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I.  Introduction 

 

This paper focuses on dynamic interactions of equity prices among theoretically related assets. We 

analyze the dynamic spillovers between the FTSE 100 futures and cash indices and investigate the effects 

of arbitrage activity on shaping the observed dynamic interactions. In particular, we explore the existence 

of intraday non-linearities in the FTSE 100 cash and futures indices during the month of July 2001 using 

minute-by- minute data. We test if the introduction of the electronic trading systems in the London Stock 

Exchange in 1997 and in the London International Financial Futures and Options Exchange (LIFFE) in 

1999 has eliminated the non-linear dynamic relationship in the FTSE 100 markets. To this aim, we use a 

regime switching model that allows the interactions to behave differently according to whether arbitrage 

opportunities are present in the market. Since the introduction of the screen trading in both exchanges, to 

our knowledge no study has analyzed the non-linear dynamics of the FTSE 100 index and futures returns. 

 

The cost of carry model is often assumed to describe the non-arbitrage relation between the futures and 

index prices (see Brenner and Kronner (1995) as well as Dwyer, Locke and Yu (1996)). From a theoretical 

perspective, transaction costs and arbitrage activity in stock markets motivate the use of non-linear 

specifications to model the lead-lag relationship between an stock index and its futures markets. However, 

in the last years, the introduction of electronic trading systems to replace the traditional floor trading in 

many markets has significantly reduced the transaction costs and has accelerated the price discovery 

process in these markets.4 As a consequence, we expect screen trading to have importantly reduced or 

even eliminated the non-linear dynamics between stock and futures returns. In the case of Australia, 

Anderson and Vahid (2001) find strong evidence of non-linearities in returns before the electronic trading 

                                                
4 See Grunbilchler, Longstaff and Schwartz (1994), Franses, Lucas, Taylor and van Dijk (2000) and Anderson and 

Vahid (2001) for studies on the ways in which the introduction of electronic trading affected the lead-lag relationship 

between futures and cash prices. 



in the futures market was introduced and weaker evidence of non-linearities after the online trading. Their 

analysis suggests that the automation of the markets has removed the non-linear properties of the basis. 

 

Grünbichler et al. (1994) extensively examine the effect of electronic screen trading on the lead-lag 

relation between futures and index levels. They highlight that the introduction of electronic trading lowers 

the trading costs for market participants. They also point out that price information is captured and 

disseminated more rapidly with screen trading, which accelerates the price discovery process. More recent 

studies also examine the effects of electronic trading in different markets. For instance, Hasbrouck (2003) 

analyses the effect of the introduction of the electronically-traded futures contracts in the U.S. equity 

indexes on price formation. 

 

With respect to the dynamic interactions between the FTSE 100 stock index and its futures contracts, 

Abhyankar (1998) provides an extensive survey of the empirical evidence on the lead-lag relationship 

between cash and futures prices. Additionally, several studies document the lead-lag relationship in the 

British context, for instance Gwilym, McMillan and Speight (1999) and Gwilym and Buckle (2001), but 

little research has been conducted on examining non-linearities in the U.K. markets. As our findings will 

show that non-linearities are important in explaining the short-term dynamics between the FTSE 100 

futures and the cash index, the former studies fail to capture the effects of the arbitrage activity in these 

markets. 

 

To our knowledge two studies elaborates on the non-linear intraday dynamics in the FTSE 100 markets 

using regime-switching models: Garrett and Taylor (2001) and Franses et al. (2000). Both studies find 

strong evidence of non-linearities in the U.K. markets. Garrett and Taylor (2001) examine the intraday and 

interday dynamics of both the level of and changes in the FTSE 100 basis. In particular, they investigate if 

the first-order autocorrelation in basis changes is a result of arbitrage behavior or a manifestation of 

market microstructure effects such as non-trading in the underlying stock index. In their analysis, they 



apply a Self Exciting Threshold Autoregressive model (SETAR) to the mispricing. Our paper also 

analyses the dynamics of the basis using a SETAR specification. We extend the analysis of Garrett and 

Taylor (2001) analysis since we additionally focus on the effects of the arbitrage opportunities on the 

futures and stock index returns dynamics. 

 

Franses et al. (2000) examine the impact of the introduction of the electronic trading system in the London 

Stock Exchange on stock price dynamics. They find strong evidence of non-linearities before the 

introduction of the electronic trading system and much weaker evidence of non-linearities with on-line 

trading. They suggest that the automation of markets may remove the non-linear properties of the basis. 

 

Our paper builds upon this last point. We investigate the existence of non-linearities in electronically 

trading markets. In particular, we extend Franses et al. (2000) analysis to examine the non-linear dynamic 

behavior of the FTSE 100 index and its futures. They explore the non-linear dynamic relationship in the 

U.K. markets in 1997, at the time of the introduction of the electronic trading platform in the London 

Stock Exchange. After the introduction of the automated trading system in the LIFFE exchange in 1999, 

we expect that the transaction costs faced by investors in the British markets are even lower. An 

interesting unanswered question that we investigate in this paper is whether this further reduction in 

transaction costs has eliminated the non-linear dynamics between the FTSE 100 cash and futures returns. 

 

This paper has two main contributions. First, as mentioned before, this is the first study that presents a 

discrete regime-switching model to analyze the index arbitrage in the FTSE 100 markets after the 

introduction of electronic trading platform in its futures market. Second, from an econometric perspective, 

this study generalizes previous models as we use an integrated approach suggested by Tsay (1998) in 

which the threshold values that define the different regimes are endogenously determined in the model. 

 

Our results show that arbitrage activity is of some significance in shaping the short-term dynamic 



relationship between the FTSE 100 cash and futures prices. The empirical evidence confirms the presence 

of non-linearities in the behavior of the basis and the returns when using one-minute frequency data. We 

conclude that the introduction of the electronic trading systems in the FTSE 100 markets has increased the 

efficiency of the markets by enhancing the price discovery process, namely by facilitating the increase of 

the speed of adjustment of the futures and cash prices to departures of the mispricing error from its non-

arbitrage band. Nevertheless, the automation of the markets has not completely eliminated the non-linear 

properties of the return series. 

 

The remainder of this paper is organized as follows. Section II introduces the cost of carry model and 

describes the econometric model. Section III provides details on the dataset and descriptive statistics. 

Section IV contains the empirical results of the non-linearity tests for the basis and the returns. It also 

presents the estimation of the non-linear model for the basis, elaborates upon the results of the Threshold 

Error Correction Model and extends the analysis using different frequency sub-samples. Concluding 

remarks are given in Section V. 

 

II. Methodology 

II.1 Cost of Carry Model with Transaction Costs 

 

According to the cost of carry model, the basis or the mispricing error is defined as 

 

))((lnln ,,, tTqrSFz TtTttTtt −−−−=  (1) 

 

where Ft,T is the price at time t of a future contract with maturity T. St is the index value in period t, rt,T 



stands for the risk free interest rate for the period T-t and qt,T is the dividend yield on the index. 

 

The introduction of transaction costs in the cost of carry model provides the motivation for the non-linear 

behavior of the basis. Transaction costs include the bid-offer spread, stamp duty, market commissions and 

any impact costs which reflect the size of the trade and the liquidity of the markets. For arbitrage to be 

profitable in equation (1), the basis zt must be sufficiently large to offset the transaction costs. We 

therefore propose to use a Self Exciting Threshold Autoregressive framework (SETAR) to model the 

behavior of the basis with three different regimes. This specification reflects that arbitragers react to a 

large enough negative mispricing error that was observed d periods in advance, zt-d ≤ c1, as well as to a 

large positive mispricing error, zt-d > c2. In these regimes the deviations of the basis from zero are big 

enough to offset the transaction costs, c1 and c2. When the deviations of the basis are smaller than the 

transaction costs, c2 < zt-d ≤ c1, there are no arbitrage opportunities. With the above considerations, the 

SETAR specification for the basis can be written in three different regimes as 
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where c1 and c2 are the threshold values for the variable zt-d  that define the regime switching. We examine 

the hypothesis that, because of arbitrage, any mean reversion in the basis is stronger in regimes one and 

three than in the middle regime, i.e., )2()1(
ii αα <<  and )2()3(

ii αα << . 

 

The arbitrage trade in regime 1 consists of simultaneously buying index futures and short-selling the 

security index while an arbitrage trade in regime 3 consists of simultaneously buying the security index 



and selling the index futures. We specify the threshold variable as zt-d  instead of zt because it takes time 

(minutes) for arbitragers to take appropriate positions in the stock and stock index futures contracts. 

Consequently, we do not expect arbitrage to occur and affect the futures and the stock index in the same 

minute as when the arbitrage opportunity appears. This threshold lag, d, gives an indication of the speed at 

which the market responds to deviations from the no-arbitrage relation. As previously mentioned, c1 and 

c2 are endogenously determined in the model using Tsay (1998) technique. 

 

III.2 Econometric Model 

 

The cointegration relation between the futures and the cash indices documented in the empirical literature 

implies that an Error Correction Mechanism characterizes the relationship between them (Engle and 

Granger (1987)). In our case, equation (2) suggests three regimes to characterize the dynamic relationship 

between the FTSE 100 index and its futures contracts. If arbitrage activity affects the size of the responses 

of the futures and index levels to lagged variables and their adjustment process to the long-term 

equilibrium, the values of the parameters in the Error Correction Model will depend on the regimes. 

Together, the cointegration, the arbitrage opportunities and the transaction costs suggest a Threshold 

Vector Error Correction Mechanism (TVECM) to model the dynamics of the cash and futures. This means 

that current futures and index returns are explained by past futures, past index returns and by the deviation 

from the no-arbitrage relation d periods in advance. The effects of lagged variables, as well as the effect of 

the mispricing error are in our specification different for each regime. The VECM for each of the three 

regimes, j, is specified as 
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where ∆ is the difference operator, i.e., ∆Xt = Xt − Xt-1, 
)(

1
jβ  and )(

2
jβ  are the error correction coefficients 

and ),( ,2,1 ttt εεε =  are zero mean and serially uncorrelated error terms that can be contemporaneously 

correlated. As in equation (2), the regimes are determined by 
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In this specification, the parameters of the ECM depend on the level of mispricing. The thresholds are 

signals for index arbitrage. To test if regime 2 reflects the non-arbitrage band, we can test if the effects of 

the correction term in this regime are smaller than in the outer regimes. Thus, in equations (3) and (4) we 

test )2(
1

)1(
1 ββ >  and )2(

1
)3(

1 ββ >  for the futures equation, and )2(
2

)1(
2 ββ >  and )2(

2
)3(

2 ββ >  for the cash 

equation. In addition, note that there can be differences in the impact of arbitragers in the lower and upper 

regimes as the arbitrage strategies are different in both regimes. 

 

III. Data and Descriptive Statistics 

 

The empirical analysis is based on the FTSE 100 stock index. The FTSE 100 index comprises the 100 

largest U.K. companies listed on the London Stock Exchange (LSE). The LSE trades between 08:00 am 

and 16:30h (London time) from Monday to Friday (excluding the public holidays). Stock trading has been 

fully automated since 1997, when the LSE introduced its electronic trading system (SETS). SETS enables 

traders to place buy and sell orders for any of the FTSE 100 shares in an electronic order book. These 

orders are then automatically matched with other orders placed. The futures contracts on the FTSE indices 



are traded in the London International Financial Futures and Options Exchange (LIFFE). The LIFFE 

Connect is the automated trading system in the derivatives exchange and was introduced in May 1999. 

This electronic trading platform also matches orders, disseminates prices and reports trades. Trading in the 

stock index futures occurs between 08:00 and 17:30h. 

 

The sample period used in this study covers the month of July 2001. The index data are intraday minute-

by-minute snapshots of the FTSE 100 index values obtained from the LIFFE Exchange. The FTSE 100 

index value is updated approximately four times a minute. The data is converted to one observation per 

minute by using the last observation for each minute. Our futures data correspond to the transaction prices 

of the FTSE 100 futures maturing on 21 September 2001. 

 

The overlapping trading hours for both markets are between 08:00 and 16:30h. However, to avoid 

anomalies related to stale cash prices at the beginning of the trading day, the first thirty minutes of each 

day are discarded. Using the remaining observations, the one minute returns for each market are calculated 

as the difference of the natural log of the prices, i.e., the futures returns equal to 

TtTtTt FFF ,1,, lnlnlnΔ −−=  and the index level returns equal to 1lnlnlnΔ −−= ttt SSS . This results in 478 

(or less when the trading starts after 08:00h or finishes earlier) returns per day. When stacking several 

days, overnight returns are removed. Each of our data series contains 10,470 observations. 

 

We follow Dwyer et al. (1996) to calculate the cost of carry. First, we subtract daily means from the 

logarithms of the futures and cash indexes. Demeaning the futures removes any constant in the logarithms 

of the futures due to the constant part of dividends and interest rates for that day. The difference between 

the demeaned logarithms of the futures and cash indexes is the deviation of the basis from its daily mean. 

If dividends and interest rates are relatively constant during the day, this adjusted basis is an estimate of a 

mispricing series that does not require other explicit assumptions about expected dividend or interest rates. 



This point is vital as the validity of the mispricing series relies heavily on the use of appropriate ex-ante 

dividends and interest rates.5 

 

It is useful to examine the properties of the basis and the returns prior to modeling their dynamics. Some 

summary statistics are provided in Table I. We observe that the futures returns are more volatile and have 

a higher average than the cash returns. There is evidence of positive first-order autocorrelation in index 

returns. As demonstrated by Lo and McKinley (1990), this pattern occurs if stocks trade infrequently. The 

futures returns exhibit negative first order autocorrelation. A likely explanation is that transaction prices 

bounce between the bid and ask levels (see Glosten and Milgrom (1985)). 

 

PLEASE INSERT TABLE I ABOUT HERE 

 

The mispricing changes also exhibit negative first-order autocorrelation. Taking into account the 

'infrequent trading' effect and the 'bid-ask bounce' effect, Miller, Mutshuswamy and Whaley (1994) 

analytically demonstrate that negative first-order autocorrelation in mispricing changes is likely to occur 

under quite general conditions. Table I also shows that the basis is more volatile than the futures and cash 

returns. Additionally, Figure I presents the time series plots of one-minute returns of the FTSE 100 

futures, the index values and the associated basis. We observe that all the series fluctuate around a fixed 

mean and within a fixed range. 

 

PLEASE INSERT FIGURE I ABOUT HERE 

                                                
5 An alternative would be to use the actual dividends yield on the FTSE 100 index reported by FT Interactive Data. 

However, they are realized dividends, not expected dividends. Therefore, we prefer to substract the daily means from 

the series. Henceforth, the mispricing error will be denoted by zt and we will present the values of the basis as 100 ∗ 

zt for notational reasons. 



 

To test for non-stationarity, Augmented Dickey Fuller (ADF) tests are performed on the one-minute 

frequency log price series and on the basis. The results of the tests are given in Table II. Panel A shows 

that both the futures and cash prices have a unit root, while the returns on these assets are stationary. 

However, the null hypothesis of a unit root can be rejected at the 1 percent level of significance for the 

basis equation. This means that the basis is a stationary process rather than a random walk. Miller et al. 

(1994) argue that in the absence of arbitrage activity, if index levels and futures prices follow a random 

walk, then the basis should follow a random walk as well. By contrast, if arbitragers exist in the market, 

then mispricing will be removed within a very short period of time. Consequently, the basis will follow a 

mean reverting process. The test results in Panel A show that the basis follows a stationary process which 

indicates that arbitrage activity is of some significance in the FTSE 100 markets. 

 

PLEASE INSERT TABLE II ABOUT HERE 

 

Possible cointegration between these prices is investigated by applying the Johansen Cointegration test to 

the futures and index price series. The results of the test are presented in Panel B. The first part of the table 

presents the results of the cointegration test between the futures price and the index value. The second part 

of the table reports the cointegration test between the futures price and the theoretical futures price, i.e., 

the futures price implied by the cost of carry model. The results in both parts indicate the existence of one 

cointegration equation at the 5 percent significance level. This means that the futures and the index price, 

adjusted for the cost of carry and without adjusting for it, are cointegrated. 

 

Given that the Johansen Cointegration test does not reject the existence of one cointegration equation, the 

last row of each part of the table presents the stationary linear combination that exists between the futures 

and the index prices, namely, the cointegration relation or the Error Correction term. These results indicate 

that there is some evidence that the cointegrating vector is not strictly (1,-1). However, if we restrict the 



vector according to (1,-1) we still find evidence of cointegration. To facilitate the interpretation, we will 

use the (1,-1) vector as the cointegration vector and hence, the mispricing error as defined in equation (1).6 

IV. Discussion of Empirical Results 

 

IV.1 Non-linearity Test for the Basis and for the Returns 

 

We start by testing the SETAR behavior for the basis zt. We examine the hypothesis that the basis follows 

a linear AR(I) process against the alternative hypothesis that the basis follows a non-linear model. We 

start selecting the AR order I for the basis. Following Martens et al. (1998), we use the partial 

autocorrelation function of zt and we choose the lag order for the basis I=4. Next, we choose the set D of 

possible threshold lags. We assume that d ∈ D can be chosen by practical experience. The electronic 

trading system in the LSE allows the possibility of simultaneous trading in both index and futures markets. 

Therefore, we expect the arbitrage opportunities to be observed almost immediately and we use d ∈ 

{1,2,3,4,5}.7 

 

Table III presents the results of the test statistic C(d).8 We test the null hypothesis that the basis follows a 

linear AR(4) process, so that the model in equation (2) reduces to a univariate model. The test statistic 

                                                
6 The qualitative results of our estimations are robust to the use of (1,-1) as the cointegration vector or to the use of 

(1,-α), where alpha is in this case the cointegration coefficient. 

7 Notice that minute-by-minute transaction prices are used. d ∈ {1,2,3,4,5} indicates that any arbitrage trading order 

is executed within five minutes. 

8 C(d) is the test statistic to test for non-linearity. Tsay (1998) defines the test statistic and demonstrates that C(d) is 

asymptotically a chi-square random variable. 



follows an asymptotic chi-square distribution with 5 degrees of freedom. The p-values of the test-statistic 

are also presented in the table. The recursive estimation starts with m0 = 250, which is about 470,105.2 .9 

The results of the tests in Panel A indicate that p-values are close to zero for the threshold lags d = 1, 2 

and 3 and thus, the tests reject linearity for these lags. Moreover, the maximum value of the test statistic 

corresponds to d = 1, indicating that 1 is the optimal delay for the threshold variable. These results point 

out that a SETAR model like the one suggested in equation (2) is a sensible representation of the behavior 

of the basis.10 

 

PLEASE INSERT TABLE III ABOUT HERE 

 

Non-linearities in the basis require a TVECM to model the behavior of the futures and index returns. As a 

consequence, when applying the linearity test to the system }lnΔ,lnΔ{ , tTtt SFy = , we expect that the test 

rejects linearity and that the threshold variable is the same as the one found in the previous subsection for 

the basis, i.e., d = 1. 

 

For the linear Error Correction representation, we choose a lag-length p = 9 based on the significant 

coefficients at the 10 percent level. This long lag structure provides a broader picture of the lead-lag 

relationship between the futures and the index returns. As in the previous subsection, d ∈ {1,2,3,4,5} is 

used as the possible set of values for d. Panel B in Table III presents the test results of the multivariate 

                                                
9 The choice of m0 is explained in Tsay (1998): Small m0 may introduce bias in the empirical distribution of C(d). He 

suggests a starting value for the recursive autoregression around N5.2 , where N is the total number of 

observations. 

10 We want to mention that the results of an ARCH test performed on the residuals from the estimated models 

indicated that there is significant heteroskedasticity present. Therefore, White heteroskedasticity consistent standard 

errors are presented in the estimations and in the tests of this analysis. 



linearity test applied to the futures and index returns. The null hypothesis is that the return series are 

linear, so that model in equations (3) and (4) reduces to a bivariate linear Vector Error Correction model. 

The alternative hypothesis is that the return series present non-linear patterns. The test statistic C(d) is 

carried out with p = 9 and d ∈ {1,2,3,4,5} and follows a chi-square distribution with 40 degrees of 

freedom. The results of the test reject linearity more clearly for the returns' system than for the basis 

equation. Consequently, our results point to a non-linear specification for the behavior of the futures and 

index returns. Furthermore, the test statistic C(d) reaches its maximum value when d = 1, which also 

confirms that the optimal threshold variable is zt-1. 

 

IV.2 The Dynamics of the Basis 

 

Next we estimate the implied SETAR model for the basis described in equation (2) with three different 

regimes. Given the complicated nature of the non-linearity, we use a two stage estimation process. The 

first stage involves a grid search to locate the threshold values c1 and c2; in a second stage, we estimate the 

implied SETAR model taken c1 and c2 as fixed parameters in the estimation. 

 

Based on the empirical range of zt-1, we assume that the candidates for the threshold values are 

c1 ∈ [-0.078, -0.041] and c2 ∈  [0.038, 0.082].12 The minimum value for c1 and the maximum value for c2 

are chosen such that there are at least 500 observations, approximately 5 percent of the total observations, 

included in the outer regimes. Using a grid search of 300 points on each of the intervals, the minimum 

Akaike Information Criterion (AIC) selects 060.0ˆ1 −=c  and ,049.0ˆ2 −=c  which correspond to the 

                                                
12 Note that the selection of I and d beforehand dramatically reduces the state space of the grid search to choose c1 

and c2. 



values that trigger the arbitrage. Such values leave 1,003 observations in the lower regime, 7,600 

observations in the middle regime and 1,867 observations in the upper regime. The minimum AIC is 

−166,087. 

 

Our optimal threshold values indicate that the non-arbitrage range lies between −6.0 and 4.9 basis points. 

These estimated values of the transaction costs are very low compared to the results of previous studies.13 

Several points are worth noting. First, the small magnitude of the transaction costs is consistent with the 

fact that the electronic trading system has significantly reduced the magnitude of the transaction costs that 

investors face. Second, as the FTSE 100 markets are among the most liquid markets in Europe, we do not 

expect to find large bid-ask spreads in these markets.14 Finally, the mispricing estimates of Deutsche 

Bank15 for the month of July 2001 range between −1.3 and 12.7 basis points, which also points to very 

small deviations of the basis from its equilibrium value. 

 

We turn next to present the estimates of the SETAR model for the basis as stated in system (2). Table IV 

displays the results of the AR(4) estimation for each regime. The results show strong support for the 

notion that the basis follows a different process depending on whether arbitrage opportunities are present. 

The estimates of the coefficients )(
1

jα  corresponding to zt-1 are 0.490, 0.615 and 0.436 for regimes j = 1, 2 

and 3, respectively: the further the mispricing is away from the equilibrium, the stronger is the reversion 

                                                
13 For instance, Garrett and Taylor (2001) analyze FTSE 100 data from the period January to April 1998 and find  

that the symmetric transaction costs for the markets during 12:00 to 16:00h is 26.23 basis points. 

14 The fact that institutional investors trade within the spread and they do not pay stamp duty justifies the small 

magnitude of the threshold values. 

15 Deutsche Bank Derivatives Research Group produces a daily Global Fair Value sheet for European Futures; see: 

“Deutsche Bank Portfolio, Index and Futures Research”. 



back to the equilibrium.16 This fitted model confirms the expectations that zt has stronger mean-reverting 

tendency in the outer regimes, where arbitrage is presumably possible. This result indicates that, as soon 

as arbitrage opportunities are observable, the arbitragers enter the market to take advantage of such 

opportunities. These empirical findings show that the U.K. markets respond to deviations from the non-

arbitrage relation in just a few minutes. 

 

PLEASE INSERT TABLE IV ABOUT HERE 

 

Dwyer et al. (1996) argue that it is possible for the basis to be mean-reverting outside the arbitrage bounds 

but not within them. We analyze this proposition more carefully using a Dickey Fulley type regression test 

applied to the middle regime sub-sample. In particular, we run the following regression for the subsample 

of regime 2 and test if β1 = 0. 

 

ttt uzββz ++= −110Δ  

 

The results of this regression are reported in Table V. The test statistic of β1 with 0.281 is different from 

zero, which implies that the basis is also mean-reverting in regime 2 and, thus, the mispricing does not 

persist indefinitely in this regime. 

PLEASE INSERT TABLE V ABOUT HERE 

IV.3  Non-linear Impulse Response Functions for the Basis 

 

                                                
16 The changes in the dynamic pattern of z{t} are robust to different threshold values in the neighborhood of 1ĉ  and 

2ĉ . 



To further evaluate the dynamic properties of the estimated regime switching model for the basis, we 

analyze its Impulse Response Functions. These functions examine the effects of shocks ξt on the evolution 

of the time series zt as defined in system (2).17 The Generalized Impulse Response Functions are illustrated 

in Figure II. A shock of size ±1 percent and ±2 percent is introduced in date t = 0. The graphs are just a 

representative example of many possible impulse response functions depending on the history. Panel A 

plots the impulse response function after a shock in regime 1. Panel B depicts the response after a shock in 

regime 2 and Panel C draws the adjustment path after a shock in regime 3. Even though the effects of all 

shocks almost disappear within ten minutes of the introduction of the shock, we observe that the degree of 

persistence of the shocks is higher in regime 2, within the non-arbitrage band, than in regimes 1 and 3. 

This result confirms the finding that the further the mispricing error is away from its equilibrium, the 

stronger is the reversion back to its equilibrium due to the activity of the arbitrageurs. 

 

PLEASE INSERT FIGURE II ABOUT HERE 

 

Panels A, B and C of Figure II visualize that the system remains in the same regime after a shock. This is 

not the case in Panel D, where an example of non-linear behavior is illustrated. The negative shock 

implies a switch in regime, in particular, it moves the system from regime 3 into regime 2. Thus, the 

Generalized Impulse Response Function is also affected by the difference between the parameter estimates 

in regimes 3 and 2 explaining the rapid increase to zero and negative values after the shock. 

 

                                                
17 As noted by Koop, Pesaran and Potter (1996), non-linear models produce impulse response functions that depend 

on the sign and size of the shock, as well as on the history of the time series. They introduce the Generalized Impulse 

Response Function (GIRF) which provides a solution to the problems involved in defining impulse responses in 

nonlinear models. The GIRF for an arbitrary impulse δξ t =  and a history wt-1 is defined as  

[ ] [ ]111 |,|),,( −+−+− −== thttthttz wzEwδξzEwδhGIRF  (5) 



Overall, we can conclude that, even with a narrow arbitrage band, our SETAR estimates and the Impulse 

Response Functions support evidence of non-linearities in the dynamic behavior of the mispricing error. 

 

IV.4 The Dynamics of the Futures and Cash Indices 

 

In the following we estimate a Threshold Error Correction Mechanism (TVECM) to characterize the non-

linear dynamic dependence between the FTSE 100 cash and futures returns described in equations (3) and 

(4). As in the previous section, we start with searching the threshold values. The threshold candidates are 

assumed to be in the intervals c1 ∈ [-0.078, -0.041] and c2 ∈ [0.038, 0.082]. Using a grid search of 300 

points in these intervals, the minimum AIC provides 057.0ˆ1 −=c  and 059.0ˆ2 =c , with the minimum AIC 

equal to −346,436. These values leave 1,134 observations in the lower regime, 7,844 observations in the 

middle regime and 1,491 observations in the upper regime. These selected optimal threshold values are 

consistent with those obtained for the basis. 

 

Given zt-1 and the three regimes defined by 1ĉ  and 2ĉ , then we estimate the conditional Error Correction 

Model for each regime. The lag-length in each regime and for each equation is based on significant 

coefficients, at the 10 percent level, with a minimum of one lag. The results of the estimation are 

presented in Table VI. Panel A presents the coefficient estimates of the futures equation TtF ,lnΔ . Our 

empirical results, however, show different outcomes. First, the error correction coefficient is not 

significant in regimes 1 and 3. Furthermore, the futures returns do not depend on past futures returns in 

regimes 1 and 3 as the estimates of )1(
11φ  and )3(

11φ  are not statistically significant. 

 

PLEASE INSERT TABLE VI ABOUT HERE 

 

Panel B displays the coefficient estimates of the cash equation tSlnΔ . The results show that the Error 



Correction term is statistically significant in all the regimes, 181.0)(
2 =jβ , 0.099 and 0.222 in regimes j = 

1, 2 and 3, respectively. The magnitude of this coefficient is approximately twice as large in regimes 1 and 

3 as in regime 2. This increase in the dependence on the Error Correction term on regimes 1 and 3 reflects 

that the index prices immediately react to departures of the mispricing error from its non-arbitrage band. 

In addition, we observe that the lag dependence of the cash returns to its own returns and to the futures 

returns tends to be lower in regime 2, )3(
,21

)2(
,21

)1(
,21

)2(
,21 , iiii φφφφ << and )3(

,22
)2(
,22

)1(
,22

)2(
,22 , iiii φφφφ << . In particular, the 

coefficient )(
,21
j
iφ  corresponding to TtF ,1ln −Δ  increases from 0.191 in regime 2 to 0.273 and 0.269 in 

regimes 1 and 3, respectively. This evidence suggests that the cash index adjusts more quickly to the 

future market movements when arbitrage opportunities are available in the market. 

 

Our empirical results point out that new information coming into the markets is first impounded in the 

futures prices. The futures market fixes the value of the mispricing error and the cash market adapts to the 

futures movements. In this sense, the lead-lag dependence between the FTSE 100 futures and cash 

markets is best described by the cash equation as described in Panel B. 

 

In a final step, we want to describe the main common stylized facts across the regimes in Table VI to 

compare them with the empirical findings of previous linear studies of the lead-lag relationship between 

derivatives and cash markets in the U.K. First, not surprisingly the error correction term is negative in the 

futures equation and positive in the stocks equation, i.e., 0)(
1 <jβ  and 0)(

2 >jβ  for j = 1, 2 and 3. Only 

the estimates of the cash equation are statistically significant different from zero. This result indicates that 

the adjustment of the cash market to a mispricing disequilibrium is very rapid. Second, the index returns 

depend negatively on their own past returns and positively on the future returns, i.e., 0)(
,21 >j
iφ  and 

0)(
,22 >j
iφ  for j = 1, 2 and 3. Third, it is apparent that the FTSE 100 futures market generally leads the cash 

market in all the regimes by 5 to 9 minutes, i.e., )2(
9,21

)(
5,21

)(
1,21 ,...,,..., φφφ jj  are statistically significant. Finally, 



the fitted equations perform better in the cash equation than in the futures equation as the larger adjusted 

R2 indicates. 

 

All these results are in line with previous linear studies on the relationship between the FTSE derivatives 

markets and the cash market; see for instance Gwilym and Buckle (2001) and Abhyankar (1995). All the 

studies on linear lead-lag relationship in the stock index futures markets state that the index futures returns 

generally lead the stock index returns with little or no feedback from the cash to the futures markets. A 

possible explanation for this finding is that informed traders are more likely to trade in stock index futures 

as a consequence of the leverage and transaction costs benefits offered by these markets and thus, price 

movements of stock index futures are likely to lead price index movements.18 However, as the empirical 

linear studies do not take into account the transaction costs that define the different regimes, they fail to 

capture the different behavior of the dynamic relationship between the FTSE 100 futures and the cash 

market due to the arbitrage activity in the markets. Related to this last point, our results indicate that 

arbitrage activity is of some significance in the FTSE 100 markets. 

 

IV.5  Robustness Analysis 

 

The analysis presented so far has used one-minute frequency data. In the following we repeat the analysis 

using lower frequency data over the same sample period to assess if our results are robust to changes in 

the frequency of the data. In particular, we repeat the analysis with two- and five-minute frequency data 

over the same sample period. 

 

To begin with, the Augmented Dickey Fuller (ADF) tests and the Johansen cointegration tests are 

                                                
18 Fleming, Ostdiek and Whaley (1996) demonstrate that the cost of taking a position in a stock index futures is 

considerably lower than the cost of taking an equivalent position in stocks. 



performed on the new frequency series. The results of the tests and the cointegration equations are 

reported in Table VII. For both cases, the results of the tests are robust with those obtained using one-

minute frequency data; namely, the futures and cash prices contain a unit root and both price series are 

cointegrated. 

 

PLEASE INSERT TABLE VII ABOUT HERE 

 

The second step is to calculate the non-linearity test C(d). To make the analysis comparable with the one-

minute frequency results, we set d = {1, 2} when two-minute frequency data is used, which corresponds 

with actual delays of two and four minutes. In the same way, when we use five-minute frequency data, we 

set a delay parameter d = {1}, which is equivalent to a delay of five minutes. Table VIII reports the test 

statistic and the p-values. Several interesting features stand out from this table. First, with two-minute 

frequency data the test suggests threshold non-linearity in the basis series and the return series when d = 1 

(p-values = 0.000). However, the test does not reject linearity in the basis series when d = 2 (p-value = 

0.120). These results imply that the optimal delay for the threshold variable is d = 1. Second, with five-

minute frequency data, the test statistics do not reject linearity (p-value = 0.107 and 0.378 for the basis and 

the returns, respectively). Third, these outcomes are robust with the test-statistics obtained in Table III 

using one-minute frequency data. In that case, the test did not reject linearity for the delays d equal to 4 

and 5 minutes. 

 

PLEASE INSERT TABLE VIII ABOUT HERE 

 

We can conclude that the regime-switching models are not the appropriate specification to describe the 

dynamics of the FTSE 100 futures and cash returns when we work with five-minute frequency data, but 

they are appropriate when we analyze higher frequency returns dynamics. Accordingly, we suggest 

estimating a regime-switching model for the two-minute frequency data sample and a linear model when 



using the five-minute frequency subsample. 

 

Next, we estimate the non-linear regime-switching models using the two-minute frequency data; namely a 

SETAR for the basis and a TVECM for the returns dynamics. The new dataset contains 5,124 

observations. To make it consistent with the previous estimation, we choose the lag order of the SETAR 

model for the basis I = 2, which corresponds to four minutes and the lag order of the TVECM equal to ten 

minutes, p = 5. The candidates for the threshold values are also the same as the ones selected for the one-

minute frequency analysis, i.e., ]041.0 ,078.0[1 −−∈c  and ]082.0,038.0[2 ∈c . The minimum AIC 

criterion for the SETAR selects 051.01̂ −=c  and 045.0ˆ2 =c , with the AIC value equal to −38,317. The 

AIC criterion for the TVECM selects 058.0ˆ1 −=c  and 049.0ˆ2 =c , with the AIC value equal to −91,126. 

Table IX reports the estimated parameters of the SETAR model for the basis. The results are very similar 

to those obtained using one minute frequency data: the mean reversion of the basis is stronger in regimes 1 

and 3 where arbitrage is presumably profitable, 472.0 ,377.0)(
1 =jα  and 0.439 in regimes j = 1, 2 and 3, 

respectively. 

 

PLEASE INSERT TABLE IX ABOUT HERE 

 

Table X displays the estimates of the TVECM for the returns system. We observe that the estimated 

coefficients of the Error Correction term in the futures equation are non-significant. On the opposite, the 

estimated coefficients )(
2

jβ  in the cash equation point out that cash prices are the ones that react to any 

disequilibrium movements. This fact is especially remarkable in regime 1, where the error correction 

coefficient is more than four times larger than the one in regime 2, 111.0 ,467.0)(
2 =jβ  and 0.199 for j = 1, 

2 and 3, respectively. 

 

PLEASE INSERT TABLE X ABOUT HERE 



 

Regarding the five-minute frequency data, we next present the linear AR(1) and the VECM(2) estimation. 

The new dataset contains 2,028 observations. As in the previous samples, we select the lag order to 

account for delays of up to ten minutes, in particular I = 1 and p = 2. The estimated AR(1) model for the 

basis is: ttt zz ξ0.343102.6 1
*****5,* ++⋅= −

− .The estimated results indicate that the mispricing error follows 

a stationary process. 19 Table XI presents the estimates of the linear VECM(2) for the FTSE 100 cash and 

futures returns. The empirical findings are in line with those of previous linear studies on the lead-lag 

relationship between futures and cash prices. The signs of the adjustment coefficients in the VECM are 

those expected and significantly different from zero, 189.01 −=β  in the futures equation and 308.01 =β  

in the cash equation. In addition, our results point out that the index futures returns lead the stock index 

returns, 300.01
21 =φ  and 115.02

21 =φ . 

 

PLEASE INSERT TABLE XI ABOUT HERE 

 

To summarize the findings in this section, the non-linear properties of the FTSE 100 cash and futures 

returns are not robust to changes in sample frequencies. Non-linearities are still present in the FTSE 100 

markets when we work with frequencies higher than five minutes. This finding indicates that the 

introduction of screen trading has accelerated the price discovery process in the FTSE 100 markets, 

namely, the information is incorporated more rapidly into prices. 

 

V.  Conclusions 

 

This paper has analyzed the dynamic interactions between stock prices that are theoretically related; in 

                                                
19 We also estimated the linear models with longer lag orders. The new coefficients turned out to be not significant. 



particular, between futures and cash indices for the FTSE 100 using one minute frequency data. We have 

analyzed the role of transaction costs and arbitrage activity to explain the non-linear dynamics observed 

between these contracts. In addition, we have investigated whether the introduction of the electronic 

trading platforms has eliminated the non-linear dynamics in the FTSE 100 markets. To this aim, we 

suggested a discrete regime-switching framework to define the bands within which arbitrage may be 

profitable. First, we estimated a Self Exciting Vector Autoregressive for the basis. In a second step, we 

specified a Threshold Error Correction Model which explicitly modeled the behavior of arbitragers and 

allowed for non-linear adjustments of the returns towards the long-term equilibrium. Intuitively, index-

futures arbitrage only occurs when the deviations from the non-arbitrage relationship are sufficiently large 

to compensate for the transaction costs. In this context, the TVECM provides the bands within which 

arbitrage is not profitable and the effects of arbitrage on the convergence of futures and cash values. 

 

The main conclusion from our empirical investigation is that arbitrage activity is of some significance in 

shaping the short-term dynamic relationship between the FTSE 100 cash and futures prices. Our evidence 

confirms the presence of non-linearities in the behavior of the basis and the returns when using one minute 

frequency data. The main findings of this paper can be summarized as follows: 

 

1. The basis or mispricing follows different processes depending on whether arbitrage opportunities 

are present. In particular, the mean reversion of the basis to the cost of carry in the regimes in which 

arbitrage is profitable is stronger than in the regime where there are no arbitrage opportunities. 

 

2. As for the dynamic relationship between the futures and cash prices, our results show that the 

parameters of the Error Correction Mechanism depend on the level of mispricing. In particular, the 

adjustment process of the FTSE 100 cash index to deviations from the mispricing equilibrium exhibits 

clear non-linearities. New information coming into the market is first included in futures prices. The index 

market then responds to arbitrage opportunities pushing the mispricing error back to the non-arbitrage 



band. This behavior is particularly strong in the arbitrage regime where the deviations of the basis are 

large and positive. In such situations, the arbitrage strategy consists of selling futures contracts on the 

FTSE 100 and simultaneously buying the stocks underlying the index. 

 

3. We extended the analysis to assess whether our results are robust to changes in the frequency of 

the data. In particular, we repeated the analysis with two and five minute frequency data series over the 

same sample period. We find that the non-linear dynamic behavior is not robust to changes in data 

frequencies. When using five minute frequency data, the non-linearities are not present and thus, the 

regime-switching models are not an appropriate specification to model the lead-lag relationship between 

the FTSE 100 cash and futures indices, indicating that index arbitrage opportunities in the FTSE markets 

vanish within five minutes. 

 

Overall, the introduction of the electronic trading systems in the FTSE 100 markets has increased the 

efficiency of the markets by enhancing the price discovery process, namely by facilitating the increase of 

the speed of adjustment of the futures and cash prices to departures of the mispricing error from its non-

arbitrage band. Nevertheless, the automation of the markets has not completely eliminated the non-linear 

properties of the return series.
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Table I 
Summary Statistics 

 

Notes: The number of observations for each time series is 10,470. The basis is calculated according to equation (1) 

))((lnln ,,, tTqrSFz TtTttTtt −−−−= . ρ1 is the first order autocorrelation coefficient which is calculated for the 

first differences in the basis. 

 

 lnFt,T lnSt 100*zt 

Maximum 0.0025 0.0023 0.220 

Minimum -0.0027 -0.0016 -0.300 

Mean 1.1·10-6 3.7·10-7 2.7·10-3 
Median 0.000 0.000 3.0·10-3 
Std. Dev. 3.9·10-4 4.0·10-4 4.9·10-4 
ρ1 -0.013 0.189 -0.499 

 



Table II 
Panel A: Augmented Dickey Fuller Unit Root Test 

 

Notes: The unit root regressions for the futures and index prices contain a constant and 10 lags, while the unit root 

regression for the basis contains a constant and 4 lags. 

 lnFt,T lnSt zt Critical Value 1 percent 
ADF Levels -1.17 -1.13 -18.4 -3.41 
ADF Differences -45.5 -30.1 -21.1 -3.41 

 

Panel B: Johansen Cointegration Test 
 
Notes: The test is carried assuming that the series have linear trends. λi refers to the Eigen values, the second column 

displays the Likelihood Ratio test statistic. For each part of the table, the first row tests the hypothesis of no 

cointegration, the second row tests the hypothesis of one cointegration relation, the third row presents the 

cointegration vector. Standard errors are reported in parentheses.  

 
Cointegration between lnFt,T and lnSt 

λi Likelihood Ratio Critical Value 5 percent H0 
0.0159 172.7 15.41 r = 1 
0.0002 3.147 3.76 r ≤ 1 

EC term: 

)003.0(             

ln053.1ln , tTt SF −
 

)004.0(            
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Cointegration between lnFt,T and )(ln c
tS  adjusted for cost of carry 

λi Likelihood Ratio Critical Value 5 percent H0 
0.0388 421.3 15.41 r = 0 
0.0002 3.144 3.76 r ≤ 1 

EC term: 
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ln017.1ln )(
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Table III 
Non-linearity Tests, C(d)

 
Notes: The sample size is 10,470 and the starting point of the recursive least squares is 250. The non-linearity tests 

present heterokedasticity consistent results. 

 
Panel A: C(d) tests H0: “zt follows a linear AR(4)” against H1: “zt is non-linear” 

 
d = 1 2 3 4 5 

)5(~)( 2χdC  23.07 15.37 13.77 9.243 8.810 

p – value 0.000 0.008 0.017 0.099 0.117 
 
 
Panel B: C(d) tests H0: “yt = {ΔlnFt,T, ΔlnSt } follows a linear VECM(9)” against H1: “yt is non-linear” 

d = 1 2 3 4 5 
)40(~)( 2χdC  94.21 74.40 64.90 44.13 46.96 

p – value 0.000 0.000 0.008 0.301 0.209 



Table IV 
Self Exciting Threshold Autoregressive Model for the Basis 

Notes: The model estimated is given in equation (2): 

∑
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where j = 1, 2, 3 and the threshold lag equals to 1. The optimal threshold values are 1ĉ = -0.060 and 2ĉ = 0.049, 

which define the three regimes. The number of observations is 1,003, 7,600 and 1,867 in regimes 1, 2 and 3, 

respectively. White heteroskedasticity consistent standard errors are given. )(,2ˆ jσ  is the sum of squared residuals in 

the regression. *; ** and *** indicate significance at 10, 5 and 1 percent levels, respectively. 

 
 Regime 1 Regime 2 Regime 3 
 zt-1 ≤ -0.060 -0.060 < zt-1 ≤ 0.049 zt-1 > 0.049 
 Coef. Std. Error Coef. Std. Error Coef. Std. Error 
zt-1 0.490*** 0.066 0.615*** 0.017 0.436*** 0.046 
zt-2 0.046 0.044 0.090*** 0.015 0.095*** 0.032 
zt-3 0.104** 0.043 0.023 0.014 -0.013 0.031 
zt-4 0.113*** 0.039 0.055*** 0.012 0.107*** 0.026 

)( jδ  -2.8·10-5 5.1·10-5 1.1·10-5,*** 3.8·10-6 1.2·10-4,*** 3.3·10-5 

)(,2ˆ jσ  4.1·10-4  3.5·10-4  3.7·10-4  

Adj. R2 (%) 18.1  27.8  11.1  



Table V 
Mean Reversion of the Basis in Regime 2 

 
Notes: Dickey Fuller type regression applied to regime 2 with 7,845 observations. *** indicates significance at 1 

percent level. 

 
Independent variable: Δzt

 Coefficient Std. Error 
β0 1.2·10-5 *** 4.0·10-6 
β1 -0.281*** -0.014 

 



Table VI 
Threshold Error Correction Model for the returns 

 
Notes: The estimated TVECM is given in equations (3) and (4). The lag-length in each regime and for each equation 

is based on significant coefficients. Number of observations is 1,134, 7,845 and 1,491 in regimes 1, 2 and 3 

respectively. White heteroskedasticity consistent standard errors are reported. *, ** and *** stand for significance at 

10, 5 and 1 percent levels, respectively. 

 
 Regime 1 Regime 2 Regime 3 
 zt- ≤ -0.057 -0.057 < zt-1 ≤ 0.059 zt-1 > 0.059 
 Coef. Std. Error Coef. Std. Error Coef. Std. Error 
Panel A: Futures Equation, ΔlnFt,T  
zt-1 -0.042 0.070 -0.054*** 0.015 -0.069 0.065 
ΔlnFt-1,T 0.013 0.050 -0.045*** 0.015 -0.019 0.038 
ΔlnSt-1 0.153*** 0.059 0.163*** 0.018 0.115*** 0.043 
Constant 3.6·10-5 5.3·10-5 6.1·10-6 4.2·10-6 -8.5·10-5 4.9·10-5 
Adj. R2(%) 1.51  1.50  0.65  
Panel B: Cash Equation, ΔlnSt

zt-1 0.181*** 0.051 0.099*** 0.012 0.222*** 0.047 
ΔlnFt-1,T 0.273*** 0.034 0.191*** 0.012 0.269*** 0.032 
ΔlnFt-2,T 0.187*** 0.034 0.167*** 0.012 0.188*** 0.029 
ΔlnFt-3,T 0.081** 0.032 0.129*** 0.011 0.116*** 0.031 
ΔlnFt-4,T 0.050* 0.027 0.104*** 0.011 0.118*** 0.030 
ΔlnFt-5,T 0.094*** 0.024 0.084*** 0.011 0.092*** 0.029 
ΔlnFt-6,T   0.068*** 0.011 0.087*** 0.027 
ΔlnFt-7,T   0.051*** 0.010 0.053** 0.023 
ΔlnFt-8,T   0.032*** 0.010 -0.137*** 0.040 
ΔlnFt-9,T   0.025*** 0.009 -0.048 0.041 
ΔlnSt-1 -0.099** 0.043 -0.094*** 0.015 -0.089** 0.037 
ΔlnSt-2 -0.055 0.043 -0.105*** 0.015 -0.113*** 0.034 
ΔlnSt-3 -0.092** 0.045 -0.104*** 0.014 -0.083** 0.033 
ΔlnSt-4   -0.086*** 0.014 -0.052* 0.031 
ΔlnSt-5   -0.052*** 0.014   
ΔlnSt-6   -0.075*** 0.013   
ΔlnSt-7   -0.029** 0.012   
ΔlnSt-8   -0.039*** 0.012   
Constant 5.0·10-5 3.9·10-5 -2.5·10-6 2.8·10-6 -1.0·10-4,*** 3.2·10-5 
Adj. R2 (%) 15.7  10.8  14.4  



Table VII 
Unit Root Tests and Cointegration Tests – Two- and Five-Minute Frequency Series 

 
Notes: Tests are applied to two- and five-minute frequency datasets. The 1 percent critical value of the ADF test is 

-3.43. The 5 percent critical values of the Likelihood Ratio test are 15.41 and 3.76 respectively. The unit root 

regressions for the futures and index prices contain a constant and 10 lags, while the unit root regression for the basis 

contains a constant and 4 lags. The test is carried assuming that the series have linear trends. λi refers to the Eigen 

values, the second column displays the Likelihood Ratio test statistic. For each part of the table, the first row tests the 

hypothesis of no cointegration, the second row tests the hypothesis of one cointegration relation, the third row 

presents the cointegration vector. Standard errors are reported in parentheses. 

 
Panel A: ADF unit root test on the prices 
 lnFT,t lnSt 100*zt 
2-minute sample 
Levels -1.80 -1.81 -20.9 
Differences -31.4 -30.6 -47.7 
5-minute sample 
Levels -1.74 -1.72 -15.1 
Differences -21.4 -21.9 -32.5 
 
Panel B: Johansen cointegration test 
 λi Likelihood Ratio H0 
2-minute 0.0147 79.3 r = 0 
 0.0006 3.27 r<=1 
 EC term tTt SF ln053.1ln

)004.0(
, −  Ttt FS ,

)004.0(
ln949.0ln −  

5-minute 0.0146 32.8 r = 0 
 0.0014 3.76 r<=1 
 EC term tTt SF ln052.1ln

)007.0(
, −  Ttt FS ,

)006.0(
ln949.0ln −  

 
d = 1 2 3 4 5 

)5(~)( 2χdC  23.07 15.37 13.77 9.243 8.810 

p – value  0.000 0.008 0.017 0.099 0.117 



Table VIII 
Non-Linearity Tests – Two- and Five-Minute Frequency Series 

 
Notes: Two minute frequency series: sample size is 5,124 observations. The starting point of the recursive OLS is 

175. Five minute frequency series: sample size is 2,028 observations. The starting point of the recursive OLS is 110. 

Tests present heterokedasticity consistent results. All the delays are chosen to include up to 10 minutes in the 

estimations.  

 
Panel A: H0: “zt follows a linear AR(I)” 
 d = 1 2 
2-minute )3(~)( 2χdC  17.43 5.803 

 p-value 0.000 0.120 

5-minute )2(~)( 2χdC  4.46  

 p-value 0.107  
    
Panel B: H0: “yt follows a linear VECM(p)” 
 d = 1 2 
2-minute )24(~)( 2χdC  66.20 34.01 

 p-value 0.000 0.084 
5-minute )12(~)( 2χdC  12.87  

 p-value 0.378  



Table IX 
Self Exciting Threshold Autoregressive (SETAR) Model for Basis – Two-Minute Frequency Series 

 

Notes: The model estimated is given in equation (2): 
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where j = 1, 2, 3 and the threshold lag equals to 1. The optimal threshold values are 1ĉ = -0.051 and 2ĉ = 0.045, 

which define the three regimes. The number of observations is 675, 3,456 and 993 in regimes 1, 2 and 3, 

respectively. White heteroskedasticity consistent standard errors are given. )(,2ˆ jσ  is the sum of squared residuals in 

the regression. *; ** and *** indicate significance at 10, 5 and 1 percent levels, respectively. 

 

 Regime 1 Regime 2 Regime 3 
 zt-1 ≤-0.051 -0.051 < zt-1 ≤ 0.045 zt-1 > 0.045 
 Coef. Std. Error Coef. Std. Error Coef. Std. Error 
zt-1 0.377*** 0.089 0.472*** 0.028 0.439*** 0.071 
zt-2 0.153 0.041 0.152*** 0.019 0.157*** 0.034 

)( jδ  -2.8·10-5 6.4·10-5 1.4·10-5,** 8.8·10-6 7.6·10-6 5.0·10-5 

)(,2ˆ jσ  4.4·10-4  4.0·10-4  4.1·10-4  

Adj. R2 (%) 7.13  13.9  9.31  



Table X 
Threshold Error Correction Model for the Returns – Two-Minute Frequency Series 

 

Notes: The estimated TVECM is given in equations (3) and (4). The lag-length in each regime and for each equation 

is based on significant coefficients. Number of observations is 681, 3,584 and 922 in regimes 1, 2 and 3 respectively. 

White heteroskedasticity consistent standard errors are reported. *, ** and *** stand for significance at 10, 5 and 1 

percent levels, respectively. 

 

 Regime 1 Regime 2 Regime 3 
 zt-1 ≤ 0.058 -0.058 < zt-1 ≤ 0.049 zt-1 > 0.049 
 Coef. Std. Error Coef. Std. Error Coef. Std. Error 
Futures equation, ΔlnFt,T  
zt-1 -0.032 0.141 -0.134*** 0.032 -0.062 0.100 
ΔlnFt-1,T 0.133** 0.067 -0.022 0.026 0.014 0.049 
ΔlnSt-1 0.040 0.078 0.164*** 0.028 0.088* 0.054 
Constant 1.3·10-4 1.0·10-4 8.6·10-6 8.7·10-6 -3.0·10-5 7.3·10-5 
Adj. R2 (%) 2.31  1.92  0.72  
Cash equation, ΔlnSt 

zt-1 0.467*** 0.111 0.111*** 0.027 0.199*** 0.084 
ΔlnFt-1,T 0.450*** 0.057 0.288*** 0.023 0.318*** 0.044 
ΔlnFt-2,T 0.095 0.056 0.209*** 0.022 0.205*** 0.041 
ΔlnFt-3,T 0.158** 0.052 0.143*** 0.022 0.138** 0.036 
ΔlnFt-4,T   0.066*** 0.021 0.039 0.040 
ΔlnFt-5,T   0.045*** 0.018 0.058* 0.033 
ΔlnSt-1 -0.177** 0.073 -0.139*** 0.028 -0.183** 0.051 
ΔlnSt-2 -0.054 0.074 -0.135*** 0.026 -0.214*** 0.045 
ΔlnSt-3 -0.170** 0.052 -0.106*** 0.025 -0.106** 0.040 
ΔlnSt-4 -0.165*** 0.038 -0.080*** 0.024 -0.075*** 0.031 
ΔlnSt-5   -0.042** 0.018   
Constant 2.1·10-4,** 7.4·10-5 -3.0·10-6 6.1·10-6 -1.3·10-5 5.7·10-5 
Adj. R2 (%) 18.0  10.7  9.98  



Table XI 
Linear VECM(2) for the Returns – Five-Minute Frequency Series 

 
Notes: The system estimated is given as 
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White heteroskedasticity consistent standard errors are given in parenthesis. *; ** and *** stand for significance at 

10, 5 and 1 percent levels, respectively. 

 

 Coef. Std. Error 
Panel A: Futures equation, ΔlnFt,T  
zt-1 -0.189*** 0.059 
ΔlnFt-1,T 0.1085 0.057 
ΔlnSt-1 0.017 0.061 
Constant 6.7·10-6 1.9·10-5 
Adj. R2(%) 1.07  
Panel B: Cash equation, ΔlnSt  
zt-1 0.308*** 0.051 
ΔlnFt-1,T 0.300*** 0.048 
ΔlnFt-2,T 0.115** 0.041 
ΔlnSt-1 -0.176*** 0.052 
ΔlnSt-2 -0.138*** 0.041 
Constant -1.4·10-5 1.6·10-5 
Adj. R2(%) 14.0  



Figure I 
Time Plots of One-Minute FTSE 100 Index and Futures Returns and Associated Threshold Variable 
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Panel B:  FTSE 100 Futures Returns
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Panel C:  Mispricing error: 100*zt
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Figure II 
Generalized Impulse Response Functions 

 
Panel A: Observation t = 5,545. History (t-4, …, t) = −0.007, 0.022, −0.003, −0.012, −0.082 
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Panel B: Observation t = 6,029. History (t-4, …, t) = −0.094, −0.016, −0.029, 0.014, 0.016 
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Panel C: Observation t = 1,020. History (t-4, …, t) = 0.074, 0.101, 0.101, 0.051, 0.158 

GIRF. Shock in regime 3
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Panel D: Observation t = 7,687. History (t-4, …, t) = −0.007, 0.016, 0.038, 0.033, 0.055 

GIRF. Shock in regime 3

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

period

ch
a

n
g

e
 i

n
 t

h
e

 b
a

si
s 

(%
)

 



CFS Working Paper Series: 
 

No. Author(s) Title 

2007/19 Maria Kasch-Haroutounian 
Erik Theissen 

Competition between Exchanges: Euronext versus 
Xetra 

2007/18 Günter W. Beck 
Volker Wieland 

Money in Monetary Policy Design under 
Uncertainty: A Formal Characterization of ECB-
Style Cross-Checking 

2007/17 Günter W. Beck 
Volker Wieland 

Money in Monetary Policy Design under 
Uncertainty: The Two-Pillar Phillips Curve versus 
ECB-Style Cross-Checking 

2007/16 Silvio Colarossi 
Andrea Zaghini 

Gradualism, Transparency and Improved 
Operational Framework: A Look at the Overnight 
Volatility Transmission 

2007/15 Annamaria Lusardi 
Olivia S. Mitchell 

Financial Literacy and Retirement Preparedness: 
Evidence and Implications for Financial Education 
Programs 

2007/14 Jean Boivin 
Marc P. Giannoni 
Ilian Mihov 

Sticky Prices and Monetary Policy: Evidence from 
Disaggregated U.S. Data 

2007/13 Virgiliu Midrigan Menu Costs, Multi-Product Firms, and Aggregate 
Fluctuations 

2007/12 Michael Woodford Robustly Optimal Monetary Policy with Near-
Rational Expectations 

2007/11 Lars E. O. Svensson 
Noah Williams 

Bayesian and Adaptive Optimal Policy under 
Model Uncertainty 

2007/10 Alessandro Calza 
Tommaso Monacelli 
Livio Stracca 

Mortgage Markets, Collateral Constraints, and 
Monetary Policy: Do Institutional Factors Matter? 

 
Copies of working papers can be downloaded at http://www.ifk-cfs.de  




