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A Microeconomic Explanation of the EPK Paradox∗
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Abstract

Supported by several recent investigations the empirical pricing kernel paradox might be

considered as a stylized fact. In Chabi-Yo et al. (2008) simulation studies have been presented

which suggest that this paradox might be caused by regime switching of stock prices in financial

markets. Alternatively, we want to emphasize a microeconomic view. Based on an economic

model with state dependent utilities for the financial investors we succeed in explaining the

paradox by changes of the risk attitudes. Theoretically, the change behaviour is compressed by

the pricing kernels. As a starting point for empirical insights we shall develop and investigate

inverse problems in terms of data fits for estimated basic values of the pricing kernel.
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1 Introduction

The empirical pricing kernel paradox refers to the empirical phenomenon that the observable behaviour

of investors in financial markets conflicts with the traditional expected utility framework. Several recent

studies support the conjecture that this deviation evolves into a stylized fact. All the investigations are

settled within similar economic models assuming representative agents in financial markets whose indirect

preferences have classical expected utility representation. Additionally, the risk neutral valuation principle

is supposed to be valid for the financial markets by means of pricing kernels. If the pricing kernels represent

state contingent equilibrium prices they might be identified with the v. Neumann-Morgenstern indices of

the representative agents. As a consequence the pricing kernels should be nonincreasing.

In the studies of Ait-Sahalia and Lo (2000), Jackwerth (2000), Detlefsen et al. (2007), Constantinidis

et al. (2009) different econometric methods have been applied to estimate pricing kernels with varying

underlying models for the financial markets. It turned out as a common result, that the estimates, the so

called empirical pricing kernels, have non-monotonic shape regardless of the used data sets. This difference

between the theoretical property of the pricing kernel and the observed failure of it is what we shall call

the empirical pricing kernel paradox. A further confirmation of it is provided by Golubev et al. (2008). In

this paper a test for monotonicity of pricing kernels has been introduced, and applied to DAX data over

several periods. Typically, the nullhypothesis that the pricing kernel is nonincreasing was rejected.

More recently, simulation studies in Chabi-Yo et al. (2008) suggest to explain by regime switches of

the prices for the underlyings of the financial markets. Since it is plausible to view regime switches as

consequences of changes in the investor’ risk attitude, we want to emphasize a microeconomic perspective.

The aim is to provide an extended economic model, which allows non-monotone pricing kernels. The

crucial idea is to propose financial investors whose risk attidudes might be sensible to the prices in the

financial markets. More technically, we shall assume state dependent utilities to represent the preferences

of the financial investors.

The paper is organized as follows. In section2 we shall introduce our model for the financial market.

Also the classical relationship between the utilities of representative agent and the pricing kernel will be

reviewed. Afterwards, the problem to estimate pricing kernel will be considered. Afterwards we shall point

out the empirical pricing kernel paradox. A simple consumption model based on state dependent utilities
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for the investors will be introduced in section 3. Within this framework we shall retain the relationship

between preferences of investors and pricing in the market by an analogous result. It will turn out that

dependent on the stock prices the v. Neumann-Morgenstern utility index for the representative agent might

switch between different types of utilities, meaning possible changes of the risk attitudes. In particular

pricing kernels might be non-monotone. The switching points and the types of utilities describe local risk

attitudes of the investors. So in order to get some insight on the changing of the risk attitudes it might be

useful to analyze the switching behaviour of the pricing kernel. The idea is to find a good fit of estimated

basic values by given base functions expressing the possible types utilities. Essentially, there are inverse

problems behind which will be developed and investigated throughout section 4. Several mathematical

results and proofs of quite technical nature have been delegated to appendices A, B, C respectively.

2 Financial Investors’ within the Expected Utility Frame-

work and the Empirical Pricing Kernel Paradox

Let [0, T ] be the time interval of investment in the financial market, where t = 0 denotes the present time

and t = T ∈]0,∞[ the time of maturity.

Furthermore it is assumed that a riskless bond and a risky asset are traded in the financial market as basic

underlyings. The price process (Bt)t∈[0,T ] of the riskless bond is defined by

dBt

Bt
= rt dt,

via a deterministic Riemannian-integrable interest process (rt)t∈[0,T ]. The price process (St)t∈[0,T ] of the

risky asset is assumed to be a nonnegative semimartingale with constant S0 and continuously distributed

marginals St (t ∈]0, T ]). Outstanding examples for such financial markets are the Black-Scholes model,

non-parametric diffusion models as in Ait-Sahalia and Lo (2000) and GARCH models. Notice that time

discrete models may be subsumed under this setting.

Furthermore let us suppose that the financial market is arbitrage free in the sense that there exists at least

one equivalent martingale measure.

We further assume that the risk neutral valuation principle is valid for nonnegative pay offs ψ(ST ). That

means that there is some unknown Radon-Nikodym density π of a martingale measure such that the price
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of any ψ(ST ) is characterized by

E
[
e−

R T
0 rx dxψ(ST )π

]
= E

[
e−

R T
0 rx dxψ(ST )E[π|ST ]

]
. (1)

By factorization we find some Borel-measurable Kπ with E[π|ST ] = Kπ(ST ), so that

E
[
e−

R T
0 rx dxψ(ST )π

]
=
∫ ∞

0
e−

R T
0 rx dxψ(x)Kπ(x) pST

(x) dx, (2)

where pST
denotes a density function of the distribution of ST . Equation (2) gives reason to call Kπ the

pricing kernel (w.r.t. π).

Let us now embed the financial market into an economic model where the investors of the financial

market are consumers whose consumptions rely on the price ST of the stock at maturity only. Within

the classical framework, where the investor preferences may be represented by expected utilities, there

exists a link between the risk attitude of the investors and the pricing rule of the financial markets. It

is built upon the assumption of a representative agent whose indirect utility U({ē(ST )}), depending on

the aggregated market endowment ē(ST ), has expected utility representation U(ē[ST ]) = E[u(ST )] with

concave v. Neumann-Morgenstern utility index u. Under some further technical conditions on the investor

preferences, and the additional specification ē(ST ) =
ST

S0
, then there is some positive β such that

du

dx

∣∣
x=

sT
S0

= βKπ

(
sT

S0

)
for almost every realization sT of ST . This relationship might be obtained by using methods as in the

sections 6.1, 6.2 of Karatzas and Shreve (1998). For a rigorous formulation and derivation see Corollary

A.2 in Appendix A. It should be emphasized that within the classical expected utility framework the

pricing kernel has to be nonincreasing due to concavity of the utility index u.

Several recent econometric studies are concerned with the problem to estimate the pricing kernel, calling

the estimators empirical pricing kernels (EPK) (cf. Ait-Sahalia and Lo (2000), Jackwerth (2000), Detlefsen

et al. (2007), Constantinidis et al. (2009)). Typically, we may find a shape of the empirical pricing kernel

as visualized in the following graphic which is borrowed from Detlefsen et al. (2007).

The figure shows empirical pricing kernels resulting from different estimation methods. Here estimations

of Garch-, Garch-M and discrete Heston models for stock prices had been done. The underlying data are

the from the DAX index in March 2000. Significantly, all three kernels are quite similar: They have the
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Figure 1: EPK on 24 March 2000. Across data sets, methods, models and markets

same form, the same characteristic features like e.g. the hump, and they differ in absolute terms slightly.

In particular the empirical kernels fail to be monotone, contrasting the classical theory within the expected

utility framework. This is what we shall call the empirical pricing kernel paradox.

A further investigation in Detlefsen et al. (2007) based on DAX data in July 2002 and June 2004 confirmed

the paradox. Moreover, in the above mentioned studies Ait-Sahalia and Lo (2000), Jackwerth (2000) one

may find similar pictures of the empirical pricing kernels. So summarizing, the empirical pricing kernel

paradox has been observed across different times independently of the data sets, the markets, the models of

stock prices and the employed estimation methods. It is further supported by Golubev et al. (2008), where

a statistical test for the monotonicity of pricing kernel has been developed. The application to DAX data

over different periods lead to the rejection of the null hypothesis that the pricing kernel is nondecreasing,

in almost every case.

3 A Microeconomic View on the EPK Paradox

A first explanation for the empirical pricing kernel paradox has been offered by Chabi-Yo et al. (2008).

The crucial idea of the authors is to suppose that regime switches are inherent of the price process of

the stock market. More specifially, within a discrete time period {0, 1, ..., T}, there are two types of

price processes (S0
t )t∈{0,...,T}, (S1

t )t∈{0,...,T} for the risky asset which have joint continuous distributions,

and constitute separately together with the riskless bond arbitrage free financial markets in the sense of

section 2. Furthermore, Chabi-Yo et al. (2008) assume a latent regime switching variables in terms of an
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unobservable Markov-chain (Ut)t∈{0,1,...,T} of Bernoulli-distributed random variables. The observable price

process (St)t∈{0,1,...,T} is then modelled by St = UtS
1
t + (1 − Ut)S0

t for t ∈ {0, ..., T}. Assuming the risk

neutral valuation principle for the latent two basic financial markets and for the observable one, the authors

drew a comparison of the associated pricing kernels via a simulation study. Indeed it turned out that the

empirical pricing kernels in the separated financial market were nondecreasing whereas the empirical

pricing kernel in the integrated financial market failed to have the property of monotonicity. Therefore

the empirical pricing kernel might be explained by a switch of the price processes of the underlyings in

the financial market.

Referring to Chabi-Yo et al. (2008), we want to stress a microeconomic viewpoint. Based on the initializing

thought that regime switching is caused by changes of the investors’ preferences our aim is to make the

influence of these changes on the shape of the pricing kernels more explicit. In the following we shall

provide a simple economic model underlying the financial market where the pricing kernel need not to be

nonincreasing. The key idea is to consider the investors as consumers whose preferences are representable

by utilities dependent on the prices of the stock. This refers to the concept of state dependent preferences.

An axiomatic justification is provided by Karni et al. (1983).

Let us assume that we have m consumers who choose among nonnegative random variables c(ST ). They

have exogeneous endowments by initial capitals w1
0, ..., w

m
0 > 0 and state dependent endowement in form

of nonnegative random variables e1(ST ), ..., em(ST ). Their individual budget constraints for c(ST ) is

therefore:∫ ∞

0
exp(−

∫ T

0
ry dy)c(x)Kπ(x)pST

(x) dx ≤ wi
0 +
∫ ∞

0
exp(−

∫ T

0
ry dy)ei(x)Kπ(x)pST

(x) dx, i = 1, . . . ,m.

(3)

The consumers are assumed to have state dependent utilities in terms of extended expected utility pref-

erences within the terminology of Mas-Colell et al. (1995). That means in particular that consumer i has

numerical representation of her/his preferences as:

U i{c(ST )} = E
[

exp(−
∫ T

0
rx dx)ui{ST , c(ST )}

]
,

where ui : R+ × R+ → R ∪ {−∞} denotes a state dependent v. Neumann-Morgenstern utility index
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satisfying:

ui(x, y) ∈ R for x ≥ 0, y > 0, (4)

ui(x, ·) is strictly increasing and strictly concave for any x ≥ 0, (5)

ui(·, y) is Borel-measurable for every y ≥ 0. (6)

At time of maturity T the market has an aggregated endowment ē(ST ) def=
m∑

i=1
{wi

0 + ei(ST )}. It is assumed

that simultaneous consumption is allowed for consumption vectors (c1(ST ), ..., cm(ST )) which satisfy the

individual budget constraints and obey the aggregated endowment in the sense of
m∑

i=1
ci(ST ) ≤ ē(ST ). Such

vectors are called admissible, and they are gathered by a set say A (see Mas-Colell et al. (1995)).

Next it is supposed that the consumers have chosen their consumptions (c̄1(ST ), ..., c̄m(ST )) such that the

following properties are fulfilled.

(ii) individual optimization: For each consumer i the consumption c̄i(ST ) solves the optimization problem

maxU i{c(ST )}, (7)

s.t. c(ST ) satisfies individual budget constraint (3).

(i) market clearing:
m∑

i=1

c̄i(ST ) = ē(ST ). (8)

The conditions (8) and (8) describe a weak version of a so called contingent Arrow Debreu equilibrium

(see Dana and Jeanblanc (2003), sect. 7.1). As a by product (c̄1(ST ), ..., c̄m(ST )) is a Pareto optimum

too, i.e. there is no (c1(ST ), ..., cm(ST )) ∈ A with U i{ci(ST )} ≥ U i{c̄i(ST )} for every i and such that

U i0{ci0(ST )} > U i0{c̄i0(ST )} for at least one i0. Therefore, by the so called Negeishi method (cf. Dana

and Jeanblanc (2003)) we may find nonnegative weights α1, ..., αm summing to 1 such that

m∑
i=1

αiU
i{c̄i(ST )} = Uα{ē(ST )} def= max

{
m∑

i=1

αiU
i{ci(ST )} |

m∑
i=1

ci(ST ) ≤ ē(ST )

}
(9)

Let uα : R2
+ → R ∪ {−∞,∞} be defined by

uα(x, y) = sup

{
exp(−

∫ T

0
rx dx)

m∑
i=1

αiu
i
1(x, yi) | y1, ..., ym ≥ 0,

m∑
i=1

yi ≤ y

}
.
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Obviously, uα(x, ·) is strictly increasing as well as strictly concave for x ≥ 0, and uα(·, y) is Borel-measurable

for every y ≥ 0.

Uα{ē(ST )} has extended expected utility representation

Uα{ē(ST )} = E
[

exp(−
∫ T

0
rx dx)uα(ē(ST ))

]
,

which might be concluded from Lemmata B.1, B.2 (cf. Appendix B). In the next step we want to establish

the relationship between the indirect utility uα of the representative agent and the pricing kernel Kπ.

As customary, we shall impose the so called Inada conditions (cf. Dana and Jeanblanc (2003)) on the

state dependent utility indices u1(ST , ·), ..., um(ST , ·), i.e. u1(x, ·)|]0,∞[, ..., um(x, ·)|]0,∞[ are assumed to

be continuously differentiable satisfying

lim
e→0

dui(x, ·)
dy

∣∣
y=e

= ∞, lim
e→∞

dui(x, ·)
dy

∣∣
y=e

= 0 (i = 1, ...,m) (10)

for x ≥ 0.

The Inada conditions together with condition (5) imply that for any i ∈ {1, ...,m} and every x ≥ 0 the

mapping
dui(x, ·)
dy

∣∣]0,∞[ is injective onto ]0,∞[ with continuously differentiable, strictly decreasing inverse

say Ii(x, ·). Furthermore, in accordance with the investigations of consumption optimization within the

setting of expected utility maximizing financial investors the following condition of regularity should be

fulfilled:

E [I1 {(ST , yKπ(ST )}] , . . . ,E [Im {(ST , yKπ(ST )}] <∞ for any y > 0. (11)

See Dana and Jeanblanc (2003), Duffie (1996), Karatzas and Shreve (1998) for more details.

Theorem 3.1 In addition to (4) – (11) let u1(x, ·)|]0,∞[, ..., um(x, ·)|]0,∞[ be twice continuously differ-

entiable for x ≥ 0.

Then uα(sT , ·)|]0,∞[ is continuously differentiable for every realization sT of ST . Furthermore for any

αi > 0 there exists some βi > 0 such that

duα(sT , ·)
dy

∣∣
y=ē(sT )

= αi
dui(sT , ·)

dy

∣∣
y=c̄i(sT )

= αiβiKπ(sT )

for every realization sT .
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The proof of Theorem 3.1 is delegated to the end of Appendix A.

Remark:

The relationship between pricing kernels and the marginal utilities of the individual investors as stated in

Theorem 3.1 occurs as a motif in the literature of financial mathematics to characterize solutions of different

optimization problems. Concerning the optimal utility based investment Kramkov and Schachermayer

(1999) introduced a new condition on the asymptotic elasticity of the utilities which replaced the analogue

of condition (11). Within our framework it reads as follows

lim sup
y→∞

dui(x, ·)
dy

∣∣
y
< 1 for any x ≥ 0 and every i ∈ {1, . . . ,m}. (12)

Kramkov and Schachermayer restrict themselves to individual investors with classical state independent

expected utility preferences. They achieved to show that the new introduced condition is a minimal

requirement to describe the optimal investment in terms of the marginal utilities and a pricing kernel.

Their methods had been adapted by Karatzas and Zitkovic (2003) to characterize the optimal consumption

in incomplete financial market similar to Theorem 3.1. The difference, and the mathematically more

challeging point is, that in Karatzas and Zitkovic (2003) the martingale measure is not fixed in advance.

Within our setting the guidelines of Kramkov and Schachermayer (1999) might be followed more directly

to establish Theorem 3.1 with condition (12) instead of (11). However, a rigorous derivation would lie

beyond the scope of this paper, and we use condition (12) which simplifies the argumentation in the proof

of Theorem 3.1.

Let RT =
ST

S0
be the return at maturity. It has a continuous distribution, say PRT

. If the market

endowment specializes to ē(ST ) = ST /S0, Theorem 3.1 reads as follows.

Corollary 3.2 Let ē(ST ) = ST /S0 and let u1(x, ·)|]0,∞[, ..., um(x, ·)|]0,∞[ be twice continuously differen-

tiable for x ≥ 0. Then under (4) – (11), uα(st, ·)|]0,∞[ is continuously differentiable for every realization

rT , and for any αi > 0 there exists some βi > 0 such that

duα(rT , ·)
dy

∣∣
y=rT

= αi
dui(rT , ·)

dy

∣∣
y=c̄i(sT )

= αiβiKπ(S0rT ) def= K̃π(rT ).

Corollary 3.2 is the corner stone for our microeconomic explanation of the empirical pricing kernel paradox.

The framework of state dependent utilities of the investors allows us to describe a switching behaviour of
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them when facing a threshold for the price of the stock at maturity. In more detail, let us assume that

each consumer i is disposed of two basic continuous, strictly increasing and strictly concave utility indices

u0
i , u

1
i : [0,∞[→ R ∪ {−∞} with u0

i (y), u
1
i (y) ∈ R for y > 0. He or she is changing between these indices

dependent on a threshold xi > 0 for the return RT , i.e.

ui(rT , ·) = 1[0,xi](rT )u0
i + 1]xi,∞[(rT )u1

i

for every realization rT of RT . Here 1A denotes the indicator function of subset A. The reader might think

of u0
i , u

1
i as utility indices representing bearish and bullish risk attitudes of consumer i, and that her or

his revealed attitudes are adapted to the prices of the financial market.

In order to simplify notations, let us assume that the thresholds are ordered by x1 ≤ ... ≤ xm.

There exist different competing potential representative agent groups in the market with respective rep-

resentations U1
α{ē(ST )), . . . , Um+1

α (ē(ST )} of indirect utilities defined by

U i
α{ē(ST )}

= sup

{
i−1∑
k=1

E
[
e−

R R
0 rx dxu0

k{ck(ST )}
]

+
m+1∑
k=i

E
[
e−

R R
0 rx dxu1

k{ck(ST )}
] ∣∣∣ m+1∑

k=1

ck(ST ) ≤ ē(ST )

}
.

In view of Lemmata B.1, B.2 (cf. Appendix B) they have expected utility representations

U i
α{ē(ST )} = E

[
e−

R T
0 rx dxui

α{ē(sT )}
]
,

where

ui
α(y) = sup

{
e−

R R
0 rx dx

(
i−1∑
k=1

αku
0
k(yk) +

m∑
k=i

αku
1
k(yk)

) ∣∣∣ y1, ..., yk ≥ 0,
m∑

k=1

yk ≤ y

}
for y ≥ 0, i ∈ {1, ...,m+ 1}. It is now a routine excercise to verify that

uα(x, y) = 1[0,x1](x)u
1
α(y) +

m−1∑
i=1

1]xi,xi+1](x)u
i+1
α (y) + 1]xm,∞[(x)u

m+1
α (y) for x, y ≥ 0.

As a consequence the indirect utility Uα{ē(ST )} might be interpreted as expressing the hegemony of the

different potential representative agents. Moreover, under the assumptions of Corollary 3.2 we obtain

immediately some β > 0 such that

1[0,x1](rT )
du1

α(rT , ·)
dy

∣∣
y=rT

+
m−1∑
i=1

1]xi,xi+1](rT )
dui+1

α (rT , ·)
dy

∣∣
y=rT

+1]xm,∞[(rT )
dum+1

α (rT , ·)
dy

∣∣
y=rT

= βK̃π(rT )
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holds for any realization rT of RT . From this observation it becomes clear that the pricing kernel is

nonincreasing separately on the intervals [0, x1[, ]x1, x2[, ..., ]xm∞[, but it might fail to be monotone just

at the switching points x1, ..., xm (see figure 2).

For illustration let us assume that the distribution of RT has [0,∞[ as support, and that the investors

have an identical switching point say x0. That means

1[0,x0](rT )
du1

α(rT , ·)
dy

∣∣
y=rT

+ 1]x0,∞[(rT )
dum+1

α (rT , ·)
dy

∣∣
y=rT

= zKπ(rT )

for every realization rT of RT .

Furthermore, let us suppose that each investor i switches between CRRA utilities uj
i (y) = yγj

i /γj
i (j = 0, 1)

with 0 < γ1
i < γ0

i < 1, inducing the Arrow-Pratt coefficients of absolute risk aversion βj
i (y) = 1−γj

i
y

(j = 0, 1; y > 0). It follows β1
i (y) > β0

1(y) for i ∈ {1, ...,m} and y > 0, which means that u1
1, ..., u

1
m

represent a more risk averse attitude than u0
1, ..., u

0
m (cf. Mas-Colell et al. (1995), p. 191). In particular

for stock prices lower or equal x0 we have a bullish market, whereas we obtain a bearish market when

stock prices exceed x0.

The application of Lemma B.1 and Proposition B.3 in Appendix B yields

rT = F 0

(
du1

α(rT , ·)
dy

∣∣
y=rT

)
= F 1

(
dum

α (rT , ·)
dy

∣∣
y=rT

)
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for any positive realization rT , where

F j :]0,∞[→]0,∞[, z 7→
m∑

i=1
αi>0

(z)
1

γ
j
i
−1

αi
(j = 0, 1)

are decreasing bijective mappings. If x0 > max{F 0(1), F 1(1)}, then

du1
α(rT , ·)
dy

∣∣
y=rT

,
dum

α (rT , ·)
dy

∣∣
y=rT

< 1,

and

F 0

(
du1

α(rT , ·)
dy

∣∣
y=rT

)
= rT = F 1

(
dum

α (rT , ·)
dy

∣∣
y=rT

)
> F 0

(
dum

α (rT , ·)
dy

∣∣
y=rT

)
for any realization rT ≥ x0. Therefore

dum+1
α (rT , ·)
dy

∣∣
y=rT

>
du1

α(rT , ·)
dy

∣∣
y=rT

for rT ≥ x0.

That means that K̃π is not monotone at x0.

4 The Inverse Problems for the Switching Points

In section 3 we developed an economic environment, where in equilibrium the pricing kernel K̃π(RT ) may

be expressed by a mixture of different marginal utilities. That means

K̃π(RT ) =
m∑

i=1

1]xi−1,xi](RT )
dui

dy

∣∣
y=RT

+1]xm,∞[(RT )
dum+1

dy

∣∣
y=RT

for some m ∈ N, 0 = x0 < ... < xm < ∞ and mappings u1, ..., um+1 : [0,∞] → R ∪ {−∞} whose

restrictions to ]0,∞[ are strictly increasing, strictly convex twice continuously differentiable real-valued

functions satisfying the Inada conditions. Such a representation will be the starting point for the following

investigations. The values x1, ..., xm will be called the switching points of the pricing kernel K̃π(RT ).

They are the amounts of returns where the investors are feeling themselves compelled to change their risk

attitudes. Usually as a local measure of the risk aversion one might use the Arrow-Pratt coefficient of

absolute risk aversion. Hence the change of the risk attitudes might be expressed by drawing a comparison

of the left- and right-sided versions the Arrow-Pratt coefficients of absolute risk aversions at the switching

12



points. They read as follows

lim
δ→0+

K̃π(xi − δ)− K̃π(xi)
δ

K̃π(xi)
, lim

δ→0+

K̃π(xi + δ)− K̃π(xi)
δ

K̃π(xi)
for i ∈ {1, ...,m}.

Unfortunately, neither the number and the location of the switching points nor the marginal utilities of the

u1, ..., um+1 are known. In order to get an idea of them we suggest to fit basic values of the pricing kernel.

For that purpose we fix a set V of strictly decreasing continuously differentiable mappings v :]0,∞[→ R

satisfying lim
x→∞

v(x) = 0. As a prominent example we mention the parameterized set of functions v, defined

by v(x) def= (x + a)b−1 for some a ≥ 0 and b ∈]0, 1[. These are the marginals of the generalized HARA

(CRRA) utilities. As test functions for the data fitting we shall use mixtures
N∑

i=1
vi1]xi−1,xi] of functions

from V. Here the basic points represent approximately the unknown switching points. The quality of the

approximation will be expressed by quadratic mean error w.r.t. a fixed continuous distribution F̂ with

density function say p̂ and compact support enclosed in [0,∞[. The mapping p̂ might be a kernel estimation

of a density function for the distribution of RT . Henceforth we shall denote the minimum and maximum

of the support by z and z̄ respectively.

We shall focus on the choice of appropriate basic points. The two approaches we want to propose differ

in the way to discretize the pricing kernel.

4.1 The Monte Carlo Approach

For any distribution F on R satisfying F ([z,∞[) = 1, we shall consider i.i.d. sequences (XF
N )N of

random variables with common distribution F. Fixing N, they are associated with the order statistics

X1:N , ..., XN :N according to z def= X0:N ≤ X1:N ≤ ... ≤ XN :N .

The idea is to discretize randomly K̃π by K̃N
π (F ) def=

N∑
i=1

K̃π(XF
i:N )1]XF

(i−1):N
,XF

i:N ]. The suggestion is statis-

tically motivated by the following observation.

Proposition 4.1 Let F be a continuous distribution on R with F ([z,∞[) = 1, and let C(K̃π) denote the set

of continuity points of K̃π. Then for any x ∈ C(K̃π) which belongs to the topological interior int(supp(F ))

of the support of F we obtain

N∑
i=1

K̃π(XF
i:N )1]XF

(i−1):N
,XF

i:N ](x) → K̃π(x) a.s..

13



In particular, setting i(F ) def= inf{x | F (] −∞, x]) > 0} and s(F ) def= sup{x | F (] −∞, x]) < 1}, we may

even achieve this convergence for any x ∈ C(K̃π)∩]i(F ), s(F )[ if supp(F ) is konvex.

Proposition 4.1 is an immediate application of Proposition C.1 in appendix C.

The choice of proper basic points for the discretization changes into the problem to find a proper a priori

distribution for the Monte Carlo sampling. The sample size N will be assumed to be given exogeneously.

Simulating the jumping behaviour of K̃π in finite many points, we shall restrict ourselves to all continuous

distributions with bounded support enclosed in [0,∞[, and which have density functions being constant

on each interval ]xi−1, xi[ (i = 1, ..., N) for some x0 ≤ x1 ≤ ... ≤ xN , where x0 and xN denote a lower

and an upper bound of the support respectively. In particular we consider the set PN of all continuous

distributions with bounded support enclosed in [z, z̄], and which have density functions being constant on

each interval ]xi−1, xi[ (i = 1, ..., N) for some z def= x0 ≤ x1 ≤ ... ≤ xN
def= z̄. Furthermore for F ∈ PN we

shall denote the joint distribution of XF
1:N , ..., X

F
N :N by F(N). Then the inverse problem reads as follows.

Inverse problem:

Find F ∗ ∈ PN such that

inf
v1,...,vN∈V

∫
EF ∗

(N)

[
K̃N

π (F ∗)(x)−
N∑

i=1

vi(x)1]XF∗
(i−1):N

,XF∗
i:N ](x)

]2

p̂(x) dx

= min
F∈PN (z)

inf
v1,...,vN∈V

∫
EF(N)

[
K̃N

π (F )(x)−
N∑

i=1

vi(x)1]XF
(i−1):N

,XF
i:N ](x)

]2

p̂(x) dx

We shall discuss the solvability of the inverse problem after we shall have introduced the second inverse

problem to be considered.

4.2 The pure numerical approach

The restriction K̃π|[z, z̄] should be discretized by by some basic values. More precisely, we choose a partition

z
def= x0 ≤ x1 < ... < xN

def= z̄ of [z, z̄], and use K̃N
π (x1, ..., xN ) def=

N∑
i=1

K̃π(xi)1]xi−1,xi] as an approximation

of K̃π|[z, z̄]. This idea suggests itself by the following observation.

Proposition 4.2 The mapping
N∑

i=1
K̃π(a+ i

N (b−a))1
]a+

(i−1)
N

(b−a),a+ i
N

(b−a)]
converges to K̃π|[a, b] uniformly

on compacta of continuity points of K̃π|[a, b] for any nondegenerated interval [a, b] ⊆]0,∞[.
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Proposition 4.2 may be derived immediately from the well known Korovkin like approximation result for

mappings on [0, 1] (cf. e.g. Witting and Müller-Funk (1995), Satz B5.2).

As for the Monte Carlo approach we shall not care about the choice of N, it will be assumed to be

exogeneously given. Denoting by ZN the set of all (x1, ..., xN ) ∈ RN satisfying x0
def= z ≤ x1 ≤ ... ≤ xN = z̄,

the choice of the basic points might be described in terms of the following inverse problem.

Inverse problem:

Find (x∗1, ..., x
∗
N ) ∈ ZN such that

inf
v1,...,vN∈V

∫ N∑
i=1

[
K̃π(x∗i )− vi(x)

]2
1]x∗

(i−1)
,x∗i ](x) p̂(x) dx

= inf
(x0,...,xN )∈ZN

inf
v1,...,vN∈V

∫ N∑
i=1

[
K̃π(xi)− vi(x)

]2
1]x(i−1),xi](x) p̂(x) dx

As a convention we tacitly set K̃π(0) def= ∞ and ∞ · 0 def= 0.

4.3 Solvability of the inverse problems

Throughout this section we shall assume

sup
v∈V

∫
v(x)2+δp̂(x) dx <∞ for some δ > 0.

Remark 4.3 In the following situations the family V fulfills the assumed integrability condition:

1.
1∫
0

p̂(x)
x2+δ

dx <∞ for some δ > 0, and V def=
{
v :]0,∞[→ R, x 7→ (x+ a)b−1 | a ≥ 0, b ∈]0, 1[

}
.

2. z > 0, and sup
v∈V

v(z) <∞, e.g. if V def=
{
v :]0,∞[→ R, x 7→ (x+ a)b−1 | a ≥ 0, b ∈]0, 1[

}
.

The integrability condition means that V is L2−norm bounded. In particular V as well as {v2 | v ∈ V} are

uniformly F̂−integrable, and the weak closure clw(V) of V is weakly compact because L2(F̂ ), equipped

with the L2−norm, is a reflexive Banach space. Moreover, since the standard Borel σ−algebra on R is

countably generated, the L2−norm topology on L2(F̂ ) is separable. Hence the relative topology of the

weak topology to clw(V) is metrizable (cf. Dunford and Schwarz (1958), Theorem V.6.3), and thus as a

compact topology also separable. So we obtain the following result.
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Lemma 4.4 Under the integrability condition on V the weak closure clw(V) of V is weakly compact, and

the relative weak topology to clw(V) is separably metrizable.

For abbreviation let us define g : ZN × L2(F̂ )N → R ∪ {∞} by

g(x1, ..., xN , v1, ..., vN ) =


∫ N∑

i=1
(K(xi)− vi(x))

2 1]xi−1,xi](x)p̂(x) dx : (v1, ..., vN ) ∈ VN

∞ : otherwise

Let us gather some basic properties of g.

Lemma 4.5 Let τ1 be the relative topology of the standard topology on RN to ZN , let τ2 denote the product

weak topology on L2(F̂ )N , and let τ1 × τ2 stand for the product topology of τ1 and τ2. Furthermore let us

denote the set of continuity points of K̃π by C(K̃π). Then under the integrability condition on V the mapping

g satisfies the following properties:

1. g(x1, ..., xN , ·) | VN is lower continuous w.r.t. τ2 for every (x1, ..., xN ) ∈ ZN ;

2. g(·, v1, ..., vN ) is measurable w.r.t. the Borel σ−algebra generated by τ1 for any (v1, ..., vN ) ∈ VN ,

and the restrictions of these mappings to ZN ∩ C(K̃π)N are even continuous w.r.t. τ1;

3. The family
{
g(·, v)|ZN ∩ C(K̃π)N

∣∣ v ∈ VN
}

is equicontinuous w.r.t. τ1, in particular the restriction

of g to
(
ZN ∩ C(K̃π)N

)
× VN is lower semicontinuous w.r.t. τ1 × τ2.

Proof:

The statement 1. may be verified by routine procedures. For that purpose it should be observed that

we may restrict ourselves to sequential weak lower semicontinuity by Lemma 4.4 and that the squared

L2−norm is weakly lower semicontinuous as a convex L2−norm continuous mapping.

Statement 2. follows easily from measurability of K̃π and the following observation

(*) For every ε1 > 0, there is some ε2 > 0 such that

sup
w∈W

∫
|w(x)|

∣∣1]y1,y2](x)− 1]z1,z2](x)
∣∣ p̂(x) dx < ε1

whenever (y1, y2), (z1, z2) ∈ [0,∞[2 with y1 ≤ y2, z1 ≤ z2 and (y1 − z1)2 + (y2 − z2)2 < ε2. Here W

denotes an arbitrary familiy of uniformly F̂−integrable real-valued mappings on ]0,∞[.
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In order to see (*) observe
∫ ∣∣1]y1,y2] − 1]z1,z2]

∣∣ p̂(x) dx =
∫ ∣∣1]y1,y2[ − 1]z1,z2[

∣∣ p̂(x) dx → 0 as (z1, z2) →

(y1, y2), and that
∣∣1]y1,y2] − 1]z1,z2]

∣∣ is just indicator function of the symmetric difference of the involved

intervals.

For the proof of statement 3. it suffices to show τ1−equicontinuity of
{
g(·, v)|ZN ∩ C(K̃π)N

∣∣ v ∈ VN
}

because the second part of statement 3. follows then in view of statement 1.. So let us fix some (x1, ..., xn) ∈

ZN ∩C(K̃π)N . Since ZN ∩C(K̃π)N ∈ τ1, we may find a bounded neighbourhood U ∈ τ1 of (x1, ..., xn) such

that U ⊆ C(K̃π)N∩[ρ, z̄]N for some ρ > 0. Then we obtain for any (x̃1, ..., x̃N ) ∈ U and any (v1, ..., vN ) ∈ VN

|g(x1, ..., xN , v1, ..., vN )− g(x̃1, ..., x̃N , v1, ..., vN )|

≤
N∑

i=1

∫ (
K̃π(xi)− vi(x)

)2 ∣∣1]xi−1,xi] − 1]x̃i−1,x̃i]

∣∣ p̂(x) dx
+

N∑
i=1

∫ ∣∣∣∣(K̃π(xi)− vi(x)
)2
−
(
K̃π(x̃i)− vi(x)

)2
∣∣∣∣1]x̃i−1,x̃i] p̂(x) dx

≤
N∑

i=1

sup
v∈V

∫ (
K̃π(xi)− v(x)

)2 ∣∣1]xi−1,xi] − 1]x̃i−1,x̃i]

∣∣ p̂(x) dx
+

N∑
i=1

sup
v∈V

∫ ∣∣∣∣(K̃π(xi)− v(x)
)2
−
(
K̃π(x̃i)− v(x)

)2
∣∣∣∣1]x̃i−1,x̃i] p̂(x) dx

≤
N∑

i=1

sup
v∈V

∫ (
K̃π(xi)− v(x)

)2 ∣∣1]xi−1,xi] − 1]x̃i−1,x̃i]

∣∣ p̂(x) dx
+

N∑
i=1

∣∣∣K̃π(xi)− K̃π(x̃i)
∣∣∣ sup

v∈V

∫ (
K̃π(xi) + K̃π(x̃i) + 2v(x)

)
p̂(x) dx

Since we have assumed K̃π to be a piecewise decreasing positive function, K̃π|[ρ, z̄] is bounded from above

by some positive δ. Additionally, sup
v∈V

∫
v(x) p̂(x) dx <∞ by weak compactness of clw(V), and

{
v2 | v ∈ V

}
is uniformly F̂−integrable due the integrability condition on V. Therefore, on one hand

N∑
i=1

∣∣∣K̃π(xi)− K̃π(x̃i)
∣∣∣ sup

v∈V

∫ (
K̃π(xi) + K̃π(x̃i) + 2v(x)

)
p̂(x) dx

≤
(

2δ + 2 sup
v∈V

∫
v(x) p̂(x) dx

) N∑
i=1

∣∣∣K̃π(xi)− K̃π(x̃i)
∣∣∣ .
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On the other hand
{
[K(x)− v]2 | x ∈ [ρ, z̄], v ∈ V

}
is uniformly F̂−integrable (cf. Bauer (1992), Korollar

21.3), and we may apply (*). Putting all together, the equicontinuity of
{
g(·, v)|ZN ∩ C(K̃π)N

∣∣ v ∈ VN
}

at (x1, ..., xN ) follows immediately, completing proof. �

Next let us introduce the lower semicontinuous envelope lsc(g) of g, defined to be the largest τ1×τ2−lower

semicontinuous R ∪ {∞}−valued mapping dominated by g. Notice that g and lsc(g) coincide on the set(
ZN ∩ C(K̃π)N

)
× VN by Proposition 3.6 in DalMaso (1993).

The lower semicontinuous envelope will turn out to be a useful tool concerning the solvability of the inverse

problems posed in the subsections before. Let us begin with the one coming out of the pure numerical

approach. In terms of g it reads as follows.

minimize inf
v∈VN

g(x1, ..., xN , v)

among all (x1, ..., xN ) ∈ ZN .

Fortunately, we may apply directly Theorem 3.8 in DalMaso (1993), observing that ZN × clw(V)N is

compact and sequentially compact w.r.t. τ1 × τ2, and by Lemma 4.5

lim
m→∞

∣∣∣∣ inf
v∈VN

g(xm, v)− inf
v∈VN

g(x0, v)
∣∣∣∣ ≤ lim

m→∞
sup

v∈VN

|g(xm, v)− g(x0, v)| = 0

for any sequence (xm)m∈N0 in ZN ∩ C(K̃π)N ∈ τ1 with xm → x0.

Theorem 4.6 Let
(
(xm, vm)

)
m

be a sequence in ZN ×VN such that lim
m→∞

g(xm, vm) = inf
x∈ZN

inf
v∈VN

g(x, v).

Then this sequence has at least one cluster point in ZN × clw(V)N , and every such cluster point (x∗, v∗)

satisfies

lsc(g)(x∗, v∗) = min
(x,v)∈ZN×clw(V)N

lsc(g)((x, v) = inf
(x,v)∈ZN×VN

g(x, v),

with inf
v∈VN

g(x∗) = inf
x∈ZN

inf
v∈VN

g(x, v) if the components of x∗ are continuity points of K̃π.

In view of Tonelli’s theorem the inverse problem we have formulated after introducing the Monte-Carlo

approach may be described in terms of g by

minimize inf
v∈VN

EF(N)

[
g(XF

1:N , ..., X
F
N :N , v)

]
among all F ∈ PN .

Concerning the solvability of this problem we may observe the following result.

18



Theorem 4.7 Let τw be the topology of weak convergence on the set of distributions on R, and let τw× τ2

denote the product topology of τw and the product weak topology τ2 on L2(F̂ )N . Furthermore let us consider

a sequence ((Fm, vm))m in PN × VN fulfilling

lim
m→∞

EFm(N)

[
g(XFm

1:N , ..., X
Fm
N :N , vm)

]
= inf

F∈PN

inf
v∈VN

EF(N)

[
g(XF

1:N , ..., X
F
N :N , v)

]
.

Then this sequence has a cluster point w.r.t. to τw × τ2. Every such cluster point (F ∗, v∗) satisfies

min
{

lim inf
m→∞

EFm(N)

[
g(XFm

1:N , ..., X
Fm
N :N , ṽm)

]
| ṽm → v∗

}
= min

v∈L2(F̂ )N
min

{
lim inf
m→∞

EFm(N)

[
g(XFm

1:N , ..., X
Fm
N :N , ṽm)

]
| ṽm → v

}
= inf

F∈PN

inf
v∈VN

EF(N)

[
g(XF

1:N , ..., X
F
N :N , v)

]
,

where even inf
v∈VN

EF ∗
[
g(XF

1:N , ..., X
F
N :N , v)

]
= inf

F∈PN

inf
v∈VN

EF(N)

[
g(XF

1:N , ..., X
F
N :N , v)

]
holds if z > 0, and

the set of discontinuity points of K̃π is a F ∗−null set (e.g. if F ∗ is a continuous distribution).

Proof:

First of all, since the topology of weak convergence for distributions on R is completely as well as separably

metrizable, and since the supports of the distributions Fm are uniformly enclosed in a compact subset of

R, the sequence (Fm)m is uniformly tight, and therefore has a cluster point by Prokhorov’s theorem.

Furthermore clw(V)N has been observed as sequentially τ2−compact by Lemma 4.4, so that we may

conclude that ((Fm, vm))m has a cluster point w.r.t. τw × τ2.

Now, let (F ∗, v∗) be a cluster point of ((Fm, vm))m . Without loss of generality we may assume that it

is even a limit point. Then the induced sequence (Fm(N))m of the respective joint distributions of the

order statistics XFm
1:N , ..., X

Fm
N :N has the joint distribution F ∗(N) of XF ∗

1:N , ..., X
F ∗
N :N as a limit point w.r.t. the

topology of weak convergence on the set of distributions on RN . Indeed, denoting the joint distribution

of the order statistics U1:N , ..., UN :N obtained from an i.i.d sample of size N according to the uniform

distribution on ]0, 1[ by FU,(N), we have Fm(N)

(
i=1

N
]−∞, xi]

)
= FU,(N)

(
i=1

N
]−∞, Fm(]−∞, xi])]

)
for any (x1, ..., xN ) ∈ RN , and an analogous expression for F ∗N . Then the claim follows immediately from

the Helly Bray theorem.
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Now we may apply directly Theorem 7.8 from DalMaso (1993) to the sequence (Gm)m of functions Gm :

L2(F̂ )N → R ∪ {∞}, defined by

Gm(v) def=

 EFm(N)

[
g(XFm

1:N , ..., X
Fm
N :N , v)

]
: v ∈ VN

∞ : otherwise
.

This proves the first part of the Theorem 4.7.

In the case of z > 0, the mapping K̃π|[z, z̄] is bounded, because as a result of section 3 we may describe K̃π

by K̃π =
k∑

i=1
1]yi−1,yi]wi, where 0 = y0 < y1 < ... < yk = ∞, and w1, ..., wk denote decreasing real-valued

mappings on ]0,∞[. This implies that g(·, v) is bounded too for every v ∈ V.

Moreover, [XF
i:N = x] is a null set for any distribution F whose distribution function is continuous at x.

Hence, denoting the set of continuity points of K̃π by C(K̃π)N , we have F(N)(ZN ×C(K̃π)N ) = 1 for every

F ∈ {Fm, F
∗ | m ∈ N} because by assumption K̃π is not continuous at finitely many points only. Therefore

in view of Lemma 4.5 we might draw on a well known result concerning uniform convergence w.r.t. the

topologies of weak convergence (cf. Billingsley and Topsoe (1967), Theorem 1) to conclude∣∣∣∣ inf
v∈VN

EFm(N)

[
g(XFm

1:N , ..., X
Fm
N :N , v)

]
− inf

v∈VN
EF ∗

(N)

[
g(XF ∗

1:N , ..., X
F ∗
N :N , v)

]∣∣∣∣
≤ sup

v∈VN

∣∣∣EFm(N)

[
g(XFm

1:N , ..., X
Fm
N :N , v

]
− EF ∗

(N)

[
g(XF ∗

1:N , ..., X
F ∗
N :N , v

]∣∣∣→ 0.

The proof is complete.

�

A Appendix

We continue with the consumption model of section 3, retaking all assumptions and notations. The aim of

this section is to provide a proof for Theorem 3.1. For this purpose let us firstly characterize the optimal

consumptions c̄1(ST ), ..., c̄m(ST ) of the individual consumer.

Assumption (3.5) enables us to apply the dominated convergence theorem to show

(A1) continuity of the mappings

gi
st

:]0,∞[→ R, y 7→ Ii{sT , yKπ(sT )}Kπ(sT ) (sT ≥ 0, i ∈ {1, ...,m}).
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Furthermore the Inada conditions together with monotone and dominated convergence imply

(A2) lim
y→0

gi
sT

(y) = ∞ and lim
y→∞

gi
sT

(y) = 0.

We are now ready to extend the classical characterization of the optimal consumption to the case of

extended expected utility preferences.

Theorem A.1 Assuming (4) – (11), there exist y1, ..., ym > 0 such that

c̄i(ST ) = Ii{ST , yiKπ(ST )} for i = 1, . . . ,m

Proof:

Let us fix i ∈ {1, ...,m} and denote xi
def= wi

0 +E[ei(ST )Kπ(ST )]. Since xi > 0 we may find in view of (A1),

(A2) some yi > 0 with g(yi) = xi.

Let c(ST ) be a nonnegative random variable with E[c(ST )Kπ(ST )] ≤ xi. Then

E[u{ST , c(St)}] + yi(xi − E[c(ST )Kπ(ST )] = yixi + E[u{ST , c(St)} − yic(ST )Kπ(ST )] ≤

yixi + sup
x≥0

E[u(ST , x)− yixKπ(ST )] =

yixi + E[u[ST , Ii{ST , yiKπ(ST )}]− yiIi{ST , yiKπ(ST )}Kπ(ST )] = E[u{ST , Ii(ST , yiKπ(ST ))}].

Therefore Ii(ST , yiKπ(ST )) solves the optimization problem of consumer i. Moreover, the numerical rep-

resentation Ui of consumer’s i preferences is strictly concave in view of strict concavity of ui(x, ·) for every

x ≥ 0. In particular Ii(ST , yiKπ(ST )) is the unique solution, hence being identical with c̄i(ST ). �

Before starting with the proof of Theorem 3.1 let us consider for purposes of reference the classical case

of the consumer being expected utility maximizer. Indeed as an additional corollary of Theorem 3.1, we

may retain the folk result concerning the risk neutral price valuation and the v. Neumann-Morgenstern

utility index of the representative agent. More precisely, let us assume that there exist mappings u1, ..., ur

from R+ into R ∪ {−∞} satisfying u1(x, ·) = u1, ..., u
m(x, ·) = um for x ≥ 0, and

(A3) u1(y), ..., um(y) ∈ R for y > 0,

(A4) u1, ..., um are continuous, strictly increasing as well as strictly concave.
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Then

u(y) def= sup

{
m∑

i=1

αiui(yi) | y1, ..., ym ≥ 0,
m∑

i=1

yi ≤ y

}
= uα(x, y) for x, y ≥ 0.

The adaptions of (10), (11) read as follows. We shall impose the so called Inada conditions on the state

independent utility indices u1, ..., um, i.e.

(A5) u1|]0,∞[, ..., um|]0,∞[ are assumed to be continuously differentiable satisfying

lim
e→0

dui

dy

∣∣
y=e

= ∞, lim
e→∞

dui

dy

∣∣
y=e

= 0 (i = 1, ...,m).

(A6) E[I1(yKπ(ST ))], . . . ,E[Im(yKπ(ST ))] < ∞ for any y > 0, where I1, ..., Ir denote the inverses of
du1

dy
, ...,

dum

dy
respectively.

We may conclude immediately from Theorem 3.1 the announced result.

Corollary A.2 Let ē(ST ) =
ST

S0
, and let u1|]0,∞[, ..., um|]0,∞[ be twice continuously differentiable. Then

under (A3) - (A6), u|]0,∞[ is continuously differentiable, and for any αi > 0 there exists some βi > 0

such that
du

dy

∣∣
y=

sT
S0

= αi
dui

dy

∣∣
y=c̄i(sT )

= αiβiKπ(sT ) for any realization sT of ST .

Proof of Theorem 3.1:

Without loss of generality let us set {1, ..., r} def=
{
i ∈ {1, ...,m} | αi > 0}. Then, defining gi

def= αiui, we

have uα =
r∑

i=1
gi, and we may apply Lemmata B.1, B.2 and Proposition B.3 (cf. Appendix B). Then, in

view of Lemmata B.1, B.2 and (3B), we obtain

uα (sT , ē[sT ]) =
r∑

i=1

αiu
i
(
sT , c̄

i[sT ]
)

for every realization sT of ST .

On one hand by Theorem A.1, there exist y1, ..., ym > 0 such that

c̄i(ST ) = Ii(ST , yiKπ(ST )) > 0 for i = 1, ..., r.

On the other hand, due to Proposition B.3, uα(sT , ·)|]0,∞[ is differentiable for every realization sT ,

satisfying

αi
ui(sT , ·)
dy

∣∣
y=c̄i(sT )

=
u(sT , ·)
dy

∣∣
y=ē(sT )

for i ∈ {1, ..., r} and any realization sT . Notice that by construction the random variable ē(ST ) has strictly

positive outcomes only. Now, the statement of Theorem 3.1 is clear. �
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B Appendix

Throughout this section let the mappings g1, ...gr : R2
+ → R ∪ {−∞} satisfy the following conditions:

(B0) g1(x, y), ..., gr(x, y) ∈ R for x ≥ 0, y > 0;

(B1) g1(x, ·), ..., gr(x, ·) are continuous, strictly increasing and strictly concave for x ≥ 0;

(B2) g1(·, y), ..., gr(·, y) are Borel-measurable for y ≥ 0.

Furthermore let g : R2
+ → R ∪ {−∞,∞} be defined by

g(x, y) = sup

{
r∑

i=1

gi(x, yi) | y1, ..., yr ≥ 0,
r∑

i=1

yi ≤ y

}
.

Indeed g(x, 0) =
r∑

i=1
gi(x, 0) ∈ R ∪ {−infty} for x ≥ 0, and

−∞ <

r∑
i=1

gi(x,
y

r
) ≤ g(x, y) ≤

r∑
i=1

gi(x, y) <∞

for x ≥ 0, y > 0 due to (B0), (B1).

Lemma B.1 For any x, y ≥ 0 there is some unique φ(x, y) = (φ1(x, y), ..., φ(x, y)) ∈ Rm
+ such that

m∑
i=1

φi(x, y) ≤ y and
r∑

i=1

gi(x, φi(x, y)) = g(x, y).

Furthermore
m∑

i=1
φi(x, y) = y.

Proof:

Let x, y ≥ 0. For y = 0 the statement of Lemma B.1 is obvious. So let y > 0, which means g(x, y) ∈ R.

Due to (B1), the mapping

f :

{
(y1, ..., yr) ∈ Rr

+

∣∣∣ r∑
i=1

yi ≤ y,

r∑
i=1

gi(x, yi) ≥ g(x, y)− 1

}
→ R, (y1, ..., yr) 7→

r∑
i=1

gi(x, yi)

is continuous, strictly concave, and defined on a nonvoid convex compact set. Therefore f attains it

maximum at a unique φ(x, y). Obviously,
r∑

i=1
φi(x, y) = y because f is strictly increasing too by (B1).

The proof is complete. �

Lemma B.1 defines a mapping φ = (φ1, ..., φr) : R2
+ → Rr

+. It is Borel-measurable as will be shown now.
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Lemma B.2 φ is Borel-measurable.

Proof:

It suffices to show that φ−1

(
i=1

r

[0, ai]
)

is a Borel-subset of R2
+. For this purpose define for any (a1, ..., ar)

from Rr
+ the mapping ga1...ar : R+ × R+ → R ∪ {−∞} by

ga1...ar(x, y) = sup

{
r∑

i=1

gi(x, yi) | (y1, ..., yr) ∈
i=1

r

[0, ai],
r∑

i=1

yi ≤ y

}
.

Notice that ga1...ar(x, y) ∈ R for x ≥ 0, y > 0, analogously to g(x, y) ∈ R for x ≥ 0, y > 0. Furthermore

g1(x, ·), ..., gr(x, ·) are continuous for any x ≥ 0. Hence, setting Ra1...ar =
i=1

r

[0, ai] × Qm,

g−1
a1...ar

(]z,∞[) =
⋃

(y1,...,yr)∈Ra1...ar

(
r∑

i=1

αigi(·, yi)

)−1 (
]z,∞[

)
×

[
r∑

i=1

yi,∞

[
(z ∈ R).

Thus g−1
a1...ar

(]z,∞[) is a Borel-subset of R2
+ for every z ∈ R by assumption (B2). Then we may conclude

that

φ−1

(
i=1

r

[0, ai]
)

=

(
sup

(b1,...,br)∈Qr
+

gb1...br − ga1...ar

)−1

({0})

is a Borel subset of R2
+ for any (a1, ..., ar) ∈ Rr

+, which completes the proof. �

In order to characterize the mapping φ in terms of derivatives of the functions g1(x, ·), ..., gr(x, ·), it is

customary to impose the Inada conditions, i.e.

(B3) for any x ≥ 0 the mappings g1(x, ·)|]0,∞[, ..., gr(x, ·)|]0,∞[ are assumed to be continuously differen-

tiable satisfying

lim
ε→0

∂gi(x, ·)
∂y

∣∣
y=ε

= ∞, lim
ε→∞

∂gi(x, ·)
∂y

∣∣
y=e

= 0, i = 1, . . . , r.

The Inada conditions together with condition (B1) imply that for any i ∈ {1, ..., r} and every x ≥ 0

the mapping
∂gi(x, ·)
∂y

∣∣]0,∞[ is injective onto ]0,∞[ with continuously differentiable, strictly decreasing

inverse say Ii(x, ·).

Proposition B.3 Let the assumptions (B0) - (B3) be fulfilled, and let g1(x, ·)|]0,∞[, ..., gr(x, ·)|]0,∞[ be

twice continuously differentiable.

Then for any x ≥ 0 the mapping g(x, ·)
∣∣]0,∞[ is differentiable satisfying

φ(x, y) =
(
I1

[
x,
∂g(x, ·)
∂y

∣∣
y

]
, . . . , Ir

[
x,
∂g(x, ·)
∂y

∣∣
y

])
for y > 0.
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Proof:

Let for x ≥ 0 the mapping Fx : ]0,∞[×]0,∞[→ R be defined by Fx(y, z) =
r∑

i=1
Ii(x, z)− y.

Since the mappings g1(x, ·)|]0,∞[, ..., gr(x, ·)|]0,∞[ are assumed to be strictly concave and twice contin-

uously differentiable, their second derivatives are strictly negative. Then by local inverse theorem the

mappings I1(x, ·), ..., Ir(x, ·) are continuously differentiable, having strictly negative derivatives. In partic-

ular Fx is continuously differentiable, satisfying

∂Fx

∂z

∣∣
(y,z)

6= 0 for y, z > 0.

Furthermore, since I1(x, ·), ..., Ir(x, ·) are continuous and strictly decreasing mappings onto ]0,∞[, we may

find for any y > 0 a unique ϕ(y) > 0 with F (y, ϕ(y)) = 0. Drawing on the implicit function theorem,

y 7→ ϕ(y) defines a differentiable mapping ϕ :]0,∞[→]0,∞[.

Moreover, for y > 0 and y1, ..., yr ≥ 0 with
r∑

i=1
yi ≤ y, we may conclude

r∑
i=1

gi(x, yi) + ϕ(y)(y −
r∑

i=1

yi) = ϕ(y)y +
r∑

i=1

(gi(x, yi) + ϕ(y)yi) ≤

ϕ(y)y +
r∑

i=1

sup
z≥0

(gi(x, z) + ϕ(y)z) =

ϕ(y)y +
r∑

i=1

[gi{x, Ii(x, ϕ(y))}+ ϕ(y)Ii{x, ϕ(y)}] =

r∑
i=1

gi[x, Ii{x, ϕ(y)}]− Fx{y, ϕ(y)} =
r∑

i=1

gi[x, Ii{x, ϕ(y)}].

This means

g(x, y) =
r∑

i=1

gi[x, Ii{x, ϕ(y)}],

and hence by Lemma B.1

(*) φ(x, y) = (I1[x, ϕ(y)], ..., Ir[x, ϕ(y)]).

As a further consequence g(x, ·)|]0,∞[ is differentiable satisfying

dg(x, ·)
dy

∣∣
y
=

r∑
i=1

ϕ(y)
dIi(x, ·) ◦ ϕ

dy

∣∣
y
= ϕ(y)

d

(
r∑

i=1
Ii(x, ·) ◦ ϕ

)
dy

∣∣
y
= ϕ(y).

For the last equation notice that
r∑

i=1
Ii(x, ·) ◦ ϕ is just the identity on ]0,∞[. In view of (*) the proof is

complete. �
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C Appendix

Proposition C.1 Let g :]0,∞[→ R be a mapping whose set of continuity points C(g) is an open subset of

R. Furthermore, let F be an atomless distribution with satisfying F ([z,∞[) = 1 for some z ≥ 0. Addition-

ally, let (XN )N denote an i.i.d. sequence of random variables over some probability space (Ω̃, F̃ , P̃) with

common distribution F, inducing for any N the order statistics X1:N , ..., XN :N with z def= X0:N ≤ X1:N ≤

... ≤ XN :N . Then for any continuity point x of g which belongs to the topological interior int(supp(F )) of

the support of F we obtain
N∑

i=1

g(Xi:N )1]X(i−1):N ,Xi:N ] → g(x) a.s..

In particular, setting i(F ) def= inf{x | F (] −∞, x]) > 0} and s(F ) def= sup{x | F (] −∞, x]) < 1}, we may

even achieve this convergence for any x ∈ C(g)∩]i(F ), s(F )[ if supp(F ) is konvex.

Proof:

Let x ∈ C(g) ∩ int(supp(F )), let q−F , q
+
F denote the lower and upper quantile functions of F respectively,

and let us define α0
def= F (] −∞, x]). Since F is atomless, and since x ∈ int(supp(F )) we have α0 ∈]0, 1[

and q−F (α0) = q+F (α0) = x.

Let ε > 0 be fixed. By assumption C(g) is open so that there is some δ > 0 such that g|]x − δ, x + δ[ is

continuous, and |g(y) − g(x)| < ε for any y ∈]x − δ, x + δ[. Furthermore, the lower and upper quantile

functions of F differ on at most countable points only, and the distribution function of F is continuous.

Hence we may find an antitone sequence (αn)n∈N in ]α0, 1[ which converges to α0 such that q−F (αn) =

q+F (αn) def= qF (αn) for every n ∈ N.

We may draw on the asympotic theory of order statistics to find some A ∈ F̃ , P̃(A) = 1, such that

lim
N→∞

X1:N (ω) = i(F ) for ω ∈ A, and lim
N→∞

X[Nαj+1]:N (ω) = qF (αj)

holds for every ω ∈ A and any j ∈ N, where [Nαj + 1] denotes the largest l ∈ N with l ≤ Nαj + 1 (cf.

Witting and Müller-Funk (1995), Satz 7.108, Satz 7.120).

Now let us fix ω ∈ A. Putting things together, we have qF (αj) ∈]x, x+ δ[, and thus

X1:N (ω) < x < X[Nαj+1]:N (ω) < x+ δ
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for sufficiently large j and N. Hence, setting iN
def= min{i ∈ {1, ..., N} | x ≤ Xi:N (ω)}, we obtain the

inequalities XiN :N (ω) ≤ X[Nαj+]:N (ω) < x+ δ, implying∣∣∣∣∣
N∑

i=1

g(Xi:N )1]X(i−1):N ,Xi:N ](ω)− g(x)

∣∣∣∣∣ = |g(XiN :N (ω))− g(x)| < ε.

The remaining part of follows immediately from the observation that int(supp(F )) =]i(F ), s(F )[ is valid

for convex supp(F ).

�
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Dana, R.-A. and Jeanblanc, M. (2003). Financial Markets in Continuous Time. Springer, Berlin.
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