
Xia, Yingcun; Härdle, Wolfgang Karl; Linton, Oliver

Working Paper

Optimal smoothing for a computationally and
statistically efficient single index estimator

SFB 649 Discussion Paper, No. 2009,028

Provided in Cooperation with:
Collaborative Research Center 649: Economic Risk, Humboldt University Berlin

Suggested Citation: Xia, Yingcun; Härdle, Wolfgang Karl; Linton, Oliver (2009) : Optimal
smoothing for a computationally and statistically efficient single index estimator, SFB 649
Discussion Paper, No. 2009,028, Humboldt University of Berlin, Collaborative Research Center
649 - Economic Risk, Berlin

This Version is available at:
https://hdl.handle.net/10419/25344

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/25344
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 
 
 
 
 

 
 
 
 
 

SFB 649 Discussion Paper 2009-028 

Optimal Smoothing for a 
Computationally and 

Statistically Efficient Single 
Index Estimator 

 
 

Yingcun Xia* 
Wolfgang Härdle** 
Oliver Linton*** 

* National University of Singapore, Singapore 
** Humboldt-Universität zu Berlin, Germany 

*** London School of Economics, United Kingdom 

This research was supported by the Deutsche 
Forschungsgemeinschaft through the SFB 649 "Economic Risk". 

 
http://sfb649.wiwi.hu-berlin.de 

ISSN 1860-5664 
 

SFB 649, Humboldt-Universität zu Berlin 
Spandauer Straße 1, D-10178 Berlin 

S
FB

  
  
  
6

 4
 9

  
  
  
  

  
  
  
E

 C
 O

 N
 O

 M
 I 

C
  

  
 R

 I 
S

 K
  
  
  
  
  
  

  
  
 B

 E
 R

 L
 I 

N
 



Optimal Smoothing for a Computationally and Statistically

Efficient Single Index Estimator ∗

Yingcun Xia

Department of Statistics and Applied Probability

National University of Singapore

Wolfgang Härdle
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Abstract

In semiparametric models it is a common approach to under-smooth the nonparametric functions in

order that estimators of the finite dimensional parameters can achieve root-n consistency. The requirement

of under-smoothing may result as we show from inefficient estimation methods or technical difficulties.

Based on local linear kernel smoother, we propose an estimation method to estimate the single-index model

without under-smoothing. Under some conditions, our estimator of the single-index is asymptotically

normal and most efficient in the semi-parametric sense. Moreover, we derive higher expansions for our

estimator and use them to define an optimal bandwidth for the purposes of index estimation. As a

result we obtain a practically more relevant method and we show its superior performance in a variety of

applications.

∗The first author is most grateful to Professor V. Spokoiny for helpful discussions and NUS FRG R-155-000-048-112 and the

Alexander von Humboldt Foundation for financial support. The second author thanks the Deutsche Forschungsgemeinschaft
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1 Introduction

Single index models (SIMs) are widely used in the applied quantitative sciences. Although the context of

applications for SIMs almost never prescribes the functional or distributional form of the involved statistical

error, the SIM is commonly fitted with (low dimensional) likelihood principles. Both from a theoretical and

practical point of view such fitting approach has been criticized and has led to semiparametric modelling.

This approach involves high dimensional parameters (nonparametric functions) and a finite dimensional

index parameter. Consider the following single-index model,

Y = g(θ>0 X) + ε, (1)

where E(ε|X) = 0 almost surely, g is an unknown link function, and θ0 is a single-index parameter with

length one and first element positive for identification. In this model there is a single linear combination

of covariates X that can capture most information about the relation between response variable Y and

covariates X, thereby avoiding the “curse of dimensionality”. Estimation of the single-index model is very

attractive both in theory and in practice. In the last decade a series of papers has considered estimation

of the parametric index and the nonparametric part with focus on root-n estimability and efficiency issues,

see Carroll, Fan, Gijbels and Wand (1997) for an overview. There are numerous methods proposed or can

be used for the estimation of the model. Amongst them, the most popular ones are the average derivative

estimation (ADE) method investigated by Härdle and Stoker (1989), the sliced inverse regression (SIR)

method proposed by Li (1989); the semiparametric least squares (SLS) method of Ichimura (1993) and the

simultaneous minimization method of Härdle, Hall and Ichimura (1993).

The existing estimation methods are all subject to some or other of the following four critiques: (1)

Heavy computational burden: see, for example, Härdle, Hall and Ichimura (1993), Delecroix, Härdle and

Hristache (2003), Xia and Li (1999) and Xia et al. (1999). These methods include complicated optimization

techniques (iteration between bandwidth choice and parameter estimation) for which no simple and effective

algorithm is available up to now. (2) Strong restrictions on link functions or design of covariates X: Li

(1991) required the covariate to have a symmetric distribution; Härdle and Stoker (1989) and Hristache
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et al. (2001) needed a non-symmetric structure for the link function, i.e., |Eg′(θ>0 X)| is bounded away

from 0. If these conditions are violated, the corresponding methods are inconsistent. (3) Inefficiency: The

ADE method of Härdle and Stoker (1989) or the improved ADE method of Hristache et al. (2001) is not

asymptotically efficient in the semi-parametric sense, Bickel et al. (1993). Nishiyama and Robinson (2000,

2005) considered the Edgeworth correction to the ADE methods. Härdle and Tsybakov (1993) discussed the

sensitivity of the ADE. Since this method involves high dimensional smoothing and derivative estimation,

its higher order properties are poor. (4) Under-smoothing: Let hopt
g be the optimal bandwidth in the sense of

MISE for the estimation of link function g and let hθ be the bandwidth used for the estimation of θ0. Most

of the methods mentioned above require the bandwidth hθ to be much smaller than the bandwidth hopt
g , i.e.

hθ/hopt
g → 0 as n →∞, in order that estimators of θ0 can achieve root-n consistency, see, Härdle, and Stoker

(1989) and Hristache et al. (2002), Robinson (1988), Hall (1989) and Carroll et al. (1997) among others.

Due to technical complexities, there are few investigations about how to select the bandwidth hθ for the

estimation of the single-index. Thus it could be the case that even if hθ = hopt
g allows for root-n consistent

estimation of θ, that hopt
θ /hopt

g → 0 or hopt
g /hopt

θ → 0, where hopt
θ is the optimal bandwidth for estimation

of θ. This would mean that using a single bandwidth hopt
g would result in suboptimal performance for the

estimator of θ. Higher order properties of other semiparametric procedures have been studied in Linton

(1995) inter alia.

Because the estimation of θ0 is based on the estimation of the link function g, we might expect that a

good bandwidth for the link function should be a good bandwidth for the single-index, i.e., under-smoothing

should be unnecessary. Unfortunately, most of the existing estimation methods involve for technical reason

“under-smoothing” the link function in order to obtain a root-n consistent estimator of θ0. See, for example,

Härdle and Stoker (1989), Hristache et al. (2001, 2002), Carroll et al. (1997) and Xia and Li (1999). Härdle,

Hall and Ichimura (1993) investigated this problem for the first time and proved that the optimal bandwidth

for the estimation of the link function in the sense of MISE can be used for the estimation of the single-index

to achieve root-n consistency. As mentioned above, for its computational complexity the method of Härdle,

Hall and Ichimura (1993) is hard to implement in practice.

This paper presents a method of joint estimation of the parametric and nonparametric parts. It avoids

undersmoothing and the computational complexity of former procedures and achieves the semiparametric

efficiency bound. It is based on the MAVE method of Xia et al (2002), which we outline in the next section.

Using local linear approximation and global minimization, we give a very simple iterative algorithm. The
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proposed method has the following advantages: (i) the algorithm only involves one-dimensional smoothing

and is proved to converge at a geometric rate; (ii) with normal errors in the model, the estimator of θ0

is asymptotically normal and efficient in the semiparametric sense; (iii) the optimal bandwidth for the

estimation of the link function in the sense of MISE can be used to estimate θ0 with root-n consistency;

(iv) by a second order expansion, we further show that the optimal bandwidth for the estimation of the

single-index θ0, hopt
θ , is of the same magnitude as hopt

g .

Therefore, the commonly used “under-smoothing” approach is inefficient in the sense of second order

approximation. Powell and Stoker (1996) investigated bandwidth selection for the ADE methods. We also

propose an automatic bandwidth selection method for our estimator of θ. Xia (2006) has recently shown

the first order asymptotic properties of this method. Our theoretical results are proven under weak moment

conditions.

In section 3 we present our main results. We show the speed of convergence, give the asymptotic

estimation and derive a smoothing parameter selection procedure. In the following section we investigate

the proposed estimator in simulation and application. Technical details are deferred to the appendix.

2 The MAVE method

Suppose that {Xi, Yi : i = 1, 2, . . . , n} is a random sample from model (1). The basic idea of our estimation

method is to linearly approximate the smooth link function g and to estimate θ0 by minimizing the overall

approximation errors. Xia et al (2002) proposed a procedure via the so called minimum average conditional

variance estimation (MAVE). The single index model (1) is a special case of what they considered, and we

can estimate it as follows. Assuming function g and parameter θ0 are known, then the Taylor expansion of

g(θ>0 Xi) at g(θ>0 x) is

g(θ>0 Xi) ≈ a + dθ>0 (Xi − x),

where a = g(θ>0 x) and d = g′(θ>0 x). With fixed θ, the local estimator of the conditional variance is then

σ2
n(x|θ) = min

a,d
{nf̂θ(x)}−1

n∑

i=1

[Yi − {a + dθ>(Xi − x)}]2Kh{θ>(Xi − x)},

where f̂θ(x) = n−1
∑n

i=1 Kh{θ>(Xi−x)}, where K is a univariate density function, h is the bandwidth and

Kh(u) = K(u/h)/h; see Fan et al (1996). The value σ2
n(x|θ) can also be understood as the local departure

of Yi with Xi close to x from a local linear model with given θ. Obviously, the best approximation of θ
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should minimize the overall departure at all x = Xj , j = 1, · · · , n. Thus, our estimator of θ0 is to minimize

Qn(θ) =
n∑

j=1

σ2
n(Xj |θ) (2)

with respect to θ : |θ| = 1. This is the so-called minimum average conditional variance estimation (MAVE)

in Xia et al (2002). In practice it is necessary to include some trimming in covariate regions where density

is low, so we weight σ2
n(Xj |θ) by a sequence ρ̂θ

j , where ρ̂θ
j = ρn{f̂θ(Xj)}, that is discussed further below.

The corresponding algorithm can be stated as follows. Suppose θ1 is an initial estimate of θ0. Set the

number iteration τ = 1 and bandwidth h1. We also set a final bandwidth h. Let Xij = Xi −Xj .

Step 1: With bandwidth hτ , calculate f̂θ(Xj) = n−1
∑n

i=1 Khτ (θ>Xij) and the solutions of aj and dj to the

inner problem in (2)

(
aθ

j

dθ
jhτ

)
=

{ n∑

i=1

Khτ (θ>Xij)

(
1

θ>Xij/hτ

)(
1

θ>Xij/hτ

)> }−1
n∑

i=1

Khτ (θ>Xij)

(
1

θ>Xij/hτ

)
Yi.

Step 2: Fix the weight Khτ (θ>Xij), fθ(Xj), aθ
j and dθ

j . Calculate the solution of θ to (2)

θ = {
n∑

i,j=1

Khτ (θ>Xij)ρ̂θ
j{dθ(Xj)}2XijX

>
ij f̂θ(θ>Xj)}−1

n∑

i,j=1

Khτ (θ>Xij)ρ̂θ
jdθ(Xj)Xij(yi−aθ

j)/f̂θ(θ>Xj),

where ρ̂θ
j = ρn{f̂θ(Xj)}.

Step 3: Set τ = τ + 1, θ := θ/|θ| and hτ := max{h, hτ/
√

2}, go to Step 1.

Repeat steps 1 and 2 until convergence.

The iteration can be stopped by the common rule. For example, if the calculated θ’s are stable at a

certain direction, we can stop the iteration. The final vector θ := θ/|θ| is the MAVE estimator of θ0, denoted

by θ̂. Note that these steps are an explicit algorithm of the Xia et al (2002) method for the single-index

model with some version of what the called ‘refined kernel weighting’ and boundary trimming. Similar to

the other direct estimation methods, the calculation above is easy to implement. See Horowitz and Härdle

(1996) for more discussions. After θ is estimated, the link function can be then estimated by the local linear

smoother as gθ̂(v), where

ĝθ(v) = [n{sθ
2(v)sθ

0(v)− (sθ
1(v))2}]−1

n∑

i=1

{sθ
2(v)− sθ

1(v)(θ>Xi − v)/hτ}Khτ (θ>Xi − v)Yi, (3)
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and sθ
k(v) = n−1

∑n
i=1 Khτ (θ>Xi − v){(θ>Xi − v)/hτ}k for k = 0, 1, 2. Actually, ĝθ̂(v) is the final value of

aθ
j in Step 1 with θ>Xj replaced by v.

In the algorithm, ρn(.) is a trimming function employed to handle the boundary points. There are many

choices for the estimator to achieve the root-n consistency; see e.g. Härdle and Stocker (1989) and HHI

(1993). However, to achieve the efficiency bound, ρn(v) must tend to 1 for all v. In this paper, we take

ρn(v) as a bounded function with third order derivatives on R such that ρn(v) = 1 if v > 2c0n
−ς ; ρn(v) = 0

if v ≤ c0n
−ς for some constants ς > 0 and c0 > 0. As an example, we can take

ρn(v) =





1, if v ≥ 2c0n
−ς ,

exp{(2c0n−ς−v)−1}
exp{(2c0n−ς−v)−1}+exp{(v−c0n−ς)−1} , if 2c0n

−ς > v > c0n
−ς ,

0, if v ≤ c0n
−ς .

(4)

The choice of ς will be given below.

3 Main Results

We impose the following conditions to obtain the asymptotics of the estimators.

[(C1)] [Initial estimator] The initial estimator is in Θn = {θ : |θ − θ0| ≤ n−α} for some 0 < α ≤ 1/2.

[(C2)] [Design] The density function fθ(v) of θ>X and its derivatives up to 6th order are bounded on R

for all θ ∈ Θn, E|X|6 < ∞ and E|Y |3 < ∞. Furthermore, supv∈R,θ∈Θn
|fθ(v)− fθ0(v)| ≤ c|θ − θ0| for

some constant c > 0.

[(C3)] [Link function] The conditional mean gθ(v) = E(Y |θ>X = v), E(X|θ>X = v), E(XX>|θ>X = v)

and their derivatives up to 6th order are bounded for all θ : |θ − θ0| < δ where δ > 0.

[(C4)] [Kernel function] K(v) is a symmetric density function with finite moments of all orders.

[(C5)] [Bandwidth and trimming parameter] Trimming parameter ς ≤ 1/20 and bandwidth h ∝ n−ρ for

some ρ with 1/5− ε ≤ ρ ≤ 1/5 + ε for some ε > 0.

Assumption (C1) is feasible because such an initial estimate is obtainable using existing methods, such as

Härdle and Stoker (1989), Powell et al. (1989) and Horowitz and Härdle (1996). Actually, Härdle, Hall and

Ichimura (1993) even assumed that the initial value is in a root-n neighborhood of θ0, {θ : |θ−θ0| ≤ C0n
−1/2}.

Assumption (C2) means that X may have discrete components providing that θ>X is continuous for θ in a
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small neighborhood of θ0; see also Ichimura (1993). The moment requirement on X is not strong. Härdle,

Hall and Ichimura (1993) obtained their estimator in a bounded area of Rp, which is equivalent to assume

that X is bounded; see also Härdle and Stoker (1989). We impose slightly higher order moment requirement

than second moment for Y to ensure the optimal bandwidth in (C5) can be used in applying Lemma 6.1 in

section 6. The smoothness requirements on the link function in (C3) can be relaxed to the existence of a

bounded second order derivative at the cost of more complicated proofs and smaller bandwidth. Assumption

(C4) includes the Gaussian kernel and the quadratic kernel. Assumption (C5) includes the commonly used

optimal bandwidth in both the estimation of the link function and the estimation of the index θ0. Actually,

imposing these constraints on the bandwidth is for ease of exposition in the proofs.

Let µθ(x) = E(X|θ>X = θ>x), νθ(x) = µθ(x)−x, wθ(x) = E(XX>|θ>X = θ>x), W0(x) = νθ0(x)ν
θ0

(x).

Let A+ denote the Moore-Penrose inverse of a symmetric matrix A. Recall that K is a symmetric density

function. Thus,
∫

K(v)dv = 1 and
∫

vK(v)dv = 0. For ease of exposition, we further assume that µ2 =
∫

v2K(v)dv = 1. Otherwise, we can redefine K(v) := µ
1/2
2 K(µ1/2

2 v).

We have the following asymptotic results for the estimators.

Theorem 3.1 (Speed of algorithm) Let θτ be the value calculated in Step 3 after τ iterations. Suppose

assumptions (C1)-(C5) hold. If hτ → 0 and |θτ − θ0|/h2
τ → 0, we have

θτ+1 − θ0 =
1
2
{(I − θ0θ

>
0 ) + o(1)}(θτ − θ0) +

1
2
√

n
Nn + O(n2ςh4

τ )

almost surely, where Nn = [E{g′(θ>0 X)2W0(X)}]+n−1/2
∑n

i=1 g′(θ>0 Xi)νθ0(Xi)εi = Op(n−1/2).

Theorem 3.1 indicates that the algorithm converges at a geometric rate, i.e. after each iteration, the

estimation error reduces by half approximately. By Theorem 3.1 and the bandwidth requirement in the

algorithm, we have

|θτ+1 − θ0| = {1
2

+ o(1)}|θτ+1 − θ0|+ O(n−1/2 + n2ςh4
τ ).

Starting with |θ1−θ0| = Cn−α, in order to achieve root-n consistency, say |θk−θ0| ≤ cn−1/2 i.e. 2−kCn−α ≤
cn−1/2, the number of iterations k can be calculated roughly by

k = {(1
2
− α) log n + log(C/c)}/ log 2. (5)

Based on Theorem 3.1, we immediately have the following limiting distribution.
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Theorem 3.2 (Efficiency of estimator) Under the conditions (C1)-(C5), we have

√
n(θ̂ − θ0)

L→ N(0, Σ0),

where Σ0 = [E{g′(θ>0 X)2W0(X)}]+E{g′(θ>0 X)2W0(X)ε2}[E{g′(θ>0 X)2W0(X)}]+.

By choosing a similar trimming function, the estimators in Härdle, Hall and Ichimura (1993) and Ichimura

(1993) have the same asymptotic covariance matrix as Theorem 3.2. If we further assume that the conditional

distribution of Y given X belongs to a canonical exponential family

f
Y |X (y|x) = exp{yη(x)− B(η(x)) + C(y)}

for some known functions B, C and η, then Σ0 is the lower information bound in the semiparametric sense

(Bickel, Klaassen, Ritov and Wellner, 1993). See also the proofs in Carroll, Fan, Gijbels and Wand (1997) and

Härdle, Hall and Ichimura (1993). In other words, our estimator is the most efficient in the semiparametric

sense.

For the estimation of the single-index model, it was generally believed that undersmoothing the link

function must be employed in order to allow the estimator of the parameters to achieve root-n consistency.

However, Härdle, Hall and Ichimura (1993) established that undersmoothing the link function is not neces-

sary. They derived an asymptotic expansion of the sum of squared residuals. We also derive an asymptotic

expansion but of the estimator θ̂ itself. This allows us to measure the higher order cost of estimating the

link function. We use the expansion to propose an automatic bandwidth selection procedure for the index.

Let fθ0(.) be the density function of θ>0 X.

Theorem 3.3 (Higher Order Expansion) Under conditions (C1)-(C5) and εi is independent of Xi, we

have almost surely

θ̂ − θ0 = En +
c1,n

nh
+ c2,nh4 +Hn + O{n2ςγ3

n},

where γn = h2 + (nh/ log n)−1/2,

En = (Wn)+
n∑

i=1

ρn{fθ0(Xj)}g′(θ>0 Xi)νθ0(θ
>
0 Xi)εi,

with Wn = n−1
∑n

j=1 ρn{fθ0(Xj)}(g′(θ>0 Xi))2νθ0(Xj)ν>θ0
(Xj), Hn = O{n−1/2γn + n−1h−1/2} with E{HnEn}

= o{(nh)−2 + h8} and

c1,n =
∫

K2(v)v2dvσ2(nWn)−1
n∑

j=1

ρn{fθ(Xj)}{ν ′θ0
(Xj) + f ′0(Xj)νθ0(Xj)/fθ0(Xj)},
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c2,n =
1
4
(
∫

K(v)v4dv − 1)(nWn)−1
n∑

j=1

ρn{fθ(Xj)}g′(θ>0 Xj)g′′(θ>0 Xj)ν ′′θ0
(Xj).

Because K(v) is a density function and we constrain that
∫

v2K(v) = 1, it follows that µ4 =
∫

K(v)v4dv >

1. In the expansion of θ̂ − θ0, the first term En does not depend on h. The second and third terms are the

leading term among the remainders. The higher order properties of this estimator are better than those of

the AD method, see Nishiyama and Robinson (2000), and indeed do not reflect a curse of dimensionality.

To minimize the stochastic expansion, it is easy to see that the bandwidth should be proportional to

n−1/5. Moreover, by Theorem 3.2 we consider the Mahalanobis distance

(θ̂ − θ0)>Σ+
0 (θ̂ − θ0) = Tn + o{h8 + (nh)−2},

where

Tn = (En +
c1,n

nh
+ c2,nh4 +Hn)>Σ+

0 (En +
c1,n

nh
+ c2,nh4 +Hn)

is the leading term. We have by Theorem 3.3 that

ETn = E(E>n Σ+
0 En) + (

c1

nh
+ c2h

4)>Σ+
0 (

c1

nh
+ c2h

4) + o{h8 + (nh)−2},

where c1 =
∫

K2(v)v2dvσ2W+
0 E{ν ′0(X) + f−1(X)f ′(X)ν0(X)}, W0 = E{(g′(θ>0 X))2νθ0(X)ν>θ0

(X)} and

c2 =
1
4
(
∫

K(v)v4dv − 1)W+
0 E[g′(θ>0 X)g′′(θ>0 X)ν ′′θ0

(X)].

Note that E(E>n Σ+
0 En) does not depend on h. By minimizing ETn with respective to h, the optimal

bandwidth should be

hθ =

{
(9r2

2 + 16r1)1/2 − 3r2

8

}1/5

n−1/5,

where r1 = c>1 Σ+
0 c1/(c>2 Σ+

0 c2) and r2 = c>1 Σ+
0 c2/c>2 Σ+

0 c2. As a comparison, we consider the optimal

bandwidth for the estimation of the link function g. By Lemma 5.1 and Theorem 3.2, if fθ0(v) > 0 we have

ĝ(v) = g(v) +
1
2
g′′(v)2h2 +

1
nfθ0(v)

n∑

i=1

Kh(θ>0 Xi − v)εi + OP (n−1/2 + h2γn). (6)

In other words, the link function can be estimated with the efficiency as if the index parameter vector is

known. A brief proof for (6) is given in section 5. It follows that

|ĝ(v)− g(v)|2 = Sn(v) + OP {(n−1/2 + h2γn)γn}.
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where the leading term is Sn(v) = [12g′′(v)2 +{nfθ0(v)}−1
∑n

i=1 Kh(θ>0 Xi−v)εi]2. Suppose we are interested

in constant bandwidth in region [a, b] with weight w(v). Minimizing
∫
[a,b] ESn(v)w(v)dv with respect to h,

we have the optimal bandwidth for the estimation of the link function is

hg =

[∫
K2(v)dv

∫
[a,b] f

−1
θ0

(v)σ2
θ0

(v)w(v)dv∫
[a,b] g

′′(v)2w(v)dv

]1/5

n−1/5.

It is noticeable that the optimal bandwidth for the estimation of the parameter vector θ0 is of the same

order as that for the estimation of the link function. In other words, under-smoothing may lose efficiency for

the estimation of θ0 in the higher order sense. These optimal bandwidth hopt
θ and hopt

g can be consistently

estimated by plug-in methods; see Ruppert et al (1995).

Although the optimal bandwidth for the estimation of θ is different from that for the link function,

its estimation such as the plug-in method may be very unstable because of the estimation of second order

derivatives. Moreover, its estimation needs another pilot parameter which is again hard to choose. In

practice it is convenient to apply hopt
g for hopt

θ directly, and since hopt
g and hopt

θ have the same order, the loss

of efficiency in doing so should be small. For the former, there are a number of estimation methods such as

CV and GCV methods. If CV methods is used, in each iteration with the latest estimator θ, the bandwidth

is selected by minimizing

ĥg = argmin
h

n−1
n∑

j=1

{Yj − ĝθ
j (θ

>Xj)}2

where ĝθ
j (v) is the delete-one-observation estimator of the link function, i.e. the estimator of ĝθ(v) in (3)

using data {(Xi, Yi), i 6= j}. Another advantage for this approach is that we can also obtain the estimator

for the link function.

4 Numerical Results

In the following calculation, the Gaussian kernel function and the trimming function (4) with ς = 1/20 and

c0 = 0.01 are used. A MATLAB code rMAVE.m for the calculations below is available at

http://www.stat.nus.edu.sg/%7Estaxyc

In the first example, we check the behavior of bandwidths hg and hθ. We consider two sets of simulations

to investigate the finite performance of our estimation method, and to compare the bandwidths for the
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estimation of the link function g and the single-index θ0. Our models are

model A: y = (θ>0 X)2 + 0.2ε, model B: y = cos(θ>0 X) + 0.2ε,

where θ0 = (3, 2, 2, 1, 0, 0,−1,−2,−2,−3)>/6, X ∼ N10(0, I), and ε ∼ N(0, 1) is independent of X. The

ADE method was used to choose the initial value of θ. With different sample size n and bandwidth h, we

estimate the model and calculate estimation errors

errθ = {1− |θ>0 θ̂|}1/2, errg =
1
n

n∑

j=1

ρn{f̂θ̂(θ̂
>Xj)}|ĝθ̂(θ̂>Xj)− g(θ>0 Xj)|,

where ĝθ̂(θ̂>Xj) is defined in (3). With 200 replications, we calculate the mean errors mean(errθ) and

mean(errg). The results are shown in Figure 1.

We have the following observations. (1) Notice that n1/2mean(errθ) tends to decrease as n increases,

which means the estimation error errθ enjoys a root-n consistency (and slightly faster for finite sample size).

(2) Notice that the U-shape curves of errθ has a wider bottom than those of errg. Thus, the estimation

of θ0 is more robust to the bandwidth than the estimation of g. (3) Let hopt
θ = arg minh mean(errθ)

and hopt
g = arg minh mean(errg). Then hopt

θ and hopt
g represent the best bandwidths respectively for the

estimation of the link function g and the single-index θ0. Notice that hopt
θ /hopt

g tends to increase as n

increases, which means the optimal bandwidth for the estimation of θ0 tends to zero not faster than that

for the estimation of link function. Thus the under-smoothing bandwidth is not optimal.

Next, we compare our method with some of the existing estimation methods including ADE in Härdle

and Stocker (1993), MAVE, the method in Hristache et al (2001), called HJS hereafter, the SIR and pHd

methods in Li (1991, 1992) and SLS in Ichimura (1993). For SLS, we use the algorithm in Friedman (1984)

in the calculation. The algorithm has best performance among those proposed for the minimization of SLS,

such as Weisberg and Welsh (1994) and Fan and Yao (2003). We consider the following model used in

Hristache et al (2001),

Y = (θ>0 X)2 exp(aθ>0 X) + σε, (7)

where X = (x1, · · · ,x10)>, θ0 = (1, 2, 0, ..., 0)>/
√

5, x1, · · · ,x10, ε are independent and ε ∼ N(0, 1). For the

covariates X: (xk + 1)/2 ∼ Beta(τ, 1) for k = 1, · · · , p. Parameter a is introduced to control the shape of

function. If a = 0, the structure is symmetric; the bigger it is, the more monotonic the function is.

Following Hristache et al (2001), we use the absolute deviation
∑p

j=1 |θ̂j − θj | to measure the estimation

errors. The calculation results for different σ and τ based on 250 replications are shown in Table 1. We have

11



Figure 1: The wide solid lines are the values of log{n1/2mean(errθ)} and the narrow lines are the values of

log{n1/2mean(errg)} (re-scaled for easier visualisation). The dotted vertical lines correspond to the bandwidths hθ

and hg respectively.
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Table 1. Average estimation errors
∑p

j=1 |θ̂j − θj |
and their standard deviations (in square bracket) for model (7).

a = 1 a = 0

n σ τ ADE∗ HJS∗ SIR/pHd SLS MAVE SIR/pHd SLS MAVE

200 0.1 1 0.6094 0.1397 0.6521 0.0645 0.0514 0.7500 0.6910 0.0936

[0.1569] [0.0258] [0.0152] [0.1524] [1.2491] [0.0255]

200 0.2 1 0.6729 0.2773 0.6976 0.1070 0.0934 0.7833 0.8937 0.1809

[0.1759] [0.0375] [0.0294] [0.1666] [1.3192] [0.0483]

400 0.1 0.75 0.7670 0.1447 0.3778 0.1151 0.0701 0.6037 0.0742 0.0562

[0.0835] [0.0410] [0.0197] [0.1134] [0.0193] [0.0146]

400 0.1 1 0.4186 0.0822 0.4868 0.0384 0.0295 0.5820 0.5056 0.0613

[0.1149] [0.0125] [0.0096] [0.1084] [1.0831] [0.0167]

400 0.1 1.5 0.2482 0.0412 0.5670 0.0208 0.0197 0.5760 0.0923 0.0669

[0.1524] [0.0063] [0.0056] [0.1215] [0.0257] [0.0175]

400 0.2 1 0.4665 0.1659 0.5249 0.0654 0.0607 0.6084 0.7467 0.1229

[0.1353] [0.0207] [0.0178] [0.1064] [1.2655] [0.0357]

400 0.4 1 0.5016 0.3287 0.6328 0.1262 0.1120 0.6994 0.9977 0.2648

[0.1386] [0.0406] [0.0339] [0.1370] [1.2991] [0.1880]

∗ The values are adopted from Hristache et al (2001)
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the following observations from Table 1. Our methods has much better performance than ADE and the

method of Hristache et al (2001). For each simulation, the better one of SIR and pHd is reported in Table

1, suggesting that these methods are not so competitive. Actually the main application of SIR and pHd is

not in the estimation of single-index models. See Li (1991, 1992). For SLS, its performance depends much

on the data and the model. If the model is easy to estimate (such as monotone and having big signal/noise

ratio), it performance quite well. But overall SLS is still not so good as MAVE. The proposed method has

the best performance in all the simulations we have done.

5 Proof of Theorems

Let fθ(v) be the density function of θ>X and Λn = {x : |x| < nc, fθ(x) > n−2ς , θ ∈ Θn} where c > 1/3

and ς > 0 is defined in (C5). Suppose An is a random matrix depending on x and θ. By An = O(an) (or

An =O(an)) we mean that all elements in An are Oa.s.(an) (or oa.s.(an)) uniformly for θ ∈ Θn and x ∈ Λn.

Let δn = (nh/ log n)−1/2, γn = h2 + δn and δθ = |θ − θ0|. For any vector V (v) of functions of v, we define

(V (v))′ = dV (v)/dv.

Suppose (Xi, Zi), i = 1, 2, . . . , n, are i.i.d. samples from (X,Z). Let Xix = Xi − x,

sθ
k(x) = n−1

n∑

i=1

Kh(θ>Xix){θ>Xix/h}k, tθk(x) = n−1
n∑

i=1

Kh(θ>Xix){θ>Xix/h}kXi,

wθ
k(x) = n−1

n∑

i=1

Kh(θ>Xix){θ>Xix/h}kXiX
>
i , eθ

k(x) = n−1
n∑

i=1

Kh(θ>Xix){θ>Xix/h}kεi,

εθ
k = sθ

k(x) − Esθ
k(x), ξθ

k = tθk(x) − Etθk(x), Dθ
n,k(x) = sθ

2(x)sθ
k(x) − sθ

1(x)sθ
k+1(x), Eθ

n,k = sθ
0(x)sθ

k+1(x) −
sθ
1(x)sθ

k(x) for k = 1, 2, . . .. For any random variable Z and its random observations Zi, i = 1, ..., n, let

T θ
n,k(Z|x) = sθ

2(x)n−1
n∑

i=1

Kθ
h(Xix)(θ>Xix/h)kZi − sθ

1(x)n−1
n∑

i=1

Kθ
h(Xix)(θ>Xix/h)k+1Zi,

Sθ
n,k(Z|x) = sθ

0(x)n−1
n∑

i=1

Kθ
h(Xix)(θ>Xix/h)k+1Zi − sθ

1(x)n−1
n∑

i=1

Kθ
h(Xix)(θ>Xix/h)kZi.

By the Taylor expansion of g(θ>0 Xi) at θ>0 x, we have

g(θ>0 Xi) = g(θ>0 x) +
5∑

k=1

1
k!

g(k)(θ>0 x){θ>Xix + (θ0 − θ)>Xix}k + O({θ>Xix + (θ0 − θ)>Xix}6)

= g(θ>0 x) + Aθ(x,Xi) + Bθ(x,Xi)(θ0 − θ) + O{(θ>Xix)6 + δ3
θ(|Xi|6 + |x|6)}, (8)
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where Aθ(x,Xi) =
∑5

`=1(k!)−1g(k)(θ>0 x)(θ>Xix)k and

Bθ(x,Xi) =
5∑

k=1

1
(k − 1)!

g(k)(θ>0 x)(θ>Xix)k−1X>
ix +

1
2
g′′(θ>0 x)(θ − θ0)>XixX>

ix.

For ease of exposition, we simplify the notation and abbreviate g for g(θ>0 x) and g′, g′′, g′′′ for g′(θ>0 x),

g′′(θ>0 x), g′′′(θ>0 x) respectively. Without causing confusion, we write fθ(θ>x) as fθ, fθ(θ>Xj) as fθ(Xj) and

Kh(θ>Xij) as Kθ
h(Xij). Similar notations are used for the other functions.

Lemma 5.1 (Link function) Let

Σθ
n(x) = n−1

n∑

i=1

Kθ
h(Xix)

(
1

θ>Xix/h

)(
1

θ>Xix/h

)>

and (
aθ(x)

dθ(x)h

)
= {nΣθ

n(x)}−1
n∑

i=1

Kθ
h(Xix)

(
1

θ>Xix/h

)
Yi.

Under assumptions (C2)–(C5), we have

aθ(x) = g(θ>0 x) + Aθ
n(x)h2 + Bθ

n(x)(θ0 − θ) + V θ
n (x) +O(h2γ2

n + δ3
θ)(1 + |x|6),

dθ(x)h = g′(θ>0 x)h + Ãθ
n(x)h2 + B̃θ

n(x)(θ0 − θ)h + Ṽ θ
n (x) +O(h2γ2

n + δ3
θ)(1 + |x|6),

where

Aθ
n(x) =

1
2
g′′ +

1
4
{(µ4 − 1)g′′f−2

θ (fθf
′′
θ − 2(f ′θ)

2) +
1
24

µ4g
(4)}h2 + Hθ

1,n(x),

Ãθ
n(x) =

1
2
g′′(µ4 − 1)f−1

θ f ′θh +
1
6
g(3)µ4h +

1
2
g′′f−1

θ (εθ
3 − εθ

1) +O(hγn),

Bθ
n(x) = g′νθ +O(γn + δθ), B̃θ

n(x) = g′(θ>0 x)f−1
θ {fθνθ(x)}′ +O(γn),

where Hθ
1,n(x) = 1

2g′′(θ>0 x){f−1
θ (εθ

2− εθ
0)+ (2−µ4)f−2

θ f ′θhεθ
1− f−2

θ f ′θhεθ
3}+ 1

6f−1
θ g′′′hεθ

3 and V θ
n (x) = f−1

θ eθ
0−

f−2
θ f ′θheθ

1 + µ4f
−2
θ f ′′θ h2eθ

0/2 + f−2
θ (eθ

0ε
θ
2 − eθ

1ε
θ
1) − µ4f

−2
θ f ′′′θ h3eθ

1 + {f−2
θ (f ′θ)

2 − (µ4 + 1)f−1
θ f ′′θ }{f−1

θ h2eθ
0 −

f−2
θ f ′θh

3eθ
1}−f−1

θ (εθ
0+εθ

1){f−1
θ eθ

0−f−2
θ f ′θe

θ
1}+2f−2

θ f ′θhεθ
1f
−1
θ eθ

0 and Ṽ θ
n (x) = f−1

θ eθ
1+f−2

θ f ′′θ h2eθ
1/2+f−2

θ (εθ
0e

θ
1−

εθ
1e

θ
0)− f−2

θ f ′θheθ
0 + f−1

θ εθ
0[−(µ4 + 1)f−1

θ f ′′θ h2/2− f−1
θ (εθ

0 + εθ
1) + f−2

θ (f ′θ)
2h2].

Lemma 5.2 (Summations) Let ηθ
n(x)=n−1

∑n
i=1 Kθ

h(Xix)Xixεi. Under conditions (C1)-(C5), we have

Aθ
n

def
= n−1

n∑

j=1

ρn{sθ
0(xj)}g′(θ>0 Xj)ηθ

n(Xj)/sθ
0(Xj) = Eθ

n + rθ
n,0(θ − θ0) + Qθ

n +O(n2ςγ3
n),
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Bθ
n

def
= (nh)−1

n∑

j=1

ρn{sθ
0(Xj)}eθ

k(Xj)ηθ
n(Xj)/sθ

0(Xj) =
c̃k,n

nh
+ Rθ

n +O(n2ςγ3
n),

Cθ
n

def
= n−1

n∑

j=1

ρn(sθ
0(Xj))εθ

k(Xj)ηθ
n(Xj)/sθ

0(Xj) = M θ
n +O(n2ςγ3

n),

where Eθ
n =

∑n
i=1 ρn{fθ(Xj)}g′(θ>Xi)νθ(θ>Xi)εi, rθ

n,0 =O (1),

Eθ
n = O{(n/ log n)−1/2}, Qθ

n = O{(n/ log n)−1/2γn}, Rθ
n = O{n−1/2δn}, Mθ

n = O{n−1/2δn},

with E{Eθ
nQθ

n} = o(h8 + (nh)−2), E{Eθ
nRθ

n} = o(h8 + (nh)−2), E{Eθ
nM θ

n} = o(h8 + (nh)−2), and c̃k,n =
∫

vk+1K2(v)dvE[ρn(fθ(Xj))f−1
θ (Xj)(νθ(Xj)fθ(Xj))′(Xj)] if k is odd, 0 otherwise.

Lemma 5.3 (Denominator) Let Dθ
n = n−2

∑n
i,j=1 ρn(sθ

0(Xj))d2
θ(Xj)Kθ

h(Xij)XijX
>
ij /sθ

0(Xj) in the algo-

rithm. Suppose (θ, B) : p× p is an orthogonal matrix. Then under (C1)-(C5), we have almost surely

(Dθ
n)−1 = θθ>dθ

11h
−2 − θdθ

12B
>h−1 −B(dθ

12)
>θ>h−1 + Bdθ

22B
>,

where

dθ
11 = (Gθ

n)−1 +O(1), dθ
12 = Hθ

nh +O(γn), dθ
22 =

1
2
(B>W θ

nB)−1 +O(γn),

with Gθ
n = n−1

∑n
j=1 ρn(fθ(Xj))f−1

θ (Xj)(g′(θ0Xj))2 and Hθ
n = 1

2n−1
∑n

j=1 ρn(fθ(Xj))f−1
θ (Xj){(fθνθ)′(Xj)}>

(Gθ
n)−1(g′(θ>0 Xj))2B(B>W θ

nB)−1 and W θ
n = n−1

∑n
j=1 ρn{fθ(Xj)}(g′(θ>Xi))2νθ(Xj)ν>θ (Xj).

Proof of Lemma 5.3 Let (θ,B) be an orthogonal matrix. It is easy to see that

n−1
n∑

i=1

Kθ
h(Xix)θ>XixX>

ixθ = sθ
2(x)h2, n−1

n∑

i=1

Kθ
h(Xix)θ>XixX>

ixB = {tθ1(x)− sθ
1(x)x}>Bh,

n−1
n∑

i=1

Kθ
h(Xix)B>XixX>

ixB = B>{wθ
0(x)− tθ0(x)x> − x(tθ0(x))> + xx>sθ

0(x)}B.

Thus

(Dθ
n)−1 = (θ, B)

(
Dθ

11h
2 (Dθ

12)
>Bh

B>Dθ
12h B>Dθ

22B

)−1

(θ, B)>,

where

Dθ
11 = n−1

n∑

j=1

ρn(sθ
0(Xj)){dθ(Xj)}2sθ

2(Xj)/sθ
0(Xj),

Dθ
12 = n−1

n∑

j=1

ρn(sθ
0(Xj)){dθ(Xj)}2{tθ1(Xj)− sθ

1(Xj)Xj}>/sθ
0(Xj),
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Dθ
22 = n−1

n∑

j=1

ρn(sθ
0(Xj))(dθ(Xj))2{wθ

0(Xj)− tθ0(Xj)X>
j −Xjt

θ
0(Xj) + XjX

>
j sθ

0(Xj)}/sθ
0(Xj).

By the matrix inversion formula in blocks (Schott, 1997), we have the equation in Lemma 5.3 with

d11 = {Dθ
11 − (Dθ

12)
>BB>(Dθ

22)
−1BB>Dθ

12}−1, d12 = dθ
11(D

θ
12)

>B(B>Dθ
22B)−1, dθ

22 = {B>Dθ
22B}−1 +

d11{B>Dθ
22B}−1B>Dθ

12(D
θ
12)

>B{B>Dθ
22B}−1. By Lemma 6.1, we have

Dθ
11 = G−1

n +O(1), Dθ
12 = Hnh +O(γn), Dθ

22 = 2Wn +O(γn).

Thus, Lemma 5.3 follows. ¥

Lemma 5.4 (Numerator) Let N θ
n = n−2

n∑
i,j=1

ρn(sθ
0(Xj))Kθ

h(Xij)Xij{Yi−aθ(Xj)−dθ(Xj)θ>0 Xij}/sθ
0(Xj).

Under assumptions (C1)–(C5), we have almost surely

N θ
n = Eθ

n +
c̃1,n

nh
+ c̃2,nh4 +Rθ

n + Bθ
n(θ − θ0) +O{n2ς(γ3

n + δ3
θ)},

where Rθ
n = O{n−1(log n/h)1/2 + (log n/n)−1/2h2}, θ>Rθ

n = O{hn−1(log n/h)1/2 + (log n/n)−1/2h3} and

E{Rθ
nEθ

0} = O{(nh)−2 + h8}, Bθ
n = W θ

n +O(1) with W θ
n defined in Lemma 5.3, c̃1,n and Eθ

0 are defined in

Lemma 5.2 and

c̃2,n =
1
4
(µ4 − 1)

n∑

j=1

ρn{fθ(Xj)}g′(θ>0 Xj)g′′(θ>0 Xj)ν ′′θ (Xj).

Proof of Theorem 3.1 By assumption (C2), we have

∞∑

n=1

P (
n⋃

i=1

{Xi /∈ Λn}) ≤
∞∑

n=1

nP (Xi /∈ Λn) ≤
∞∑

n=1

nP (|Xi| > nc) <
∞∑

n=1

nn−6cE|X|6 < ∞

for any c > 1/3. It follows from the Borel-Cantelli lemma that

P (
∞⋂

n=1

n⋃

i=1

{Xi /∈ Λn}) = 0. (9)

Let Λ̃n = {x : fθ(θ>x) > 2n−ε}. Similarly, we have

P (
∞⋂

n=1

n⋃

i=1

{Xi /∈ Λ̃n}) = 0. (10)

Thus, we can exchange summations over {Xj : j = 1, · · · , n}, {Xj : Xj ∈ Λn, j = 1, · · · , n} and {Xj : Xj ∈
Λ̃n, j = 1, · · · , n} in the sense of almost surely consistency. On the other hand, we have by (C2)

n−1
∑

|Xj |<nc

(1 + |Xj |6) = O(1).
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By the notation in Lemmas 5.3 and 5.4, after one iteration of Steps 1-3, the new θ is

θ̃ = θ0 + (Dθ
n)−1N θ

n . (11)

Note that θ>Eθ
n = 0, θ>cθ

1,n = 0, θ>cθ
2,n = 0, θ>W θ

n = 0, W θ
n(W θ

n)+ = I − θθ> and δθ/h2 → 0. We have

θ̃ =θ0 + θ[θ>dθ
11h

−2{Rθ
n + Bθ

n(θ − θ0) +O{n2ς(γ3
n + δ3

θ)}} − dθ
12B

>h−1N θ
n ]

−B(dθ
12)

>θ>h−1[Rθ
n + Bθ

n(θ − θ0) +O{n2ς(γ3
n + δ3

θ)}] + Bdθ
22B

>N θ
n

=(1 + an)θ0 + {1
2
(I − θ0θ

>
0 ) + bn}(θ − θ0) +

1
2
{W θ

n}+Eθ
n +O(h4),

where an =O(1) and bn =O(1).

By (25) below, we have sθ
0(x) = fθ(θ>x) +O(γn). Thus by the smoothness of ρn(.) and (10), we have

ρn(sθ
0(x)) = ρn(fθ(θ>x)) +O(nςγn) = 1 +O(nςγn). (12)

Since ρn(.) is bounded, we have E{ρn(f̂θ(θ>x))− 1}2 =O(1). By (C3) and Lemma 6.1, we have

Eθ
n = n−1

n∑

i=1

g′(θ>0 Xi)νθ0
(Xj)εi +O(n−1/2).

Note that Wn = W0 +O(δθ). It is easy to check that |θ̃| = 1 + an + bn +O(h4) = 1 +O(1). Thus

θ̃/|θ̃| = θ0 + {1
2
(I − θ0θ

>
0 ) +O(1)}(θ − θ0) +

1
2
n−1W+

0

n∑

i=1

g′(θ>0 Xi)νθ0
(Xi)εi +O(h3 + n−1/2).

Let θ(k) be the value of θ after k iteration. Because hk+1 = max{hk/ch, h}. Therefore,

|θk+1 − θ0|/h2
k+1 → 0,

for all k > 1. We have

θ(k+1) = θ0 + {1
2
(I − θ0θ

>
0 ) +O(1)}(θ(k) − θ0) +

1
2
n−1W+

0

n∑

i=1

g′(θ>0 Xi)νθ0
(Xi)εi +O(h3

k + n−1/2).

Recursing the above equation, we have

θ(k+1) = θ0 + { 1
2k

(I − θ0θ
>
0 ) +O(1)

k∑

ι=1

1
2ι
}(θ(1) − θ0) + {

k∑

ι=1

1
2ι
}n−1W+

0

n∑

i=1

g′(θ>0 Xi)νθ0
(Xi)εi

+O(
k∑

ι=1

1
2ι

h3
k−ι + n−1/2).
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Thus as the number of iterations k → ∞, Theorem 3.1 follows immediately from the above equation and

the central limit theorem. ¥

Proof of Theorem 3.3 Based on Theorem 3.2, we can assume δθ = (log n/n)1/2. Note that θ>{Eθ
n +

c1,n(nh)−1 + c2,nh4} = 0. We consider the product of each term in (Dθ
n)−1 with N θ

n . We have

θθ>dθ
11h

−2N θ
n = θθ>dθ

11h
−2[Rθ

n + Bθ
n(θ − θ0) +O{n2ς(γ3

n + δ3
θ)}] = aθ

nθ0 + aθ
n(θ − θ0),

θdθ
12B

>h−1N θ
n = bθ

nθ0 + bθ
n(θ − θ0), B(dθ

12)
>θ>h−1

(Dθ
n)−1Nn = θ{S>n (θ − θ0) + HnEθ

n +O(n2ςγ4
n)}

= θ0{S>n (θ − θ0) + HnEθ
0 +O(n2ςγ4

n)}+ cn(θ − θ0),

where Sn = O(1) and cn = O(γn/h). It is easy to see that cn =O (1) providing that |θ − θ0|/h2 → 0. By

Lemma 5.3 and 5.4, we have

θ̃ =θ0{1 + S>n (θ − θ0) + HnEθ
0 +O(n2ςγ4

n)}+
1
2
W θ

n{Eθ
0 +

c′1,n

nh
+ c′2,nh4 +Rθ

n +Qθ
n}

+ {1
2
(I − θθ>) + cn}(θ − θ0) +O{n2ς(γ3

n + h log n/n)}.

It is easy to see that |θ̃| = 1 + S>n (θ − θ0) + HnEθ
0 +O(n2ςγ4

n). Thus

θ̃/|θ̃| = θ0 +
1
2
W θ

n{Eθ
0 +

c′1,n

nh
+ c′2,nh4 +Rθ

n + Eθ
0H>

n Eθ
0}+ {1

2
(I − θθ>) + c′n}(θ − θ0) +O{n2ς(γ3

n + h log n/n)},

where c′n =O (1). Similar to the proof of Theorem 3.1, we complete the proof with c1,n = W−1
n c′1,n and

c2,n = W−1
n c′2,n. ¥

6 Proofs of the Lemmas

In this section, we first give some results about the uniform consistency. Based on these results, the Lemmas

are proved.

Lemma 6.1 Suppose Gn,i(χ) is a martingale with respect to Fi = σ{Gn,`(χ), ` ≤ i} with χ ∈ X and X is a

compact region in a multidimensional space such that (I) |Gn,i(χ)| < ξi, where ξi are IID and supEξ2r
1 < ∞

for some r > 2; (II) EG2
n,k(χ) < ans(χ) with inf s(χ) positive, and (III) |Gn,i(χ)−Gn,i(χ̃)| < nα1 |χ− χ̃|Mi,

where Mi, i = 1, 2, ... are IID with EM2
1 < ∞. If and an = cn−δ with 0 ≤ δ < 1− 2/r, then for any α′1 > 0

we have

sup
|χ|≤nα′1

∣∣∣n−1s−1/2(χ)
n∑

i=1

Gn,i(χ)
∣∣∣ = O{(n−1an log n)1/2}
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almost surely. Suppose for any fixed n and k, Gn,i,k(θ) is a martingale with respect to Fi,k = σ{Gn,`,k(θ), ` ≤
i} such that (I) |Gn,i,k(θ)| ≤ ξi, (II) EG2

n,i,k(θ) < an and (III) |Gn,i,k(θ)−Gn,i,k(θ̃)| < nα2 |θ − θ̃|Mi, where

ξi, an and Mi are defined above. If E|εk|2r < ∞ and E{εk|Gn,i,j(θ), i < j, j = 1, ..., k − 1} = 0, then

sup
θ∈Θ

∣∣∣n−2
n∑

k=2

{ k−1∑

i=1

Gn,i,k(θ)
}

εk

∣∣∣ = O{(an log n)1/2/n}

almost surely.

Proof of Lemma 6.1 We give the details for the second part of the Lemma. The first part is easier

and can be proved similarly. Let ∆n(θ) be the expression between the absolute symbols in the equation.

By (III) and the strong low of large numbers, it is easy to see that there are n1 = nα3 balls centered at

θι : Bι = {θ : |θ−θι| < n−α4} with α4 > α2 +2, such that
⋃n1

ι=1 Bι ⊃ Θ. By the strong law of large numbers,

we have

max
1≤ι≤n1

sup
θ∈Bι

|∆n(θ)−∆n(θι)| ≤ nα2 max
1≤ι≤n1

sup
θ∈Bι

|θ − θι|n−2
n∑

k=1

|εk|
n∑

i=1

Mi = O{(an log n)1/2/n}

almost surely. Let ∆n,k(θι) =
∑k−1

i=1 Gn,i,k(θι). Next, we show that there is a constant c1 such that

pn
def
= P

( ∞⋂

`=1

∞⋃

n=`

{ max
1<k≤n

max
1<ι≤n1

|∆n,k(θι)| > c1(nan log n)1/2}
)

= 0. (13)

Let Tn = {nan log(n)}1/2, GI
n,i,k(θι) = Gn,i,k(θι)I(|Gn,i,k(θι)| ≤ Tn) and GO

n,i,k(θι) = Gn,i,k(θι) − GI
n,i,k(θι).

Write

∆n,k(θι) =
k−1∑

i=1

{GI
n,i,k(θι)− EGI

n,i,k(θι)}+
k−1∑

i=1

{GO
n,i,k(θι)− EGO

n,i,k(θι)}. (14)

Note that E|GO
n,i,k(θι)| ≤ T−r+1

n E|ξ1|r = E|ξ1|r{nan log(n)}−(r−1)/2. If an = cn−δ with 0 ≤ δ < 1− 2/r and

k ≤ n, we have

|
k−1∑

i=1

EGO
n,i,k(θι)| ≤ E|ξ1|r(k − 1){nan log(n)}−(r−1)/2 ≤ CE|ξ1|r{nan log(n)}1/2. (15)

Note that
n∑

i=1

|GO
n,i,k(θι)| ≤

n∑

i=1

|ξi|I(|ξi| > Tn) ≤ T−r+1
n

n∑

i=1

|ξi|rI(|ξi| > Tn)

For fixed T , by the strong law of large numbers, we have

n−1
n∑

i=1

|ξi|rI(|ξi| > T ) → E{|ξ1|rI(|ξ1| > T )}
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almost surely. The right hand side above is dominated by E{|ξ1|r} and → 0 as T → ∞. Note that Tn

increase to ∞ with n. For large n such that Tn > T , we have

n−1
n∑

i=1

|ξi|rI(|ξi| > Tn) ≤ n−1
n∑

i=1

|ξi|rI(|ξi| > T ) → 0

almost surely as T →∞. It follows
n∑

i=1

|GO
n,i,k(θι)| = o(nT−r+1

n ) = o{(nan log n)1/2} (16)

almost surely. Thus by (15) and (16), if c′1 > CE|ξ1|r we have

p′n
def
= P

( ∞⋂

`=1

∞⋃

n=`

{ max
1<k≤n

max
1<ι≤n1

|
k−1∑

i=1

{GO
n,i,k(θι)− EGO

n,i,k(θι)}| > c′1(nan log n)1/2}
)

≤ P
( ∞⋂

`=1

∞⋃

n=`

{
n∑

i=1

|ξi|(|ξi| ≥ Tn) > c′1(nan log n)1/2}
)

+P
( ∞⋂

`=1

∞⋃

n=`

{ max
1<k≤n

max
1<ι≤n1

|
k−1∑

i=1

EGO
n,i,k(θι)| > c′1(nan log n)1/2}

)

= 0. (17)

By condition (II), if k ≤ n we have

max
1≤ι≤n1

Var
k−1∑

i=1

{GI
n,i,k(θι)−EGI

n,i,k(θι)} ≤ c2nan
def
= N1, (18)

where c2 is a constant. By the condition on an and the definition of GI
n,i,k(θι), we have constants c3 and c4

such that

max
1≤ι≤nα

|{GI
n,i,k(θι)−EGI

n,i,k(θι)}| ≤ c3Tn

= c3{nan/ log n}1/2{a−r
n logr+1 n/nr−2}1/(2(r−1))

≤ c4{nan/ log n}1/2 def
= N2. (19)

Let N3 = c5{nan log n}1/2 with c2
5 > 2(α3 + 3)(c2 + c4c5). By the Bernstein’s inequality (cf. DE LA Peña,

1999), we have from (18) and (19) that for any k ≤ n,

P (|
k−1∑

i=1

{GI
n,i,k(θι)− EGI

n,i,k(θι)}| > N3) ≤ 2 exp
( −N2

3

2(N1 + N2N3)

)

≤ 2 exp{−c2
5 log n/(2c2 + 2c4c5)}

≤ c6n
−α3−3.
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Let c1 > max{c5, c
′
1}. We have

∞∑

n=1

P
{

max
1<k≤n

max
1<ι≤n1

|
k−1∑

i=1

[GI
n,i,k(θι)− EGI

n,i,k(θι)]| > c1(nan log n)1/2
}

≤
∞∑

n=1

n∑

k=2

n1∑

ι=1

P
{
|
k−1∑

i=1

[GI
n,i,k(θι)−EGI

n,i,k(θι)]| > c1(nan log n)1/2
}

≤
∞∑

n=1

c6n
−α3−3n1+α3 < ∞. (20)

By (14), (17) and (20) and the Borel-Cantelli lemma, we have

pn ≤ P
{ ∞⋂

`=1

∞⋃

n=`

max
1<k≤n

max
1<ι≤n1

|
k−1∑

i=1

[GI
n,i,k(θι)−EGI

n,i,k(θι)]| > c1(nan log n)1/2
}

+ p′n = 0.

Therefore (13) follows.

Let ∆I
n,k(θι) = ∆n,k(θι)I{|∆n,k(θι)| ≤ c1(nan log n)1/2} and U`(θι) =

∑`
k=2 ∆I

n,k(θι)εk. Write

∆n(θι) = Un(θι) +
n∑

k=2

∆O
n,k(θι)εk,

where ∆O
n,k(θι) = ∆n,k(θι)−∆I

n,k(θι). It is easy to see from (13) that for the second part on the right hand

side above,

max
1<ι≤n1

|
n∑

k=2

∆O
n,k(θι)εk| = O{n(an log n)1/2} (21)

almost surely, since for any constant c > 0,
∞∑

n=1

P{ max
1<ι≤n1

|
n∑

k=2

∆O
n,k(θι)εk| > cn(an log n)1/2} ≤

∞∑

n=1

P ( max
1<ι≤n1

max
1<k≤n

|∆O
n,k(θι)| > 0)

≤
∞∑

n=1

P{ max
1<ι≤n1

max
1<k≤n

|∆n,k(θι)| > c1(nan log n)1/2}

< ∞.

Now consider the first term. Let T
′1/2
n / log n,

U I
` (θι) =

∑̀

k=2

∆I
n,k(θι){εk(|εk| ≤ T ′n)− E[εk(|εk| ≤ T ′n)]}

and UO
` (θι) = U`(θι)− U I

` (θι). Similar to the proof of (15) and (16), we have almost surely

|
∑̀

k=2

∆O
n,k(θι)E{εk(|εk| > T ′n)}| = O{n(an log n)1/2}, (22)

|
∑̀

k=2

∆O
n,k(θι)εk(|εk| > T ′n)| = O{n(an log n)1/2}. (23)
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Note that

|∆I
n,k(θι){εk(|εk| ≤ T ′n)− E[εk(|εk| ≤ T ′n)]}| < 2c1(nan log n)1/2T ′n = 2c1n(an/ log n)1/2 def

= N4

and by (II), Var{U I
` (θι)} = c′22 an

def
= N5, where c′2 is a constant. Let N6 = c′3n(an log n)1/2 with c′3

2 >

2(α3 + 3)(2c1c
′
3 + c′2). By the Berenstein’s inequality, we have

P (|U I
n(θι)| ≥ N6) ≤ 2 exp{− N2

6

2(N6N4 + N5)
} ≤ 2n−α3−3.

Therefore
n∑

n=1

P{ max
1≤ι≤n1

|U I
n(θι)| ≥ N6} <

n∑

n=1

n1P{|U I
n(θι)| ≥ N6} < ∞.

By the Borel-Cantelli lemma, we have

max
1≤ι≤n1

|U I
n(θι)| = O(N6) (24)

almost surely. Lemma 6.1 follows from (21), (22), (23) and (24). ¥

Proof of Lemma 5.1 Write sθ
k(x) = εθ

k(x) + Esθ
k(x). By Taylor expansion, we have

sθ
k(x) =

3∑

τ=0

µk+τf
(τ)
θ (x)hτ + εθ

k(x) +O(h4). (25)

Because V ar{εθ
k(x)} = O{(nh)−1}, it follows from Lemma 6.1 that εθ

k(x) = O(δn). It is easy to check that

Dθ
n,0(x) = f2

θ +
1
2
(µ4 + 1)fθf

′′
θ h2 − (f ′θ)

2h2 + f(εθ
0 + εθ

2)− 2f ′θhεθ
1 +O(γ2

n).

Dθ
n,2(x) = f2

θ + µ4(fθf
′′
θ − (f ′θ)

2)h2 + 2fθε
θ
2 − f ′θhεθ

3 − µ4f
′
θhεθ

1 +O(γ2
n).

Dθ
n,3(x) = fθε

θ
3 +O(hγn), Dθ

n,4(x) = µ4f
2
θ +O(γn), Dθ

n,5(x) = O(h).

T θ
n,0(X|x) = f2

θ νθ(x) +O(γn), Sθ
n,0(X|x) = O(h), T θ

n,k(X|x) = O(1), Sθ
n,k(X|x) = O(1), for k ≥ 1,

T θ
n,0(|θ>Xix|6|x) = O(h6), Sθ

n,0(|θ>Xix|6|x) = O(h6), T θ
n,0(XX>|x) = O(1), Sθ

n,0(XX>|x) = O(h),

En,2(x) = (µ4 − 1)fθf
′
θh + f(εθ

3 − εθ
1) +O(hγn), En,3(x) = µ4f

2
θ +O(γn), En,4(x) = O(h).

Note that

aθ(x) = T θ
n,0(Y |x)/Dθ

n,0(x), dθ(x)h = Sθ
n,0(Y |x)/Dθ

n,0(x).
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and

Aθ
n(x) =

5∑

k=2

1
k!

g(k)(θ>0 x)
Dθ

n,k(x)

Dθ
n,0(x)

hk−2, Bθ
n(x) =

4∑

k=0

1
k!

g(k+1)(θ>0 x)
Tn,k(X|x)−Dn,k(x)x

Dθ
n,0(x)

hk,

Cn(x, θ) =
1
2
g′′(θ>0 x){Tn,0(XX>|x)− Tn,0(X|x)x> − xTn,0(X>|x) + xx>Dθ

n,0(x)}{Dθ
n,0(x)}−1,

Ãθ
n(x) =

4∑

k=2

1
k!

g(k)(θ>0 x)
Eθ

n,k(x)

Dθ
n,0(x)

hk−2, B̃θ
n(x) =

4∑

k=1

k

k!
g(k)(θ>0 x)

Sn,k(X|x)−En,k(x)x
Dθ

n,0(x)
hk,

C̃n(x, θ) =
1
2
g′′(θ>0 x){Sn,0(XX>|x)− Sn,0(X|x)x> − xSn,0(X>|x) + xx>Eθ

n,0(x)}{Dθ
n,0(x)}−1.

Lemma 5.1 follows from simple calculations based on the above equations. ¥

Proof of Lemma 5.2 It follows from Lemma 6.1 that ηθ
n(x) = O(δn)(1 + |x|) and sθ

0 = fθ + ε̃θ
0 where

ε̃θ
0 = εθ

k + (Esθ
k − fθ) = O(γn). Because |ρ′′n(.)| < n2ς , we have

ρn(sθ
0(Xj)) = ρn(fθ(Xj)) + ρ′n(fθ(Xj))ε̃θ

0(Xj) +O(n2ςγ2
n). (26)

Thus

Aθ
n = Ẽθ

n + Qθ
n,1 +O(n2ςγ3

n),

where Ẽθ
n = n−2

∑n
i=1

∑n
j=1 ρn(fθ(Xj))f−1

θ (Xj)g′(θ>Xj)Kθ
h(Xij)Xijεi, and Qθ

n,1 = n−1
∑n

i=1 Gθ
n,i with

Gθ
n,i = n−1

n∑

j=1

[1
2
f ′′θ (Xj){ρ′n(fθ(Xj))− ρn(fθ(Xj))f−1

θ (Xj)}h2 + {1− ρn(fθ(Xj)f−1
θ (Xj)}ε̃θ

0(Xj)
]

× f−1
θ (Xj)g′(θ>Xj)Kθ

h(Xij)Xijεi.

Simple calculations lead to EẼθ
n = 0, E(Ẽθ

n)2 = O(n−1), E(Gθ
n,i) = 0 and E(Gθ

n,i)
2 = O{h4 + (nh)−1}. By

the first part of Lemma 6.1, we have

Ẽθ
n = O{(log n/n)1/2}, Qθ

n,1 = O{h2(log n/n)1/2 + n−1(log n/h)1/2}.

By Taylor expansion, g′(θ>0 x) = g′(θ>x) + g′′(v∗)(θ0 − θ)>x, where v∗ is a value between θ>x and θ>0 x.

Write

Ẽθ
n = Eθ

n + Qθ
n,2 + rn,0(θ − θ0),

where Qθ
n,2 = n−2

∑n
i=1

∑n
j=1{ρn(fθ(Xj))f−1

θ (Xj)g′(θ>Xj)Kθ
h(Xij)Xij − ρn(fθ(Xi))g′(θ>Xi)νθ(Xi)}εi and

rn,0 = O(γn/h). By Lemma 6.1 and that V ar(Qθ
n,2) = O{h4 + (nh)−1}, we have

Qθ
n,2 = O{(n/ log n)−1/2γn}.

23



Let Qθ
n = Qθ

n,1 + Qθ
n,2. It is easy to check that E{Qθ

nEθ
n} = o(h8 + (nh)−2). Therefore, the first part of

Lemma 5.2 follows.

Similarly, we have from (26) that

Bθ
n = (nh)−1

n∑

j=1

{ρn(fθ(Xj)) + ρ′n(fθ(Xj))ε̃θ
0(Xj)}eθ

k(Xj)ηθ
n(Xj)/fθ(Xj) +O(n2ςγ4

n/h).

Let R̃θ
n be the first term on the right hand side above. Then

R̃θ
n = n−3

n∑

j=1

{ρn(fθ(Xj)) + ρ′n(fθ(Xj))ε̃θ
0(Xj)}

n∑

i=1

K2
h(θ>Xij)(θ>Xij/h)kXijε

2
i /fθ(Xj)

+ n−3
n∑

j=1

{ρn(fθ(Xj)) + ρ′n(fθ(Xj))ε̃θ
0(Xj)}

n∑

i6=`

Kh(θ>Xij)(θ>Xij/h)kKh(θ>X`j)X`jεiε`/fθ(Xj)

def
= R̃θ

n,1 + R̃θ
n,2 + R̃θ

n,3 + R̃θ
n,4.

If ε is independent of X, then

Eθ(x)
def
= E{K2

h(θ>Xix)(θ>Xij/h)kXixε2
i } = h−1

2∑

`=0

1
`!

µ̃k+`{fθ(x)νθ(x)}(`)h`σ2 + O(h2),

where µ̃k =
∫

K2(v)vkdv. By Lemma 6.1, we have

n−1
n∑

i=1

K2
h(θ>Xix)(θ>Xix/h)kXixε2

i − Eθ(x) = O(h−1δn).

Thus

Rθ
n,0

def
= (n2h)−1

n∑

j=1

ρn(fθ(Xj))
[
n−1

n∑

i=1

K2
h(θ>Xij)(θ>Xij/h)kXijε

2
i −Eθ(Xj)

]
= O{(nh2)−1δn}. (27)

It is easy to check that E{Eθ
nRθ

n,0} = 0. Write

(n2h)−1
n∑

j=1

ρn(fθ(Xj))Eθ(Xj) = (nh)−1E{ρn(fθ(Xj))Eθ(Xj)}+ Rθ
n,1,

where E{Rθ
n,1Eθ

n} = 0 and

Rθ
n,1 = (n2h)−1

n∑

j=1

[ρn(fθ(Xj))Eθ(Xj)− E{ρn(fθ(Xj))Eθ(Xj)}] = O{(nh2)−1(n/ log n)−1/2}. (28)

Note that E{ρn(fθ(X))νθ(X)} = 0. We have

(nh)−1E{ρn(fθ(Xj))Eθ(Xj)} =
c̃k,n

nh
+ Rθ

n,2. (29)
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where Rθ
n,2 = O(n−1) and E{Rθ

n,2Eθ
0} = 0. By (27)-(29) and the fact that (n/ log n)−1/2 = o(γn), we have

R̃θ
n,1 =

c̃k

nh
+ Rθ

n,1 + Rθ
n,2. (30)

Similarly

R̃θ
n,2 = O{(nh)−1γn}. (31)

Let Gθ
n,i,` = n−1

∑n
j=1 ρn(fθ(Xj))Kh(θ>Xij)(θ>Xij/h)kKh(θ>X`j)X`j/fθ(Xj). Write R̃θ

n,3 as

R̃θ
n,3 = n−2

n∑

i6=`

1
2
(Gθ

n,i,` + Gθ
n,`,i)εiε` = n−2

n∑

`=1

{∑

i<`

1
2
(Gθ

n,i,` + Gθ
n,`,i)εi

}
ε`.

By the second part of Lemma 6.1, we have

R̃θ
n,3 = O{n−1/2δn}. (32)

Similarly, we have

R̃θ
n,4 = O{n−1/2δn}. (33)

Thus the second part of Lemma 5.2 follows from (30) and (31).

The third part of Lemma 5.2 can be proved similarly as the proof of the second part. ¥

Proof of Lemma 5.4 By (8), Lemma 5.1 and θ0 = θ + (θ0 − θ), simple calculations lead to

Yi − aθ(x)− dθ(x)θ>0 Xix = εi + {Ãθ(x,Xi)−Aθ
n(x)h2}+ {B̃θ(x,Xi)−Bθ

n(x)}>(θ0 − θ)

− V θ
n (x) +O{h2γ2

n + δ3
θ},

where Ãθ(x, Xi) = Aθ(x,Xi)−dθ(x)θ>Xix and B̃θ(x,Xi) = Bθ(x,Xi)−dθ(x)Xix. It follows from the Taylor

expansion that

Cθ
n,k(x)

def
= n−1

n∑

i=1

Kθ
h(Xix)(θ>Xix/h)kXix =

5∑

`=0

1
`!

µk+`(fµθ)(`)h` + ξ̃θ
k +O(h6),

where ξ̃θ
k = n−1

∑n
i=1{Kθ

h(Xix)(θ>Xix/h)kXix −EKθ
h(Xix)(θ>Xix/h)kXix} = ξθ

k − xεθ
k. We have

n−1
n∑

i=1

Kθ
h(Xix)XixÃθ(x, Xi) = {g′(θ>0 x)− dθ(x)}Cn,1(x)h +

5∑

k=2

1
k!

g(k)(θ>0 x)Cθ
n,k(x)hk

= −1
2
g′′(µ4 − 1)f ′θf

−1
θ (νθfθ)′h4 +

1
2
g′′(νθfθ)′(εθ

3 − εθ
1)h

2 + Ṽ θ
n {(νθfθ)′h +

1
6
µ4(νθfθ)′′h3 + ξ̃θ

1}

+
1
2
g′′h2{fθνθ +

1
2
µ4(fθνθ)′′h2}+

1
24

g(4)µ4fθνθh
4 +

1
2
g′′h2ξ̃θ

2 +
1
6
g′′′h3ξ̃θ

3 +O(h2γ2
n).
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Thus

n−1
n∑

i=1

Kθ
h(Xix)Xix{Ãθ(x,Xi)−Aθ

n(x)h2} =
1
4
(µ4 − 1)g′′fθν

′′
θ + Bθ

n,1(θ − θ0) + Hθ
2,n +O(h2γ2

n), (34)

where Bθ
n,1 = {(νθfθ)′h + 1

6µ4(νθfθ)′′′h3 + ξ̃θ
1}Bθ

n(x)> with Bθ
n(x) defined in Lemma 5.1, and

Hθ
2,n =

1
2
g′′(εθ

3 − εθ
1)h

2(νθfθ)′ + f−1
θ eθ

1(fθνθ)′h +
1
2
f−2

θ f ′′θ (fνθ)′h3eθ
1 + f−2

θ (fν)′h(εθ
0e

θ
1 − εθ

1e
θ
0)

− f−2f ′(fν)′h2eθ
0 + f−1(fν)′hεθ

0{−
1
2
(µ4 + 1)f−1f ′′θ h2 − f−1(εθ

0 + εθ
1) + f−2(f ′)2h2}

+
1
6
µ4f

−1eθ
1(fν)′′h3 + f−1eθ

1ξ̃
θ
1 − f−2f ′heθ

0ξ̃
θ
1 +

1
2
g′′h2ξ̃θ

2 +
1
6
g′′′h3ξ̃θ

3 −
1
2
g′′h2ξ̃θ

0

− 1
2
g′′(θ>0 x){f−1

θ (εθ
2 − εθ

0) + (2− µ4)f−2
θ f ′θhεθ

1 − f−2
θ f ′θhεθ

3}νθfθh
2 − 1

6
g′′′εθ

3νθh
3.

By the expansions of dθ(x) in Lemma 5.1, ρn(sθ
0(x)) in (26), and (34), we have

n−2
n∑

j=1

ρn(sθ
0(Xj))dθ(Xj)

n∑

i=1

Kθ
h(Xix)Xij{Ãθ(Xj , Xi)−Aθ

n(Xj)h2}/sθ
0(Xj)

= c̃2,nh4 + (Bθ
n,2)

>(θ − θ0) + R̃θ
n,1 +O{n2ς(h2γ2

n + δ2
θh + δ3

θ)},

where Bθ
n,2 = n−1

∑n
j=1 ρn(sθ

0(Xj))dθ(Xj)Bθ
1,n(Xj)/sθ

0(Xj) and R̃θ
n,1 = n−1

∑n
j=1 ρn(sθ

n(Xj))dθ(Xj)Hθ
2,n(Xj)

/sθ
0(Xj). Again by the expansion of dθ and that ξ̃θ

1 = O(δn), we have Bθ
n,2 = O(h + δn). It is easy to check

that Hθ
2,n = O(hδn + δ2

n). We have

R̃n,1 =n−1
n∑

j=1

[ρn(fθ(Xj)) + ρ′n(fθ(Xj)){fθ(Xj) +
1
2
f ′′θ (Xj)h2 + εθ

0(Xj)}]{g′(θ>0 Xj) +
1
6
g′′′(θ>0 Xj)h2

+ Ṽ θ
n (Xj)/h}Hθ

2,n(Xj)f−1
θ (Xj){1− 1

2
f−1

θ (Xj)f ′′θ (Xj)h2 − f−1
θ (Xj)εθ

0(Xj)}+O(n2ςγ3
n)

def
= Rn,1 +O(n2ςγ3

n).

Next, we need to consider the terms in Rn,1 one by one. Write

Rθ
n,1,1

def
= n−1

n∑

j=1

ρn(fθ(Xj))f−1
θ (Xj)(fθ(Xj)νθ(Xj))′eθ

1h

=hn−2
n∑

i=1

{ n∑

j=1

Kθ
h(Xij)ρn(fθ(Xj))f−1

θ (Xj)(fθ(Xj)νθ(Xj))′
}

εi.

Note that E{ρn(fθ(X))f−1
θ (X)(fθ(X)νθ(X))′|θ>X} = 0. We have by Lemma 6.1

Rθ
n,1,1 = O{hn−1(h−1 log n)−1/2}
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and

E{Eθ
0Rθ

n,1,1} = hn−3E
n∑

i=1

{ n∑

j=1

Kθ
h(Xij)ρn(fθ(Xj))f−1

θ (Xj)(fθ(Xj)νθ(Xj))′
}

ρn(fθ(Xi))g′(θ>Xi)νθ(Xi)ε2
i

= hn−3E
{ n∑

j=1

Kθ
h(0)ρn(fθ(Xj))f−1

θ (Xj)(fθ(Xj)νθ(Xj))′ρn(fθ(Xj))g′(θ>Xj)νθ(Xj)ε2
j

}

= O(n−2).

Applying similar approach to all the terms in Rθ
n,1, we have

Rθ
n,1 = O{n−1(log n/h)1/2 + (log n/n)1/2h2} and E{Eθ

nRθ
n,1} = o{(nh)−2 + h8}. (35)

By Lemmas 5.1 and 6.1, we have

Bθ
n,3

def
= n−2

n∑

j=1

ρ(sθ
0(Xj))dθ(Xj)

n∑

i=1

Kθ
h(Xij)Xij{B̃θ(Xj , Xi)−Bθ

n(Xj)}>/sθ
0(Xj) = W θ

n +O{(γn + δθ)/h}.

By Lemma 5.2, we have

n−2
n∑

j=1

ρ(sθ
0(Xj))dθ(Xj)

n∑

i=1

Kθ
h(Xij)Xijεi/sθ

0(Xj) = Eθ
0 +

c̃1,n

nh
+ Bθ

n,4(θ0 − θ) + Rθ
n,2 +O(n2ςγ3

n),

where c̃1,n is defined in the lemma, and

Bθ
4,n = n−1

n∑

j=1

{ρn(fθ(Xj)) + ρ′n(fθ(Xj))εθ
0(Xj)}ηθ

n(Xj)(B̃θ
n(Xj))>/h

and

Rθ
n,2 = n−1

n∑

j=1

[
1
6
ρn(fθ(Xj))g′′′(θ>0 Xj)h2 + ρ′n(fθ(Xj))εθ

0(Xj){g′(θ>0 Xj) + Ṽ θ
n (Xj)/h}]ηθ

n(Xj).

Noting that ηθ
n = O(δn), we have Bθ

4,n = O(δn/h). Similarly, we have

n−2
n∑

j=1

ρn(sθ
0(Xj))dθ(Xj)V θ

n (Xj)
n∑

i=1

Kθ
h(Xij)Xij/sθ

0(Xj) = Rθ
n,3 +O(n2ςγ3

n),

where

Rθ
n,3 = n−1

n∑

j=1

ρn(sθ
0(Xj))dθ(Xj)V θ

n (Xj)[νθ(Xj) +
1
2
f−1

θ {(fθνθ)′′ − f−1
θ f ′′θ νθ(Xj)}h2 + ξθ

0(Xj)− εθ
0(Xj)].

By the same arguments leading to (35), we have

Rθ
n,2 = O{n−1(log n/h)1/2 + (log n/n)1/2h2} and E{Eθ

nRθ
n,2} = o{(nh)−2 + h8}, (36)

Rθ
n,3 = O{n−1(log n/h)1/2 + (log n/n)1/2h2} and E{Eθ

nRθ
n,3} = o{(nh)−2 + h8}. (37)

Lemma 5.4 follows from the above equations with Rθ
n = Rθ

n,1 + Rθ
n,2 + Rθ

n,3 and Bθ
n = Bθ

n,2 + Bθ
n,3 + Bθ

n,4 =

W θ
n +O{n2ς(γn + δθ)/h}. ¥
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