A fifth scenario displayed in table 5 sheds light on the impact of ties and within-sample
dependence under asymmetry of the underlying distributions. In the absence of any further
assumption violation and with the samples showing no difference, asymmetry entails a
tendency towards underrejection. Its effect on size is of approximately -0.02. Power under
asymmetry increases overall, the improvement being dependent on both effect and sample
size. Maximal power gains of 0.07 occur for {g =0.5,n=30}. The tie effect on size is
ambiguously influenced by asymmetry. Generally, entailed overrejection decreases, and
especially does so for the case of interest with 4 =0.2 where the effect is slightly weakened
but for n =10. Regarding the tie effect on power, asymmetry yields power improvements of

up to 0.07 {g =0.8,n=40,4=0.8} . A more pronounced change is observed for the impact
of within-sample dependence. Its effect on size is overcompensated for p =0.2 and
p, =0.5. Depending on sample size, it diminishes by [0.004,0.005,0.006, 0.008] for the
former and by [0.04,0.05,0.05,0.06] for the latter case. Furthermore, asymmetry causes p_—
entailed overrejection to decline much faster with increasing sample size. Even for p_=0.8,

starting with an actual size of 0.12, the test reaches nominal size for n =40. Power losses
entailed by within-sample dependence decrease quite substantially under asymmetry, and
more pronouncedly do so with increasing sample size. Maximal power gains of 0.21 occur for

{g=0.8,p, =0.8,n=40}. Only in the absence of any effect and for very small samples

n € {10,20} slight power losses are observed in comparison to the baseline.
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The impact of a simultaneous assumption violation on size under asymmetry yields a

decrease in overrejection beyond a mere addition of the single effects. Superadditivity
increases with sample size. Overall nominal significance levels are reached under p =0.2
and p_=0.5 for 1=0.2, indicating that overrejection increases much faster in 4 thanin p_,
though dimensions, of course, lack independence. For less important degrees of simultaneous
assumption violations the test remains consistently below indicated significance levels. While

for small and medium degrees of within-sample dependence and all fractions of ties power

losses decrease, the same does not hold for high within-sample dependence.

For {p =0.8,1=0.2}, power gains are still observed as compared to the baseline case.

However, larger fractions of ties incur additional power losses, and severely may do so.

A sixth scenario as displayed in table 6 investigates performance of the exact test. In
presence of ties its computation is performed via an algorithm introduced by Streitberg and
Rohmel (1986, 1987). Regarding size, the impact is not unanimous, the test displaying
slightly lower size levels for n € {10,20,30} and slightly higher for n =40 as compared to
the standard test. Power properties as compared to the baseline case vary inconsistently,
though an overall slight improvement for very small samples of n e {10,20} may be
observed. The impact of ties persists, being affected in an equally unstructured way by this
setting. Regarding size in the case of interest 4 = 0.2, overrejection entailed by ties decreases
by [0.002,0.002,0.01] for n e {10,20,40}. However, it is reinforced by 0.008 for n =30.
Power in the presence of ties does neither systematically nor substantially vary from the
baseline case. With rare exceptions, the impact of within-sample dependence on size is

emphasized under the exact test. Given p_ =0.2, overrejection increases by

[0.015,0.011,0.015,0.012] according to sample size. Power varies but slightly and
inconsistently as compared to the baseline case. The implications of within-sample
dependence and ties occurring simultaneously are less unanimous regarding size. The exact
test shows an increased tendency towards overrejection but for n =40, when overrejection
declines as compared to the baseline case. Regarding power, no systematic variation can be

observed.

A seventh and last scenario corresponding to table 7 finally highlights the impact of increased

between-sample dependence p . With the samples showing no difference and in absence of

18
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any assumption violation, size turns out more conservative for all but the largest sample size.
Increasing within-sample dependence yields tremendous power gains, a maximal

improvement of 0.37 occurring for {g =0.5,n =20}. Power already reaches values close to

maximum for precisely this case.

The impact of ties is equally strongly affected. Starting with size, overrejection as compared
to the baseline case reduces to roughly half its extent. Thus, even for 1 =0.5 with actual sizes
of [0.14,0.12,0.12,0.12] according to n, weak significance levels are only slightly reneged
and may thus be respected for differing chosen o . Pursuing with power, predications need to
be conditioned on effects. For weak effect sizes, increased between-sample dependence
reinforces power losses and accruingly does so for larger sample sizes. However, for medium
and large effects, power differences under enhanced between-sample dependence become a
positive function of sample size. Increasing between-sample dependence may thus yield

important power improvements for large effect and sample sizes.

Overrejection entailed by within-sample dependence decreases for nearly all cases. While for
the lowest level p =0.2, the effect is not yet unanimous with slightly decreased
overrejection observed for n € {10,20} and slightly increased for n € {30,40}, a clear pattern
emerges for larger p . Overrejection decreases importantly, the remedying effect being a
positive function of sample size and weak significance levels being within reach for up to
p. =0.5. Regarding power losses entailed by within-sample-dependence, between-sample
dependence likewise exhibits a remedying effect, though kicking in only from medium size
effects on. Maximal power gains of 0.22 as compared to the baseline are observed for
{g=0.8,n=20,p =0.8}. Analyzing the change in impact of both within-sample
dependence and ties on size, a decrease in overrejection beyond an addition of the changes
due to ties and within-sample dependence is observed. Thus, in simultaneous presence of low
or medium within-sample dependence and the lowest fraction of ties, weak nominal

significance levels still hold. Turning to power in the presence of a simultaneous assumption

violation loss variations are dependent on effect size.

Simultaneous assumption violations seem to affect power more importantly for small and

medium effect sizes in case of larger p, , while for large effect sizes the reverse holds.

However, though more strongly affected, absolute test power for these constellations is

superior to the baseline case for all effect sizes.
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The next section investigates the phenomena identified in a more general and integrated

setting via response surfaces, analyzing a variety of scenarios jointly.

5 Response Surfaces

In this section we summarize our results by estimating response surfaces. Response surfaces
can be defined as “a regression model in which each observation corresponds to one
experiment, the dependent variable is some quantity that was estimated in the experiments,
and the independent variables are functions of the various parameter values, chosen by the
experimenter, which characterize each experiment” (Davidson and MacKinnon 1993, pp.

755f.).

Since heteroskedasticity often poses a problem in response-surface regressions, we follow
MacKinnon (1994) and employ the form of GMM estimation proposed by Cragg (1983). This
estimator allows for an estimation of linear regression models by simultaneously accounting
for heteroskedasticity of unknown form. Denoting our response-surface regressions in matrix

form
y=Xp+u with E(uu')=Q,

y represents the vector of rejection frequencies obtained from our experiments and matrix X
contains parameters such as the degree of dependence, or the fraction of ties set in each
experiment. X may also include certain nonlinear transformations or interactions of these
parameters. Cragg’s estimator furthermore requires the specification of a set of auxiliary
variables which, together with the columns of X, constitute columns of a matrix Q.

Incorporating these elements the estimator can be written as
B=(X'QQ'2Q)"Q'X)"X'QQ'2Q)"QYy,

where Q denotes a diagonal matrix whose nonzero elements are the squared OLS residuals
from a regression of y on X. For the auxiliary variables we choose third powers and two-way
interactions of the explanatory variables, as suggested by Cragg (1983). The results appear to

be quite robust under different sets of auxiliary variables. Note that R* values are obtained

from y = Xfi based on the Cragg estimator.

In the regressions reported below the dependent variable is the rejection frequency of our

experiments. We opted for this variable instead of its logit transformation since actual

22



Jena Economic Research Papers 2007-032

rejection frequencies equal unity. Moreover, response surfaces fit the rejection frequencies
themselves much better than their logit transform. Of course, fitted values outside the interval
[0,1] emerge, but these are only of minor importance as far as magnitude and frequency are

concerned.

We start by discussing the response-surface results for size in table 8. All observations with

g =0 are pooled together irrespectively of whether they originate from experiments with

different tie modes (many small, one big random or median) and/or different distributions
(either normal and gamma or t(3) and gamma). Outcomes of test decisions are pooled as well,
based on critical values from either the distribution of the test statistic, or the exact p-values

following Streitberg and Rohmel (1986, 1987).

The first column of table 8 displays the response surfaces estimates for the normally and
gamma distributed experiments. Therein, within-sample dependence is specified by a first-
order AR process. R” confirms the model by indicating reasonably large explanatory power.
This holds although quite diverse sets of experiments are pooled together. In analyzing
individual coefficients, we first consider linear terms. They are highly significant except for

the within-sample dependence of x, p, , and between-sample dependence, p, . Only the
induced within-sample dependence of y, p, appears to be significant with a negative sign,

thus reducing overrejection. Sample size n and the fraction of ties 4 turn out significantly

positive, whereas the degree of skewness y and the ratio of standard deviations o, come out

significantly negative (recall that o is fixed at unity throughout).

Quantitatively important quadratic effects can be observed in cases of special interest for this
paper, namely within-sample dependence of x and fraction of ties. Both coefficients have a
positive sign, show reasonably large magnitude, and are associated with large t-statistics.
Thus, size distortions induced by these assumption violations become extensively evident in

quadratic effects.

The next block of coefficients shows the effects of interactions with sample size. Here, only
the variables governing dependence and the fraction of ties significantly interact with n. As
concerns the latter case, a positive sign reveals size distortions to increase with sample size.
This indicates not only the fraction of ties but also their absolute number to play a role. The
observed interaction of variables measuring dependence with n appears to be more

complicated. Significantly positive and negative coefficients appear together so that a clear
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predication as to the overall effect of dependence on size cannot be made.

A most important conclusion from the inspection of the tables in the previous section was that

Table 8

Response Surfaces for Size

distribution normal + gamma t(3) + gamma

€ITOor Process AR MA AR MA
intercept -0.133 (-14.420)  -0.166 (-17.810)  -0.154 (-17.731)  -0.174 (-18.665)
n 0.012 (30.431) 0.012 (29.496) 0.012 (30.189) 0.013 (29.744)
oy -0.030 (-5.936) 0.001 (0.220) 0.005 (1.151) 0.006 (1.126)
y -0.046 (-18.558)  -0.028 (-11.098)  -0.052 (-21.862)  -0.026 (-10.137)
Dx 0.021 (1.706) 0.046 (2.395) 0.016 (1.384) 0.042 (2.193)
Py -0.171 (-4.914) -0.024 (-0.468) -0.198 (-6.623) -0.023 (-0.440)
Py -0.009 (-0.755) 0.031 (2.427) -0.012 (-1.004) 0.033 (2.595)
A 0.695 (69.257) 0.633 (62.044) 0.681 (72.058) 0.624 (61.482)
n* -0.000 (-22.115)  -0.000 (-22.952)  -0.000 (-22.142)  -0.000 (-23.283)
azyz 0.004 (4.675) -0.000 (-0.229) -0.002 (-1.946) -0.001 (-1.026)
y 0.010 (19.438) 0.006 (11.141) 0.011 (21.736) 0.006 (10.660)
Py 0.203 (19.488) -0.036 (-1.320) 0.294 (28.564) -0.036 (-1.314)
Py 0.027 (0.624) 0.156 (1.408) -0.163 (-4.061) 0.130 (1.184)
pxy2 0.087 (8.192) -0.027 (-2.398) 0.085 (7.795) -0.031 (-2.711)
e 0.349 (34.672) 0.469 (47.074) 0.345 (35.505) 0.483 (48.924)
n- oy, -0.000 (-0.131) -0.000 (-1.392) 0.000 (1.272) -0.000 (-1.382)
n-y -0.000 (-1.044) 0.000 (0.545) -0.000 (-0.180) 0.000 (0.432)
n- pPx -0.004 (-12.420) -0.001 (-1.537)  -0.004 (-13.003) -0.001 (-1.392)
n-py 0.005 (5.120) 0.000 (0.272) 0.004 (5.133) 0.000 (0.351)
n Py -0.001 (-3.626) 0.000 (0.026) -0.001 (-3.057) -0.000 (-0.003)
n-A 0.006 (28.215) 0.005 (23.924) 0.005 (27.904) 0.005 (23.797)
small 0.180 (31.250) 0.192 (33.855) 0.177 (31.392) 0.194 (34.589)
small - n -0.007 (-53.271)  -0.007 (-54.901)  -0.007 (-57.043)  -0.007 (-55.625)
small - g, 0.011 (6.224) 0.012 (7.850) 0.007 (4.914) 0.011 (7.420)
small - y -0.002 (-1.573) 0.006 (5.483) -0.002 (-2.183) 0.005 (4.270)
small - p, 0.071 (10.954) 0.006 (0.695) 0.114 (19.350) 0.004 (0.438)
small - p,, -0.087 (-4.068) -0.024 (-0.859) -0.160 (-9.705) -0.025 (-0.932)
small - p,, -0.044 (-6.558) -0.048 (-7.183) -0.057 (-8.663) -0.043 (-6.553)
small - 4 -0.647 (-137.573) -0.650 (-144.371) -0.636 (-147.401) -0.645 (-145.468)
random 0.030 (18.295) 0.031 (17.901) 0.027 (16.940) 0.030 (17.758)
exact 0.003 (2.276) 0.003 (1.816) 0.003 (2.178) 0.003 (1.932)
N 12288 9216 12288 9216
R 0.944 0.936 0.935 0.936

Note: t-statistics based on heteroskedasticity-robust standard errors in parentheses.

switching from the many-small-ties to the one-big-tie variant considerably affects the results
and worsens size distortions. This is reflected by a dummy variable named “small”, indicating
treatments with many small ties, in its interactions with the other variables. Of considerable

magnitude appears the coefficient reflecting the interaction of “small” with the fraction of
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ties. It reveals the tendency towards overrejection for a larger fraction of ties to be more

pronounced in case of one big tie.

The nature of this one big tie being either a deterministic median or a randomly drawn
observation also plays a role as indicated by the significantly positive dummy variable for the

random ties named “random”.

Our impression regarding the exact test obtained by inspecting the tables is confirmed. The
test decision using exact p-values based on a correction for the presence of ties is only slightly
affected. The coefficient of the dummy-variable “exact” for these cases is quite small and
shows a t-statistic of only slightly larger than two. Although significant at conventional levels,
this significance seems negligible considering the quite large sample size available for our

response surfaces.

The next column shows our results for within-sample dependence following an MA process
instead of the AR process. The major difference to the results for the AR process just
discussed is that fewer variables turn out significant. This is especially true for variables

representing within-sample dependence, p, and p . They are neither highly significant

individually nor in their quadratic effects, theirs interactions with n and their interactions with
“small” being not significant at all. Two aspects need to be considered here. On one hand, an
MA process can only capture autocorrelations up to 0.5, so that only experiments for lower
correlations could be calculated for this variant and fewer data are available. On the other
hand, remember our qualitative results having found less pronounced overrejection for the
case of an MA process. By contrast, the fraction of ties remains significantly positive with
coefficients of considerable magnitude whenever observed in the response surface. Especially

the additional effect of the one-big-tie variant shows up again.

The next two columns show corresponding results for experiments with the normal
distribution being replaced by the more fat-tailed t-distribution with three degrees of freedom.
Most of our results prove to be stable with respect to this change, although some changes in
significance and even sign reversals can also be observed. Explanatory power is equally high

in this regression.

Let us mention a few further interesting interaction terms with robust characteristics which are

not reported above. o,-A-p  and o, -p  turn out significantly negative which implies

increasing differences in dispersion to weaken the joint impact of ties and within-sample
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dependence and of within-sample dependence alone. Skewness of underlying distributions

significantly reinforces overrejection entailed by ties (y- 1), makes overrejection due to ties
decline more slowly with sample size (y-4-n) and reinforces the simultaneous effect of ties

and within-sample dependence. However, both skewed and within-sample dependent data

(y- p,) cause the test to overreject less often than within-sample dependent data alone.

Turning to power, results are shown in table 9. Here, the specification includes Hedge’s g, a
wider set of interactions with g and the other variables being introduced. Naturally, g is
positively associated with the rejection frequency, its quadratic effect showing up both
positive and highly significant. Moreover, both interactions of g with sample size and the
dummy variable for small ties are positive and associated with very high t-statistics.
Concerning the interactions with g we find all of them significant with power-depressing

effects of differences in variance, the within-sample dependence of x and the fraction of ties.

Naturally for a consistent test, the interaction of g and the sample size n is significantly
positive with high t-statistics in all regressions. As already suspected in the previous section,
increasing between-sample dependence appears to be beneficial for power. The general
pattern regarding coefficients tends to parallel our results in table 8. Explanatory power is
somewhat weaker in table 9 but R” values remain consistently above 0.9 with a single minor

exception.
Let us finally mention some interaction terms not reported here. Power losses due to within-
sample dependence are significantly stronger the larger the effect size as measured by p - g.

For large ties, we find that the larger the effect size, the heavier tie entailed losses of power.

While under skewness, power for large effect sizes improves (4-g), this phenomenon
decreases with growing sample size (A-g-n). Skewness reinforces the power depressing

impact of ties (y-4), within-sample dependence (y-p,) and a joint occurrence of both,

(y-p, -4) but does less so with increasing sample size.
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Table 9

Response Surfaces for Power

distribution normal + gamma t(3) + gamma

€ITor process AR MA AR MA
intercept -0.248 (-40.210)  -0.276 (-41.052)  -0.308 (-50.143)  -0.226 (-30.582)
n 0.020 (72.588) 0.012 (29.496) 0.021 (75.150) 0.018 (55.129)
oy -0.037 (-12.447) -0.000 (-0.142) 0.011 (3.647)  -0.040 (-10.520)
y -0.034 (-19.027) -0.010 (-5.682)  -0.040 (-23.661) -0.018 (-9.878)
Dx 0.153 (20.649) 0.048 (3.959) 0.233 (31.478) 0.058 (4.169)
Py -0.183 (-8.241) 0.076 (2.043)  -0.401 (-18.030) 0.020 (0.513)
Py 0.026 (2.963) 0.033 (3.557) 0.012 (1.292) 0.002 (0.210)
A 0.976 (146.281)  0.990 (136.188)  0.914 (137.899)  0.976 (122.278)
g 0.598 (72.686) 0.459 (51.839) 0.736 (88.773) 0.587 (56.489)
n* -0.000 (-53.514)  -0.000 (-52.487)  -0.000 (-51.581)  -0.000 (-41.582)
azyz 0.005 (8.554) -0.000 (-0.025) -0.001 (-2.012) 0.013 (18.982)
Y 0.006 (15.772) 0.001 (2.205) 0.007 (19.680) 0.002 (6.094)
P 0.065 (10.218) -0.047 (-2.859) 0.110 (17.230) -0.065 (-3.243)
Py 0.141 (4.955) -0.085 (-1.136) 0.019 (0.656) -0.048 (-0.566)
p,cy2 0.106 (14.958) 0.010 (1.342) 0.182 (24.784) 0.027 (3.138)
A 0.249 (39.538) 0.299 (43.803) 0.258 (40.403) 0.258 (33.556)
g 0.151 (24.316) 0.281 (42.592) 0.061 (9.591) 0.277 (36.718)
n- oy 0.000 (7.858) 0.000 (3.044) -0.000 (-1.763) -0.000 (-7.576)
n-y 0.000 (5.732) 0.000 (4.459) 0.000 (7.590) 0.000 (3.764)
N px -0.004 (-23.112) -0.000 (-1.693)  -0.005 (-29.454) -0.001 (-1.778)
n-py 0.003 (5.125) -0.001 (-0.920) 0.005 (8.874) 0.000 (0.218)
n: Py -0.003 (-12.820) -0.002 (-6.987)  -0.004 (-15.988) -0.001 (-3.482)
n-A -0.003 (-22.593)  -0.004 (-24.638)  -0.003 (-19.748) -0.001 (-6.133)
n-g 0.008 (58.954) 0.009 (60.908) 0.006 (46.822) 0.009 (53.325)
g oy -0.020 (-13.428)  -0.026 (-15.505) -0.010 (-6.545)  -0.201 (-87.978)
gy 0.022 (18.523) -0.008 (-6.005) 0.019 (16.613) -0.005 (-3.494)
g pPx -0.202 (-34.769) -0.045 (-4.907)  -0.351 (-60.655) -0.068 (-6.206)
g Py 0.104 (5.586) -0.074 (-2.445) 0.426 (23.178) -0.002 (-0.068)
g Py 0.174 (23.692) 0.199 (26.015) 0.177 (23.489) 0.225 (25.062)
g A -1.049 (-230.702) -1.056 (-214.485) -1.040 (-228.582) -0.889 (-142.878)
small -0.013 (-3.020) 0.015 (3.259) -0.034 (-7.714) 0.083 (16.758)
small - n -0.003 (-38.765)  -0.004 (-39.143)  -0.003 (-35.585) -0.004 (-41.733)
small - o, 0.001 (0.891) 0.003 (2.635) 0.005 (4.737) -0.009 (-6.529)
small - y -0.001 (-0.714) -0.000 (-0.179) -0.003 (-3.927) -0.000 (-0.019)
small - p, 0.031 (8.155) -0.004 (-0.749) 0.050 (13.162) -0.003 (-0.522)
small - p,, 0.008 (0.623) -0.014 (-0.665) -0.055 (-4.257) -0.017 (-0.740)
small - p,, -0.007 (-1.445) -0.012 (-2.397) 0.004 (0.788) -0.019 (-3.450)
small - 4 -0.484 (-151.939) -0.514 (-152.872) -0.466 (-144.334) -0.552 (-138.062)
small - g 0.219 (74.805) 0.210 (67.381) 0.228 (78.565) 0.155 (42.234)
random -0.023 (-22.624)  -0.017 (-15.541)  -0.026 (-24.673) -0.009 (-6.831)
exact 0.003 (3.015) 0.003 (2.816) 0.003 (2.925) 0.003 (2.491)
N 49152 36864 49152 36864
R’ 0.913 0.924 0.898 0.914

Note: t-statistics based on heteroskedasticity-robust standard errors in parentheses.
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6 Conclusion

In what preceded we have investigated the performance of the Wilcoxon signed rank test for
related samples under assumption violations hitherto not thoroughly scrutinized. We namely
focus on tied observations and within-sample dependence. Our goal was to assess their impact
and to additionally shed light on their interaction with further possible characteristics of real

data — frequently met on one hand and relevant for the Wilcoxon signed rank test on the other.
Therefore, the scenarios introduced comprise

= a first and baseline scenario, investigating ties and within-sample dependence in their
impact on power and size of the Wilcoxon signed rank test assuming normal distributions,
medium between-sample dependence, equal standard deviations, small ties and within-

sample dependence following an AR(1) process;

* a second scenario, investigating the same impact under inequality in sample standard

deviations, a further assumption violation of the test;
= a third, shedding light on the effect of a varying nature of within-sample dependence;
= a forth, inquiring the effect of a varying nature of ties on their impact;

= a fifth, analyzing how asymmetry of the underlying distributions affects the impact of both

ties and within-sample dependence;
= a sixth to see how a so-called exact test disposing of a tie breaking algorithm performs;

* and a seventh, analyzing the effect of between-sample dependence on the impact of both

ties and within-sample dependence.

As expected, both ties and within-sample dependence were found to entail overrejection and
power losses. Ties are found to entail heavier consequences than within-sample dependence,
while both assumption violations clearly persist with increasing sample size. Albeit and
unexpectedly, slight assumption violations may actually improve the test ability to identify
weak effects in small samples. Impacts of both assumption violations hinge on further data
characteristics. The extent of this dependence surprises. Both asymmetry of the underlying
distributions and increasing between-sample dependence are found to substantially attenuate
the impact of both assumption violations. Unequal standard deviations imply miscellaneous
consequences for the two assumption violations in question. They weaken the impact of

within-sample dependence but enforce the effect of ties with tie correction surprisingly failing
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to show any apparent improvement. Finally, unequal standard deviations also influence the
impact of ties and within-sample dependence occurring jointly and thereby yield either an
additive, subadditive or superadditive combination of the single effects. The results mentioned

are confirmed by response surface estimates showing an appealing overall fit.

Our future work aims at providing insights for finer grids of values, that is, degrees of both
assumption violations and a more general specification of within-sample dependence. A

similar kind of analysis for unrelated samples is already in progress.
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