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1 Introduction

Copulas play an increasingly important role in econometrics. For an arbitrary multivariate
distribution they allow to separate the marginal distributions and the dependency model. As
a result we obtain a convenient tool to analyse the complex relationship between variables. In
particular, all common measures of dependence can be given in terms of the copula function.
Modeling using copulas offers wide flexibility in terms of the form of dependence and is often
encountered in applications from financial econometrics, hydrology, medicine, etc.

The copulas were first introduced in the seminal paper of Sklar (1959). Here we restate the
Sklar’s theorem.

Theorem 1. Let F be an arbitrary k-dimensional continuous distribution function. Then the
associated copula is unique and defined as a continuous function C : [0, 1]k → [0, 1] which satisfies
the equality

F (x1, . . . , xk) = C{F1(x1), . . . , Fk(xk)}, x1, . . . , xk ∈ R,

where F1(x1), . . . , Fk(xk) are the respective marginal distributions.

Alternatively the copula can be defined as an arbitrary distribution function on [0, 1]k with
all margins being uniform. As it follows form the theorem, the copula function captures the
dependency between variables, with the impact of the marginal distributions being eliminated.
The Sklar’s Theorem allows to express the copula function directly by

C(u1, . . . , uk) = F{F−1
1 (u1), . . . , F−1

k (uk)}, u1, . . . , uk ∈ [0, 1],

where F−1
1 (·), . . . , F−1

k (·) are the corresponding quantile functions.

If the cdf F belongs to the class of elliptical distributions, for example, the Normal distribution,
then this results in an elliptical copula. Note, however, that this copula cannot be given explicitly,
because F and the inverse marginal distributions Fi have only integral representations. This de-
preciates the usefulness of the elliptical copulas. As a result, an important class of Archimedean
copulas has evolved. The k-dimensional Archimedean copula function C : [0, 1]k → [0, 1] is
defined as

C(u1, . . . , uk) = φ{φ−1(u1) + · · ·+ φ−1(uk)}, u1, . . . , uk ∈ [0, 1], (1)

where φ with φ(0) = 1 and φ(∞) = 0 is called the generator of the copula. McNeil and Nešlehová
(2008) provide necessary and sufficient conditions for φ to generate a feasible Archimedean
copula. The generator φ is required to be k-monotone, i.e. differentiable up to the order k − 2,
with (−1)iφ(i)(x) ≥ 0, i = 0, . . . , k − 2 for any x ∈ [0,∞) and with (−1)k−2φ(k−2)(x) being
nondecreasing and convex on [0,∞). We consider a stronger assumption that φ is a completely
monotone function, i.e. (−1)iφ(i)(x) ≥ 0 for all i ≥ 0. The class of feasible generator functions
we define by (see Kimberling (1974), Theorem 1 and Theorem 2)

L = {φ : [0;∞) → [0, 1] | φ(0) = 1, φ(∞) = 0; (−1)iφ(i) ≥ 0; i = 1, . . . ,∞}.

A detailed review of the properties of Archimedean copulas can be found in McNeil and Nešlehová
(2008). Table 4.1 of Nelsen (2006) contains a list of common one-parameter generator functions.
Throughout the paper we also consider only the generator functions with a single parameter,
however, most of the theory can be easily extended to the case of several parameters.
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From the Bernstein’s Theorem (Bernstein (1928)) it follows that each φ ∈ L is a Laplace
transform of some distribution function. This allows us to relate the Archimedean copulas
to the Laplace transforms (see Joe (1996)). Let M be the cdf of a positive random variable and
φ denotes its Laplace transform, i.e. φ(t) =

∫∞
0 e−twdM(w). For an arbitrary cdf F there exists

a unique cdf G, such that

F (x) =

∞∫

0

Gα(x)dM(α) = φ{− lnG(x)}.

Now consider a k-variate cumulative distribution function F with margins F1, . . . , Fk. Then it
holds that

F (x1, . . . , xk) =

∞∫

0

Gα
1 (x1) · · · · ·Gα

k (xk)dM(α) = φ

{
−

k∑

i=1

lnGi(xi)

}
= φ

[
k∑

i=1

φ−1{Fi(xi)}
]

.

This implies that the copula of F is given by (1). The representation of the copula in terms
of the Laplace transforms is very useful for simulation purposes (see Whelan (2004), McNeil
(2008), Hofert (2008), Marshall and Olkin (1988)).

Note that the Archimedean copula is symmetric with respect to the permutation of variables, i.e.
the distribution is exchangeable. Furthermore, the multivariate dependency structure depends
on a single parameter of the generator function φ. This is very restrictive and we can use
Laplace transforms to derive flexible extensions. First, note that Gα

1 · · · · · Gα
k can be seen as

a product copula of the cumulative distribution functions Gα
1 , . . . , Gα

k . Second, note that the
whole model depends on a single cumulative distribution function M . Replacing the product
copula Gα

1 · · · · · Gα
k with an arbitrary multivariate copula K(Gα

1 , . . . , Gα
k ) and replacing M(α)

with some k-variate distribution Mk, such that the jth univariate margin has Laplace transform
φj , j = 1, . . . , k, we obtain a more general type of dependency (Joe (1997)). This implies, for
example, the following copula

C(u1, . . . , uk) = (2)
∞∫

0

. . .

∞∫

0

Gα1
1 (u1)Gα1

2 (u2)dM1(α1, α2) Gα2
3 (u3)dM2(α2, α3) . . . G

αk−1

k (uk)dMk−1(αk−1).

This generalisation of the multivariate Archimedean copulas leads to the class of hierarchi-
cal Archimedean copulas (HAC). Other orders of integration and combinations of Gi functions
lead to different dependencies. For example, the fully nested (2) HAC C(u1, . . . , uk) can be
rewritten in terms of the generator functions arising from the cumulative distribution functions
M1, . . . , Mk−1 as

C(u1, . . . , uk) =

= φ1[φ−1
1 ◦ φ2{. . . [φ−1

k−2 ◦ φk−1{φ−1
k−1(u1)+

+ φ−1
k−1(u2)}+ φ−1

k−2(u3)] · · ·+ φ−1
2 (uk−1)}+ φ−1

1 (uk)]

= φ1{φ−1
1 ◦ C2(u1, . . . , uk−1) + φ−1

1 (uk)} = C1{C2(u1, . . . , uk−1), uk}.

The sufficient conditions on the generator functions which guarantee that C is a copula are given
in Theorem 4.4 McNeil (2008). Let L∗ denote the class of functions with a completely monotone
first derivative

L∗ = {ω : [0;∞) → [0,∞) |ω(0) = 0, ω(∞) = ∞; (−1)i−1ω(i) ≥ 0; i = 1, . . . ,∞}.
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Table 1: Sufficient conditions on the parameters of generator function of Nelsen (2006), Table
4.1 to guarantee the existence of HAC.
family φ φ−1 φ−1

θ1
◦ φθ2 conditions

Gumbel exp{−x1/θ} (− ln t)θ xθ1/θ2 θ1 ≤ θ2, θ ∈ [1,∞)
Clayton (θx + 1)−1/θ 1

θ (x−θ − 1) 1
θ1
{(θ2x + 1)θ1/θ2 − 1} θ1 ≤ θ2, θ ∈ (0,∞)

Nel. 4.2.2 1− x1/θ (1− x)θ xθ1/θ2 θ1 ≤ θ2, θ ∈ [1,∞)
Nel. 4.2.3 1−θ

ex−θ ln 1−θ(1−x)
x ln ex(θ1−1)+θ2−θ1

θ2−1 θ1 ≤ θ2, θ ∈ [0, 1)

Frank − 1
θ ln{e−x(e−θ − 1) + 1} − ln e−θt−1

e−θ−1
− ln {1+e−t(e−θ2−1)}θ1/θ2−1

e−θ1−1
θ1 ≤ θ2, θ ∈ (0,∞)

It holds that if φi ∈ L for i = 1, . . . , k − 1 and φi ◦ φi+1 ∈ L∗ has a completely monotone
derivative for i = 1, . . . , k− 2 then C is a copula. As noted by Lemma 4.1 in McNeil (2008), the
fact that φi ◦ φi+1 ∈ L∗ for i = 1, . . . , k − 2 also implies that φi ◦ φi+h ∈ L∗ for i = 1, . . . , k − 2.

Note that generators φi within a HAC can come either from a single generator family or from
different generator families. If φi’s belong to the same family, then the complete monotonicity
of φi ◦ φi+1 imposes some constraints on the parameters θ1, . . . , θk−1. Table 1 provides these
constrains for different generators from Nelsen (2006), Table 4.1. For the majority of the copulas
the parameters should decrease from the lowest to the highest level, to guarantee a feasible
HAC. However, if we consider the generators from different families within a single HAC, the
condition of complete monotonicity is not always fulfilled and each particular case should be
analysed separately.

The aim of this paper is to provide distributional properties of HACs. First we show that if the
true distribution is based on HAC then we can completely recover the true structure of HAC from
all bivariate marginal distributions. This property is helpful in applications, when we estimate
the HAC from data. For Normal distribution, for example, the form of the dependency is fixed
and only the correlation coefficients must be estimated. For HAC both the structure and the
parameters of the generators function are unknown. The established result implies that we can
first estimate all bivariate copulas and then recover the tree of the HAC. Alternatively, we are
forced to enumerate all possible trees, estimate the corresponding multivariate copulas and apply
goodness-of-fit tests to determine the HAC with the best fit. This approach is computationally
much more demanding compared with the aggregation of bivariate copulas.

Further we derive the distribution of the value of the HAC. This generalises the results of Genest
and Rivest (1993) to the HAC. We take explicitly into account the hierarchical structure of the
HAC and provide recursive formulas for the cdf by different types of aggregation. The results
given in Section 3 can be used for developing of confidence intervals and goodness-of-fit tests.
Section 4 summarises the multivariate dependence measures used in the multivariate setup and
argues which of them are most convenient to be used with HAC. Section 5 contains results on
the dependence orderings of HAC-based distributions. It is shown under which conditions on the
generator functions one HAC is more concordant than another one. Finally Section 5 discussed
the properties of HAC from the perspective of extreme value theory and provides a detailed
analysis of tail dependence. In this section we establish the form of the extreme value copula
and provide explicit formulas for two upper and lower tail dependence measures. All proofs are
given in the appendix.
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2 Determining the structure

In contrary to other distributional models, in HAC both the structure and the parameters of the
copula must be specified or estimated. Okhrin, Okhrin and Schmid (2009) consider empirical
methods for determining and estimation of the structure. If the structure is fixed, we can
apply the maximum-likelihood approach to estimate the parameters. However, the choice of the
structure itself is not obvious. One possible approach is to enumerate all structures, estimate the
parameters and apply a goodness-of-fit test to determine the best one. This method is, however,
unrealistic in higher dimensions. The results established in this section help to overcome this
problem. In particular we show that if the true distribution is based on HAC, then we can
completely recover the true distribution from all bivariate margins. This implies that instead of
estimating all multivariate structures it suffices to estimate all bivariate copulas and use then to
recover the full distribution. This makes the estimation of HAC particularly attractive in terms
of computational efforts. The next proposition summarises the result.

Proposition 1. Let F be an arbitrary multivariate distribution function based on HAC. Then
F can be uniquely recovered from the marginal distribution functions and all bivariate copula
functions.

Assuming that marginal distributions are continuous, from the Sklar Theorem we know that
the multivariate distribution function F can be split into margins and the copula function.
Therefore, to recover the distribution we need to recover the structure of the HAC. The proof
of the proposition consists of three parts. First, we show that any bivariate margin is a copula
with the generator function which is equal to one of the generators of the full structure. Second,
we show that the for any bivariate copula with a generator function from the full structure,
there exists a couple of variables with the same joint bivariate distribution. Third, we suggest
an aggregation procedure and show that the recovered HAC is unique.

Let

Fk1 = {Ck1 : [0; 1]k → [0; 1] : Ck1 = φθ[φ−1
θ (u1)+. . .+φ−1

θ (uk)], φ ∈ L, θ ∈ Θ, u1, . . . , uk ∈ [0; 1]}

be the family of simple k-dimensional Archimedean copulas, where Θ is the set of allowable
parameters of θ. The elements of Θ could be of any dimension, but in general they are scalars.
Based on this class we introduce the family of k-dimensional HACs with r nodes

Fkr =
{
Ckr : [0; 1]k → [0; 1] :

Ckr = C{Ck1r1(uk0=1, . . . , uk1), . . . , Ckm−km−1,rm(ukm−1+1, . . . , ukm=k)},

C ∈ Fk1, Cki−ki−1,ri ∈ Fki−ki−1,ri , ∀i = 1, . . . , m,
m∑

i=1

ri = r − 1
}
,

where ri denotes the number of nodes in the i-th subcopula and the variables are reordered
without loss of generality. If ki − ki−1 = 1 then ri = 1 and C11(ui) = ui. For example,
C = C1{C2(u1, u2), u3} ∈ F3,2, where C1, C2 ∈ F2,1 are nodes, which are also copulas. Let
N (C) denote the set of the generator functions used in the HAC C. Let also Cn denote the
operator which returns a k-dimensional copula given a generator functions

Cn(f)(u1, . . . , uk) = f{f−1(u1) + . . . f−1(uk)}.

5



Based on this notation, C2{N (C)} ⊂ F2,1 is the set of all bivariate Archimedean copulas used
in the structure of C ∈ Fkr.

Let now a k-dimensional HAC C ∈ Fkr be fixed. The next remark shows that for any bivari-
ate copula with generator from N (C) there exists a pair of variables with the same bivariate
distribution.

Remark 1. ∀i, j = 1, . . . , k, i 6= j, ∃!Cij ∈ C2{N (C)} ⊂ F2,1 : (Xi, Xj) ∼ Cij.

As an example we consider the following 4-dimensional case with

C(u1, . . . , u4) = C1{C2(u1, u2), C3(u3, u4)} with C2{N (C)} = {C1, C2, C3}.

For an arbitrary pair of variables ui and uj from u1, . . . , u4, there exists a copula Cij from
{C1, C2, C3} such that (ui, uj) ∼ Cij . For example (u1, u3) ∼ C1{C2(u1, 1), C3(u3, 1)} =
C1(u1, u3). This implies that the bivariate margins use the same generators as the generators
in the nodes of the HAC.

The second step of the proof of proposition shows the inverse relationship between the bivariate
margins and the set of all bivariate copulas with the generator function fromN (C). In particular
it shows that for a generator on any node, there exists a pair of variables with the bivariate
distribution given by an Archimedean copula with the same generator.

Remark 2. ∀Ci,j ∈ C2{N (C)} ⊂ F2,1, ∃i∗, j∗ = 1, . . . , k : (Xi∗ , Xj∗) ∼ Cij .

Next we describe the algorithm of recovering the structure from the bivariate margins. Let C1

denote such bivariate copula that each variable belongs to at least one bivariate margin given
by C1. This copula is the top-level copula. From the Remark 1 if the copula

C = C1{C2(u1, . . . , uk1), . . . , Cm(ukm−1+1, . . . , uk)}

then (ui, uj) ∼ C1, where i ∈ [i1, i2] ∩ N, j ∈ ([1, k]\[i1, i2]) ∩ N, (i1, i2) ∈ {(1, k1), . . . , (km−1 +
1, k)}.

At the next step we drop all bivariate margins given by C1 and identify the sets of pairs of
variables with the bivariate distributions given by C2 to Cm. For the subtrees we proceed in
the same way as for C1. To show that the structure, that we recovered is equal to the true
one, one needs to explore all bivariate margins. A difference at one of the nodes would imply a
change in one or several bivariate margins. But the bivariate marginal distribution coincide by
construction.

For simplicity let us consider an example:

C(u1, . . . , u6) = C1[C2(u1, u2), C3{u3, C4(u4, u5), u6}].

The bivariate marginal distributions are then given by

(u1, u2) ∼ C2(u1, u2), (u2, u3) ∼ C1(u2, u3), (u3, u5) ∼ C3(u3, u5),
(u1, u3) ∼ C1(u1, u3), (u2, u4) ∼ C1(u2, u4), (u3, u6) ∼ C3(u3, u6),
(u1, u4) ∼ C1(u1, u4), (u2, u5) ∼ C1(u2, u5), (u4, u5) ∼ C4(u4, u5),
(u1, u5) ∼ C1(u1, u5), (u2, u6) ∼ C1(u2, u6), (u4, u6) ∼ C3(u4, u6),
(u1, u6) ∼ C1(u1, u6), (u3, u4) ∼ C3(u3, u4), (u5, u7) ∼ C3(u5, u6).
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In line with Remarks 1 and 2 the set of bivariate margins is equal to

C2{N (C)} = {C1(·, ·), C2(·, ·), C3(·, ·), C4(·, ·)}.
We observe that each variable belongs to at least one bivariate margin given by C1. This implies
that the distribution of u1, . . . , u6 has C1 at the top level. Next we drop all margins given by
C1. Further we proceed similarly with the rest of the margins, in particular with C3 since it
covers the largest set of variables u3, u4, u5, u6. This implies that C3 is at the top level of the
subcopula containing u3, u4, u5, u6. Having information only for the copulas C1 and C3

u1, . . . , u6 ∼ C1{u1, u2, C3(u3, u4, u5, u6)}.
The remaining copula functions are C2 and C4 and they join u1, u2 and u4, u5 respectively.
Summarising we obtain

(u1, . . . , u6) ∼ C1[C2(u1, u2), C3{u3, C4(u4, u5), u6}]
This results in the correct structure. Similarly we can apply inverse procedure by joining vari-
ables into pseudo-random variables, using low-level copulas. This problem is related to the
multidimensional scaling problem, where having all paired distances between the cities, one has
to recover the whole map, see Härdle and Simar (2007).

3 Distribution of HAC

For testing purposes and construction of confidence intervals we are interested in the distribu-
tions of the empirical and the true copula. Let V = C{F1(X1), . . . , Fk(Xk)} and let K(t) denote
the distribution function (K-distribution) of the random variable V . Genest and Rivest (1993)
introduced a nonparametric estimator of K in the case k = 2. It is based on the concept of
Kendall’s process. Suppose that an independent random sample X1 = (X11, . . . , X1k)′, . . . ,
Xn = (Xn1, . . . , Xnk)′ of the vector X = (X1, .., Xk)′ is given. Let

Vi,n =
1

n + 1

n∑

j=1,j 6=i

I{Xj ≤ Xi}

and Kn denote the empirical distribution function of the Vi,n’s. Here the inequality a ≤ b
means that all components of the vector a are less or equal than those of the vector b. Then
the Kendall process is given by

αn(t) =
√

n{Kn(t)−K(t)}.
Barbe, Genest, Ghoudi and Rémillard (1996) examine the limiting behavior of the empirical
process αn(t) for k ≥ 2 and derived explicit formulas of its density κ(t) and its distribution
function K(t) for general multivariate copulas. The authors provide explicit results for product
and multivariate exchangeable Archimedean copulas. The paper of Wang and Wells (2000) used
Kendall’s process to determine the copula for failure data. In this section we adopt and extend
the results of Barbe et al. (1996) to find the K-distribution of a HAC.

At the first step we exploit the hierarchical structure of the HAC. We consider a HAC of the form
C1{u1, C2(u2, . . . , uk)}. Let Ui ∼ U [0, 1] and let V2 = C2(U2, . . . , Uk) ∼ K2. In the next theorem
we propose a recursive procedure for calculating the distribution function of V1 = C1(U1, V2)
which is based on the knowledge of the distribution function of V2. This approach is particularly
useful when applied to fully nested HACs.
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Theorem 2. Let U1 ∼ U [0, 1], V2 ∼ K2 and let P (U1 ≤ x, V2 ≤ y) = C1{x, K2(y)} with
C1(a, b) = φ

{
φ−1(a) + φ−1(b)

}
for a, b ∈ [0, 1]. Assume that φ : [0,∞) → [0, 1] is strictly

decreasing with φ(0) = 1 and φ(∞) = 0 and that φ′ is strictly increasing and continuous.
Moreover, suppose that K2 is continuous. Suppose that the random variable V2 takes values in
[0, 1]. Then the distribution function K1 of the random variable V1 = C1(U1, V2) is given by

K1(t) = t−
φ−1(t)∫

0

φ′
(
φ−1(t) + φ−1 [K2{φ(u)} − u]

)
du for t ∈ [0, 1]. (3)

In Theorem 2 V2 is an arbitrary random variable on [0, 1] and not necessarily a copula. In the
special case that V2 is uniformly distributed on [0, 1] formula (3) reduces to Theorem 4.3.4 of
Nelsen (2006) or to the result of Genest and Rivest (1993).

Next we consider a copula of the type V3 = C3(V4, V5) with V4 = C4(U1, . . . , U`) and V5 =
C5(U`+1, . . . , Uk). Making use of the distribution functions of V4 and V5 a representation of the
distribution function of V3 is given in the next theorem.

Theorem 3. Let V4 ∼ K4 and V5 ∼ K5 and P (V4 ≤ x, V5 ≤ y) = C3{K4(x),K5(y)} with
C3(a, b) = φ

{
φ−1(a) + φ−1(b)

}
for a, b ∈ [0, 1]. Assume that φ : [0,∞) → [0, 1] is strictly

decreasing with φ(0) = 1 and φ(∞) = 0 and that φ′ is strictly increasing and continuous.
Moreover, suppose that K4 and K5 are continuous and that φ−1 ◦K4 ◦ φ and φ−1 ◦K5 ◦ φ are
of bounded variation on [0, φ−1(t)]. Suppose that the random variables V4 and V5 take values in
[0, 1] then the distribution function K3 of the random variable V3 = C3(V4, V5) is given by

K3(t) = K4(t)−
φ−1(t)∫

0

φ′
{
φ−1[K5{φ(u)}] + φ−1

(
K4[φ{φ−1(t)− u}])} dφ−1 [K4{φ(u)}] (4)

for t ∈ [0, 1].

If φ−1[K4{φ(x)}] has a continuous derivative then (4) can be written as

K3(t) = K4(t)−
φ−1(t)∫

0

φ′
{
φ−1 [K5{φ(u)}] + φ−1

(
K4[φ{φ−1(t)− u}])}

φ′{(φ−1 ◦K4 ◦ φ)−1(u)} K ′
4{φ(u)}φ′(u)du

and similarly for the second representation. Theorem 3 reduces to Theorem 2 if V4 or V5 are
uniformly distributed on [0, 1]. Moreover, by taking the derivative of the generator function it
can be shown that the expression in (4) is symmetric with respect to K4 and K5.

Note that using these two results we can establish the distribution function for an arbitrary
grouping of the variables at the top level. For example, consider the copula C1{u1, u2, C2(u3, . . . , uk)}.
From the properties of Archimedean copulas, this copula is equivalent to C1[u1, C1{u2, C2(u3, . . . , uk)}]
and thus the result of Theorem 2 can be applied.

Theorem 2 and Theorem 3 provide recursive presentations for certain copula structures. In the
next theorem we provide a direct formula for the distribution function of a copula of the form
C{u1, Ck−1(u2, . . . , uk)}. It is an extension of the result of Barbe et al. (1996). Here we assume
that uk lies on the top level of the copula. Other cases could be derived for every single form of
the copula, but it is difficult to present a general result.
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Theorem 4. Consider a HAC of the form

C(u1, . . . , uk) = C1{u1, C2(u2, . . . , uk)} = φ1

[
φ−1

k (uk) + φ−1
1 {C2(u2, .., uk)}

]
.

Assume that φ1 : [0,∞) → [0, 1] is strictly decreasing and continuously differentiable with φ1(0) =
1. Then the distribution function K1 of C(u1, .., uk) is equal to

K1(t) =

t∫

0

k(x) dx =

t∫

0

∫
· · ·

∫

(0,1)k−1

hk{x, u2, . . . , uk} du2 . . . duk dx for t ∈ [0, 1],

where

hk(t, u2, . . . , uk) =
φ′1

{
φ−1

1 (t)− φ−1
1 ◦ C2(u2, . . . , uk)

}

φ′1{φ−1
1 (t)}

× c
[
φ1{φ−1

1 (t)− φ−1
1 ◦ C2(u2, . . . , uk)}, u2, . . . , uk

]

× I
{
C2(u2, . . . , uk) > t

}
for (u2, . . . , uk) ∈ [0, 1]k−1.

c(u1, .., uk) denotes the copula density of C.

The practical calculation of K1 using Theorem 4 seems to be quite difficult because of multi-
variate integration. As an example we consider the Clayton family.

Example 1. Here we consider the simplest three-dimensional fully nested Archimedean copula
with Clayton generator functions

φθ(t) = (θt + 1)−1/θ.

The copula function is given by

C(u1, u2, u3; θ1, θ2) = Cθ2{Cθ1(u1, u2), u3} = {(u1
−θ1 + u2

−θ1 − 1)
− θ2

θ1 + u3
−θ2 − 1}

− 1
θ2

and

h3(u1, u2, t; θ1, θ2) =
{

u2
θ1 − u1

θ1

(
u2

θ1 − 1
)}−2

(u1u2)
θ1−1p1r

1+θ2
θ1

(
p1 + r

θ2
θ1 − 1

)−3− 1
θ2

×
{

1− tθ1 (p2 − 1)
}−1− 1

θ1

{
p1(1 + θ1 + θ2) + r

θ2
θ1 (θ1 − θ2) + θ2 − θ1

}

× (1 + θ2) I

{
u−θ1

1 + u−θ2
2 − t−θ1 − 1

θ1
< 0

}

with

pi =
(
u1
−θi + u2

−θi − 1
) θ−i+3

θi for i = 1, 2

r = 1 + t−θ1 − p2.

4 Multivariate Dependence Measures

If we consider a multivariate random vector we are often interested in the dependency measures
between the components of the vector. In case of the Gaussian distribution the whole dependence

9



can be uniquely characterized by the linear correlation coefficients. Since it is a measure of the
linear dependency between random variables, it is not an appropriate measure for non-linear
relationships. As an alternative correlation coefficients based on ranks of the ordered data can
be considered. The most popular measure is Kendall’s τ . For a bivariate copula it is defined as

τ2 = 4

1∫

0

1∫

0

C(u1, u2) dC(u1, u2)− 1.

The extension to the multivariate case is not straightforward and unique. A multivariate version
of Kendall’s τ and its empirical representation is proposed in Barbe et al. (1996) as an affine
transformation of the expectations of the variables V and Vn respectively.

τk =
2k

2k−1 − 1
E(V )− 1 =

2k

2k−1 − 1

∫
t dK(t)− 1 =

2k

2k−1 − 1

∫
tκ(t) dt− 1,

τ̂kn =
2k

2k−1 − 1
· 1
n

n∑

i=1

Vn(X1i, . . . , Xki)− 1 =
2k

2k−1 − 1

∫
t dKn(t)− 1,

where κ(t) is the density function of the cdf K(t). This justifies the name Kendall’s process in
the last section as coined by Genest and Rivest (1993).

Another popular measure of dependence is Spearman’s ρ. In the bivariate case it is given by

ρ2 =

∫ 1
0

∫ 1
0 u1u2 dC(u1, u2)− 1

2

2

1
12

=

∫ 1
0

∫ 1
0 C(u1, u2) du1 du2 − 1

4
1
3 − 1

4

= 12

1∫

0

1∫

0

C(u1, u2) du1 du2−3.

Two alternative multivariate extensions are given by

ρk1 =
k + 1

2k − (k + 1)

{
2k

∫

[0,1]k

C(u) du− 1
}

,

ρk2 =
k + 1

2k − (k + 1)

{
2k

∫

[0,1]k

u1 . . . uk dC(u)− 1
}

.

ρk1 was introduced by Wolff (1980) and ρk2 in Joe (1997) and Nelsen (2006). Both measures
were thoroughly investigated by Schmid and Schmidt (2006a) and Schmid and Schmidt (2006b).
The explicit computation of ρk1 and ρk2 is difficult for almost all copula functions. Therefore,
as a simplification a pairwise version of Spearman’s ρ was proposed in Kendall (1970)

ρkr = 22
∑

m<l

(
k

2

)−1 ∫

[0,1]2

Cml(u, v) dudv − 1 =
2

3(k − 1)k

∑

m<l

(ρ2,kl + 3)− 1,

where Cml is the bivariate copula for the variables um and ul and ρ2,kl denotes the bivariate
Spearman’s ρ for uk and ul. The last representation of Spearman’s ρ is very useful for HACs,
because all bivariate sub copulas in a HAC are simple bivariate Archimedean copulas. Hence
ρkr could be easily computed for a HAC by calculating all bivariate Spearman’s ρ’s.

Example 2. For the simple exchangeable Archimedean copula the pairwise Spearman’s ρkr is

ρkr =
(k − 2)!

24
(ρ2 + 3)− 1,

where ρ2 is the bivariate Spearman’s ρ based on the generator function of the given copula.
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As the third multivariate dependence measure we discuss Blomqvist’s β. In the bivariate and
in the multivariate cases it is computed as follows

β2 = P{(x− x̃)(y − ỹ) > 0} − P{(x− x̃)(y − ỹ) < 0},

βk =
2k−1

2k−1 − 1
{C(1/2, . . . , 1/2) + C(1/2, . . . , 1/2)− 21−k},

where x̃ and ỹ are the population medians, and C(u) = 1 +
∑

s∈S(−1)|s|Cs(uj ; j ∈ s) is the
survival copula and S is the set of all subsets of {1, . . . , k}. Schmid and Schmidt (2006c) provide
a detailed discussion of these measures.

Example 3. For the k-dimensional exchangeable Archimedean copula the Blomqvist’s β in terms
of the generator functions is given by

βk =
2k−1

2k−1 − 1

[
φ{kφ−1(1/2)}+

k∑

i=1

(−1)i

(
k

i

)
φ{iφ−1(1/2)} − 21−k

]
.

Example 4. Blomqvist’s β for the simplest two-dimensional fully nested Archimedean copula
C(u1, u2, u3, θ1, θ2) = Cθ2{Cθ1(u1, u2), u3} with the generator functions φθ1 and φθ2 respectively
is given by

β3 =
8
3
φθ2{2φ−1

θ2
(1/2)}+

4
3
φθ1{2φ−1

θ1
(1/2)} − 1.

For different generator functions this reduces to the expressions summarized in the following
table.

family β3

Clayton 4
3

(
2θ1+1 − 1

)−1/θ1 + 8
3

(
2θ2+1 − 1

)−1/θ2 − 1
Gumbel −1 + 4

3

(
exp{−21/θ1 ln 2}+ 2 exp{−21/θ2 ln 2})

Nelsen 4.2.2 1
3

(
9− 21+1/θ1 − 22+1/θ1

)

The considered measures depend on the copula function and can be used to measure the de-
pendence of copula-based distributions. Unfortunately, there are numerous drawbacks of these
measures. First, there is no unique decision on the superiority of one of the measures. There
are papers which compare these measures in the bivariate framework (Chen (2004), Durrleman,
Nikeghbali and Roncalli (2000), Fredricks and Nelsen (2004), etc.), however, nothing similar has
been done in the multivariate case. Second, it is very restrictive to use a single scalar measure to
quantify all the relationships between the components of a k-dimensional random vector. Third,
Kendall’s τ and Spearman’s ρ are difficult to compute explicitly because of the multivariate in-
tegrals of the copula functions. Nevertheless, the estimators are readily available. Fourth, there
is no unique method how to extend a bivariate dependence measure to the multivariate case.
This inflates the number of candidates for dependence measures and makes the conclusions of
empirical studies less transparent. Summarizing, due to their simplicity, we recommend to use
the multivariate extension of Blomqvist’s β or the pairwise multivariate Spearman’s ρkr for the
HAC models.
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5 Dependence Orderings

Dependence orderings allows us to compare the strength of the dependence imposed by different
copula functions. In this section we show some necessary conditions under which one HAC is
more concordant than other. By definition (Joe (1997), p.37), C ′ is more concordant than C if

C ≺c C ′ ⇔ C(x) ≤ C ′(x) and C(x) ≤ C ′(x) ∀x ∈ [0; 1]k.

This type of the ordering is also called positive quadrant ordering (PQD) or upper orthant
ordering (see Müller and Stoyan (2002)). The case of two multivariate normal distributions
gives us interesting insights into this ordering. Let X ∼ Nk(µ,Σ) and X ′ ∼ Nk(µ′, Σ′). If
µi = µ′i, σii = σ′ii for i = 1, . . . , k, and σij ≤ σ′ij for 1 ≤ i < j ≤ k then X ≺c X ′.

In the bivariate case the most concordant is the Fréchet upper bound and the most discordant
copula is the Fréchet lower bound. Another peculiarity of the bivariate case is the relationship
between the concordance ordering the dependence measures. It appears that if C1 and C2 are
two copulas with Kendall’s taus τ1, τ2, Spearman rhos ρ1, ρ2, tail dependence parameters λ1,
λ2, Blomqvist’s betas β1, β2 respectively, then C1 ≺c C2 implies that τ1 ≤ τ2, ρ1 ≤ ρ2, λ1 ≤ λ2

(Joe (1997)) and β1 ≤ β2 (Schmid and Schmidt (2006c)).

Several interesting results can be derived if C is an Archimedean copula. First note that there is
no sharp lower bound for the general class of copulas, however McNeil and Nešlehová (2008) con-
struct the sharp lower bound in the class of Archimedean copulas. Thus there is an Archimedean
copula CL, such that CL ≺c C for any Archimedean copula C. Joe (1997) considers in Theorem
4.8, 4.9 and 4.10 three and four dimensional HACs with different fixed structures. The theorems
provide the conditions on the top level generator functions to guarantee the concordance of the
HACs, assuming that the generators at lower levels are the same. In Joe (1997) the author also
states that these theorems could be easily extended to any messy structure of the copula. Next
we provide a general results for an arbitrary tree. The proof uses explicitly the hierarchical
structure of the copula.

Theorem 5. If two feasible hierarchical Archimedean copulas C1 and C2 differ only by the
generator functions on the top level satisfying the condition φ−1

1 ◦ φ2 ∈ L∗, then C1 ≺c C2.

In the next theorem we generalize this result to changes at an arbitrary level of the copula.

Theorem 6. If two hierarchical Archimedean copulas C1 = C1
φ1

(u1, . . . , uk) and C2 = C2
φ2

(u1, . . . , uk)
differ only by the generator functions on the level r as

φ1 = (φ1, . . . , φr−1, φ, φr+1, . . . , φp) and φ2 = (φ1, . . . , φr−1, φ
∗, φr+1, . . . , φp)

with φ−1 ◦ φ∗ ∈ L∗, then C1 ≺c C2.

Note that the condition we impose on the generator function is the sufficient condition to con-
struct a HAC (see Theorem 4.4 of McNeil (2008)). For example, consider two HACs with the
same structure and with the same generator functions on the corresponding levels. For some
fixed level, let θ1 be the parameter of the generator function for the first copula, and θ2 for the
second. If the conditions given in the last column hold, then the first copula is more concordant
than the second.
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6 Extreme Value Theory and Tail Dependency

6.1 Extreme Value Copula

In the univariate case the distribution of the maxima or minima of a sample is defined as follows
(see Embrechts, Klüppelberg and Mikosch (2001))

Definition 1. For independent identically distributed random variables Xn if there exist con-
stants bn > 0, an ∈ R, a non-degenerating function F ∗ with m+−bn

an

d→ F ∗ where m+ =
max{X1, . . . , Xn}, then

F ∗(γ,m+) = exp

{
−

(
1− τ

m+ − a

b

)1/τ
}

with
(
1− τ m+−a

b

)
> 0 and γ = (τ, a, b).

The multivariate extreme value distribution can be characterised by the following theorem

Theorem 7 (Deheuvels (1978)). Let {X1i, . . . , Xki}i=1,...,n be a sequence of the random vec-
tors with the distribution function F , marginal distributions F1, . . . , Fk and copula C. Let also
M

(n)
j = max1≤i≤n Xji, j = 1, . . . , k be the componentwise maxima. Then

lim
n→∞P

{
M

(n)
1 − a1n

b1n
≤ x1, . . . ,

M
(n)
m − akn

bkn
≤ xk

}
= F ∗(x1, . . . , xk),

∀(x1, . . . , xk) ∈ Rk

with bjn > 0, j = 1, . . . , k, n ≥ 1 if and only if

1. for all j = 1, . . . , k there exist some constants ajn and bjn and a non-degenerating limit
distribution F ∗

j such that

lim
n→∞P

{
M

(n)
j − ajn

bjn
≤ xj

}
= F ∗

j (xj), ∀xj ∈ R;

2. there exists a copula C∗ such that

C∗(u1, . . . , uk) = lim
n→∞Cn(u1/n

1 , . . . , u
1/n
k ).

In this case we say that copula C∗ is the extreme valued copula and the copula C belongs to
the maximum domain of attraction of the copula C∗ (written C ∈ MDA(C∗)). This implies
that a multivariate distribution with all margins being extreme-valued distributions and with an
extreme-valued copula is a multivariate extreme-valued distribution. Genest and Rivest (1989)
show that the only Archimedean extreme-valued copula is the Gumbel copula. Thus, each
bivariate Archimedean copula belongs to the domain of attraction of the Gumbel copula. Using
Proposition 1 and the result of Genest and Rivest (1989) we state the next theorem.

Theorem 8. If C ∈ Fnr1 , C∗ ∈ Fnr2 and C ∈ MDA(C∗) then r1 = r2, ∀φθ ∈ N (C∗), φθ =
exp{−x1/θ} and the structure of C is equal to the structure of C∗.
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6.2 Tail Dependency

Next we consider the tail dependence of HAC. The tail behavior characterises the tendency of
random variables to take extreme values simultaneously. The upper and lower tail indices of
two random variables X1 ∼ F1 and X2 ∼ F2 are given by

λU = lim
u→1−

P{X2 > F−1
2 (u) | X1 > F−1

1 (u)}

= lim
u→1−

C(u, u)
1− u

= 2− lim
u→1−

1− C(u, u)
1− u

λL = lim
u→0+

P{X2 ≤ F−1
2 (u) | X1 ≤ F−1

1 (u)}

= lim
u→0+

C(u, u)
u

.

The upper index is equal to limit of the probability that one variable exceed some predeter-
mined limit conditional on the fact that another variable exceeded this limit. Similarly the
lower limit describes the tendency to simultaneous undershooting some limit. We replicate the
Corollary 5.4.3 of Nelsen (1997) which states explicitly the tail dependency indices for bivariate
Archimedean copulas.

Theorem 9 (Nelsen (1997)). For a bivariate Archimedean copula with the generator φ it holds

λU = 2− lim
u→1−

1− φ{2φ−1(u)}
1− u

= 2− lim
w→0+

1− φ(2w)
1− φ(w)

,

λL = lim
u→0+

φ{2φ−1(u)}
u

= lim
w→∞

φ(2w)
φ(w)

.

In this section we extend the concept of the tail dependence to multivariate distributions and
consider several alternative definitions of it. First we consider the straightforward extension of
the bivariate definition. Let K = {1, . . . , k} and s is a subset of K. Then we denote by Cs the
marginal copula of the variables with indices in s, i.e. Cs(ui, i ∈ s) = C(u1, . . . , uk|uj = 1, j 6∈ s).
Let the upper and lower tail indices of k random variables Xi ∼ Fi for i = 1, . . . , k are given by

λ
(1)
U (u1, . . . , uk|ui)

= lim
u→0+

P{. . . , Xi−1 > F−1
i−1(1− ui−1u), Xi+1 > F−1

i+1(1− ui+1u), . . . | Xi > F−1
i (1− uiu)}

= lim
u→0+

C(1− u1u, . . . , 1− uku)
uiu

= lim
u→0+

1−∑
s⊂K,s 6=∅(−1)|s|+1Cs(1− uju, j ∈ s)

uiu

=
∑

s⊂K,s 6=∅
(−1)|s|+1 lim

u→0+

1− Cs(1− uju, j ∈ s)
uiu

=:
1
ui

∑

s∈S,s6=∅
βs,

λ
(1)
L (u1, . . . , uk|ui)

= lim
u→0+

P{. . . , Xi−1 ≤ F−1
i−1(ui−1u), Xi+1 ≤ F−1

i+1(ui+1u), . . . | Xi ≤ F−1
i (uiu)}

= lim
u→0+

C(u1u, . . . , uku)
uiu

=:
1
ui

λ
(1)
L (u1, . . . , uk).

λ
(1)
U (u1, . . . , uk) defines the limit of the probabilities that all random variables simultaneously

exceed the thresholds 1−uju conditional on the fact that one particular random variable exceeded
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its limit 1 − uiu as u → 0+. Similar motivation holds for λ
(1)
L too. By setting uj = u∗ for all

j = 1, . . . , k we obtain a definition similar to the bivariate definition above. For example,

λ
(1)
L := λ

(1)
L (1, . . . , 1) = lim

u→0+
P{. . . , Xi−1 ≤ F−1

i−1(u), Xi+1 ≤ F−1
i+1(u), . . . | Xi ≤ F−1

i (u)}

= lim
u→0+

C(u, . . . , u)
u

,

and similarly for λ
(2)
L := λ

(2)
L (1, . . . , 1) = limu→1−

C(u,...,u)
u .

From Theorem 9 it follows that the tail indices of Archimedean copulas are closely related to the
regular variation of the generator functions. Here we replicate the definition of regular variation
of functions at zero and and infinity following Shorack (2000).

Definition 2. Call V (·) > 0 regularly varying at 0 with characteristic exponent (tail index)
λ > 0 (written V ∈ Rλ) if limt→0+ V (tx)/V (t) = x−λ.

From the monotone density theorem (see Shorack (2000), Theorem 9.1) it follows that

V ∈ Rλ iff lim
t→0+

tV ′(t)/V (t) = λ.

Definition 3. Call V (·) > 0 on (0,∞) regularly varying at infinity with characteristic exponent
λ > 0 (written V ∈ Uλ) if limt→∞ V (tx)/V (t) = x−λ.

The limits exist for a very wide family of functions and all common generator functions of
Archimedean copulas. Since the dependency of the copula is uniquely determined by its structure
and generator functions, the multivariate tail indices can be given in terms of the tails indices
of generator functions. For further exposition we find useful the following proposition which
relates the variability of a function with the variability of the inverse function. Here restrict the
discussion only to generator functions.

Proposition 2. Let for the non-increasing generator function φ ∈ L it holds that

lim
t→∞

φ(xt)
φ(t)

= Φ1(x), lim
t→0+

1− φ(xt)
1− φ(t)

= Φ2(x),

where Φi(x) 6≡ const and Φi 6≡ ∞ for i = 1, 2. Then for the inverse generator function φ−1, i.e.
φ−1(y) = inf{x : φ(x) ≥ y} it holds that

lim
t→0+

φ−1(xt)
φ−1(t)

= Φ−1
1 (x), lim

t→0+

φ−1(1− xt)
φ−1(1− t)

= Φ−1
2 (x).

Relying on these results, the next theorem extends Theorem 9 to HAC. We derive both measures
for a HAC of an arbitrary structure and with arbitrary generator functions. The theorem
provides a recursive method for determining the lower and upper tail dependencies depending
on the functions Φi for i = 1, 2. We discuss the case when the generator function is regularly
varying at zero and/or infinity in remarks below.

Theorem 10. Let X1, . . . , Xk ∼ C such that

C(u1, . . . , uk) = C0{C1(u1, . . . , uk1), . . . , Cm(ukm−1+1, . . . , ukm), ukm+1, . . . , uk},
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where C0 is an Archimedean copula with the generator φ0 ∈ L and Ci for i = 1, . . . , m are
Archimedean or hierarchical Archimedean copulas with the upper and lower tail dependence in-
dices λ

(1)
U,i and λ

(1)
L,i respectively. Further we assume that for the generator φ0 it holds that

Φi(x) 6≡ const and Φi(x) 6≡ ∞ for i = 1, 2. Then the upper and lower tail dependency indices
for C are given by

λ
(1)
L (u1, . . . , uk|ui) =

1
ui

Φ1

[ m∑

i=1

Φ−1
1 {λ(1)

L,i(uki−1+1, . . . , uki)}+
k∑

j=km+1

Φ−1
1 (uj)

]

λ
(1)
U (u1, . . . , uk|ui) =

1
ui

∑

s∈K,s 6=∅
(−1)|s|+1Φ2

{ ms∑

i=1

Φ−1
2 (βsi) +

∑

i∈s\∪ms
j=1sj

Φ−1
2 (uj)

}
,

where βsi’s denote the limits limu→0+
1−Csi (1−uju,j∈si⊂s)

u for the first-level subcopulas of

Cs{Cs1(ui, i ∈ s1), . . . , Csms
(ui, i ∈ sms), u|s|ms+1, . . . , u|s|}

with |s|ms =
∑ms

i=1 |si|.

The last theorem gives a recursive tool for determining the tail index of a HAC with arbitrary
structure. Next we consider several special simplifying examples. First, assume that u1 = · · · =
uk = 1. Thus we consider the same threshold for each variable. In this case the upper and lower
tail indices are given by

λ
(1)
L (1, . . . , 1) = lim

u→0+
u−1P (Xi < F−1

i (u) for all i = 1, . . . , k)

= Φ1

{
m∑

i=1

Φ−1
1 (λ(1)

L,i) + k − km

}

λ
(1)
U (1, . . . , 1) = lim

u→0+
u−1P (Xi > F−1

i (1− u) for all i = 1, . . . , k)

=
∑

s∈S,s 6=∅
(−1)|s|+1Φ2

{ ms∑

i=1

Φ−1
2 (βsi) + |s| − |s|ms

}
,

Second, let C be a k-dimensional Archimedean copula with the generator function φ0. Let λ1

denote the tail index of φ0 at infinity and λ2 denotes the tail index of 1− φ0 at zero. Then

λ
(1)
L = lim

u→0+

C(u, . . . , u)
u

= lim
u→0+

φ{kφ−1(u)}
u

= lim
w→∞

φ(kw)
φ(w)

= Φ1(k) = k−λ1

λ
(1)
U = lim

u→0+

k∑

i=1

(−1)i+1

(
k

i

)
1− φ{iφ−1(1− u)}

u
=

k∑

i=1

(−1)i+1

(
k

i

)
Φ2(i)

=
k∑

i=1

(−1)i+1

(
k

i

)
i−λ2 .

Next we discuss the lower tail dependency index in more details. Let the generator function φ0

be regularly varying at infinity, i.e. φ0 ∈ Uλ∞ and Φ1(x) = limt→∞
φ0(tx)
φ0(t) = x−λ∞ . Note that

Φ−1
1 (uj) = u

−1/λ∞
j > 1 for uj ∈ [0, 1]. This implies that the argument of Φ1 in the expression

for λ
(1)
L (u1, . . . , uk|ui) is larger than one. It follows that Φ1(x) = x−λ∞ ∈ [0, 1] for x > 1 and,
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therefore, λ
(1)
L (u1, . . . , uk) ∈ [0, 1]. If u1 = · · · = uk = 1 the strength of the dependence increases

as λ
(1)
L (1, . . . , 1) increases from zero to one.

The following two special cases deserve additional discussion. The weakest dependency (lower
tail independence) is achieved if the tail index λ∞ of the generator φ0 at the top level is zero.
Thus the generator function is a slowly varying function at infinity. This leads to Φ1(x) ≡ 0,
Φ−1

1 (x) ≡ 1 and λ
(1)
L (1, . . . , 1) = 0. In the general case the tail independency implies that

the probability of exceeding the threshold by all variables is independent on the crossing the
threshold by the benchmark variable. The strongest dependence (perfect dependence) is obtained
if λ∞ tends to infinity and implies that the generator function is a strongly varying function
with Φ1(x) ≡ 1 and Φ−1

1 (x) ≡ ∞. In this case the tail index of the HAC is ui and equals
the probability that the i-th variable exceeds the threshold. This implies that the variables
take extremely small values always simultaneously. Note that in these extreme cases the tail
dependency index is independent on the generator functions and tails indices at lower level. It
is completely characterised by the behaviour of the top-level generator.

For the upper tail dependency index the situation is slightly different. Let the generator function
1−φ0 be regularly varying at zero. From the monotonicity properties of the generator function
it follows that Φ2(x) = limt→0+

1−φ0(tx)
1−φ0(t) = xλ0 . This implies that Φ−1

2 (x) = x1/λ0 . Similarly
as for the lower tail, the weakest dependence (upper tail independence) is achieved for λ0 = 1,
while the strongest (perfect upper tail dependence) is attained if λ0 tends to zero.

Remark on non-strict generators
A generator φ0 is strict if φ0(∞) = 0. In this case we have a correctly specified inverse gener-
ator. If the generator is not strict, then there exists a constant c1 such that φ0(t) = 0 for all
t > c1. Additionally there exists another constant c2, such that φ−1

0 (0) = c2. This implies that
Φ−1

1 ≡ 1 and Φ1 is not specified uniquely. However, if we recall that regularly varying function
Φ−1

1 (x) = x−1/λ∞ , then for non-strict generators the tail index equals λ∞ = 0. This implies
Φ1 ≡ 0. Thus a non-strict generator at the top level of the copula implies lower tail index equal
to zero. This result is independent on the tail indices or strictness of the generators at lower
levels. Note that it must hold that φ0(0) = 1 to guarantee the properties of the distribution
function.

Now we consider a generalisation of the above definition of the multivariate tail dependency.
λ

(2)
U defines the probabilities that all random variables simultaneously exceed the thresholds ui

conditional on the fact that a subset S of the random variable exceeded them and similarly for
λ

(2)
L .

λ
(2)
U (u1, . . . , uk|ui, i ∈ S)

= lim
u→0+

P{Xi > F−1
i (1− uiu) for i 6∈ S ⊂ K = {1, . . . , k} = | Xj > F−1

j (1− uju) for j ∈ S}

= lim
u→0+

C(

|K|︷ ︸︸ ︷
1− u1u, . . . , 1− uku)

C(1− uj1u, . . . , 1− uj|S |u︸ ︷︷ ︸
|S|

)
= lim

u→0+

∑
s1∈K(−1)|s1|+1{1− Cs1(1− uju, j ∈ s1)}∑
s2∈S(−1)|s2|+1{1− Cs2(1− uju, j ∈ s2)}

17



Table 2: Functions Φ1 and Φ2 for all strict generator functions from (Nelsen, 2006), Table 4.1.

φ Φ1(x) Φ2(x) φ Φ1(x) Φ2(x)
1 x−1/θ x 12 x−1/θ x1/θ

3 0 x 13 0 x

4 0 x1/θ 14 x−1 x2/θ

5 0 x 16 x−1 x

6 0 x1/θ 17 0 x

9 0 x 19 1 x

10 0 x 20 1 x

λ
(2)
L (u1, . . . , uk|ui, i ∈ S)

= lim
u→0+

P{Xi ≤ F−1
i (uiu) for i 6∈ S ⊂ K = {1, . . . , k} | Xj ≤ F−1

j (uju) for j ∈ S}

= lim
u→0+

C(

|K|︷ ︸︸ ︷
1− u1u, . . . , 1− uku)

C(1− uj1u, . . . , 1− uj|S|u︸ ︷︷ ︸
|S|

)
.

The next theorem readily follows from Theorem 10.

Theorem 11. Let X1, . . . , Xk ∼ C such that

C(u1, . . . , uk) = C0{C1(u1, . . . , uk1), . . . , Cm(ukm−1+1, . . . , ukm), ukm+1, . . . , uk},
where C0 is an Archimedean copula with the generator φ0 ∈ L and Ci for i = 1, . . . , m are
Archimedean or hierarchical Archimedean copulas. Let S be an arbitrary subset of the variables,
such that λ

(1)
U (uj , j ∈ S) 6≡ 0 and λ

(1)
L (uj , j ∈ S) 6≡ 0. Then the upper and lower tail dependence

indices for C are given by

λ
(2)
L (u1, . . . , uk|ui, i ∈ S) =

λ
(1)
L (u1, . . . , uk)

λ
(1)
L (ui, i ∈ S)

and λ
(2)
U (u1, . . . , uk|ui, i ∈ S) =

λ
(1)
U (u1, . . . , uk)

λ
(1)
U (ui, i ∈ S)

.

Example 5. Next we provide the expressions for the function Φ1 and Φ2 for different strict
generator functions (see Nelsen (2006), Table 4.1). Note, that the generators provided in Nelsen
(2006) correspond to φ−1 in our notation. By setting k = 2 we obtain the results in Nelsen
(2006), p. 215. The possible values of the functions Φ1 and Φ2 provide interesting insights into
the tail dependencies of copulas. If Φi(x) is independent on the parameter θ then the tail index
depends only on the structure and the parameters at different levels do not influence the strength
of the dependency in the tails. Note that most of the generators imply lower and upper tail
independency. This observation is particularly important for applications and shows the need
for new generator families, which allow for tail dependencies.

7 Appendix

Proof of Remark 1. We consider here two cases. First let ui and uj be on different subnodes of
the first level of the copula

C(u1, . . . , ui, . . . , uj , . . . , uk) = Ckr{. . . , Ck`′−k`′−1,r`′ (uk`′−1+1, . . . , ui, . . . , uk`′ ), . . . ,

. . . , Ck`′′−k`′′−1,r`′′ (uk`′′−1+1, . . . , uj , . . . , uk`′′ ), . . .},
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where r is the number of all nodes, Ck1,r1 ∈ Fk1,r1 , . . . , Ckm−km−1,rkm
∈ Fkm,rm the subcopulas

on the first level and the root Ckr ∈ Fm,1. From the properties of multivariate distributions the
bivariate margin of ui and uj is given by

(ui, uj) ∼ C(1, . . . , ui, . . . , uj , . . . , 1)

= Ckr{. . . , Ck`′−k`′−1,r`′ (1, . . . , ui, . . . , 1), . . . , Ck`′′−k`′′−1,r`′′ (1, . . . , uj , . . . , 1), . . .}.

Since C(1, . . . , 1, u, 1, . . . , 1) = u and C(1, . . . , 1) = 1 it follows that

(ui, uj) ∼ C(1, . . . , ui, . . . , uj , . . . , 1) = Ckr(1, . . . , ui, . . . , uj , . . . , 1)

= φ{φ−1(1) + . . . + φ−1(ui) + . . . + φ−1(uj) + . . . + φ−1(1)}
= φ{φ−1

n (ui) + φ−1(uj)} = Cn,2(ui, uj)

where Ck2 ∈ F2,1 and Ck2 ∈ C{N (C)} by construction. Thus we showed, that if two variables
lie in different subcopulas of the top level, their bivariate distribution is given by the top level
copula. On the other case if ui and uj be on the different subnodes of the second level in the
copula then

C(u1, . . . , ui, . . . , uj , . . . , uk) = Ckr{. . . , Ck`′−k`′−1,r`′ (uk`′−1+1, . . . , ui, . . . , uj , . . . , uk`′ ), . . . ,

. . . , Ck`′′−k`′′−1,r`′′ (uk`′′−1+1, . . . , . . . , uk`′′ ), . . .}.

Proceeding with the copula Ck`′−k`′−1,r`′ with generator φ2 in the same way as with the original
copula C in the first part of Remark, we obtain that (ui, uj) ∼ φ2{φ−1

2 (ui)+φ−1
2 (uj)}. Continuing

the recursion we complete the proof.

Proof of Remark 2. The proof is similar to the proof of Remark 1. Let us fix the bivariate copula
C∗

2 ∈ C2{N (C)}. Without loss of generality assume that the generator φ = N (C∗
2 ) is used to

construct the subcopula at the second level of the original copula C. We reorder the variables
for simplicity. Then

C(u1, . . . , uk) = Ckr{. . . , C∗
2 (u1∗ , . . . , um∗), . . . }

= Ckr[. . . , φ1{φ−1 ◦ C̃1(·), . . . , φ−1 ◦ C̃p(·)}, . . . ].

Now we proceed as in Remark 1 by taking two variables from different subcopulas of the second
level of C∗

2 . Without loss of generality we take one variable u from copula C̃2 and another v

from C̃p. This shows that there exist a pair of random variables (u, v) with the joint bivariate
distribution function given by C∗

2 (u, v).

Proof of Theorem 2. Let t ∈ [0, 1] be fixed.
a) Then it holds that {V1 ≤ t} ∩ {U1 ≤ t} = {U1 ≤ t} since U1 ≤ t is a subset of V1 ≤ t.
Moreover,

{V1 ≤ t} ∩ {U1 > t} = {V2 ≤ gt(U1)} ∩ {U1 > t}
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with gt(x) = φ(φ−1(t) − φ−1(x)) for x ∈ [t, 1]. The function gt(.) : [t, 1] → [0, 1] is strictly
decreasing with gt(t) = 1.
Consequently it follows that

P (V1 ≤ t) = P (V1 ≤ t ∩ U1 ≤ t) + P (V1 ≤ t ∩ U1 > t) (5)

= t + P{V2 ≤ gt(U1) ∩ U1 > t} (6)

because P (U1 ≤ t) = t.
b) In order to calculate the second quantity of (6) we consider a partition t = t0 < t1 < .. <

tN = 1 of the interval [t, 1]. Then it holds that

P{V2 ≤ gt(U1) ∩ U1 > t} =
N∑

i=1

P{V2 ≤ gt(U1) ∩ ti−1 < U1 ≤ ti}




≤ ∑N

i=1 P (V2 ≤ gt(ti−1) ∩ ti−1 < U1 ≤ ti)

≥ ∑N
i=1 P (V2 ≤ gt(ti) ∩ ti−1 < U1 ≤ ti)

since gt(ti) ≤ gt(U1) ≤ gt(ti−1) if ti−1 < U1 ≤ ti.
c) First we consider the upper bound. We get that

P{V2 ≤ gt(ti−1) ∩ ti−1 < U1 ≤ ti} = P{U1 ≤ ti ∩ V2 ≤ gt(ti−1)} −
− P{U1 ≤ ti−1 ∩ V2 ≤ gt(ti−1)}
= C1[ti,K2{gt(ti−1)}]− C1[ti−1,K2{gt(ti−1)}]
= φ

(
φ−1(ti) + φ−1[K2{gt(ti−1)}]

)−
− φ

(
φ−1(ti−1) + φ−1[K2{gt(ti−1)}]

)
.

Now we determine the partition by choosing tN−i = φ(iw/N) for i = 0, .., N with w = φ−1(t).
This choice fulfills the requirement that t = t0 < t1 < .. < tN ≤ 1. Moreover, gt(ti) = tN−i.
With the notation ζ(x) = φ−1[K2{φ(x)}]− x there exists such ξN,i that

P{V2 ≤ gt(ti−1) ∩ ti−1 < U1 ≤ ti} = φ

{
w − w

N
+ ζ

(
i− 1
N

w

)}
− φ

{
w + ζ

(
i− 1
N

w

)}

= −w

N
φ′

{
w + ζ

(
i− 1
N

w

)
− ξN,i

}

with 0 ≤ ξN,i ≤ w/N . Now let δ > 0. Since φ is strictly decreasing it holds for N ≥ N0 that

P{V2 ≤ gt(ti−1) ∩ ti−1 < U1 ≤ ti} ≤ −w

N
φ′

{
w − δ + ζ

(
i− 1
N

w

)}
.

Because

lim
N→∞

N∑

i=1

−w

N
φ′

{
w − δ + ζ

(
i− 1
N

w

)}
= −

w∫

0

φ′{w − δ + ζ(x)}dx

it follows that

P (V1 ≤ t ∩ U1 > t) ≤ lim inf
δ→0


−

w∫

0

φ′{w − δ + ζ(x)}dx


 = −

w∫

0

φ′{w + ζ(x)}dx.
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d) Next we consider the lower bound. We obtain by analogy to c) and with ξN,i as above that

P{V2 ≤ gt(ti) ∩ ti−1 < U1 ≤ ti} = −w

N
φ′

{
w + ζ

(
i

N
w

)
− ξN,i

}

≥ −w

N
φ′

{
w + ζ

(
i

N
w

)}
.

Consequently

P (V1 ≤ t ∩ U1 > t) ≥ −
w∫

0

φ′{w + ζ(x)}dx.

Because the upper and the lower bound are the same this completes the proof.

Proof of Theorem 3. The proof is based on a similar argumentation as the proof of Theorem 2.
Using the above arguments we get that

P (V3 ≤ t) = K4(t) + P (V3 ≤ t ∩ V4 > t)

and

P (V3 ≤ t ∩ V4 > t)




≤ ∑N

i=1 P{V5 ≤ gt(ti−1) ∩ ti−1 < V4 ≤ ti}

≥ ∑N
i=1 P{V5 ≤ gt(ti) ∩ ti−1 < V4 ≤ ti}

.

a) Moreover,

P{V5 ≤ gt(ti−1) ∩ ti−1 < V4 ≤ ti} = P{V4 ≤ ti ∩ V5 ≤ gt(ti−1)} −
− P{V4 ≤ ti−1 ∩ V5 ≤ gt(ti−1)}
= C3[K4(ti),K5{gt(ti−1)}]− C3[K4(ti−1),K5{gt(ti−1)}]
= φ

(
φ−1{K4(ti)}+ φ−1[K5{gt(ti−1)}]

)−
− φ

(
φ−1{K4(ti−1)}+ φ−1[K5{gt(ti−1)}]

)

= φ

{
ζ4

(
w − i

N
w

)
+ ζ5

(
i− 1
N

w

)}
−

− φ

{
ζ4

(
w − i− 1

N
w

)
+ ζ5

(
i− 1
N

w

)}

with ζ4(x) = φ−1[K4{φ(x)}] and ζ5(x) = φ−1[K5{φ(x)}]. Then

P{V5 ≤ gt(ti−1) ∩ ti−1 < V4 ≤ ti} =
{

ζ4

(
w − i

N
w

)
− ζ4

(
w − i− 1

N
w

)}

× φ′
{

ζ5

(
i− 1
N

w

)
+ ζ4

(
w − ξ̃N,iw

)}

with (i− 1)/N ≤ ξ̃N,i ≤ i/N . Because ζ5{w(i− 1)/N} ≤ ζ5(wξ̃N,i) it follows that

N∑

i=1

P{V5 ≤ gt(ti−1) ∩ ti−1 < V4 ≤ ti} ≤
N∑

i=1

{
ζ4

(
w − i

N
w

)
− ζ4

(
w − i− 1

N
w

)}

× φ′
{

ζ5(wξ̃N,i) + ζ4(w − wξ̃N,i)
}
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→ −
1∫

0

φ′{ζ5(tw) + ζ4(w − tw)} dζ4(w − tw) = −
w∫

0

φ′{ζ5(u) + ζ4(w − u)} dζ4(u).

b) For the lower bound we get

P{V5 ≤ gt (ti) ∩ ti−1 < V4 ≤ ti} = φ

{
ζ4

(
w − i

N
w

)
+ ζ5

(
i

N
w

)}
−

− φ

{
ζ4

(
w − i− 1

N
w

)
+ ζ5

(
i

N
w

)}

=
{

ζ4

(
w − i

N
w

)
− ζ4

(
w − i− 1

N
w

)}
×

× φ′
{

ζ5

(
i

N
w

)
+ ζ4

(
w − wξ∗N,i

)}

with (i− 1)/N ≤ ξ∗N,i ≤ i/N . Since ζ5(wξ∗i,N ) ≤ ζ5(wi/N) we obtain that

N∑

i=1

P{V5 ≤ gt(ti−1) ∩ ti−1 < V4 ≤ ti} ≥
N∑

i=1

{
ζ4

(
w − i

N
w

)
− ζ4

(
w − i− 1

N
w

)}
×

× φ′
{
ζ5(wξ∗N,i) + ζ4(w − wξ∗N,i)

}

and thus the result follows as in a).

Proof of Theorem 4. We follow the idea of the proof of Theorem 2 of (Barbe et al., 1996). The
copula is given by

C(u1, . . . , uk) = φ1{φ−1
k (uk) + φ−1

1 ◦ Ck−1(u2, . . . , uk)}
= P{F1(X1) ≤ u1, . . . , Fk(Xk) ≤ uk}.

Since φ−1
1 (1) = 0 it holds that C(1, u2, . . . , uk) = C2(u2, . . . , uk). Differentiating C with respect

to u1 we get that

∂C(u1, . . . , uk)
∂u1

=
φ′1[φ

−1
1 (u1) + φ−1

1 {C2(u2, . . . , uk)}]
φ′1{φ−1

1 (u1)}
> 0.

Next consider conditional copula P{F1(X1) ≤ u1|F2(X2) ≤ u2, . . . , Fk(Xk) ≤ uk} which we
denote as C(u1|u2, . . . , uk) = Ck(u1,...,uk)

Ck−1(u1,...,uk−1) . Thus it follows that

P{C(u1, . . . , uk) ≤ t} = P{C(u1|u2, . . . , uk) · C2(u2, . . . , uk) ≤ t}
= P

{
C(u1|u2, . . . , uk) ≤ t

C2(u2, . . . , uk)

}
.

Let us consider the following function

Q(t) = inf{u1 ∈ [0, 1] : C(u1|u2, . . . , uk) ≥ t}
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for t ∈ [0, 1]. It follows as in the proof of Theorem 2 of Barbe et al. (1996) that

K1(t) =
∫

(0,1)k−1:C2(u2,...,uk)≥t

∂

∂t
Q

{
t

C2(u2, . . . , uk)

}

× ck

[
Q

{
t

C2(u2, . . . , uk)

}
, u2, . . . , uk

]
du2 . . . duk.

Next we compute ∂
∂tQ

{
t

C2(u2,...,uk)

}
. Note that by definition of Q it holds that

C

[
Q

{
t

C2(u2, . . . , uk)

}
, u2, . . . , uk

]
= t.

Differentiation with respect to t leads to

1 =
∂C(u1, . . . , uk)

∂u1

∣∣∣∣
u1=Q

{
t

C2(u2,...,uk)

} · ∂

∂t
Q

{
t

C2(u2, . . . , uk)

}
.

Thus using the fact that C is a HAC with the generator φ at the highest level we obtain

∂

∂t
Q

{
t

C2(u2, . . . , uk)

}
=

[
∂C(u1, . . . , uk)

∂u1

∣∣∣
u1=Q

{
t

C2(u2,...,uk)

}
]−1

=

[
φ′1{φ−1

1 ◦ C2(u2, . . . , uk) + φ−1
1 (u1)}

φ′1{φ−1
1 (u1)}

∣∣∣
u1=Q

{
t

C2(u2,...,uk)

}
]−1

=
φ′1{φ−1

1 (t)}
φ′1

[
φ−1

1 ◦Q
{

t
C2(u2,...,uk)

}
+ φ−1

1 ◦ C2(u2, . . . , uk)
]

=
φ′1{φ−1

1 (t)}
φ′1 ◦ φ−1

1 ◦ C
[
Q

{
t

Ck−1(u1,...,uk−1)

}
, u2, . . . , uk

] .

Using the following algebraic and probabilistic transformations

Qu2,...,uk

{
t

C(1, u2, . . . , uk)

}
=

= inf
{

u1 ∈ [0, 1] : C(u1|u2, . . . , uk) ≥ t

C(1, u2, . . . , uk)

}

= inf {u1 ∈ [0, 1] : P{F1(X1) ≤ u1 |F2(X2) ≤ u2; . . . ;Fk(Xk) ≤ uk}
× P{F2(X2) ≤ u2; . . . ; Fk(Xk) ≤ uk} ≥ t}
= inf {u1 ∈ [0, 1] : P{F1(X1) ≤ u1; . . . ; Fk(Xk) ≤ uk} ≥ t}
= inf {u1 ∈ [0, 1] : C(u1, . . . , uk) ≥ t}
= inf

{
u1 ∈ [0, 1] : φ1{φ−1

1 (u1) + φ−1
1 ◦ C2(u2, . . . , uk)} ≥ t

}

= inf
{
u1 ∈ [0, 1] : u1 ≥ φ1{φ−1

1 (t)− φ−1
1 ◦ C2(u2, . . . , uk)}

}

= φ1{φ−1
1 (t)− φ−1

1 ◦ C2(u2, . . . , uk)}
we get the final form of ht

hk(t, u2, . . . , uk) =
φ′1

{
φ−1

1 (t)− φ−1
1 ◦ C2(u2, . . . , uk)

}

φ′1{φ−1(t)}
× c

[
φ1(φ−1

1 (t)− φ−1
1 ◦ C2(u2, . . . , uk)), u2, . . . , uk

]

× I
{
C2(u2, . . . , uu) > t

}
for (u1, . . . , uk) ∈ [0, 1]k.
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Further simplification of the previous formula is unfortunately too difficult because of unknown
recursive formula for the HAC density, which is difficult to derive in general form.

Proof of Theorem 5. Let X ∼ C1 and X′ ∼ C2. To show the concordance property it is neces-
sary to prove that

P{Xi ≤ xi, i = 1, . . . , k} ≤ P{X ′
i ≤ xi, i = 1, . . . , k} (7)

and

P{Xi > xi, i = 1, . . . , k} ≤ P{X ′
i > xi, i = 1, . . . , k}. (8)

for all x ∈ (0, 1)k. The first inequality is identical to that C1(x) ≤ C2(x), for all x ∈ (0, 1)k,
while the second one is equivalent to C

1(x) ≤ C
2(x), for all x ∈ (0, 1)k, where C is the survival

copula of C.

As mentioned in Chapter 1, Archimedean copulas arise from the Laplace transform

φ{φ−1(u1) + · · ·+ φ−1(uk)} =

∞∫

0

k∏

i=1

Gα
φ−1(u) dMφ(α),

where the generator function φ(s) =
∫∞
0 e−sw dMφ(w), s ≥ 0 is a Laplace transform of the some

univariate cumulative distribution function Mφ(·) of a positive random variable and Gφ−1(u) =
exp{−φ−1(u)}. From the statement of the theorem, C1 and C2 are proper HACs and they differ
only by the generator function on the highest level such as φ−1

1 ◦ φ2 ∈ L∗. If we denote the
second level copulas as the zi, i = 1, . . . , m then

C1(u) = C1{Ck1r1(u1, . . . , uk1), . . . , Ckm−km−1,rm(ukm−1+1, . . . , ukm=k)}
= φ1[φ−1

1 {Ck1r1(u1, . . . , uk1)}+ · · ·+ φ−1
1 {Ckm−km−1,rm(ukm−1+1, . . . , ukm=k)}]

= φ1{φ−1
1 (z1) + · · ·+ φ−1

1 (zm)}
C2(u) = C2{Ck1r1(u1, . . . , uk1), . . . , Ckm−km−1,rm(ukm−1+1, . . . , ukm=k)}

= φ2[φ−1
2 {Ck1r1(u1, . . . , uk1)}+ · · ·+ φ−1

2 {Ckm−km−1,rm(ukm−1+1, . . . , ukm=k)}]
= φ2{φ−1

2 (z1) + · · ·+ φ−1
2 (zm)}

Let ν = φ−1
1 ◦ φ2 ∈ L∗, then from Theorem A.2 ((Joe, 1997)) χα(u) = exp{−αν(u)} is the

Laplace transform of some Mν(·;α). This means that

χα(u) = exp{αφ−1
1 ◦ φ2(u)} =

∞∫

0

e−uξdMν(ξ, α).
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Similarly to the case of Archimedean copulas C1 and C2 ca be then transformed as follows

C1 = φ1{φ−1
1 (z1) + · · ·+ φ−1

1 (zm)} = φ1{ν ◦ φ−1
2 (z1) + · · ·+ ν ◦ φ−1

2 (zm)}

=

∞∫

0

e−α
∑m

i=1 ν{φ−1
2 (zi)}dMφ1(α) =

∞∫

0

m∏

i=1

[
e−αν{φ−1

2 (zi)}
]
dMφ1(α)

=

∞∫

0

m∏

i=1

[
χα{φ−1

2 (zi)}
]
dMφ1(α) =

∞∫

0

m∏

i=1



∞∫

0

e−γφ−1
2 (zi) dMν(γ, α)


 dMφ1(α)

=

∞∫

0

m∏

i=1



∞∫

0

Gγ

φ−1
2

(zi) dMν(γ, α)


 dMφ1(α) = φ1



−

1
α

log
m∏

i=1

∞∫

0

Gγ

φ−1
2

(zi) dMν(γ, α)





C2 = φ2{φ−1
2 (z1) + · · ·+ φ−1

2 (zm)} = φ1 ◦ ν{φ−1
2 (z1) + · · ·+ φ−1

2 (zm)}

=

∞∫

0

exp[−αν{φ−1
2 (zi) + · · ·+ φ−1

2 (zm)}]dMφ1(α) =

∞∫

0

χα

{
φ−1

2 (zi) + · · ·+ φ−1
2 (zm)

}
dMφ1(α)

=

∞∫

0

∞∫

0

e−γ
∑m

i=1 φ−1
2 (zi) dMν(γ, α)dMφ1(α) =

∞∫

0

∞∫

0

m∏

i=1

e−γφ−1
2 (zi) dMν(γ, α)dMφ1(α)

=

∞∫

0

∞∫

0

m∏

i=1

Gγ

φ−1
2

(zi) dMν(γ, α)dMφ1(α) = φ1


− 1

α
log

∞∫

0

m∏

i=1

Gγ

φ−1
2

(zi) dMν(γ, α)


 .

Note that φ1{−a log(·)} is decreasing as a composition of continuous monotone decreasing func-
tions. Since the concordance order is invariant under monotone transformations, to prove (7) it
is sufficient to show that

n∏

i=1

∞∫

0

Gγ

φ−1
2

(zi) dMν(γ, α) ≤
∞∫

0

n∏

i=1

Gγ

φ−1
2

(zi) dMν(γ, α).

For simplicity and to emphasise the argument with respect to which we integrate, we write

n∏

i=1

∞∫

0

gi(γ) dMν(γ, α) ≤
∞∫

0

n∏

i=1

gi(γ) dMν(γ, α),

where gi(γ) = Gγ

φ−1
2

(zi) are bounded and decreasing functions in γ ≥ 0 from the properties

of exp{·}, while Gγ

φ−1
2

(zi) = exp{−γφ−1
2 (zi)}. To prove the inequalities we can use the same

approach as in Joe (1997). Each bounded decreasing function can be represented as a limit of
an infinite sum of a piecewise constant functions

∑
j cjI[0,bj ] for positive constants cj and bj . As

the both sides of the inequality are linear in each gi(γ) it is sufficient to prove the inequality
for gi(γ) = I[0,yj ](γ), j = 1, . . . , k. Let B1, . . . , Bn ∼ Mν(·, α) for some fixed α and are iid. By
the Fréchet upper bound inequality holds that P{Bj ≤ yj , j = 1, . . . , n} ≤ P{B1 ≤ minj yj} =
minj P{Bj ≤ yj} this proves the inequality (7). This means, that the copula C1 is less positively
lower orphant dependent than the copula C2. To show the whole concordance order we have to
prove that the copula C1 is less positively upper orphant dependent than the copula C2. Thus
we need to prove the same inequality but for the survival functions.

The usual representation of the survival copula is given by

C(u) = 1 +
∑

s∈S
(−1)|s|Cs(uj ; j ∈ s).
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In terms of the Laplace transforms the survival copula differs from the copula by taking Hφ−1(u) =
1 − Gφ−1(u) = 1 − exp{−φ−1(u)} instead of the function Gφ−1(u). Let us denote Hφ−1,γ(u) =
1 − Gγ

φ−1(u). Moreover, all zi, i = 1, . . . , m are replaced by zi, i = 1, . . . , m which correspond
to the respective components of the survival copula. For example if

z1 = ψ−1{C31(u1, u2, u3)}
= ψ−1[C31{C21(u1, u2), u3}]
= ψ−1 ◦ φ[φ−1 ◦ ξ{ξ−1(u1) + ξ−1(u2)}+ φ−1(u3)]

Gη
φ−1(z1) =

∞∫

0

∞∫

0

Gγ
ξ−1(u1)G

γ
ξ−1(u2)dMφ−1◦ξ(γ, β)Gβ

φ−1(u3)dMψ−1◦φ(β, η),

then the corresponding z1 is

Hφ−1,η(z1) = 1−Gη
φ−1(z1)

=

∞∫

0

∞∫

0

{1−Gγ
ξ−1(u1)}{1−Gγ

ξ−1(u2)}dMφ−1◦ξ(γ, β){1−Gβ
φ−1(u3)}dMψ−1◦φ(β, η)

=

∞∫

0

∞∫

0

Hξ−1,γ(u1)Hξ−1,γ(u2)}dMφ−1◦ξ(γ, β)Hφ−1,β(u3)}dMψ−1◦φ(β, η).

Using similar transformation as in the case of positive lower orphant concordance, we have to
prove the following inequality

m∏

i=1

∞∫

0

Hφ−1
2 ,γ(zi) dMν(γ, α) ≤

∞∫

0

m∏

i=1

Hφ−1
2 ,γ(zi) dMν(γ, α) (9)

or

m∏

i=1

∞∫

0

hi(γ) dMν(γ, α) ≤
∞∫

0

m∏

i=1

hi(γ) dMν(γ, α),

where hi(γ) = Hφ−1
2 ,γ(zi) = 1 − Gφ−1

2 ,γ(zi) are bounded and increasing functions in γ ≥ 0.
Similarly as in case presented above, any increasing and bounded function can be approximated
by the series

∑
j cjI[bj ,∞). It is sufficient to consider only one component of the sum. Similarly

taking B1, . . . , Bm ∼ Mν(·, α) for some fixed α, it holds by the Fréchet upper bound inequality
that P{Bj > yj , j = 1, . . . , m} ≤ P{B1 > maxj yj} = minj P{Bj > yj}. This proves the
inequality (8) and completes the proof of C1 ≺ C2.

Proof of Theorem 8. Consider X1 = (X11, . . . , X1k)′, . . . ,Xn = (xn1, . . . , xnk)′ as a random
sample from C(u1, . . . , uk), and then M1 = max{Xi1}, . . . , Mk = max{Xik}, follow the distri-
bution

P{M1 ≤ x1, . . . , Mk ≤ xk} = Cn(x1, . . . , xk),

where the copula Cn have the same structure as copula C but is based on the generator functions
φ`n = [φ`(t)]n, ` = 1, . . . , r, and inverse generator functions φ−1

`n = φ−1
` (t1/n), ` = 1, . . . , r. For

example in a three dimensional example with the copula function

C(u1, u2, u3) = C1{C2(u1, u2), u3} = φ1[φ−1
1 ◦ φ2{φ−1

2 (u1) + φ−1
2 (u2)}+ φ−1

1 (u3)]
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the extreme value copula is given by

P{M1 ≤ x1, M2 ≤ x2, M3 ≤ x3} =
(
φ1[φ−1

1 ◦ φ2{φ−1
2 (x1) + φ−1

2 (x2)}+ φ−1
1 (x3)]

)n

= φ1n

{
φ−1

1n

(
[φ2{φ−1

2 (x1) + φ−1
2 (x2)}]n

)
+ φ−1

1n (xn
3 )

}

= φ1n[φ−1
1n ◦ φ2n{φ−1

2n (xn
1 ) + φ−1

2n (xn
2 )}+ φ−1

1n (xn
3 )]

= Cn(x1, x2, x3).

Next step we have to prove the existence of the limit of Cn(x1, . . . , xk) when n tends to infinity.
By mimicking Genest and Rivest (1989) this limit exist if and only if exists

∂[φ−1
` (t)/(φ−1

` )′(t)]
∂t

∣∣∣∣∣
t=1

, where ` = 1, . . . , k.

Taking into account that extreme-value distribution belong to its own domain of attraction we
have

Cn(x1, . . . , xk) = C(x1, . . . , xk), for 0 < x1, . . . , xk < 1. (10)

Let us fix some numbers 1 ≤ j1 < j2 ≤ k then, for xj = 1, j ∈ {1, . . . , k} \ {j1, j2} copula
C(1, . . . , 1, xj1 , 1, . . . , 1, xj2 , 1, . . . , 1) is a simple bivariate Archimedean copula with some gener-
ator function φ`12 , where `12 ∈ {1, . . . , k}

C(1, . . . , 1, xj1 , 1, . . . , 1, xj2 , 1, . . . , 1) = C1(xj1 , xj2) = φ−1
`12
{φ`12(xj1) + φ`12(xj2)}

with the property Cn(1, . . . , 1, xj1 , 1, . . . , 1, xj2 , 1, . . . , 1) = C(1, . . . , 1, xj1 , 1, . . . , 1, xj2 , 1, . . . , 1),
from this implying Genest and Rivest (1989) we get that φ1 is the Gumbel generator. Similarly
by taking all other possible pairs 1 ≤ j1 < j2 ≤ k could be proved that φ`, ` ∈ {1, . . . , k} are
Gumbel generators. As given in the statement of the theorem that the extreme-value copula
belong also to HAC family than by Proposition 1 we finish the proof, because all the bivariate
margins are uniquely determined by the previous steps of the proof.

Lemma 1. If f(x) is the continuous monotone function for x ∈ R and f(x, n) is continuous
with respect to both arguments and monotone with respect to the first argument function for
x, n ∈ R such that

f(x, n) −→
n→∞ f(x), ∀x ∈ R

then the inverse of the function f(x), ∀x ∈ R exists and exists the inverse with respect to the
second argument of the functions f(x, n),∀x, n ∈ R and holds that

f−1(x, n) −→
n→∞ f−1(x), ∀x ∈ R.

Proof. For the proof of Lemma see (Billingsley, 1995), (Resnick, 1998).

Proof of Proposition 2. a. Let Gt(x) = φ(xt)
φ(t) , while φ(t) is decreasing then Gt(x) is increasing

for all t. Since limt→∞Gt(x) = Φ1(x) it follows from Lemma 1, that limt→∞G−1
t (y) =

Φ−1
1 (y). Note that Gt(x) = φ(xt)/φ(t) = y and x = φ−1{yφ(t)}/t = G−1

t (y). Since
limt→∞ φ(t) = 1 it follows that

Φ−1
1 (y) = lim

t→∞G−1
t (y) = lim

t→∞
φ−1{yφ(t)}

t

t:=φ−1(t)
= lim

t→0+

φ−1(yt)
φ−1(t)

.
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b. Let Ht(x) = 1−φ(xt)
1−φ(t) , while φ(t) is decreasing then Ht(x) is also decreasing for all t. Since

limt→0+ Ht(x) = Φ2(x) it follows from Lemma 1 (see Appendix), that limt→0+ H−1
t (y) =

Φ−1
2 (y). Note that Ht(x) = {1− φ(xt)}/{1− φ(t)} = y and x = φ−1[1− y{1− φ(t)}]/t =

H−1
t (y). Similar as above it follows that

Φ−1
2 (y) = lim

t→0+
H−1

t (y) = lim
t→0+

φ−1[1− y{1− φ(t)}]
t

t:=φ−1(t)
= lim

t→1−

φ−1{1− y(1− t)}
φ−1(t)

t:=1−t= lim
t→0+

φ−1(1− yt)
φ−1(1− t)

.

Proof of Theorem 10. From the definition of λ
(1)
L it follows that

λ
(1)
L (u1, . . . , uk) = lim

u→0+

1
u

C(u1u, . . . , uku)

= lim
u→0+

1
u

φ0

[
φ−1

0 {C1(u1u, . . . , uk1u)}+ · · ·+ φ−1
0 {Cm(ukm−1+1u, . . . , ukmu)}

+
k∑

j=km+1

φ−1
0 (uju)

]
,

We write φ−1
0 (Cj) for φ−1

0 {Cj(ukj−1+1u, . . . , ukju)} with k0 = 0 to simplify the notation. Since

limu→0+ Cj/u = λ
(1)
L,j(ukj−1+1, . . . , ukj ) we obtain

λ
(1)
L (u1, . . . , uk) = lim

u→0+

1
u

φ0

{
φ−1

0 (u · C1/u) + · · ·+ φ−1
0 (u · Cm/u) +

k∑

j=km+1

φ−1
0 (uju)

}

= lim
u→0+

1
u

φ0

{
φ−1

0 (u · λ(1)
L,1) + · · ·+ φ−1

0 (u · λ(1)
L,m) +

k∑

j=km+1

φ−1
0 (uju)

}

= lim
u→0+

1
u

φ0

{ m∑

i=1

φ−1
0 (λ(1)

L,i · u) +
k∑

j=km+1

φ−1
0 (uju)

}
.

From Proposition 2 it follows that

λ
(1)
L (u1, . . . , uk) = lim

u→0+

1
u

φ0

{ m∑

i=1

φ−1
0 (λ(1)

L,i · u)

φ−1
0 (u)

· φ−1
0 (u) +

k∑

j=km+1

φ−1
0 (uju)
φ−1(u)

· φ−1(u)
}

= lim
u→0+

1
u

φ0

[{ m∑

i=1

Φ−1
1 (λ(1)

L,i) +
k∑

j=km+1

Φ−1
1 (uj)

}
φ−1

0 (u)
]

=u:=φ−1
0 (u) lim

u→∞
1

φ0(u)
φ0

[{ m∑

i=1

Φ−1
1 (λ(1)

L,i) +
k∑

j=km+1

Φ−1
1 (uj)

}
u
]

= Φ1

[ m∑

i=1

Φ−1
1 {λ(1)

L,i(uki−1+1, . . . , uki)}+
k∑

j=km+1

Φ−1
1 (uj)

]
.

To prove the statement for λ
(1)
U it is sufficient to derive the expression for a single βs. Without
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the loss of generality, we consider

β = lim
u→0+

1
u

[
1− C0{C1(1− u1u, . . . , 1− uk1u), . . . , Cm(1− ukm−1+1u, . . . , 1− ukmu),

1− ukm+1u, . . . , 1− uku}
]

= lim
u→0+

1
u

[
1− φ0

{ m∑

i=1

φ−1
0 (Ci) +

k∑

j=km+1

φ−1
0 (1− uju)

}]

= lim
u→0+

1
u

[
1− φ0

{ m∑

i=1

φ−1
0

(
1− 1− Ci

u
· u

)
+

k∑

j=km+1

φ−1
0 (1− uju)

}]

= lim
u→0+

1
u

[
1− φ0

{ m∑

i=1

φ−1
0 (1− βiu) +

k∑

j=km+1

φ−1
0 (1− uju)

}]

= lim
u→0+

1
u

[
1− φ0

{ m∑

i=1

φ−1
0 (1− βiu)
φ−1

0 (1− u)
φ−1

0 (1− u) +
k∑

j=km+1

φ−1
0 (1− uju)
φ−1

0 (1− u)
· φ−1

0 (1− u)
}]

= lim
u→0+

1
u

(
1− φ0

[{ m∑

i=1

Φ−1
2 (βi) +

k∑

j=km+1

Φ−1
2 (uj)

}
φ−1

0 (1− u)
])

u:=1−φ0(u)
= Φ2

[ m∑

i=1

Φ−1
2 (βi) +

k∑

j=km+1

Φ−1
2 (uj)

]

The expressions for βi’s are then derived in a recursive way.
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