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∗

Alina Maurer
†

This Version: April 2009

Abstract: A firm’s current leverage ratio is one of the core characteristics
of credit quality used in statistical default prediction models. Based on the
capital structure literature, which shows that leverage is mean-reverting to a
target leverage, we forecast future leverage ratios and include them in the set
of default risk drivers. The analysis is done with a discrete duration model.
Out-of-sample analysis of default events two to five years ahead reveals that
the discriminating power of the duration model increases substantially when
leverage forecasts are included. We further document that credit ratings
contain information beyond the one contained in standard variables but that
this information is unrelated to forecasts of leverage ratios.

Keywords: default prediction, discrete duration model, leverage targeting, mean rever-
sion, credit rating

JEL Classification: G32, G33

Acknowledgements: This research was supported by the Deutsche Forschungsgemein-
schaft (DFG) through a grant and through the SFB 649 “Economic Risk”. We thank
Moody’s Investors Service for providing rating and default data.

∗ Ulm University, Institute of Finance, Helmholtzstrasse 18, 89069 Ulm, Germany
† Corresponding author. Tel.: +49-731-50-23591; Fax.: +49-731-50-23950; Ulm University, Institute of
Finance, Helmholtzstrasse 18, 89069 Ulm, Germany



1. Introduction

Many observations suggest that firms follow leverage targets. A survey of chief financial
officers conducted by Graham and Harvey (2001) reveals that the majority of firms
has a target debt-equity ratio. Among others, Fama and French (2002), Leary and
Roberts (2005), Flannery and Rangan (2006) and most recently Lemmon et al. (2008)
document that empirical leverage ratios are mean-reverting. Estimation is usually based
on a partial adjustment model where the optimal capital structure depends on a set
of firm characteristics. The results differ regarding the speed of adjustment and the
relative importance of targeting behavior, but the finding that firms actively rebalance
capital structure in order to close the gap between the current and the targeted leverage
appears robust. The results are consistent with the trade-off theory of capital structure
in which firms balance the costs and benefits of debt to determine an optimal leverage
ratio (Kraus and Litzenberger, 1973). Rival theories include the pecking order theory
(Myers, 1984) and the market timing theory (Baker and Wurgler, 2002).

If firms follow leverage targets then future leverage ratios should be predictable. In this
paper, we examine whether such predictability can be exploited to improve the accuracy
of statistical default prediction models. In such models, future defaults are explained
through a set of variables including accounting ratios and stock market information. A
variable that measures a firm’s current leverage is usually included and found to have
significant explanatory power. This suggests the following approach: in a first step,
derive forecasts for future leverage ratios from a partial adjustment equation. Then
extend a standard default prediction model by a new variable that incorporates these
forecasts.

We find that this two-step approach significantly improves prediction accuracy. The
added value from incorporating leverage dynamics increases if we extend the default
prediction horizon from two to five years. This is consistent with the empirical finding
that it takes several years to close the gap between the current and the target leverage
ratio.1

Our results should help improve default prediction models, which are essential ingre-
dients to risk management and pricing in many financial institutions. The results also
add a new argument to the discussion of the empirical relevance of leverage-targeting
behavior. It would be difficult to maintain the interpretation that targeting behavior is
relevant if it were irrelevant in a setting such as default prediction where leverage plays
a crucial role.

While statistical default prediction models are commonly used in practice, capital
market participants also rely heavily on credit ratings issued by agencies such as Fitch,
Moody’s or Standard & Poor’s. According to rating agencies, these ratings have a long-
term horizon and are not only based on a firm’s current situation but also on projections
of its future situation. According to Moody’s, for instance, “credit ratings are ordinal
measures of through-the-cycle expected loss. As such, while they are certainly based

1 The half-life of deviations from optimal capital structure is approximately five years in Fama and
French (2002) and two years in Flannery and Rangan (2006).
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on the current financial strength of the issuer, they incorporate expectations of future
performance as well.” (Metz and Cantor, 2006, p.1). It therefore seems interesting to
examine whether rating analysts incorporate information about mean-reverting leverage
ratios. If we include the current rating as a predictive variable in our default prediction
model we find that it is significant but does not affect the significance of the variable
that captures leverage dynamics. Thus, while ratings contain valuable information for
default prediction, this information is largely unrelated to the leverage predictions that
can be derived from the targeting behavior of firms.

Our research combines approaches from two areas: the capital structure literature
introduced above and the literature on default prediction. In the latter, a firm’s forward
default probability is modeled as a function of firm-specific covariates such as leverage,
profitability or liquidity. Some studies additionally include industry or economy-wide
factors. Most recent contributions employ discrete duration models or, equivalently,
multi-period logit models. They include Shumway (2001), Hillegeist et al. (2004) and
Campbell et al. (2008). Often, these studies choose a one-year horizon for default pre-
diction but longer horizons are also used, e.g. Campbell et al. (2008).

The pricing implications of mean-reverting leverage ratios are explored in Collin-
Dufresne and Goldstein (2001). The two papers which are closest to ours are Duffie
et al. (2007) and Lo et al. (2008). Duffie et al. (2007) use a doubly-stochastic frame-
work where the dynamics of all covariates, including a ratio closely related to leverage
(distance to default), is modeled by a vector autoregressive time series. The authors
report an improvement of predictive performance, which however cannot directly be as-
cribed to any of the covariates. In our approach, introducing the dynamics of only one
variable (as we do in the two-step dynamic model for leverage) results in a long-term
prediction accuracy similar to that reported by Duffie et al. (2007). Lo et al. (2008)
incorporate targeting behavior in a structural model for one-year default probabilities,
but take model parameters from the capital structure literature. The key difference to
our approach is that we estimate target leverage through a set of firm-specific variables
as suggested by the literature on capital structure. Unlike in our study, the model of Lo
et al. (2008) does not outperform credit ratings.

The rest of the paper is organized as follows. In Section 2 we outline the statistical
methodology for default analysis as well as the partial adjustment model and introduce
two approaches for incorporating leverage dynamics into default prediction. Section 3
describes the data. Econometric issues relevant for the partial adjustment model are
discussed in Section 4. The main results are reported in Section 5. Section 6 exam-
ines whether credit ratings incorporate information on mean-reverting leverage ratios.
Section 7 concludes.

2. Methodology

We begin with an overview on the discrete duration model. This is followed by a short
introduction to the partial adjustment model and its uses for forecasting leverage ratios.
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2.1. Default Analysis

We use a discrete duration model. At time t, a firm’s conditional probability of default
within the next year given the firm’s current condition and survival until the beginning
of year t is expressed by a discrete hazard function h(t):

h(t) = P (Yt,t+1 = 1|Yt−1,t = 0,Xt),

where the vector Xt captures the firm’s current condition and the binary variable Ys,t

indicates default in the time interval (s, t], i.e.

Ys,t =

{

1 if default occurs in (s, t]

0 else.

As has been pointed out by Shumway (2001), a discrete duration model is equivalent
to a multi-period logit model estimated on panel data if the hazard function is specified
as

h(t) =
1

1 + exp(−α − βXt)
. (1)

In our analysis we adopt the above specification of the hazard function, since it has
widely been used in the literature, e.g. Shumway (2001), Chava and Jarrow (2004),
Hillegeist et al. (2004) and Campbell et al. (2008).

For default events multiple periods ahead we consider what we will call discrete multi-

period default probabilities, addressing the question “What is the probability of default
between year t + k and t + k + 1 given today’s covariates?” Again this question is only
reasonable for firms that did not default prior to t + k. Discrete multi-period default
probabilities are essentially lagged single-period default probabilities, i.e.

h(t + k) = P (Yt+k,t+k+1 = 1|Yt−1,t+k = 0,Xt)

=
1

1 + exp(−αk − βkXt)
. (2)

Hereby we explicitly allow the coefficients to vary with the prediction horizon.
We do not model the probability that a firm will default within the next k (k ≥ 2)

years: P (Yt,t+k = 1|Yt−1,t = 0,Xt).
2 This probability is no longer logistically distributed

if discrete default probabilities follow a logistic distribution (cf. Campbell et al. (2008)).
Modeling the baseline hazard as constant over time (αk(t) = αk, ∀t) is justified by the

assumption of duration independence in the data, i.e. the probability of default does
not depend on the length of time a firm did exist before default analysis. We test for
duration independence following the procedure described in Beck et al. (1998). For the
sample used in our analysis the likelihood ratio test indicates no duration dependence
in the data.3

2 P (Yt,t+k = 1|Yt−1,t = 0, Xt) = 1 −
∏k−1

j=0
(1 − h(t + j)).

3 Shumway (2001) controls for duration dependence by specifying α(t) = ln(age), with age being the
number of years a firm has been listed on the particular stock exchange, and finds this variable
insignificant.
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2.2. Mean-Reverting Leverage Ratios

The empirical literature on capital structure has widely analyzed the pecking order
theory versus the alternative trade-off model (for an overview see Frank and Goyal
(2007)). Although neither theory can fully explain observed capital structure decisions,
a large amount of studies support the trade-off theory by providing evidence for the
hypothesis that leverage is mean-reverting.

The standard approach is to describe the dynamics of leverage by a partial adjustment
equation:

Lt+1 − Lt = a0 + a1(L
∗

t+1 − Lt) + ǫt+1, (3)

where Lt denotes the leverage ratio observed at time t and L∗

t+1 is the targeted leverage
ratio for the next period. As implied by the trade-off theory, L∗ is the optimal value
that sets off the benefits of interest tax shields against the costs of financial distress.
According to the partial adjustment hypothesis, each year a firm closes a fraction of the
gap between its actual and desired future leverage level (measured by the adjustment
rate a1 in Eq. (3)). Often the adjustment rate is modeled constant over time and firms,
representing an average firm’s adjustment speed.4

We follow Flannery and Rangan (2006) who model the targeted leverage ratio, which
is not observable, as a linear combination of firm-specific observable covariates Ct, i.e.

L∗

t+1 = b0 + b1Ct. (4)

Replacing the targeted leverage ratio in (3) by the assumed relation from (4) and re-
arranging results in an equation which relates the future leverage ratio to the current
leverage and a set of leverage factors:

Lt+1 = c0 + c1Ct + c2Lt + ǫt+1, (5)

with c0 = a0 + a1b0, c1 = a1b1 and c2 = (1 − a1).
For leverage levels multiple periods ahead, we consider the desired leverage ratio in

t + k given today’s firm characteristics:

L∗

t+k = b0,k + b1,kCt. (6)

Future leverage ratios can then be estimated through:

Lt+k = c0,k + c1,kCt + c2,kLt + ǫt+k, (7)

for each horizon t + k (k ≥ 1).

2.3. Incorporating Leverage Dynamics into Default Prediction

The central question of this paper is whether results on the dynamics of capital structure
are of benefit for long-term default prediction. Leverage is one of the key determinants

4 We will consider modifications of this assumption in Section 5.3.
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of default risk and predictive knowledge about leverage should help improve default
prediction. We consider two related models in order to analyze this question.

Future leverage ratios are related to the current leverage ratio Lt and a set of leverage
factors Ct (cf. Eq. (7)). Consequently, the information on dynamics of leverage can
be incorporated into default prediction by extending the vector of covariates in Eq. (2)
(our base model) to

Ut = (Xt, Lt, Ct).

We will call this the reduced-form approach.
Within an alternative two-step approach we first estimate future leverage ratios. In

particular, for default in (t + k, t + k + 1] we forecast leverage in t + k (k ≥ 1). Leverage
ratios are by definition restricted to the unit interval. Hence we set all fitted values
that are negative or larger than 1 to this theoretical bounds. In the second step, the
covariates vector in the base regression model (Eq. (2)) is extended to

Zt+k = (Xt, dL̂t+k).

The new variable dL̂t+k = (L̂t+k−Lt) captures the dynamics of leverage, since it predicts
the change from the most recently observed to the estimated future leverage ratio.5 In
this sense, we will refer to dL̂t+k as to the dynamic variable.

The reduced-form approach nests the two-step approach. The latter imposes the
restriction that the covariates vector Ct is weighted according to Eq. (4) as well as the
restriction that predicted leverage ratios are bounded by 0 and 1. Imposing restrictions in
a regression model automatically leads to a deterioration of the in-sample fit. The out-of-
sample performance could be improved through the two-step approach if the restrictions
turn out to be correct and thus increase the precision of parameter estimates. We
therefore examine both approaches.

The two models differ in ease of interpretation. In the two-step approach the effect of
leverage dynamics on creditworthiness is straightforward: a larger difference dL̂t+k comes
along with a higher future leverage ratio and should therefore increase the probability of
default. In the reduced-form approach we have to interpret a set of coefficients and it is
difficult to assess the extent to which estimated coefficients are in line with the partial
adjustment hypothesis that is the basis of our work.

3. Data and Definition of Variables

We perform our analysis on a sample constructed by merging three sources: accounting
information from the annual COMPUSTAT database; market variables from the Center
for Research in Security Prices (CRSP) as well as credit rating and default information

5 One could also add L̂t+k, the prediction of the leverage ratio. The difference dL̂t+k is advantageous,
since it contains the same information as L̂t+k and is more easily accessible in terms of interpretation.
Also, the estimate L̂t+k is highly correlated with the current leverage ratio and by considering the
difference instead of the absolute value we reduce the problem of multicollinearity. We do not consider
dL̂t+1, . . . , dL̂t+k−1 as additional covariates (which is possible for k ≥ 2) because estimated leverage
ratios at consecutive points in time are highly correlated.
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from Moody’s Investors Service. All accounting variables are lagged by six months to
ensure availability at the start of the prediction horizon, i.e. time t is the fiscal year-end
plus six months.

Moody’s database covers ratings and default events for corporate bond issuers. The
default indicator in our analysis is based on Moody’s definition of default that includes
missed or delayed payments, bankruptcy and distressed exchange (cf. Hamilton et al.
(2006)). Observations for firms with multiple default events are included only if the
credit rating prior to a recurrent default has been upgraded to at least “B3”.

We restrict our analysis to U.S. companies excluding financial firms (CRSP SIC 6000-
6999) and regulated utilities (CRSP SIC 4000-4999), whose capital decisions are subject
to regulatory influence and hence might violate assumptions made in the partial adjust-
ment model. The final sample comprises 17499 firm-years. During the whole observation
period (1975 to 2005) a total of 269 default events were recorded.

In the following two subsections we detail the choice and definition of explanatory
variables. A specification including COMPUSTAT items and descriptive statistics are
provided in Table 5 in the Appendix.

3.1. Covariates for Default Analysis

In the literature there is no consensus on the right choice of covariates to be used for the
estimation of default probabilities. Altman (1968) suggests a set of accounting ratios
which is modified by Zmijewski (1984) and Ohlson (1980), among others. A more recent
analysis by Shumway (2001) concludes that stock market variables (excess stock return,
return volatility) improve prediction accuracy when added to accounting ratios.

Although being different in detail, the various accounting ratios can be grouped as
proxies for either leverage, profitability, liquidity or coverage; four main characteristics
that determine the quality of an obligor. For our analysis, we decided on the definition
of each characteristic that shows best explanatory power in terms of significance when
compared to alternatives.

Leverage is measured as the ratio of total debt to the market value of total assets
(L=TD/MTA), with MTA being the sum of total debt and market capitalization, cf.
Campbell et al. (2008). We proxy expected profitability by the ratio of earnings before
interest and taxes to total assets (EBIT/TA), as has been suggested by Altman (1968)
and Fama and French (2002). In general, more profitable firms are less likely to default.
We observe that neither of the alternative measures for liquidity (e.g. working capital
to total assets or current assets to current liabilities) is significant. For this reason,
we do not include a proxy for liquidity in the analysis. Similar to Blume et al. (1998)
we quantify coverage by the ratio of earnings before interest and taxes over interest
expenses of the same period (EBIT/XINT). The lower the ratio, the higher the risk that
the company will not satisfy its interest expenses and meet its debt obligations.

Accounting ratios are complemented by stock return and stock return volatility. Stock
returns (RET) are compounded from monthly returns over the previous twelve months.6

6 Through the inclusion of returns instead of abnormal returns we also control for market wide fluctu-
ations.
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Falling stock prices are likely to capture an increase in a firm’s distress potential. We
define volatility (VOLA) as the standard deviation of monthly stock returns over the
previous twelve months. We expect more volatile stocks to be associated with low credit
quality.

We include a measure of firm size along with a proxy for investment opportunities as
explanatory variables. Similar to Shumway (2001) firm size (SIZE) is measured as the
natural logarithm of the ratio of a firm’s market capitalization to the capitalization of the
S&P500. Larger firms are suspected to be less exposed to default. We proxy investment
opportunities by growth in assets (dTA = TAt−TAt−1

TAt
), as in Fama and French (2002).

The corresponding coefficient is presumed to be positive.
In order to mitigate the influence of outliers, we winsorize all observed covariates,

except SIZE and EBIT/XINT, at the 1% and 99% quantiles. Taking the logarithm
when measuring firm size already reduces the impact of outliers. Interest coverage is
truncated similar to the procedure suggested by Blume et al. (1998): all observations
with negative earnings are set to zero; all observations with negative interest expenses
are set to the maximum value of 5; all remaining values are cut of at the maximum value
of 5. The procedure results in a range of [0, 5] for transformed interest coverage.7

3.2. Covariates for Leverage Forecasts

In line with the specification for default analysis leverage is measured as a firm’s market
debt ratio. As leverage factors we consider a set of widely used firm characteristics (cf.
Rajan and Zingales (1995), Howakimian et al. (2001), Fama and French (2002), Flannery
and Rangan (2006)). These include profitability, firm size, non-debt tax shields and tan-
gibility as well as product uniqueness along with growth and investment opportunities.

Firms with high profitability (EBIT/TA)8 have less leverage, since firms with higher
retained earnings are more likely to use equity finance. On the other hand, the inverse
relationship between profitability and bankruptcy costs implies better debt conditions.
Firm size (SIZE) might have a positive relation to leverage due to less volatile earnings
and better access to the debt market. Non-debt tax shields are proxied by the proportion
of depreciation expense relative to total assets (XD/TA). Higher non-debt tax shields
most likely increase the preference for equity relative to debt financing. Tangibility is
measured by the ratio of fixed to total assets (FA/TA). Firms with a higher proportion
of tangible assets tend to operate with higher leverage. Product uniqueness, measured
by the proportion of research and development expenses to total assets (R&D/TA),
should be negatively related to leverage. As in Flannery and Rangan (2006) we also
include a dummy variable indicating whether a firm does report R&D expenses. We
proxy growth opportunities by the market-to-book ratio (MB); firms with high expected

7 Blume et al. (1998) point out that coverage is likely to have non-linear effects. Consequently, in a
logit model a change in values close to the mean of the distribution would have a larger impact on
the dependent variable than the same change in values close to the tails of the distribution.

8 For consistency reasons, variables that approximate the same characteristics considered in the default
analysis are not redefined. Outliers are again removed through winsorization at the 1% and 99%
quantiles.
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future growth tend to have more equity. Again growth in assets (dTA) is used as a proxy
for investments opportunities.9

Following Flannery and Rangan (2006) we include the industry mean of leverage
(INDMEAN) in order to control for industry wide characteristics not captured otherwise.
For industry definitions we refer to Chava and Jarrow (2004).

Lemmon et al. (2008) stress the importance of initial leverage relative to time-varying
leverage factors. We define initial leverage (L0) as a firm’s first observable market debt
ratio.

4. Partial Adjustment Model - Econometric Issues

The estimation of Eq. (7) entails a dynamic panel regression. Panel data is in general
subject to two sources of dependence: correlation of residuals for a given year across
firms and correlation of residuals for a given firm across years. The first source is usually
controlled for using time dummies, whereas cross-sectional dependence is dealt with by
including dummies for each firm (fixed effects or within estimation), cf. Petersen (2009).
Further, the introduction of a lagged dependent variable comes along with the problem
of endogeneity, since Lt will be correlated with the error term. A standard approach in
this case is an instrumental variables regression.

Several estimation techniques have been suggested for dynamic panel data.10 The re-
sults differ with respect to estimated coefficients and standard errors. In our application,
however, we primarily focus on accurate out-of-sample forecasts rather than on correct
in-sample estimates. Within the two-step approach forecasts of future leverage ratios
are added to the regressors in the default analysis in order to increase prediction accu-
racy. Thus, it is obvious that our findings are sensitive to the results from the first-step
regression and poor forecasts should be avoided.

We compare several estimation techniques and use the one that performs best with
respect to the out-of-sample forecasting ability quantified by the root mean squared error
(RMSE). We consider within groups estimation as well as instrumental variables regres-
sion with and without fixed effects. Time dummies are included in each specification.
For the instrumental variables regression we follow Flannery and Rangan (2006) who
suggest book debt ratio (the ratio of total debt to the book value of total assets) as an
instrument for Lt.

We test the out-of-sample forecasting performance for the years 1996 to 2000 with
coefficients being estimated on a sample including the years 1985 to 1995. An average
RMSE is computed over forecasting horizons of one to four years. For the instrumental
variables regression without fixed effects we get the lowest value: 0.16. Allowing for fixed
effects results in an average RMSE of 0.24 (IV regression) and 0.25 (within estimation).

Based on this results we use instrumental variables regression without fixed effects in
the first step of the two-step dynamic model. All following inference is based on this

9 Fama and French (2002) include growth in assets to capture temporary movements in leverage away
from its target rather than as a direct determinant of target leverage.

10 A detailed overview can be found in Baltagi (2003).
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choice. Regression results for the partial adjustment equation for forecasting horizons
of one to four years are presented in Table 6 in the Appendix (we do not list coefficient
estimates for time dummies).

5. Empirical Results

We first report in-sample estimation results for the discrete duration model with the
following covariates: Xt (the base model), Ut = (Xt, Lt, Ct) (the reduced-form dynamic
model) and Zt+k = (Xt, dL̂t+k) (the two-step dynamic model). The respective prediction
accuracies are compared out-of-sample in Section 5.2.

5.1. In-Sample Estimation

Table 1 presents regression results for the base model for discrete default probabilities
one to five years ahead, i.e. for default in (t, t + 1] to (t + 4, t + 5]. We report coefficient
estimates, robust standard errors adjusted for clustering on firms and the McFadden
Pseudo-R2 as an indicator for the overall fit of the model as well as the area under the
Receiver Operating Characteristic (ROC) curve (AUC).11

For the one-year prediction horizon coefficient estimates for all risk factors carry the
expected sign and show high significance, except for EBIT/TA, which is only marginally
significant with a p-value of 0.1. For other horizons this covariate remains insignificant,
whereas the accounting ratios L, EBIT/XINT and dTA keep their predictive power.
Among the market variables only SIZE exhibits long-term explanatory power. Neither
past returns, nor their volatility can explain defaults four or five years ahead. We find a
rapid decline in the overall fit of the model, comparing the relatively high Pseudo-R2 for
a one-year horizon (Pseudo-R2 = 0.3987) to the rather small overall fit for the five-year
horizon (Pseudo-R2 = 0.0718). A similar trend is observed for prediction accuracy; the
area under the ROC curve reduces from AUCBase

1 = 0.9460 to AUCBase
5 = 0.7502.

Table 2 presents coefficient estimates for the two-step dynamic model. The dynamic
variable dL̂ has the right sign and exhibits high statistical significance for any of the
considered horizons. After the inclusion of the dynamic variable the covariate dTA
becomes insignificant. This might be due to the fact that dTA is one of the leverage
factors used in the first step to forecast future leverage ratios. The remaining covariates
are only slightly affected. Further, values for the Pseudo-R2 and AUC of the two-step
dynamic model exceed the respective values of the base model. The best in-sample
gain in AUC is observed for a prediction horizon of four years, with an increase from
AUCBase

4 = 0.7856 to AUCTwo-Step
4 = 0.8161.

Regression results for the reduced-form dynamic model are reported in Table 3. Since
time dummies are included in the partial adjustment model, they are also included in
the reduced-form dynamic model. Yet, to keep results clearly presented, we do not

11 The area under the ROC curve measures the discriminating power of a model; a value close to
the maximum of 1.0 corresponds to a perfect discrimination between defaulters and non-defaulters,
whereas a random decision would lead to a value of about 0.5.
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Prediction Horizon in Years
1 2 3 4 5

L 4.80*** 2.97*** 2.41*** 1.49** 0.99*
(0.53 ) (0.41) (0.39) (0.46) (0.48)

EBIT/TA -1.76 0.95 -0.24 1.86 2.23
(1.07) (1.16) (1.29) (1.48) (1.68)

EBIT/XINT -0.31** -0.33*** -0.19** -0.29** -0.31***
(0.10) (0.08) (0.07) (0.09) (0.09)

RET -1.64*** -0.65*** -0.29 -0.24 -0.11
(0.31) (0.18) (0.16) (0.19) (0.20)

VOLA 4.69*** 4.39*** 3.43** 0.67 0.33
(1.02) (1.12) (1.07) (1.36) (1.39)

dTA 1.14** 1.13*** 1.13** 1.17* 1.37**
(0.40) (0.34) (0.40) (0.50) (0.45)

SIZE -0.18*** -0.20*** -0.19*** -0.22*** -0.21***
(0.05) (0.05) (0.05) (0.05) (0.06)

Constant -9.08*** -7.53*** -7.08*** -6.47*** -6.12***
(0.54) (0.49) (0.44) (0.50) (0.53)

Firm-years 17499 15566 14611 13719 13230
Pseudo-R2 0.3987 0.2238 0.1398 0.0965 0.0718
AUC 0.9460 0.8810 0.8259 0.7856 0.7502

Table 1: Regression results for the base model explaining discrete default probabilities
one to five years ahead. Robust standard errors are in parentheses. Stars indicate a
significance level: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

list coefficient estimates for time dummies. The model shows the best overall fit and
discriminatory power which is what we expect because it imposes fewer restrictions than
the base or two-step dynamic model. The improvement is pronounced. It is largest
at the five-year horizon. Discriminatory power increases from AUCBase

5 = 0.7502 and
AUCTwo-Step

5 = 0.7761 to AUCReduced-Form
5 = 0.8358.

The likelihood ratio test for the null hypothesis Ct = 0, i.e. leverage factors have no
explanatory power (where we only consider covariates that are not part of the base model
as well as time dummies), is rejected at the 0.1% significance level for all horizons. When
inspecting the individual variables in Ct, however, only R&D/TA and the time dummies
are significant. The low precision of the other variables as well as the importance of time
dummies – which do not contribute to an out-of-sample prediction – already indicate
that the good in-sample performance of the reduced-form model may not carry over to
a good out-of-sample performance.

5.2. Out-of-Sample Prediction Accuracy

Through an out-of-sample validation we can assess the performance of the dynamic
models in a realistic setting, where an analyst aims to predict future default probabilities
using only current and past information.

We conduct the out-of-sample validation as follows. For each validation year, 1991
to 2000, we compute future default probabilities based on coefficient estimates from a
sample consisting of observations of the previous n years. We vary the number of years in
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Prediction Horizon in Years
2 3 4 5

L 4.31*** 5.00*** 4.64*** 4.05***
(0.49) (0.52) (0.65) (0.73)

dL̂1 12.57***
(2.23)

dL̂2 13.12***
(1.66)

dL̂3 11.47***
(1.57)

dL̂4 8.84***
(1.55)

EBIT/TA 0.55 -1.62 0.70 1.55
(1.18) (1.35) (1.62) (1.82)

EBIT/XINT -0.33*** -0.18* -0.27*** -0.28***
(0.08) (0.08) (0.09) (0.09)

RET -0.66*** -0.33 -0.29 -0.16
(0.19) (0.17) (0.21) (0.21)

VOLA 4.57*** 4.28*** 2.08 2.04
(1.14) (1.1) (1.42) (1.4)

dTA 0.28 -0.11 -0.04 0.49
(0.36) (0.44) (0.53) (0.48)

SIZE -0.15*** -0.12* -0.15*** -0.17***
(0.05) (0.05) (0.05) (0.06)

Constant -7.52*** -7.38*** -7.05*** -6.95***
(0.48) (0.45) (0.52) (0.58)

Firm-years 15566 14611 13719 13230
Pseudo-R2 0.2362 0.1701 0.1275 0.0935
AUC 0.8883 0.8500 0.8161 0.7761

Table 2: Regression results for the two-step dynamic model explaining discrete default
probabilities two to five years ahead. Robust standard errors are in parentheses. Stars
indicate a significance level: ∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001.
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Prediction Horizon in Years
2 3 4 5

L 2.86*** 2.54*** 1.49* 1.28*
(0.5) (0.47) (0.56) (0.57)

EBIT/TA 0.61 -0.78 2.23 2.52
(1.31) (1.44) (1.81) (1.87)

EBIT/XINT -0.3*** -0.14 -0.25* -0.26*
(0.08) (0.08) (0.1) (0.1)

RET -0.54* -0.31 -0.49* -0.14
(0.2) (0.18) (0.22) (0.23)

VOLA 5.42*** 5.22*** 4.16* 4.09*
(1.32) (1.31) (1.73) (1.71)

dTA 0.83* 0.71 0.85 1.18*
(0.35) (0.41) (0.51) (0.46)

SIZE -0.2*** -0.17*** -0.17*** -0.2***
(0.05) (0.05) (0.06) (0.06)

L0 0.09 0.22 0.24 0.35
(0.34) (0.36) (0.38) (0.4)

MB -0.1 -0.24 -0.32 -0.03
(0.25) (0.19) (0.23) (0.19)

XD/TA 2.76 -1.58 1.75 4.19
(3.51) (3.86) (4.4) (4.08)

FA/TA 0.16 -0.07 -0.51 -0.39
(0.43) (0.41) (0.43) (0.44)

R&D Dummy -0.14 -0.23 -0.29 -0.43*
(0.16) (0.17) (0.17) (0.18)

R&D/TA -7.91* -6.4 -9.25* -7.64*
(3.6) (3.64) (4.06) (3.7)

INDMEAN 0.38 0.22 0.03 -1.04
(1.2) (1.33) (1.41) (1.63)

Constant -9.24*** -7.84*** -6.15*** -7.58***
(1.34) (1.05) (0.97) (1.31)

Firm-years 15566 14611 13719 13230
Pseudo-R2 0.2709 0.2051 0.1704 0.1457
AUC 0.9048 0.8769 0.8551 0.8358

Table 3: Regression results for the reduced-form dynamic model explaining discrete
default probabilities two to five years ahead (coefficients for time dummies are omit-
ted). Robust standard errors are in parentheses. Stars indicate a significance level:
∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001.
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the estimation sample from n = 8 to n = 13 years. We compare the prediction accuracy
of the two dynamic models to that of the base model by means of the AUC. The ROC
curve is computed using the set of pooled probability estimates for all validation years.
Additionally, we test the null hypothesis of equality of areas under two ROC curves
using the algorithm suggested by DeLong et al. (1988).

The variable dL̂ in the two-step dynamic model is obtained in a way which is consistent
with the out-of-sample methodology. The partial adjustment equation is estimated only
with data from the years that make up the estimation sample.

Table 7 in the Appendix documents the results in Panels A to D. We report p-values
for the null hypothesis comparing each dynamic model to the base model. A graphical
presentation of results is provided separately for each dynamic model in Fig. 1. The
ordinate shows the increase in AUC (in percentage points) when compared to the base
model; the abscissa marks the number of years in the estimation sample. Each value is
labeled by stars or a circle. Stars indicate the significance level if the null hypotheses of
equality is rejected. If the null cannot be rejected at a significance level of 5% the plot
displays a circle.

Out-of-sample, the two dynamic models perform quite differently. The increase in
prediction accuracy is on average higher for the two-step dynamic model. Moreover, the
results mostly indicate no significant increase in the AUC for the reduced-form model.

For both dynamic models the out-of-sample performance depends on the number of
years included in the estimation sample. This effect is even more pronounced for the
two-step dynamic model. Here a significant increase only shows for estimation samples
that cover less then twelve years. We observe best improvement for the nine and ten-
year estimation samples, but no improvement for the twelve and thirteen-year estimation
samples.

Consequently, when all years prior to the validation year are used for estimation the
two-step dynamic model is not superior to the base model. We also find mostly no
significant difference in the performance of the reduced-form and the base model.12

Why does the performance of the two-step dynamic model deteriorate for large estima-
tion samples? In the partial adjustment model (the first-step regression) the adjustment
speed as well as the linkage between firm characteristics and target leverage are mod-
eled constant over time. In-sample, departures from this assumption are mitigated by
time dummies. Out-of-sample, they are not, and a too long estimation history might
therefore lead to a reduction in the precision of leverage forecasts. A comparison of root
mean squared errors supports this conjecture; the values are lowest for an estimation
sample covering ten years. This suggests that one limits the estimation sample for the
first-step regression to around ten years even if a longer data history is available. Of
course, there is no need to impose the same limit on the second-step regression. We
checked whether the two-step dynamic model continues to be superior if the estimation
samples are chosen to be ten years for the first-step regression and eleven to thirteen
years for the second-step regression. We still find significant (5% or better) increases in
AUC.

12 All unreported results are available upon request.
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Figure 1: Out-of-sample performance of the reduced-form and two-step dynamic model
relative to the base model for two to five-year prediction horizons. Estimation sam-
ples cover eight to thirteen years. Stars indicate a significance level: ∗p < 0.05;∗∗ p <

0.01;∗∗∗ p < 0.001, circles indicate no rejection of the null hypotheses of equality of areas
under two ROC curves.
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The rather poor out-of-sample performance of the reduced-form model indicates that
a simultaneous estimation of leverage dynamics and default probabilities cannot capture
the dynamics of leverage sufficiently. The two-step procedure is clearly more favorable.

5.3. Variations of the Two-Step Dynamic Model

In the specification of the partial adjustment equation we already control for differences
in industry characteristics through the covariate INDMEAN (mean industry leverage
ratio). Alternatively, in the two-step dynamic model, we can take account of a het-
erogenous adjustment behavior by running the first-step regression on industry class
subsamples. Industry classes are defined as in Chava and Jarrow (2004), resulting in
eight classes.

Kisgen (2006) shows that ratings influence capital structure decisions. We therefore
repeat the analysis for rating category subsamples. In order to ensure a sufficient sample
size in each category, we aggregate Moody’s ratings into four categories (high = Aaa to
Aa3, medium = A1 to Baa3, speculative = Ba1 to B3, and poor = Caa1 to C). Unrated
firms are assigned a separate category.

The evaluation of out-of-sample ROC curves shows no clear-cut improvement in pre-
diction accuracy from using subsamples in the first-step regression. The separation
based on rating classes increases the AUC significantly only for the four and five-year
prediction horizons. Estimation on industry class subsamples improves out-of-sample
prediction accuracy only if at least 12 years are included in the estimation sample.

Overall, the results show that refinements of the partial adjustment regression could
help to further improve default prediction. Improvements are not clear-cut though,
suggesting that the two-step dynamic model with its rather simplistic assumption of a
homogeneous adjustment behavior is a good starting point for practical purposes.

One could surmise that it matters for default prediction whether the predicted change
in leverage is positive or negative. Therefore, we include the variable dL̂ ∗ D

dL̂<0
, with

D
dL̂<0

being a dummy variable set to one if dL̂ < 0, in the two-step dynamic model.
Comparing out-of-sample results to the performance of the two-step dynamic model we
find no material increase in AUC. In the data, information about predicted reductions
in leverage is as valuable as information about predicted increases in leverage.

6. Do Credit Ratings Capture the Dynamics of Leverage?

In the preceding section we have shown that additional information on the dynamics of
capital structure can significantly improve long-term default prediction accuracy. Credit
ratings assigned by rating agencies such as Moody’s or Standard & Poor’s also focus on
the long-term quality of an obligor’s debt. Fons et al. (2002) state on Moody’s ratings:
“[. . . ] credit ratings powerfully discriminate among relative long-term risks. They target
multiple horizons, rather than a single, defined investment horizon.” In other words,
credit ratings are meant to be forward-looking with respect to credit quality and the
question arises whether such a forward-looking ability covers leverage dynamics. If it
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does, adding credit rating information to the default regression in the two-step dynamic
model would make the dynamic leverage variable redundant or less important.

We address this question by considering the following covariates in the default predic-
tion model:

(i) Xt, i.e. the base model,

(ii) Zt+k = (Xt, dL̂t+k), i.e. the two-step dynamic model,

(iii) Vt = (Xt, RATt), i.e. the base model plus rating,

(iv) Wt+k = (Xt, dL̂t+k, RATt), i.e. the two-step dynamic model plus rating,

where RATt denotes the credit rating assigned by Moody’s at time t. Following Kisgen
(2006) we convert each of the 21 rating categories to a numerical variable: 1 corresponds
to rating class Aaa, 2 to rating class Aa1, . . . , 21 corresponds to rating class C. Such, a
higher rating is associated with a higher probability of default.

Table 4 reports regression results when the two-step dynamic model is enlarged by the
current rating. Comparing the coefficient estimates to those of the two-step dynamic
model (Table 2), we find that the inclusion of RAT has no effect on the significance and
magnitude of the dynamic variable. The rating variable itself is highly significant.

Mutual significance of leverage and rating information can further be validated by a
comparison of the respective out-of-sample ROC areas. We compare the out-of-sample
predictive performance as described in Section 5.2 with either Xt, Zt+k, Vt or Wt+k being
the vector of explanatory variables. We let the estimation sample cover a history of ten
years, due to the observation from Section 5.2. Results are presented in Fig. 2, where
we plot the respective AUC value against the prediction horizon.

The highest AUC values result from the two-step dynamic model enlarged by credit
rating. The values for the two-step dynamic model without rating information are
slightly lower; the differences are significant for the four and five-year prediction horizon
(p-values 0.018 and 0.005).

Similarly, the AUC values increase after adding the rating information to the base
model. Yet, the resulting ROC curves differ statistically only for the five-year prediction
horizon (p-value = 0.01). The inclusion of the dynamic variable, however, yields a
significantly higher prediction accuracy for both the base model and the base model
with rating. This is observed for any of the considered prediction horizons.

Summarizing, the in-sample coefficient estimates as well as the out-of-sample analysis
of ROC curves suggest that ratings are forward-looking but that they do not capture the
dynamics in leverage. The inclusion of the dynamic variable consistently increases out-
of-sample prediction accuracy even after controlling for the actual rating. Whereas the
information on credit rating is only relevant for the five-year prediction horizon. Here,
the dynamic variable and credit rating are complementary in the sense that neither one
can be replaced by the other without loss of prediction accuracy.
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Prediction Horizon in Years
2 3 4 5

L 3.96*** 4.35*** 4.45*** 3.93***
(0.53) (0.53) (0.65) (0.74)

dL̂1 11.85***
(2.17)

dL̂2 12.75***
(1.61)

dL̂3 12.13***
(1.56)

dL̂4 9.39***
(1.61)

RAT 0.12*** 0.19*** 0.21*** 0.15***
(0.04) (0.04) (0.04) (0.04)

EBIT/TA -0.2 -2.12 -1.39 0.28
(1.21) (1.33) (1.57) (1.78)

EBIT/XINT -0.25** -0.08 -0.08 -0.17
(0.09) (0.08) (0.09) (0.1)

RET -0.72*** -0.46** -0.48* -0.38
(0.19) (0.17) (0.21) (0.22)

VOLA 3.51** 3.28** 0.44 0.37
(1.23) (1.16) (1.53) (1.48)

dTA 0.5 -0.05 -0.17 0.29
(0.36) (0.45) (0.51) (0.49)

SIZE -0.1 -0.01 -0.01 -0.06
(0.06) (0.07) (0.07) (0.08)

Constant -8.37*** -8.3*** -8.21*** -7.64***
(0.54) (0.52) (0.62) (0.66)

Firm-years 13448 13223 13023 12852
Pseudo-R2 0.2531 0.1918 0.1533 0.1099
AUC 0.8976 0.8680 0.8435 0.8013

Table 4: Regression results for the two-step dynamic model enlarged by credit rating
explaining discrete default probabilities two to five years ahead. Robust standard errors
are in parentheses. Stars indicate a significance level: ∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001.
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Figure 2: Out-of-sample prediction accuracies for two to five-year prediction horizons:
base model, base model enlarged by the current rating, two-step dynamic model and
two-step dynamic model enlarged by the current rating. The estimation sample covers
10 years.

7. Summary and Concluding Remarks

Empirical corporate finance research documents that firms actively rebalance their cap-
ital structure towards a target leverage ratio. The main question addressed in our paper
is whether this insight can be used to improve the prediction of corporate defaults. We
use two related econometric specifications. In both cases, a standard discrete hazard
rate model (our base model) is enriched by variables that capture the dynamics of lever-
age. In the reduced-form approach, we just add the variables that the capital structure
literature uses to model target leverage ratios. In the two-step approach, we augment
the base model by the predicted change in the leverage ratio; the prediction is obtained
from a first-step regression along the lines of a partial adjustment model used in the
capital structure literature. The reduced-form approach nests the two-step approach.

In-sample, both approaches lead to significant improvements over the base model.
The reduced-form model performs best because it imposes the fewest restrictions. To
judge the usefulness of a default prediction model, however, it is crucial to conduct an
out-of-sample analysis. For the reduced-form dynamic model, we find no material in-
crease in predictive accuracy as measured by the area under the ROC curve and hence
conclude that dynamics in leverage cannot be captured by solely adding covariates from
the partial adjustment model to the set of risk drivers. For the two-step dynamic model,
by contrast, a significant increase in prediction accuracy is observed. The restrictions
imposed through the partial adjustment model increase the precision of coefficient es-
timates and thereby lead to better out-of-sample performance. The magnitude of this
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improvement varies with the length of the sample used for estimating the partial adjust-
ment equation. Restricting the estimation sample for leverage forecasts to at most ten
preceding years results in the highest out-of-sample prediction accuracy.

Standard default prediction models do not use information contained in credit ratings
but many market participants do. Given that rating agencies claim their ratings to
be forward-looking we further ask whether credit ratings contain information about
leverage dynamics. We address this question by adding credit ratings to our default
prediction models. Including credit ratings improves predictive power, albeit only for
the five-year prediction horizon. Further, the contribution of the leverage forecast is not
affected. While rating analysts do appear to have a forward-looking ability, this ability
is unrelated to the predictability of leverage ratios that has been documented in the
corporate finance literature.

The paper could inspire other extensions of existing default prediction models. Until
now, specification of such models is largely based on a search for covariates that perform
better than the ones previously considered. The final regression equation is reduced-
form in the sense that it imposes no restrictions on variables (except for the commonly
made linearity restriction). Our analysis has shown that default prediction models can
benefit from imposing restrictions that are derived from other research areas, e.g. capital
structure. Finally, the work contributes to the corporate finance literature, since it
shows that it is important to model the leverage-targeting behavior of firms. If we had
obtained that leverage forecasts from a partial adjustment equation are useless in default
prediction, this would have cast doubts on the empirical relevance of the trade-off theory.

A. Appendix
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Description COMPUSTAT Items Mean Std. Dev. Min Max

L Leverage = Total Debt/ (CS9+CS34)/ 0.340 0.231 0.0002 0.921
Market Value of Total Assets (CS9+CS34+MCAP)

L0 Initial Leverage 0.219 0.206 0 0.983
INDMEAN Mean Leverage by Industry 0.340 0.064 0.178 0.716
EBIT/TA EBIT/Total Assets (CS18+CS15+CS16)/CS6 0.093 0.088 -0.260 0.307
EBIT/XINT EBIT/Interest Expense (CS18+CS15+CS16)/CS15 3.230 1.843 0 5
dTA Growth in Assets CS6 0.060 0.167 -0.616 0.560

(dTA =
TAt−TAt−1

TAt

)

SIZE ln(MCAP/Cap. of S&P500) -8.414 1.902 -15.813 -2.812
RET Return over the 0.150 0.444 -0.732 1.893

previous 12 months
VOLA Volatility of returns over the 0.110 0.057 0.035 0.338

previous 12 months
MB Market-to-Book ratio (CS9+CS34+MCAP)/CS6 1.263 0.883 0.372 5.702
XD/TA Depreciation/Total Assets CS14/CS6 0.046 0.025 0.005 0.157
FA/TA Fixed Assets/Total Assets CS8/CS6 0.350 0.205 0.019 0.885
R&D/TA R&D Expenses/Total Assets CS46/CS6 0.02 0.035 0 0.178
R&D Dummy Set to 1 if a firm CS46 0.384 0.486 0 1

declares R&D expenses
Instrumental Total Debt/ (CS9+CS34)/CS6 0.317 0.179 0.0002 0.937
Variable Book Value of Total Assets

Table 5: Definition and descriptive statistics of covariates used in the default analysis and partial adjustment equation.
Descriptive statistics are estimated based on 17499 firm-years. The CRSP item MCAP (market capitalization) is defined as
MCAP = price per share*shares outstanding.
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Forecast Horizon in Years
1 2 3 4

L 0.889*** 0.795*** 0.722*** 0.652***
(0.009) (0.016) (0.021) (0.027)

L0 0.018*** 0.038*** 0.053*** 0.060***
(0.005) (0.010) (0.013) (0.017)

EBIT/TA 0.031* 0.070** 0.091** 0.099**
(0.015) (0.022) (0.029) (0.035)

MB -0.006*** -0.009*** -0.011*** -0.013***
(0.001) (0.002) (0.003) (0.004)

XD/TA -0.064 -0.173* -0.148 -0.145
(0.049) (0.086) (0.121) (0.157)

FA/TA 0.021*** 0.038*** 0.040** 0.048*
(0.006) (0.011) (0.015) (0.019)

R&D Dummy -0.001 -0.002 -0.001 -0.001
(0.002) (0.004) (0.005) (0.007)

R&D/TA -0.102*** -0.167*** -0.258*** -0.345***
(0.027) (0.049) (0.068) (0.084)

INDMEAN 0.026 0.019 -0.012 -0.042
(0.020) (0.035) (0.048) (0.057)

SIZE -0.002** -0.002 -0.002 -0.001
(0.001) (0.001) (0.002) (0.003)

dTA 0.046*** 0.064*** 0.073*** 0.072***
(0.007) (0.010) (0.012) (0.014)

Constant -0.009 0.030 0.111*** 0.107***
(0.011) (0.019) (0.025) (0.029)

Firm-years 14826 13290 11931 11045
R2 0.8091 0.6618 0.5590 0.4799

Table 6: Regression results for the partial adjustment equation using IV regression with-
out fixed effects. Lagged leverage ratio is instrumented by book debt ratio. Robust stan-
dard errors are in parentheses. Stars indicate a significance level: ∗p < 0.05; ∗∗p < 0.01;
∗∗∗p < 0.001.

21



Years in the estimation sample
8 9 10 11 12 13

Panel A
Prediction Horizon 2 Years

Base 0.8513 0.8563 0.8587 0.8643 0.8693 0.8732
Two-Step 0.8575 0.8665 0.8856 0.8828 0.8734 0.8808

(0.255) (0.057) (<0.001) (<0.001) (0.570) (0.119)
Reduced-Form 0.8157 0.8461 0.8506 0.863 0.8377 0.868

(0.001) (0.255) (0.434) (0.875) (0.015) (0.603)

Panel B
Prediction Horizon 3 Years

Base 0.7703 0.7873 0.7987 0.8136 0.8184 0.8179
Two-Step 0.7856 0.8303 0.8497 0.8407 0.8283 0.8019

(0.009) (<0.001) (<0.001) (0.008) (0.234) (0.052)
Reduced-Form 0.7407 0.8034 0.8089 0.8349 0.7961 0.7996

(0.106) (0.284) (0.531) (0.069) (0.091) (0.087)

Panel C
Prediction Horizon 4 Years

Base 0.6232 0.6874 0.7195 0.7537 0.7647 0.7650
Two-Step 0.6703 0.7618 0.7833 0.784 0.759 0.7088

(<0.001) (<0.001) (<0.001) (0.093) (0.706) (<0.001)
Reduced-Form 0.6652 0.7342 0.7281 0.7682 0.7327 0.6996

(0.029) (0.045) (0.711) (0.532) (0.168) (<0.001)

Panel D
Prediction Horizon 5 Years

Base 0.5258 0.5748 0.6278 0.6796 0.6965 0.6905
Two-Step 0.5480 0.6382 0.7101 0.7049 0.6603 0.6347

(0.003) (<0.001) (<0.001) (0.234) (0.052) (<0.001)
Reduced-Form 0.5566 0.6599 0.672 0.6863 0.6325 0.5536

(0.179) (0.001) (0.152) (0.823) (0.029) (<0.001)

Table 7: Out-of-sample AUC values for the base, the two-step and the reduced-form
dynamic model. Number of years in the estimation samples ranges from eight to thirteen.
The dynamic models are compared to the base model; the respective p-values for to the
null hypotheses of equality of areas under two ROC curves are in parenthesis.
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