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Regression methods for stochastic control problems

and their convergence analysis

Denis Belomestny1, ∗, Anastasia Kolodko1, John Schoenmakers1

April 29, 2009

Abstract

In this paper we develop several regression algorithms for solving
general stochastic optimal control problems via Monte Carlo. This
type of algorithms is particularly useful for problems with a high-
dimensional state space and complex dependence structure of the un-
derlying Markov process with respect to some control. The main idea
behind the algorithms is to simulate a set of trajectories under some
reference measure and to use the Bellman principle combined with fast
methods for approximating conditional expectations and functional op-
timization. Theoretical properties of the presented algorithms are in-
vestigated and the convergence to the optimal solution is proved under
some assumptions. Finally, the presented methods are applied in a
numerical example of a high-dimensional controlled Bermudan basket
option in a financial market with a large investor.

Keywords: Optimal stochastic control; Regression methods; Conver-
gence analysis.

1 Introduction

Modeling of optimal control is one of the most challenging areas in applied
stochastics, particularly in finance. As typical real-world control problems,
for example dynamic optimization problems in finance, are too complex
to be treated analytically, effective generic computational algorithms are
called for. Since the appearance of the ground-breaking articles Carriere
(1996), Longstaff and Schwartz (2001), and Tsitsiklis and Van Roy (1999),
regression based Monte Carlo methods emerged as an indispensable tool
for solving high-dimensional stopping problems in the context of American
style derivatives. From a mathematical point of view any optimal stopping

1Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117

Berlin, Germany. belomest@wias-berlin.de.
2JEL Subject Classification: C15; C61.
∗supported in part by the SFB 649 ‘Economic Risk’.
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problem can be seen as a particular case of a more general stochastic con-
trol problem. Optimal stochastic control problems appear in a natural way
in many application areas. For instance in mathematical finance, problems
such as portfolio optimization under market imperfections, optimal portfolio
liquidation, super hedging, etc., do all come down to problems of stochastic
optimal control. In fact, an active interplay between stochastic control and
financial mathematics has been emerged in the last decades: While stochas-
tic control has been a powerful tool for studying problems in finance on
the one hand side, financial applications have been stimulating the devel-
opment of new methods for optimal stopping and optimal control on the
other hand, see, for example, besides the works mentioned above, Rogers
(2002), Broadie and Glasserman (2004), Haugh and Kogan (2004), Ibáñez
(2004), Meinshausen and Hambly (2004), Belomestny et al. (2006), Bender
and Schoenmakers (2006), Belomestny et al. (2007), Kolodko and Schoen-
makers (2006), Rogers (2007), and Carmona and Touzi (2008), and many
others.

As a canonical general approach for solving an optimal control problem
one may consider all possible future evolutions of the process at each time
that a control choice is to be made. This method is well developed and may
be effective in some special cases, but for more general problems such as
optimal control of a diffusion in high dimensions, this approach is imprac-
tical. Other recently developed methods for control problems include the
Markov chain approximation method of Monoyios (2004), a maturity ran-
domization approach of Bouchard, Karoui and Touzi (2005) and a Malliavin
based Monte-Carlo approach of Hansen (2005) (see also Bouchard, Ekeland
and Touzi (2004)). However, all these methods are tailored to some spe-
cific problems and it is not clear how to generalize them. In this paper we
propose a generic Monte Carlo approach combined with fast approximation
methods and methods of functional optimization which is applicable to any
discrete-time controlled Markov processes. The main idea is to simulate a set
of trajectories under some reference measure and then apply a dynamic pro-
gramming formulation (Bellman principle) to compute recursively estimates
for the optimal control process and the optimal stopping rule, where the
fast approximation methods allow for computing conditional expectations
without nested simulations. In particular we propose several regression pro-
cedures and prove for these procedures convergence of the value function
estimations under some additional assumptions. Moreover, we present an
example of a high-dimensional Bermudan basket option where the dynam-
ics of the underlying are influenced by a large investor, and illustrate the
numerical performance of the regression algorithms at this example.

The outline of the paper is as follows. In Section 2 the basic stochastic
setup is presented, some notations are introduced and the main problem is
formulated. In Section 3 we introduce two kinds of regression methods for
stochastic control problems: local regression methods and global regression
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methods, which are discussed in Sections 3.1 and 3.7 respectively. The
convergence analysis of the regression algorithms is done in Section 4. A
method of constructing upper bounds is discussed in Section 5. Finally, the
numerical example is studied in Section 6.

2 Basic setup

For our framework we adopt the discrete time setup as in Rogers (2007).
On a filtered measurable probability space (Ω,F), with F := (Fr)r=0,1,...,T ,
T ∈ N+, we consider an adapted control process a : Ω × {0, ..., T − 1} → A,
control for short, where (A,B) is a measurable state space. We assume
a given set of admissible controls which is denoted by A. Given a control
a = (a0, a1, ..., aT−1) ∈ A, we consider a controlled Markov process X valued
in some measurable space (S,S) and defined on a probability space (Ω,F,Pa)
with X0 = x0 a.s. and transition kernel of the following type,

Pa(Xr+1 ∈ dy | Xr = x) = P ar(x, dy), 0 ≤ r < T.

So, it is assumed that the distribution of Xr+1 conditional on Fr is governed
by a (one-step) transition kernel P ar(Xr, dy) which is in turn controlled by
ar. In this setting we may consider the general optimal control problem

(2.1) Y ∗
0 := sup

a∈A

Ea

[
T−1∑

r=0

fr(Xr, ar)

]
,

for given functions fr, r = 0, . . . , T − 1. The optimization problem (2.1)
contains the standard optimal stopping problem

Y ∗
0 := sup

τ
E [gτ (Xτ )] ,

as a special case. Indeed, take Pa independent of a, fr(x, a) = gr(x)a,
and A = Astop =

{
a =

(
1{τ=0}, . . . ,1{τ=T}

)}
with τ being F-stopping time

taking values in the set {0, . . . , T}. Multiple stopping problems may be
considered in a similar way by choosing a suitable A. In this article, however,
we choose A to be the set of all adapted controls (as in Rogers (2007)), while
keeping the standard optimal stopping problem as a special case. This leads
to our central goal of solving the optimal control problem

(2.2) Y ∗
0 = sup

a∈A, τ∈T

Ea

[
τ−1∑

r=0

fr(Xr, ar) + gτ (Xτ )

]

for a given set of measurable functions fr : S × A → R, gr : S → R.
For technical reasons fr and g are assumed to be bounded from below. To
exclude trivialities we further assume that

sup
a∈A

Ea

[
T−1∑

r=0

|fr(Xr, ar)|
]
<∞, sup

a∈A

Ea[|gi(Xi)|] <∞, i = 0, . . . , T.
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The supremum in (2.2) is taken over a ∈ A and all F-stopping times with
values in a subset T ⊂ {0, . . . , T}.

The optimal control problem (2.2) with T ={0, . . . , T} will be the main
object of our study. Consider the process

(2.3) Y ∗
r = sup

a∈Ar, τ∈Tr

Ea

[
τ−1∑

s=r

fs(Xs, as) + gτ (Xτ )

∣∣∣∣∣Fr

]
, 0 ≤ r ≤ T,

with Tr := {r, . . . , T} and Ar being the set of all adapted controls a :
Ω × {r, . . . , T − 1} → A. Then there exists a vector h∗ = (h∗0, . . . , h

∗
T ) of

measurable functions on S, such that Y ∗
j = h∗j (Xj) and h∗ satisfies

h∗r(x) = max [gr(x), (Lh
∗)r (x)] , 0 ≤ r < T,

h∗T (x) = gT (x),(2.4)

where L : h→ Lh is a Bellman-type operator defined by

(Lh)r (x) := sup
a∈A

[fr(x, a) + P ahr+1(x)]

and

P ahr+1(x) :=

∫
P a(x, dy)hr+1(y).

We now assume that there exists a reference measure P∗ equivalent to Pa,
such that

P a(x, dy) = ϕ(x, y, a)P ∗(x, dy), a ∈ A,

with P ∗(x, dy) := P∗(Xr+1 ∈ dy | Xr = x) and the function ϕ(x, y, a)
satisfying ϕ ≥ 0 and

∫
P ∗(x, dy)ϕ(x, y, a) ≡ 1. Then for any nonnegative

measurable function G : ST+1 → R+ it holds

(2.5) Ea[G(X)|Fj ] = E∗[G(X)Λj,T (a,X)|Fj ],

where

Λj,r(a,y) :=

r−1∏

l=j

ϕ(yl, yl+1, al), r = j + 1, . . . , T, y ∈ ST+1.

If G depends on X0, . . . ,Xr only, we have for 0 ≤ j ≤ r,

Ea[G(X)|Fj ] = E∗[G(X)Λj,r(a,X)|Fj ].

In particular, if G depends only on Xj+1 it holds

(2.6) Ea[G(Xj+1)|Fj ] = E∗[G(Xj+1)ϕ(Xj ,Xj+1, aj)|Fj ].
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3 Regression methods for control problems

The solution Y ∗
0 of the optimal control problem (2.2) can in principle be

computed backwardly via the dynamic programming principle (2.4). How-
ever, if the space S is high-dimensional, an analytic computation of the
conditional expectation

Cr(x, a) := Ea[hr(Xr+1)|Xr = x] = E∗ [ϕ(Xr,Xr+1, a)hr+1(Xr+1) | Xr = x] ,

where henceforth for notational convenience h := h∗, is usually difficult, even
if hr+1 is explicitly known. On the other hand, a straightforward backward
construction of h using (2.4), by Monte Carlo simulation (under P∗) would
lead to nested simulations where the degree of nesting increases with the
number of exercise dates. In the context of optimal stopping problems, much
research was focused on the development of fast methods to approximate Cr.
We will show that these methods can be extended to a more general setting
of optimal control problems.

From now on we assume that S ⊂ R
d for some d > 0. Suppose that

hr+1 is estimated by ĥr+1 and that we want to approximate hr via (2.4) and
(2.5). Define

ĥr(x) := max

[
gr(x), sup

a∈A

[
fr(x, a) + P aĥr+1(x)

]]

= max

[
gr(x), sup

a∈A

{
fr(x, a) + E∗

[
ϕ(Xr,Xr+1, a)ĥr+1(Xr+1) | Xr = x

]}]
.

Let ((
X(1)
r ,X

(1)
r+1

)
, . . . ,

(
X(M)
r ,X

(M)
r+1

))

be a Monte Carlo sample from the joint distribution of (Xr,Xr+1) under P∗

and suppose that, based on this Monte Carlo sample and the approximation
ĥr+1 of hr+1, an estimate Ĉr,M(x, a) of the conditional expectation Cr(x, a)
is constructed for all x ∈ S and a ∈ A. In this paper we consider a class of
estimation methods with Ĉr,M being of the form

(3.7) Ĉr,M (x, a) =

M∑

m=1

wm,M (x,XM
r )ϕ(x,X

(m)
r+1, a)ĥr+1(X

(m)
r+1),

where
wm,M

(
x,XM

r

)
= wm,M

(
x,X(1)

r , . . . ,X(M)
r

)

are some coefficients which are to be specified by the method under con-
sideration. It turns out that this class of approximation methods is very
general and contains local and global regression methods. We discuss these
two types of method in the next sections.
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3.1 Algorithms based on local estimators

By introducing

dr(x, a) :=

∫

S
ϕ(x, y, a)hr+1(y)pr(x, y) dy, pr(x) :=

∫

S
pr(x, y)dy,

with pr(x, y) being the joint density of (Xr,Xr+1) under P∗, we may write

Cr(x, a) = dr(a, x)/pr(x).

So it is natural to estimate Cr as a ratio of estimates for pr and dr, respec-
tively. With this goal in mind we consider, for a given Borel measurable
kernel function ΦM (x, y) on R

d × R
d, the following estimators

pr,M(x) := M−1
M∑

m=1

ΦM (x,X(m)
r ),

d̂r,M (x, a) := M−1
M∑

m=1

ΦM (x,X(m)
r )ϕ(x,X

(m)
r+1, a)ĥr+1(X

(m)
r+1),

where x ∈ R
d and a ∈ A. Then we estimate Cr by

Ĉr,M (x, a) :=
d̂r,M (x, a)

pr,M (x)
(3.8)

=:

M∑

m=1

wm,M (x,XM
r )ϕ(x,X

(m)
r+1, a)ĥr+1(X

(m)
r+1)

with weight coefficients defined by

wm,M (x,y) := wm,M (x, y1, y2, ...) :=
ΦM (x, ym)

∑M
m′=1 ΦM (x, ym′)

.

If pr,M = 0 we set Ĉr,M = 0. It is important to note that wm,M sum up to
one. The name “local” comes from the fact that in most cases the function
ΦM (x, y) converges (in some sense) to a delta function δ(x− y) as M → ∞.
The class of local estimators is rather large and contains well known exam-
ples such as the Nadaraya-Watson and the k-nearest neighbors regression
estimators. In recent years, local estimators have become popular in ap-
plied financial mathematics, mainly in the context of hedging and Greek
estimation (see, e.g. Elie, Fermanian and Touzi (2009)).

Example 3.1. Let K be a measurable function on R
d. Take

ΦM (x, y) = δ−dM K((x− y)/δM ),
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where {δM} is a sequence of positive numbers tending to zero. Then (3.8)
yields the well-known Nadaraya-Watson regression estimator

(3.9) Ĉr,M(x, a) =

∑M
m=1K((x−X

(m)
r )/δM )ϕ(x,X

(m)
r+1, a)ĥr+1(X

(m)
r+1)∑M

m=1K((x−X
(m)
r )/δM )

.

Example 3.2. We can modify the estimator in Example 3.1 by specifying an
increasing sequence (kM ) of natural numbers with kM ≤M and by reducing
the number of summands in (3.9) to kM in the following way. Consider the

first kM nearest neighbors of x, say X
(m1)
r , . . . , X

(mkM
)

r in the Monte Carlo

sample X
(1)
r , . . . ,X

(M)
r , and define RM :=

∥∥∥x−X
(mkM

)
r

∥∥∥
2

to obtain the

kM -nearest neighbors regression estimator
(3.10)

Ĉr,M (x, a) =

∑kM
n=1 ϕ(x,X

(mn)
r+1 , a)ĥr+1(X

(mn)
r+1 )K((x−X

(mn)
r )/RM )

∑kM
n=1K((x−X

(mn)
r )/RM )

.

Finally, after estimating Cr(x, a) by Ĉr,M (x, a), we construct

âr,M(x) := arg sup
a∈A

[fr(x, a) + Ĉr,M (x, a)], x ∈ S,(3.11)

and estimate hr by

(3.12) ĥr,M (x) := max{gr(x), fr(x, âr,M (x)) + Ĉr,M(x, âr,M (x))}.

Starting with ĥT,M (x) = gT (x) and working backwardly, we so obtain esti-
mates for all hr, r = 0, . . . , T − 1.

Remark 3.3. Local estimators have in some respects nice theoretical proper-
ties, for example, almost sure convergence to Cr under rather weak smooth-
ness assumptions. Basically only local smoothness is required for this. A
disadvantage of local estimators is their numerical complexity in general. For
instance, if we want to compute the Nadaraya-Watson estimator Ĉr,M (x, a)
at M points in R

d, it will require M2 operations. In the case of the kM -
nearest neighbors estimator this number can be reduced to M logM using
fast search algorithms.

3.2 Global regression estimators

As an alternative to local regression methods we now consider algorithms
based on global regression. From a practical point of view global regression
estimators are easier to implement in an efficient way than local estimators.
The convergence analysis of global estimators is, however, more delicate and
usually requires rather strong assumptions on Cr and the underlying Markov
process Xr. For the standard Bermudan stopping problem (fr ≡ 0, ϕ ≡ 1)
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we refer to Clément, Lamberton and Protter (2002), Egloff (2005) and Egloff,
Kohler and Todorovic (2007). The global regression procedures in the next
two sections are in some sense a generalization of the methods of Tsitsiklis
and Van Roy (1999) and Longstaff and Schwartz (2001), respectively, to
optimal control problems.

3.2.1 Algorithms based on continuation functions

For a given Monte Carlo sample (X
(1)
r , . . . ,X

(M)
r ), r = 0, . . . , L, under the

measure P ∗ and a system of basis functions ψ := [ψ1, . . . , ψK ]⊤ we consider
for each a ∈ A the minimization problem

(3.13) β̂r(a) := arg min
β∈RK

M∑

m=1

(
ψ⊤(X(m)

r )β − Y (m)(a)
)2
,

where

Y (m)(a) := ϕ(X(m)
r ,X

(m)
r+1, a)ĥr+1(X

(m)
r+1)

and an estimate ĥr+1 of hr+1 is assumed to be already constructed. The
solution of (3.13) is explicitly given by

(3.14) β̂r(a) = (F⊤F )−1F⊤Y (a) =: F †Y (a),

where F = (Fmk) = (ψk(X
(m)
r )) is a M × K design matrix and Y (a) :=

(Y (m)(a))m=1,...,M . Note that the design matrix F does not depend on a.
We next consider

âr,M (x) = arg max
a∈A

{fr(x, a) + Ĉr,M(x, a)},(3.15)

where

Ĉr,M(x, a) = ψ⊤(x)β̂r(a) = ψ⊤(x)F †Y (a)(3.16)

=
M∑

m=1

wm,M (x,XM
r )ϕ(x,X

(m)
r+1, a)ĥr+1,M (X

(m)
r+1)

with coefficients wm,M given by

wm,M (x,XM
r ) = ψ⊤(x)

(
(F⊤F )(X(·)

r )
)−1

ψ(X(m)
r ).(3.17)

In order to solve (3.15) one may, for instance, construct an approximation
procedure for finding the a roots of the stationary point equation

∂

∂a
fr(x, a) +

K∑

k=1

ψk(x)F
† ∂

∂a
Y (a) = 0.

8



We proceed with a second regression problem

β̃r = arg min
β∈RK

M∑

m=1

(
ϕ(X̃(m)

r , X̃
(m)
r+1, âr,M (X̃(m)

r ))ĥr+1(X̃
(m)
r+1) − ψ⊤(X̃(m)

r )β
)2

based on a new set of paths

(X̃
(m)
1 , . . . , X̃

(m)
T ), m = 1, . . . ,M

under P∗ to end up with

(3.18) ĥr,M (x) = max
[
g(x), fr(x, âr,M (x)) + ψ⊤(x)β̃r

]
.

The second regression is needed to avoid the multiple vector-matrix multi-

plication in (3.14) when computing ĥr,M (X
(m)
r ), m = 1, . . . ,M .

3.2.2 Algorithms based on backward construction of stopping
time and control

In this section we present an algorithm where, instead of regressing continu-
ation functions, the control and stopping times are backwardly constructed
on a set of simulated trajectories. This method relies on the following con-
sistency theorem proved in Appendix.

Theorem 3.4. The optimal stopping time τ∗(r) and the optimal control
a∗(r) solving the problem

Y ∗
r = sup

a∈Ar, τ∈Tr

Ea

[
τ−1∑

s=r

fs(Xs, as) + gτ (Xτ )

∣∣∣∣∣Fr

]
,

satisfy the following consistency relations

τ∗(r) > r ⇒ τ∗(r) = τ∗(r + 1) and a∗j(r) = a∗j(r + 1)

for all j such that r + 1 ≤ j < τ∗(r + 1).

Note that a∗j (r) is only defined for r ≤ j < τ∗(r), i.e. the control a∗(r) is

not defined if τ∗(r) = r. Given a sample (X
(m)
0 , . . . ,X

(m)
T ), m = 1, ...,M, we

construct estimates τ (m)(r) and a
(m)
j (r), r ≤ j < τ (m)(r) for stopping times

and control processes respectively in the following way. At the terminal time
we set

τ (m)(T ) = T, m = 1, ...,M.

9



Let τ (m)(r + 1), a
(m)
j (r + 1), r + 1 ≤ j < τ(r + 1) be constructed for m =

1, . . . ,M, at time r + 1, 0 ≤ r < T. Let ψ := [ψ1, . . . , ψK ]⊤ be a system of
basis functions. For any a ∈ A consider the least squares regression problem

(3.19) β̂(a) := arg min
β∈RK

M∑

m=1

(
ψ⊤(X(m)

r )β − Y (m)(a)
)2
,

where
Y (m)(a) = ϕ(X(m)

r ,X
(m)
r+1, a)Z

(m)
r+1

with

Z
(m)
r+1 :=

τ (m)(r+1)−1∑

l=r+1

Λr+1,l(a
(m)(r + 1),X(m))fl(X

(m)
l , a

(m)
l (r + 1))

+ Λr+1,τ (m)(r+1)(a
(m)(r + 1),X(m))g(X

(m)

τ (m)(r+1)
).

The solution of (3.19) is given by (3.14) and we can define an estimate
Ĉr,M(x, a) = ψ⊤(x)β̂(a) and then âr,M (x) as a solution of (3.15). Now
simulate a new set of trajectories

(X̃
(m)
0 , . . . , X̃

(m)
T ), m = 1, . . . ,M,

under P∗ and define

β̃r := arg min
β∈RK

M∑

m=1

(
ψ⊤(X̃(m)

r )β − ϕ(X̃(m)
r , X̃

(m)
r+1, âr,M (X̃(m)

r ))Z
(m)
r+1

)2
.

Put C̃r,M(x) = ψ⊤(x)β̃r. By setting for m = 1, . . . ,M,

τ (m)(r) = r, if fr(X
(m)
r , âr,M (X(m)

r )) + C̃r,M(X(m)
r )) < g(X(m)

r ),

and

τ (m)(r) = τ (m)(r + 1), a(m)
r (r) = âr,M (X(m)

r ),

a
(m)
j (r) = a

(m)
j (r + 1), r + 1 ≤ j < τ (m)(r + 1),

otherwise, we so end up with a sequence of estimates

(3.20) C̃r,M (x) :=

K∑

k=1

β̃r,kψk(x), r = 0, . . . , T − 1,

and a sequence of functions âr,M , r = 0, . . . , T − 1. Based on (3.20) one may
use the (generally suboptimal) stopping rule

(3.21) τM := inf{0 ≤ r ≤ T : g(Xr) ≥ fr(Xr, âr,M (Xr)) + C̃r,M (Xr)}
and the (generally suboptimal) control process

(3.22) aM (X) = (â0,M (X0), â1,M (X1), . . . , âT−1,M (XT−1))

to construct a lower approximation for Y ∗
0 via a next Monte Carlo simulation.
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4 Convergence analysis of regression methods

The issues of convergence for regression algorithms in the context of pricing
Bermudan options have been already studied in several papers. Clément,
Lamberton and Protter (2002) were first who proved the convergence of
the Longstaff-Schwartz algorithm. Glasserman and Yu (2005) have shown
that the number of Monte Carlo paths has to be exponential in the number
of basis functions used for regression in order to ensure the consistency of
the price estimate. Recently, Egloff, Kohler and Todorovic (2007) have de-
rived rates of convergence for continuation values estimates by the so called
dynamic look-ahead algorithm (see also Egloff (2005)) that “interpolates”
between Longstaff-Schwartz and Tsitsiklis-Roy algorithms. In the case of
general control problems the issue of convergence is more delicate because
along with the convergence of regression estimates Cr,M(x, a) we also need
the convergence of control estimates ar,M . The latter convergence can be en-
sured only if the first one is uniform on the set of all possible controls. This
type of convergence can be proved only under some additional assumptions.

Generally, a convergence analysis can be divided into two parts. In the
first part one considers local convergence, that is the convergence of the one
step estimate

hr,M (x) := max

[
gr(x), sup

a∈A
[fr(x, a) + Cr,M(x, a)]

]
,

based on the “pseudo” estimator

(4.23) Cr,M(x, a) :=

M∑

m=1

wm,M (x,XM
r )ϕ(x,X

(m)
r+1, a)hr+1(X

(m)
r+1),

i.e. (3.7) with ĥr+1 replaced by the exact solution hr+1. It turns out that the
local convergence relies exclusively on the sort of regression estimate under
consideration and can be established via standard results from the theory of
empirical processes and regression analysis as we will see. The second part
deals with the global convergence. In practice, one starts from r = T and
proceeds backwardly where at each step the previously constructed estimate
ĥr+1 is used instead of hr+1. The aim of the global convergence analysis is to
prove the convergence of ĥr,M to hr in a suitable sense, taking into account
all errors from the previous steps. The next theorem provides conditions
for the global convergence, assuming that Cr,M is known to converge to Cr
in a certain sense. In fact, the prove of Theorem 4.24 is quite generic as it
involves only general properties of the weights in (3.7).

Theorem 4.1. Suppose that starting with ĥT,M = h∗T (x) = gT (x), at each

backward step ĥr,M is constructed from ĥr+1,M via (3.12) or (3.18) using a

11



new independent sample of M trajectories. Suppose further that the function
ϕ is uniformly bounded, that is |ϕ| ≤ Aϕ for some constant Aϕ. If

(4.24) E

{∫

Rd

‖Cr,M (x, ·) − Cr(x, ·)‖qA pr(x) dx
}1/q

= E

{∫

Rd

[
sup
a∈A

|Cr,M(x, a) − Cr(x, a)|
]q
pr(x) dx

}1/q

= O(εM ), r = 0, . . . , T − 1, M → ∞

with some q ≥ 1 and some sequence εM tending to 0, then it holds

E
∥∥∥ĥr,M − hr

∥∥∥
Lq(pr)

= O
(
λT−rq,M εM

)
, 0 ≤ r ≤ T,

with

(4.25) λq,M = sup
0≤r≤T

M∑

m=1

‖wm,M (·, ·)‖Lq(pr⊗M
l=1pr) .

Corollary 4.2. If q = 1 and all weights wm,M in (3.7) are nonnegative and
sum up to 1 (e.g. in the case (3.8) if ΦM ≥ 0), then λq,M ≤ 1 and

E
∥∥∥ĥr,M − hr

∥∥∥
L1(pr)

= O (εM ) , 0 ≤ r ≤ T.

Thus, in the case of nonnegative weights and q = 1 the “global” convergence
rates coincide with the rates of a particular regression estimator.

4.1 Convergence of local regression estimators

In this section we analyze the convergence of local regression estimators of
the form (3.8). Define two sets of functions

FM := {ΦM (x, ·) : x ∈ R
d},

Fϕ,M := {ϕ(x, ·, a)ΦM (x, ·) : x ∈ R
d, a ∈ A}.

Assume that for some constant Ah > 0,

P (|hr(Xr)| < Ah) = 1, r = 0, . . . , T,(4.26)

and that the function ϕ is uniformly bounded, i.e. there exists a constant
Aϕ such that

sup
(x,y)∈Rd×Rd

sup
a∈A

ϕ(x, y, a) < Aϕ.(4.27)

12



Theorem 4.3. Let FM and Fϕ,M be measurable uniformly bounded Vapnik-
Červonenkis (VC) classes of functions (see Appendix), such that (7.48) is
fulfilled for some ν > 0 and A > 0, simultaneously for all M. Furthermore,
let σM and UM be two sequences of positive real numbers such that

UM ≥ sup
(x,y)∈Rd×Rd

|ΦM (x, y)|,(4.28)

σ2
r,M ≥ sup

x∈Rd

E[Φ2
M (x,Xr)],(4.29)

and the following relations hold as M → ∞,

(i) 0 < σr,M < UM/2,

(ii) (UM/σr,M )
√

log(UM/σr,M ) ≤
√
M ,

(iii) γM := M−1/2σr,M
√

log(UM/σr,M ) = o(1),

(iv) log γM = O(log (σr,M/UM )),

(v) ‖pr − E pr,M‖
Rd → 0,

(vi) ‖dr − E dr,M‖
Rd×A → 0.

Let D be a fixed bounded domain such that

pmin = pmin(D) := min
r

inf
x∈D

pr(x) > 0.

Define a truncated version of Cr,M (depending on D) as

CD
r,M(x, a) :=

{
Cr,M (x, a), |pr,M(x)| > pmin/2 and x ∈ D,

0, otherwise.

Then it holds

E ‖CD
r,M − Cr‖D×A ≤ C̃max

p̃min

(
L0γM + ‖pr − E pr,M‖

Rd + ‖dr − E dr,M‖
Rd

)

with C̃max := max(Cmax(D), 1), where Cmax(D) = maxr sup(x,a)∈D×A Cr(x, a),
p̃min := 2min(pmin, 1), and with L0 depending only on the VC characteristics
of the classes FM and Fϕ,M .

The proof of Theorem 4.3 is given in the Appendix. This result can be
used to prove the condition (4.24) needed for the global convergence. Let us
fix some R > 0 and consider the ball BR := B(x0, R) := {x : |x− x0| ≤ R}
with some fixed x0 ∈ R

d. For a fixed q ≥ 1 we then have

E

{∫

Rd

∥∥∥CBR
r,M(x, ·) − Cr(x, ·)

∥∥∥
q

A
pr(x) dx

}1/q

≤

E ‖CBR
r,M − Cr‖BR×A +

{∫

Rd\BR

‖Cr(x, ·)‖qA pr(x)dx
}1/q

.
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So, if RM is an increasing sequence of positive numbers such that both

E1,M :=
C̃max(BRM

)

p̃min(BRM
)

(L0γM + ‖pr − E pr,M‖Rd

+ ‖dr − E dr,M‖Rd×A) → 0,

and

E2,M :=

(∫

Rd\BRM

‖Cr(x, ·)‖qA pr(x)dx
)1/q

→ 0, M → ∞,

then by Theorem 4.3 it holds

E

{∫

Rd

∥∥∥CBRM
r,M (x, ·) − Cr(x, ·)

∥∥∥
q

A
pr(x) dx

}1/q

≤ E1,M + E2,M → 0.

Kernel type estimators. Let us consider the application of Theorem 4.3
to a kernel type regression estimator (3.9). Let K be a bounded square
integrable function on R

d. In Dudley (1999) sufficient conditions are given
that ensure that the set

F =

{
K

(
x− ·
δ

)
: x ∈ R

d, δ ∈ R \ {0}
}

(4.30)

is a uniformly bounded VC class, i.e. it satisfies (7.48) with some A and
ν and all probability measures P. In particular it is shown that (4.30) is a
bounded VC class if K(x) = f(p(x)) for some polynomial p and a bounded
real function f of bounded variation. Obviously, the standard Gaussian
kernel falls into this category. Another example is the case where K is a
pyramid, or K = 1[−1,1]d . For constituting new VC classes from given ones
the following lemma may be useful.

Lemma 4.4. If F is a uniformly bounded VC class, then for any bounded
measurable function h the class of functions hF := {h · f : f ∈ F} is again
a uniformly bounded VC class. In particular, if h is a constant then the VC
characteristics of hF are equal to the VC characteristics of F. Moreover, if
F and G are uniformly bounded VC classes then the function classes F ± G

:= {f ± g : f ∈ F, g ∈ G} and F · G := {f · g : f ∈ F, g ∈ G} are uniformly
bounded VC classes.

As can be easily seen from the above lemma the class

Fϕ :=

{
ϕ(x, ·, a)K

(
x− ·
δ

)
: x ∈ R

d, δ ∈ R \ {0}, a ∈ A

}

is a uniformly bounded VC class, provided that the function classes (4.30)
and

{ϕ(x, ·, a) : x ∈ R
d, a ∈ A}

14



are uniformly bounded VC classes. In this case the classes FM and Fϕ,M

with

ΦM (x, ·) = δ−dM K

(
x− ·
δM

)
, x ∈ R

d, M = 1, 2, . . .

satisfy the conditions of Theorem 4.3. With regard to (4.28) and (4.29), we
may take UM = δ−dM ‖K‖∞ and

σ2
r,M = sup

x∈Rd

δ−dM

∫

Rd

K2(u)pr(x− uδM ) du ≤ δ−dM ‖K‖2
2‖pr‖∞,

respectively. Note that under this choice of σr,M and UM the relation (i) of
Theorem 4.3 is satisfied. In order to make the conditions (ii)-(iv) hold we
additionally suppose that the bandwidths δM satisfy for M → ∞,

δM → 0,
MδdM

| log δM | → ∞, log
MδdM

| log δM | = O(log δM ).(4.31)

Turn now to the conditions (v)-(vi). It can be easily shown that if functions
dr(x, a) and pr(x) have continuous derivatives in x of order s and these
derivatives are uniformly bounded on R

d ×A and R
d respectively, then

‖pr − E pr,M‖Rd = O(δsM ), ‖dr − E dr,M‖Rd×A = O(δsM ), M → ∞,

provided that

∫

Rd

‖x‖sK(x) dx <∞ and

∫

Rd

xljK(x) dx = 0

for j = 1, . . . , d, l = 1, . . . , s− 1. Hence, according to Theorem 4.3

E ‖CD
r,M − Cr‖D×A ≤ C̃max

p̃min

(
D0

√
| log δM |/MδdM +D1δ

s
M

)
, M → ∞,

where D0 and D1 are positive constants independent of the region D.

4.2 Convergence of global regression estimators

Fix some r > 0 and consider the one step regression problem

β̂(a) := arg min
β∈RK

M∑

m=1

(
ψ⊤
K(X(m)

r )β − Y (m)(a)
)2
,

where

Y (m)(a) := ϕ(X(m)
r ,X

(m)
r+1, a)hr+1(X

(m)
r+1), m = 1, ...,M,
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and ψK(x) := [ψ1(x), . . . , ψK(x)]⊤ with {ψi(x) : i = 1, 2, ..} being a set of
basis functions. Consider the matrix ΓM,K with elements

(4.32) ΓM,K
l,k :=

1

M

M∑

m=1

ψl

(
X(m)
r

)
ψk

(
X(m)
r

)
, 1 ≤ l, k ≤ K,

and the matrix ΓK = (ΓKl,k)1≤l,k≤K with elements

ΓKl,k := EΓM,K
l,k =

∫

Rd

ψl(z)ψk(z)pr(z) dz.

In the sequel we assume that the smallest eigenvalue of the matrix ΓK is
bounded from below by λmin > 0 for all K and r > 0. Let us define a
truncated version CT

r,M (x, a) of the standard least squares regression esti-

mator Cr,M (x, a) = ψ⊤
K(x)β̂ as follows. If the smallest eigenvalue λM,K

min of

ΓM,K fulfills λM,K
min ≥ λmin/2, we set CT

r,M (x, a) = Cr,M(x, a) and otherwise

CT
r,M(x, a) = 0. The following theorem holds.

Theorem 4.5. Suppose that conditions (4.26) and (4.27) are fulfilled and let
{ψk, k = 1, 2, . . .} be a system of basis functions on R

d which are uniformly
bounded, that is there exists a constant Aψ > 0 such that maxk ‖ψk‖∞ < Aψ.
Let further the families of functions

{
ϕ(x, ·, a) : x ∈ R

d, a ∈ A
}

and {ψk(·) : k = 1, 2, ... }

be bounded VC classes. Then it holds

(4.33) E

(∫
sup
a∈A

∣∣∣CT
r,M(x, a) − Cr(x, a)

∣∣∣
2
pr(x)dx

)1/2

≤ 2CmaxK
2 exp

[
−B0M/K2

]
+B1

K2

√
M

+

(∫

R

sup
a∈A

|∆r(x, a)|2 pr(x) dx
)1/2

,

where B0 and B1 are some positive constants, Cmax := maxr sup(x,a)∈Rd×ACr(x, a)
and

∆r(x, a) = E
[
ψ⊤
K(x)

(
ΓK
)−1

ψK(X(1)
r )Cr(X

(1)
r , a)

]
− Cr(x, a).

Corollary 4.6. Suppose that

(4.34) Cr(x, a) =
∞∑

k=1

βk(a)ψk(x),
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where the convergence takes place both pointwise and in L2(pr) sense. Then
(4.33) becomes

E

(∫
sup
a∈A

∣∣∣CT
r,M (x, a) − Cr(x, a)

∣∣∣
2
pr(x)dx

)1/2

(4.35)

≤ 2CmaxK
2 exp

[
−B0M/K2

]
+B1

K2

√
M

+ γK

with

(4.36) γK :=


E sup

a∈A

∣∣∣∣∣

∞∑

k=K+1

βk(a)ψk(Xr)

∣∣∣∣∣

2



1/2

≤


sup
a∈A

∞∑

k,k′=K+1

|βk(a)βk′(a)|Γ1/2
kk Γ

1/2
k′k′




1/2

.

Corollary 4.7. We can represent the truncated estimator CT
r,M(x, a) in the

form

CT
r,M (x, a) :=

M∑

m=1

w̃m,M (x,XM
r )ϕ(X(m)

r ,X
(m)
r+1, a)hr+1(X

(m)
r+1)

with w̃m,M (x,XM
r ) := M−1ψ⊤

K(x)
(
ΓM,K

)−1
ψK(X

(m)
r ) if λM,K

min ≥ λmin/2
and 0 otherwise. A straightforward calculations lead to the bound

‖w̃m,M (·, ·)‖L2(pr⊗M
l=1pr) =

(
E
∣∣w̃m,M (Xr,X

M
r )
∣∣2
)1/2

≤ B4K
1/2M−1

and hence we obtain λ2,M = O(
√
K) with λ2,M being defined in (4.25).

Corollary 4.8. Suppose that K2/M = o(log−1(M)) as M → 0, then

E
∥∥∥ĥr,M − hr

∥∥∥
L2(pr)

= O
(
KT/2(γK +K2/

√
M )
)
, r = 0, . . . , T − 1,

for M → ∞. Moreover, if (4.34) holds and the coefficients {βk(a)} in (4.34)
fulfill

sup
a

∞∑

k=0

|βk(a)| exp(µkα) <∞

for some positive α and µ, then under the choice K = ((logM)/2µ)1/α, we
get

E
∥∥∥ĥr,M − hr

∥∥∥
L2(pr)

≤ A1
log(T+2)/α(M)√

M
, r = 0, . . . , T − 1.
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5 Dual upper bounds

In order to assess the quality of our estimates we need to construct upper
bounds for the value process. To this aim we extend the approach in Rogers
(2007) to problem (2.2). In fact, the following theorem is a generalization
of Theorem 1 in Rogers (2007).

Theorem 5.1. Let Y ∗
r be the solution of the optimal control problem (2.3),

then the following representation holds

Y ∗
r = inf

h∈H



hr(Xr) + E∗



T−1∑

j=r

Wr,j

(
(Lh)j (Xj) − hj(Xj)

)+

+ max
r≤i≤T

Wr,i (gi(Xi) − hi(Xi))
+

∣∣∣∣Fr
]}

,

where Wr,j = sup
a∈A [Λr,j(a,X)] and H is the space of bounded measurable

vector functions h = (h0, ..., hT ) on ST+1.

6 Numerical example

Now we illustrate our algorithms by pricing a Bermudan basket call option
in a model, where asset prices can be influenced by an investor holding large
amounts of shares of the asset. In our model the large investor can increase
the expected value of future asset prices, hence the future option pay-off, by
borrowing assets (and return them later on).

Let Xr, r = 0, . . . , T be a discrete time Markov process. Consider a
Bermudan call option on a basket of d assets with the payoff

g(Xr) :=

(
1

d

d∑

i=1

X(i)
r −K

)+

, K > 0

which can be exercised at times r = 1, . . . , T. We assume that the large
investor borrows ar × 100% (0 ≤ ar ≤ 1) of each asset at time r and pays
to his lender the so called lending fee which is proportional to ar:

(6.37) αar

d∑

k=1

X(k)
r , α > 0.

Furthermore, the dynamic of Xr+1 given Xr depends on ar via

X
(i)
r+1 = X(i)

r exp

(
−σ

2

2
δr + σ

√
δrζr,i

)
γ(ar), X

(i)
0 = x0, i = 1, ..., d,
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where ζr,i are i.i.d. standard Gaussian random variables, γ : [0, 1] → R+ is
some function, and δr is a time scaling parameter. The transition kernel of
the process X is given by

Par(x, dy) =
y−1
1 · . . . · y−1

d

σd
√

2πδdr
exp


−

∑d
j=1(ln

yj

xj
+ σ2δr/2 − ln γ(ar))

2

2σ2δr


 dy.

In our particular example we take γ(a) = exp(a/20) and choose as a refer-
ence measure the one corresponding to a = 0. Hence

Pa(x, dy) = ϕ(x, y; a) P∗(x, dy)

with

ϕ(x, y; a) = exp

(∑d
j=1 ln(yj/xj) + dσ2δr/2

σ2δr
ln γ(a) − d ln2 γ(a)

2σ2δr

)
.

The value of the controlled Bermudan option contract in this situation is

given by (2.2) with gr ≡ g and fr(x, a) = −αa
(∑d

k=1 xk

)
.

We now study a numerical example with d = 5, T = 3, δr ≡ 1, x0 = 100,
K = 90, σ = 0.2 where we shall construct lower bounds for the option
price using local regression and global regression methods. First, using the
k-nearest neighbor estimator (3.10) and the corresponding estimator (3.11),
based on M paths of the process X, we construct a suboptimal stopping
time and a suboptimal control. Then averaging over a new independent set
of 50000 trajectories, we get a lower bound denoted by Y knn,low

0,M . This lower
bound is shown in Table 1 for different M and different numbers of nearest
neighbors used to construct (3.10). Similarly, a suboptimal stopping time
(3.21) and a suboptimal control (3.22) lead to a lower bound denoted by

Y gr,low
0,M . In Table 2 the values of Y gr,low

0,M are presented in dependence on the
set of basis functions used for the least squares approximation.

Furthermore, we construct upper bounds Y knn,up
0,M and Y gr,up

0,M for the op-
tion price based on the dual representation in Theorem 5.1, using approx-
imative value functions (3.12) and (3.18), respectively. To get these upper
bounds we simulate 50 (“outer”) trajectories where on each trajectory the
conditional expectations in (Lh)r are estimated using 10000 independent
(“inner”) trajectories.

Note that it can be advantageous to take the number of nearest neighbors
kM in (3.10) depending on x. To illustrate this we plot in Figure 1 the root-
mean-square errors of the estimates Ĉknn2,10000(x, 1) and Ĉknn2,50000(x, 1), relative

to the “exact” values C2(x, 1), computed using 106 Monte Carlo trajectories,
for different numbers of nearest neighbors and for two points x(0) and x(1)

with

x
(i)
k = x0 exp(−σ

2

2
(δ0 + δ1) + ζi(σ

√
δ0 + σ

√
δ1)), k = 1, . . . , d, i = 0, 1,
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where ζ0 ≡ 0 (left figure) and ζ1 ≡ 1.5 (right figure). Here the best value
of kM for the “central” point x(0) is about 0.1 ×M and the RMS error does
not exceed 5% for M = 10000. However, the error becomes rather large if x
lies in the region with a small concentration of the pre-simulated regression
points (the optimal kM is about 10 in the right-hand side figure). Thus,
the performance of the k-nearest neighbor estimator can be improved by
choosing kM adaptively depending on x.

As can be seen from our simulation study, global regression estimators
provide a smaller gap between lower and upper bounds for the option price
than their local regression counterparts. The gap between lower and upper
bounds in the case of global regression for the best choice of basis functions
does not exceed 4% (relative to the lower estimate), while for the local
regression estimator the smallest gap is larger than 15%.

Table 1: Lower and upper bounds obtained via the k-nearest neighbor esti-
mator (3.10) for different numbers of the nearest neighbors.

k ĥknn,low0,10000 (SD) ĥknn,up0,10000(SD) ĥknn,low0,50000 (SD) ĥknn,up0,50000(SD)

10 13.94(0.06) 20.94(0.23) 13.82(0.06) 21.22(0.27)
20 14.10(0.06) 18.89(0.20) 14.20(0.06) 18.41(0.16)
50 14.08(0.06) 16.74(0.09) 14.33(0.06) 17.08(0.14)
100 14.13(0.05) 16.59(0.14) 14.19(0.05) 16.68(0.13
500 14.17(0.05) 16.73(0.14) 14.17(0.05) 16.48(0.13)
1000 13.56(0.05) 17.04(0.13) 14.06(0.05) 16.27(0.11)

Table 2: Lower and upper bounds using global regression algorithms with
different sets of basis functions.

base functions ĥgr,low0,200000(SD) ĥgr,up0,200000(SD)

up to 2nd degree polynomials on gr(Xr) 15.15(0.06) 15.75(0.10)
up to 3th degree polynomials on gr(Xr) 15.10(0.07) 15.62(0.07)
up to 4th degree polynomials on gr(Xr) 15.13(0.07) 15.70(0.09)

1, X
(1)
r , . . . ,X

(5)
r , gr(Xr) 15.01(0.07) 15.76(0.08)

up to 2nd degree polynomials on

X
(1)
r , . . . ,X

(5)
r , gr(Xr) 15.09(0.06) 15.55(0.07)
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Figure 1: Root-mean-square errors (in %) of the estimators Ĉknn2,10000(x, 0)

(solid line) and Ĉknn2,50000(x, 0) (dashed line) for different numbers k of nearest

neighbors at two points x0 exp(−σ2) (left) and x0 exp(−σ2 + 1.5(σ
√
δ0 +

σ
√
δ1)) (right).

7 Appendix

7.1 Proof of Theorem 3.4

The statement of the theorem holds trivially true for r = T. For r < T we
have

1{τ∗(r)>r}Y
∗
r = 1{τ∗(r)>r} sup

a∈Ar, τ∈Tr

Ea



τ−1∑

j=r

fj(Xj , aj) + gτ (Xτ )

∣∣∣∣∣∣
Fr




= 1{τ∗(r)>r} sup
τ∈Tr+1

Ea
∗(r)
r



τ−1∑

j=r

fj(Xj , aj) + gτ (Xτ )

∣∣∣∣∣∣
Fr




= 1{τ∗(r)>r}fr(Xr, a
∗
r(r))+

+ 1{τ∗(r)>r} sup
τ∈Tr+1

Ea
∗(r)
r E

(a∗r+1(r),...)

r+1




τ−1∑

j=r+1

fj(Xj , a
∗
j (r)) + gτ (Xτ )

∣∣∣∣∣∣
Fr+1
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≤ 1{τ∗(r)>r}fr(Xr, a
∗
r(r))+

1{τ∗(r)>r} Ea
∗(r)
r sup

a∈Ar+1, τ∈Tr+1

E(ar+1(r),...)




τ−1∑

j=r+1

fj(Xj , aj) + gτ (Xτ )

∣∣∣∣∣∣
Fr+1




= 1{τ∗(r)>r}fr(Xr, a
∗
r(r)) + 1{τ∗(r)>r} E(a∗(r),a∗r+1(r+1),...) ×

×



τ∗(r+1)−1∑

j=r+1

fj(Xj , a
∗
j (r + 1)) + gτ∗(r+1)(Xτ∗(r+1))

∣∣∣∣∣∣
Fr




= 1{τ∗(r)>r}fr(Xr, a
∗
r(r)) + 1{τ∗(r)>r} Ea

∗(r)
r Y ∗

r+1 = 1{τ∗(r)>r}Y
∗
r ,

due to the Bellman principle. Hence

1{τ∗(r)>r}Y
∗
r = 1{τ∗(r)>r}fr(Xr, a

∗
r(r)) + 1{τ∗(r)>r} E

(a∗(r),a∗r+1(r+1),...)
r ×

×



τ∗(r+1)−1∑

j=r+1

fj(Xj , a
∗
j (r + 1)) + gτ∗(r+1)(Xτ∗(r+1))

∣∣∣∣∣∣
Fr




from which the consistency relations follow.

7.2 Proof of Theorem 4.1

For r = T the statement is trivial. As induction hypothesis we assume that

(7.38) E
∥∥∥ĥr+1,M − hr+1

∥∥∥
Lq(pr+1)

= O
(
λT−r−1
q,M εM

)
, M → ∞.

Based on a new sample (X
(m)
r ,X

(m)
r+1), m = 1, ...,M, independent of the

samples needed for constructing the estimate ĥr+1,M , we define

ar,M (x) := arg sup
a∈A

[fr(x, a) +Cr,M (x, a)],

âr,M (x) := arg sup
a∈A

[fr(x, a) + Ĉr,M (x, a)],

where

Ĉr,M (x, a) :=

M∑

m=1

wm,M (x,XM
r )ϕ(x,X

(m)
r+1, a)ĥr+1,M (X

(m)
r+1).

Observe that due to

− sup
a∈A

∣∣∣Ĉr,M(x, a) − Cr,M(x, a)
∣∣∣

≤ fr(x, âr,M (x)) + Ĉr,M (x, âr,M (x)) − {fr(x, ar,M (x)) + Cr,M (x, ar,M (x))}

≤ sup
a∈A

∣∣∣Ĉr,M (x, a) − Cr,M(x, a)
∣∣∣
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the inequality

∣∣∣ĥr,M (x) − hr,M(x)
∣∣∣ ≤ sup

a∈A

∣∣∣Ĉr,M (x, a) − Cr,M (x, a)
∣∣∣

holds for all x and a, where

hr,M (x) := max{gr(x), fr(x, ar,M (x)) + Cr,M(x, ar,M (x))}.

Analogously one can show that

|hr(x) − hr,M (x)| ≤ sup
a∈A

|Cr(x, a) − Cr,M(x, a)|.(7.39)

On the other hand we have

Ĉr,M (x, a) − Cr,M(x, a) =(7.40)

M∑

m=1

wm,M (x,XM
r )ϕ(x,X

(m)
r+1, a)(ĥr+1,M (X

(m)
r+1) − hr+1(X

(m)
r+1)),

hence

∣∣∣ĥr,M (x) − hr,M (x)
∣∣∣

≤ Aϕ

M∑

m=1

|wm,M (x,XM
r )|

∣∣∣ĥr+1,M (X
(m)
r+1) − hr+1(X

(m)
r+1)

∣∣∣ , x ∈ R
d.

Denote with Gr+1 the σ-algebra generated by the samples used from T down
to r + 1. The application of Hölder’s and Jensen inequality leads to

E
∥∥∥ĥr,M − hr,M

∥∥∥
Lq(pr)

≤ Aϕ E
M∑

m=1

EGr+1

[∣∣∣ĥr+1,M (X
(m)
r+1) − hr+1(X

(m)
r+1)

∣∣∣
∥∥∥wm,M (·,X(·)

r )
∥∥∥
Lq(pr)

]

≤ Aϕ E

{[
EGr+1

∣∣∣ĥr+1,M (X
(1)
r+1) − hr+1(X

(1)
r+1)

∣∣∣
q]1/q

×
M∑

m=1

[
EGr+1

∥∥wm,M (·,XM
r )
∥∥

q
q−1

Lq(pr)

]1−1/q
}

≤ Aϕ E
∥∥∥ĥr+1,M − hr+1

∥∥∥
Lq(pr+1)

M∑

m=1

(∫
pr(x) E

∣∣wm,M (x,XM
r )
∣∣q dx

) 1
q

= Aϕ E
∥∥∥ĥr+1,M − hr+1

∥∥∥
Lq(pr+1)

M∑

m=1

‖wm,M (·, ·)‖Lq(pr⊗M
l=1pr) .
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The induction assumption (7.38) implies now that

E
∥∥∥ĥr,M − hr,M

∥∥∥
Lq(pr)

= O(εMλ
T−r
q,M ).

Note that by letting q ↓ 1, the last estimate holds true for q = 1 as well.
Further we have

E
∥∥∥ĥr,M − hr

∥∥∥
Lq(pr)

≤ E
∥∥∥ĥr,M − hr,M

∥∥∥
Lq(pr)

+ E ‖hr,M − hr‖Lq(pr)

and due to (7.39)

E ‖hr,M − hr‖Lq(pr)

≤
{∫

Rd

‖Cr(x, ·) − Cr,M(x, ·)‖qA pr(x) dx
}1/q

= O(εM ), M → ∞.

7.3 Proof of Theorem 4.3

For any x ∈ D we have on the set {|pr,M (x)| > pmin/2}

CD
r,M(x, a) − Cr(x, a) =

dr,M
pr,M

− dr
pr

=
dr,M − dr
pr,M

+ Cr
pr − pr,M
pr,M

and so
∥∥∥CD

r,M − Cr

∥∥∥
D×A

≤ 2p−1
min ‖dr,M − dr‖D×A + 2Cmaxp

−1
min ‖pr − pr,M‖

D
.

Hence

E
∥∥∥CD

r,M − Cr

∥∥∥
D×A

≤ 2p−1
min E ‖dr,M − dr‖D×A + 2Cmaxp

−1
min E ‖pr − pr,M‖

D

+ Cmax P
(
‖pr − pr,M‖

D
> pmin/2

)
.(7.41)

Since

pr,M (x) − E pr,M (x) =
1

M

M∑

m=1

(
ΦM(x,X(m)

r ) − EΦM (x,X(m)
r )

)

we immediately get from Theorem 7.1 taking into account conditions (i),
(ii), and (iii) in Theorem 4.3,

E ‖pr,M − E pr,M‖
Rd ≤ B

M

[
νUM log

AUM
σr,M

+
√
ν

√
Mσ2

r,M log
AUM
σr,M

]

≤ B1

√
νγM , M → ∞,
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with some universal positive constants constants B and B1. Similarly,

P
(
‖pr,M − E pr,M‖

Rd > C1γM
)
≤

L exp

(
−C1 log(1 + C1/(4L))

L
log

UM
σr,M

)
, M → ∞,

for any C1 ≥ C, where positive constants C and L only depend on the
VC-characteristics A and ν. Due to condition (iv) there exists W > 0 such
that (

σr,M
UM

)W
≤ γM .

Then for any fixed C1 ≥ C such that

C1 log(1 + C1/(4L))

L
≥W

we have

P
(
‖pr,M − E pr,M‖

Rd > C1γM
)

≤ L

(
σr,M
UM

)C1 log(1+C1/(4L))
L

≤ L

(
σr,M
UM

)W
≤ LγM , M → ∞.

Due to (iii) we can now find M0 such that for all M > M0 it holds C1γM ≤
pmin/4. Hence

P
(
‖pr − E pr,M‖

Rd > pmin/4
)
≤ LγM , M → ∞.

Since

P
(
‖pr − pr,M‖

D
> pmin/2

)
≤ P

(
‖pr − E pr,M‖

Rd > pmin/4
)

+ P
(
‖E pr − pr,M‖

Rd > pmin/4
)

and ‖pr − E pr,M‖
D

goes to zero for M → ∞, we end up with

P
(
‖pr − pr,M‖

D
> pmin/2

)
≤ LγM , M → ∞.

Similarly,

E ‖pr − pr,M‖
D
≤ ‖pr − E pr,M‖

Rd + E ‖E pr,M − pr,M‖
Rd

≤ ‖pr − E pr,M‖
Rd + L1γM

with L1 := B1
√
ν only depending on the VC characteristics. Next, by ap-

plying Theorem 7.1 to the representation

dr,M (x) − E dr,M (x) =
1

M

M∑

m=1

(
ΦM (x,X(m)

r )ϕ(x,X
(m)
r+1, a)hr+1(X

(m)
r+1)

−E
[
ΦM(x,X(m)

r )ϕ(x,X
(m)
r+1, a)hr+1(X

(m)
r+1)

])
,
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with ŨM := AφAhUM and σ̃r,M := AφAhσr,M , and observing that (i)-(iv) in

Theorem 4.3 are trivially fulfilled for the sequences ŨM and σ̃r,M , we obtain
in an analogous way the estimate

E ‖dr − dr,M‖
Rd×A ≤ E ‖dr − E dr,M‖

Rd×A + L2γM

with some constant L2 > 0 only depending on the VC characteristics. Taking
all together, (7.41) yields

E ‖CD
r,M − Cr‖D×A ≤

(
CmaxL+ 2Cmaxp

−1
minL1 + 2p−1

minL2

)
γM

+ 2Cmaxp
−1
min ‖pr − E pr,M‖

Rd + 2p−1
min ‖dr − E dr,M‖

Rd ,

from which the statement of the theorem follows with L0 := 1
2L+ L1 + L2.

7.4 Proof of Theorem 4.5

We have

λMmin = min
‖w‖=1

w⊤ΓM,Kw

≥ min
‖w‖=1

w⊤ΓKw + min
‖w‖=1

w⊤(ΓM,K − ΓK)w

≥ λmin −K max
1≤k,l≤K

|ΓM,K
l,k − ΓKl,k|.(7.42)

By the uniform boundedness of ψk(x) on R
d it follows that

Var [ψl (Xr)ψk (Xr)] ≤ E
[
ψ2
l (Xr)ψ

2
k (Xr)

]
≤ A4

ψ,

and so we get by Bernstein’s inequality

(7.43) P(|ΓMl,k − Γl,k| > δ) ≤ 2 exp


− Mδ2

2A2
ψ

(
A2
ψ + 2δ/3

)


 .

Combining (7.42) and (7.43), we get

P(λM,K
min < λmin/2) ≤ P

(
max

1≤k,l≤K

∣∣∣ΓM,K
l,k − ΓKl,k

∣∣∣ > λmin/2K

)

≤ 2K2 exp


− Mλ2

min

8K2A2
ψ

(
A2
ψ + 2δ/3

)


 ≤ 2K2 exp

[
−B0M/K2

]
(7.44)

with some constant B0 > 0 independent of K and M. We further have

(7.45) 1{λM
min≥λmin/2}

∣∣∣CT

r,M (x, a) − Cr(x, a)
∣∣∣ ≤ E

(1)
r,M + E

(2)
r,M + |∆r(x, a)|
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with

E
(1)
r,M = sup

(x,a)∈A

∣∣∣∣∣
1

M

M∑

m=1

ψ⊤
K(x)

[(
ΓM,K

)−1 −
(
ΓK
)−1
]
ψK(X(m)

r )Y (m)(a)

∣∣∣∣∣ ,

E
(2)
r,M = sup

(x,a)∈A

∣∣∣∣∣
1

M

M∑

m=1

(
ψ⊤
K(x)

(
ΓK
)−1

ψK(X(m)
r )Y (m)(a)

−E
[
ψ⊤
K(x)

(
ΓK
)−1

ψK(X(m)
r )Y (m)(a)

])∣∣∣ .

The matrix identity A−1 −B−1 = A−1(B −A)B−1 and the multiplicativity
of the spectral matrix norm imply on the set {λM,K

min ≥ λmin/2},
∥∥∥
(
ΓM,K

)−1 −
(
ΓK
)−1
∥∥∥

2
≤ 2

λ2
min

∥∥ΓK − ΓM,K
∥∥

2
.

Hence, it holds on the set {λM,K
min ≥ λmin/2},

sup
(x,a)∈A

∣∣∣ψ⊤
K(x)

[(
ΓM,K

)−1 −
(
ΓK
)−1
]
ψK(X(m)

r )Y (m)(a)
∣∣∣

≤ 2AϕAh
λ2

min

‖ψK(x)‖2

∥∥∥ψK(X(m)
r )

∥∥∥
2

∥∥ΓK − ΓM,K
∥∥

2

≤ K2AϕAhA
2
ψ

2

λ2
min

∥∥ΓK − ΓM,K
∥∥

max
,

where ‖·‖max denotes the elements-wise maximum. Due to our assumptions
it follows from Theorem 7.1 that

(7.46) EE
(1)
r,M ≤ B2

K2

√
M
,

where the constant B2 does not depend on K and M. Since

E
(2)
r,M ≤

√
K

Aψ
λmin

sup
a∈A

∥∥∥∥∥
1

M

M∑

m=1

(
ψK(X(m)

r )Y (m)(a) − EψK(X(m)
r )Y (m)(a)

)∥∥∥∥∥
2

≤ KAψ
λmin

sup
a∈A

max
1≤k≤K

∣∣∣∣∣
1

M

M∑

m=1

(
ψk(X

(m)
r )Y (m)(a) − Eψk(X

(m)
r )Y (m)(a)

)∣∣∣∣∣ ,

our assumptions and Theorem 7.1 lead to the following bound

(7.47) EE
(2)
r,M ≤ B3

K√
M
,

where constant B3 does not depend on K and M. Combining (7.45) with
(7.46) and (7.47), we arrive at (4.33).
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7.5 Proof of Theorem 5.1

For any h = (h0, ..., hT ) ∈ H and a ∈ A let consider a martingale Mr from
the Doob decomposition of hr(Xr):

Ma

r+1 −Ma

r = hr+1(Xr+1) − Ea [hr+1(Xr)|Fr] ,

with Ma

0 = 0, i.e.,

Ma

r =
r−1∑

j=0

(
Ma

j+1 −Ma

j

)
=

r−1∑

j=0

(hj+1(Xj) − P ajhj+1(Xj)) .

We then have

Y ∗
r = inf

h
sup
a∈Ar
τ, τ≥r

Ea



τ−1∑

j=r

fj(Xj , aj) + gτ (Xτ ) −
τ−1∑

j=r

(hj+1(Xj) − P ajhj+1(Xj))

∣∣∣∣∣∣
Fr




≤ inf
h



hr(Xr) + sup

a∈Ar

E∗



i−1∑

j=r

Λr,j(a,X) (fj(Xj , aj) + P ajhj+1(Xj) − hj(Xj))

+Λr,i(a,X) (gi(Xi) − hi(Xi))|Fr]}

≤ inf
h



hr(Xr) + E∗



T−1∑

j=r

sup
a∈Ar

Λr,j(a,X)
(
(Lh)j (Xj) − hj(Xj)

)+

+ max
i≥r

sup
a∈Ar

Λr,i(a,X) (gi(Xi) − hi(Xi))
+

∣∣∣∣Fr
]}

.

For h = h∗ it holds max [gi, (Lh
∗)i] = h∗i , and h∗T (x) = gT (x), so we finally

have identity.

7.6 Some results from the theory of empirical processes

For the readers convenience we here recall some definitions and corner stone
results from the theory of empirical processes.

Definition A class F of measurable functions on a measurable space (S,S)
is called a Vapnik-Červonenkis class if there exist positive numbers A and ν
such that, for any probability measure P on (S,S) and any 0 < ρ < 1,

N(F, L2(P), ρ‖F‖L2(P)) ≤
(
A

ρ

)ν
,(7.48)

where N(F, d, ε) denotes the ε-covering number of F in a metric d, that is
the minimal number of spheres with radius ε needed to cover F, and F :=
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supf∈F |f | is the envelope of F (with here and below sup denoting esssup
with respect to P). The following proposition is a key tool for obtaining
convergence rates for the local and global type estimators considered in this
paper.

Theorem 7.1 (Talagrand (1994), Giné and Guillou (2002)). Let F be a
measurable uniformly bounded VC class of functions. Let P be any measure
on (S,S), and let (Xm)m=1,2,... be an i.i.d. sequence of S-valued random
variables with distribution P. Let σ and U be any numbers such that

sup
f∈F

VarP(f) ≤ σ2, sup
f∈F

‖f‖∞ ≤ U

and 0 < σ ≤ U . Then, there exist a universal constant B such that

E

[
sup
f∈F

∣∣∣∣∣

M∑

m=1

(f(Xm) − E f(X1))

∣∣∣∣∣

]
≤ B

[
νU log

AU

σ
+
√
ν

√
Mσ2 log

AU

σ

]
.

If moreover 0 < σ < U/2 and
√
Mσ ≥ U

√
log(U/σ), there exist constants

L and C which only depend on the VC characteristics of F, such that for all
λ ≥ C and t satisfying

C
√
Mσ

√
log

U

σ
≤ t ≤ λ

Mσ2

U
,

it holds

P

(
sup
f∈F

∣∣∣∣∣

M∑

m=1

(f(Xm) − E f(X1))

∣∣∣∣∣ > t

)
≤ L exp

(
− log(1 + λ/(4L))

λL

t2

Mσ2

)
.

Thus, in particular, for any C1 ≥ C we may take

t = C1

√
Mσ

√
log

U

σ
, λ = C1,

which yields

P

(
sup
f∈F

∣∣∣∣∣

M∑

m=1

(f(Xm) − E f(X1))

∣∣∣∣∣ > C1

√
Mσ

√
log

U

σ

)
(7.49)

≤ L exp

(
−C1 log(1 + C1/(4L))

L
log

U

σ

)
.
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