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Alessandra Amendola † Giuseppe Storti ‡
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Abstract

This paper proposes a novel approach to the combination of conditional covariance
matrix forecasts based on the use of the Generalized Method of Moments (GMM). It
is shown how the procedure can be generalized to deal with large dimensional systems
by means of a two-step strategy. The finite sample properties of the GMM estimator
of the combination weights are investigated by Monte Carlo simulations. Finally, in
order to give an appraisal of the economic implications of the combined volatility
predictor, the results of an application to tactical asset allocation are presented.

Keywords: Multivariate GARCH, Forecast Combination, GMM, Portfolio Opti-
mization.

JEL classification: C52, C53, C32, G11,G17.

1 Introduction

In banks and other financial institutions, the implementation of effective risk management
strategies requires the creation and management of large dimensional portfolios. In theory
multivariate GARCH (MGARCH) models offer a flexible tool for the estimation of portfolio
volatility. In practice this is not the case if the dimension of the portfolio to be analyzed
is even moderately (say > 10) large. The building of tractable multivariate models for
the conditional volatility of high dimensional portfolios requires the imposition of severe
constraints on the volatility dynamics. At the same time, data scarcity and computational

∗Acknowledgements: This research was supported by the Deutsche Forschungsgemeinschaft through
the SFB 649 ”Economic Risk”. The authors would like to thank participants to the CFE08 and IASC
2008 conferences for valuable comments and suggestions on a previous version of the paper.

†Department of Economics and Statistics,University of Salerno, Italy.
E-mail: alamendola@unisa.it

‡Department of Economics and Statistics, University of Salerno, Italy.
E-mail: storti@unisa.it

1



constraints limit the development of model selection techniques for non-nested multivariate
volatility models. Hence, at the model building stage, constraints are often imposed on an a

priori basis without following any formal statistical testing procedure. This situation leads
to a potentially high degree of model uncertainty which can have a dramatic influence on the
volatility predictions generated by different competing models. It is easy to recognize that
this is a critical problem for risk managers and, in general, for any practitioner interested
in the generation of accurate volatility forecasts. The problem of model uncertainty in
multivariate conditional heteroskedastic models has already been addressed by Pesaran
and Zaffaroni (2005). In order to reduce the risk deriving from inadvertently using a wrong

MGARCH model, they discuss a procedure based on the use of Bayesian model averaging
techniques. This paper proposes an alternative approach to dealing with model uncertainty
in multivariate volatility predictions. Differently from Pesaran and Zaffaroni (2005), who
focus on the combination of forecast probability distribution functions, our approach aims
at combining point forecasts of conditional covariance matrices. The literature on the
combination of conditional mean forecasts is quite mature dating back to the seminal
paper by Bates and Granger (1969). Classical forecast combination techniques are based
on the minimization of the Mean Squared Forecast Error (MSFE). So, in most cases, the
combination weights associated to different competing models can be estimated by standard
regression techniques. However, when combining volatility forecasts, loss functions such
as the MSFE cannot be directly used since the conditional variance is not observed. So a
proxy is needed. Common approaches rely on using squared returns, but these offer a noisy
measure of volatility. An alternative solution is to use realized volatility, which is a much
more accurate measure of volatility. Regarding the use of realized volatility, care is needed
in the choice of the discretization interval. Too wide intervals result in inefficient estimates
but, if the chosen integration interval is too narrow, micro-structure market frictions can
distort the resulting measure of the unobserved volatility (Andersen et al. (2005)). Also,
in some applications (e.g. macroeconomic applications) intra-daily (or, in general, high

frequency) observations on the phenomenon of interest are not available and so realized
volatility measures cannot be computed. Last, but not least, most of the literature on
forecast combination typically deals with univariate time series while we are interested in
the analysis of large dimensional multivariate processes.

To overcome these difficulties, in an univariate setting, Amendola and Storti (2008)
have suggested a procedure for combining volatility forecasts which is based on the use of
the Generalized Method of Moments (GMM) for the estimation of the combining weights.
The moment conditions used to build the GMM criterion are based on theoretically founded
restrictions on the stochastic structure of the standardized residuals.

Aim of this paper is to generalize this procedure to the combination of multivariate
volatility forecasts. This task is not straightforward due to the dimensionality problems
typically affecting multivariate conditional heteroskedastic models. In particular, it hap-
pens that the number of moment conditions to be imposed rapidly tends to explode with
the model’s dimension. This implies that the size of the problem becomes unmanageable
even for relatively moderate values of the cross-sectional dimension. In order to overcome
this problem, our approach is to disaggregate the full portfolio of assets into subsets of
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lower dimension. In practice, the estimation of combination weights is based on a two-step
procedure. The first step is related to the combination of conditional covariance matrix
forecasts for low-dimensional systems, namely bivariate systems. In this case the GMM
estimation of the combination weights is performed following a direct generalization of the
univariate procedure with the difference that, in a bivariate setting, we need to impose
constraints not only on the autocorrelation functions of the raw and squared standardized
residuals but also on their cross-correlations. In the following step, we apply a procedure
which resembles, in the spirit, the McGyver method proposed by Engle (2007) for the
estimation of high dimensional Dynamic Conditional Correlation (DCC) models. A com-
plex computational problem is then disaggregated into a number of simpler low-dimension
problems.

The structure of the paper is as follows. In section 2 the combined GMM volatility
predictor is presented while the disaggregate estimation procedure for large dimensional
systems is illustrated in section 3. The finite sample properties of the GMM estimator
are investigated in in section 4 by means of a Monte Carlo simulation study while section
5 evaluates the economic relevance of the proposed procedure presenting the results of
an application to portfolio optimization within a tactical asset allocation problem. The
portfolio of assets we consider includes data on the whole set of 30 stocks used to compute
the Dow Jones index. Some concluding remarks are given in the last section.

2 The combined GMM volatility estimator

In this section we introduce and discuss an approach to the combination of multivariate
volatility forecasts generated by different, possibly non-nested, models. The Data Gener-
ating Process (DGP) is assumed to be given by

rt = xt + ut (1)

ut = Ht
1/2zt (2)

where rt is a stationary and ergodic n-dimensional stochastic process; xt is the conditional
mean vector, which can potentially include lagged values of rt as well as other regressors;
zt is a (n × 1) random vector with E(zt) = 0n,1 and V ar(zt) = In,n, the order n identity
matrix; Ht

1/2 is a (n × n) positive definite (p.d.) matrix such that

Ht
1/2(Ht

1/2)
′

= var(rt|I
t−1).

Assuming that a set of k candidate models for rt is potentially available, let x̂ti, i = 1, . . . , k,
be the one step ahead predictor of rt generated by the ith model. The unconstrained
combined predictor of the level of the rt process can be defined as

x̃t =
k

∑

i=1

w
(x)
i x̂ti, (3)

3



with w̃
(x)
i ∈ ℜ.

Similarly, let Ĥt,i, for i = 1, . . . , k, be the (1 step ahead) p.d. predicted covariance
matrix generated by the ith candidate model. The combined conditional covariance matrix

predictor can be defined as

H̃t =

k
∑

i=1

w
(h)
i Ĥt,i, (4)

where w
(h)
i ≥ 0 are the combination weights associated to each model. Also assume ∃i :

w
(h)
i > 0, for i = 1, . . . , k. The assumption of non-negative variance weights (w

(h)
i ) is

required in order to guarantee the positive definiteness of the combined volatility predictor.
Finally, it is important to remark that we choose not to impose the convexity constraint

on the combining weights. The main advantage of adopting an unconstrained combination
scheme is that it allows to yield an unbiased combined predictor even if one or more of the
candidate predictors are biased. The standardized residuals from the combined volatility
predictor are defined as

z̃t = (
k

∑

i=1

w
(h)
i Ĥti)

−1/2(rt − xt). (5)

At this stage the problem is how to estimate the optimal combination weights for the
conditional mean and variance models. The approach we propose is based on the mini-
mization of a GMM loss function implying appropriate (theoretically founded) restrictions
on the moments of the standardized residuals z̃t. Any specific choice of weights generates a
different sequence of residuals characterized by different dynamical properties. The GMM
estimator simply selects the vector of weights returning the sequence of residuals which
most closely matches the theoretical restrictions imposed on z̃t. Moments based estimators
have already been used for estimating GARCH models parameters (Kristensen and Linton
(2006); Storti (2006)). Other applications of the GMM approach in finance have been
surveyed by Jagannathan et al. (2002). However the application of these techniques to
the combination of multivariate volatility forecasts still deserves investigation.
Technically, the estimated combination weights (w̃

(x)
i , w̃

(h)
i ) are chosen to solve the following

minimization problem

w̃ = argmin
w

mT (w)′Ω̂−1
T mT (w) (6)

where w̃ = (w̃(h), w̃(x))′ with w̃(x) = (w̃
(x)
1 , . . . , w̃

(x)
k ) and w̃(h) = w̃

(h)
1 , . . . , w̃

(h)
k ); mT (w) =

1
T

∑T
t=1 µ(w, t) and µ(w, t) is a (N × 1) vector of moment conditions; Ω̂T is a consistent

p.d. estimator of
Ω = lim

T→∞
TE(mT (w∗)mT (w∗)′)

with w∗ being the solution to the moment conditions i.e. E(µ(w∗, t)) = 0. Ω can be esti-
mated by the heteroskedasticity and autocorrelation robust estimator proposed by Newey
and West (1987). The weighting matrix Ω̂T plays an important role in GMM estimation.
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Although its choice does not affect consistency, it can have dramatic effects on the effi-
ciency of the GMM estimator (Newey and McFadden (1994)).
Each element of µ(w, t) specifies a restriction on the moments structure of the process z̃t

in equation (5). In particular the vector µ(w, t) can be partitioned as follows

µ
(1)
i,t = z̃i,t i = 1, . . . , n.

µ
(2)
ij,t =

{

z̃2
i,t − 1 ∀i = j;

z̃i,tz̃j,t ∀i 6= j; i, j = 1, . . . , n.

µ
(3)
ij,t = z̃i,tz̃j,t−h h = 1, . . . , g.

µ
(4)
ij,t = z̃2

i,tz̃
2
j,t−h − 1 h = 1, . . . , g.

The rationale behind the choice of the above reported moment conditions is to constrain the
standardized residuals z̃t, implied by a given set of combination weights, to be as close as
possible to a sequence of i.i.d. random vectors with zero expectation and identity covariance
matrix. The first set of conditions (µ

(1)
i,t ) restricts the standardized residual to have zero

expectation, E(z̃t) = 0n,1. The conditions on the covariance matrix, E(z̃tz̃
′

t) = In,n, are

met through µ
(2)
ij,t. The other two set of conditions µ

(3)
ij,t and µ

(4)
ij,t respectively imply that

E(z̃tz̃
′

t−h) = 0n,n and E[z̃.2
t (z̃.2

t−h)
′

] = 1n,n, where z̃.2
t is the vector obtained by squaring each

element in z̃t. The last set of conditions simply implies that z̃2
i,t and z̃2

j,t−h are uncorrelated
∀i, j = 1, . . . , n.

One difficulty with the direct application of this approach to large dimensional systems
is that the number of moment conditions to be imposed rapidly increases with the model’s
cross-sectional dimension n . This relationship is graphically represented in Figure 1 for the
case g = 1. So an appropriate strategy for reducing the problem to a tractable dimension
is needed. This point is addressed in the following section.

3 Disaggregate estimation of the combination weights

This section illustrates a two-step procedure which allows to apply our GMM procedure
for the combination of volatility forecasts to the modeling of large dimensional portfolios.
In the spirit of the ”MacGyver” method, proposed by Engle (2007) for the estimation of
high dimensional DCC (Engle (2002)) models, we extract all the possible bivariate systems
(ri,t, rj,t)

′ from the n-variate returns process (∀i, j). Then we use the GMM estimator in (6)

to generate a set of consistent estimates of the weights vector (w̃
(h)
i,m; w̃

(x)
i,m) for each bivariate

subsystem (m=1, . . . , n(n−1)/2; i = 1, . . . , k). For the i-th candidate model, the resulting
set of estimates is

W (i, M ; 2) =
(

w̃
(M)
i,1 , . . . , w̃

(M)
i,P

)

P = n(n − 1)/2, i = 1, . . . , k; M = h, x
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Figure 1: Number of moment conditions N vs n (g = 1).

The final estimates of the w
(M)
i are computed by applying a blending function B(.) to the

set W (i, M ; 2)
B(W (i, M ; 2)) = w̃i i = 1, . . . , k

The blending function B(.) can be any function satisfying the following consistency re-
quirement

B(w
(M)
i , . . . , w

(M)
i ) = wi i = 1, . . . , k; M = h, x.

The asymptotic properties of this estimator are not analytically known although Engle
(2007) investigates its finite sample properties by means of Monte Carlo simulations with
a cross-sectional dimension n varying from 3 to 50. The simulation results indicate that
the most accurate results are obtained when the median is used as blending function. For
this reason we also use the median of the bivariate estimates as blending function in our
estimations.
Using the disaggregate estimation procedure for dealing with large datasets gives a relevant
practical advantage. It allows to drastically reduce the number of moment conditions to
be simultaneously handled (which is equal to the corresponding number for a bivariate
system) giving a feasible solution to the estimation problem for large values of n. This
is evident from Table 3 which reports the number of moment conditions reached in the
disaggregate procedure as a function of the maximum lag value g. Another advantage of this

g 1 5 10 15 20
nm 13 45 85 125 165

Table 1: Number of moment conditions for the bivariate system vs. g
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approach is that, in very large dimensional systems, it is not necessary to analyze the whole
set of bivariate systems, whose number can be overwhelming, but it is in theory possible
to perform the estimation only on a subset of P0 < P bivariate systems. This implies
that, in situations in which the structure of the portfolio is continuosly changing over time,
the weights do not need to be re-estimated each time a new asset is added or excluded
from the portfolio. There is however no guidance on how to optimally select the subset
of assets to be used for estimation. Also, although the disaggregate estimation procedure
by its own definition returns consistent estimates, its theoretical efficiency properties are
not analytically known. Finally, the empirical distribution of the w̃

(m)
i can provide useful

information for detecting misspecifications. For example, a very disperse distribution can
provide hints in favor of the presence of heterogeneity in the combining weights.

4 A simulation experiment

In order to investigate the finite sample properties of the GMM estimator of the weights
w̃j (j = 1, . . . , 2k) we perform a Monte Carlo simulation study considering two different
settings. In the first case the DGP is assumed to be given by a bivariate system (n = 2)
while, in the second, it is assumed to be a system of dimension n = 20. In both cases, the
number of candidate models to be combined is set to k=2. Namely, we use a scalar DCC
and a scalar VEC (Bollerslev et al. (1988)) model. The conditional mean is assumed to
be equal to zero. The updating equation for the conditional covariance matrix Ht implied
by the chosen DCC model is defined by the following equations

Ht,DCC = DtRtDt

Dt = diag(H∗
t ) H∗

ii,t =
√

Vii,t

Vii,t = a0,i + a1,ir
2
i,t−1 + b1,iVii,t−1

Rt = (diag(Qt))
−1Qt(diag(Qt))

−1

Qt = R(1 − 0.02 − 0.96) + 0.02(ǫt−1ǫ
′

t−1) + 0.96Qt−1.

with i=1, . . . , n, ǫt = D−1
t rt, R = corr(ǫt). For the V EC model, the updating equation for

Ht is

vech(Ht,V EC) = c + 0.03vech(rt−1r
′

t−1) + 0.95vech(Ht−1,V EC).

Since we have set xt = 0, ∀t, we only need to specify the conditional variance weight asso-
ciated to each candidate model. The DGP is then defined by the following two equations

rt = H
1/2
t zt (7)

Ht = w
(h)
DCCHt,DCC + w

(h)
V ECHt,V EC (8)

with w
(h)
DCC = 0.65, w

(h)
V EC = 0.35 and zt ∼

iid
MV N(0n,1, In,n). Direct GMM estimation of the

weights is feasible only for n = 2 while, for n = 20, we need to resort to the disaggregate
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estimation procedure described in the previous section. First, we estimate the weights for
each of the possible 190 bivariate subsystems. Second, the final estimates of {w

(h)
DCC, w

(h)
V EC}

are computed taking the medians of the empirical distributions of the resulting bivariate
estimates.
The simulation study has been repeated for four different sample sizes, namely T={500,
1000, 2000, 5000}. For each sample size, in the bivariate case, we have generated 500
independent Monte Carlo replicates while, due to computational constraints, in the case
of n = 20 only a single series is generated for each value of T .

The maximum lag used to build the GMM moment conditions has ben set to g = 1
and the optimal weighting matrix Ω is estimated by the Newey-West estimator (Newey
and West (1987)). One complication arising with the Newey-West estimator is that the
estimated asymptotic covariance comes to depend on the parameter vector w. To overcome
this difficulty, following common practice in the GMM literature, we adopt a two stage
estimation procedure. First, we set Ω = IN,N to generate an initial consistent estimate
of the parameter vector w̃†. Second, we use w̃† to generate a consistent estimator of Ω,
Ω̂(w̃†) which is plugged into (6). A more efficient estimator of w is then obtained from the
maximization of the resulting loss function.
For the bivariate case, the simulated distributions of the estimated combination weights
are summarized in Figure 2 by means of box-plots. It can be easily observed how the
bias component is negligible for any value of T while the variability of the estimates is
rapidly decreasing as T is increasing. Similar considerations hold for the high dimensional
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Figure 2: Simulation results for bivariate systems: : w̃DCC , left, and w̃V EC , right. The
(green) horizontal line indicates the true parameter value.

case. Figure 3 reports the box-plots of the estimated weights computed from each of the
190 feasible bivariate subsystems. There is some bias for T = 500 but this is rapidly
disappearing for higher sample sizes. Also the distribution of bivariate estimates tends to
be characterized by lower variability as T increases. It is important to note that, although
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our exercise provides evidence in favor of the use of the disaggregate estimation procedure,
the empirical distributions in Figure 4 cannot be interpreted as estimates of the sampling
distribution of the disaggregate estimator. This is due to the fact that they are referred to
a single simulated series.
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Figure 3: Simulation results for high-dimensional systems (n = 20): w̃DCC , left, and w̃V EC ,
right. The (green) horizontal line indicates the true parameter value

5 Empirical evidence on financial data: an application

to tactical asset allocation

In order to assess the effectiveness of the proposed procedure in real financial applications,
in this section we present the results of an application to a portfolio optimization problem.
Namely, we consider a mean-variance framework in which we fix a target expected return
and try to minimize the portfolio volatility (see e.g. Fleming et al. (2001)). The portfolio
we consider is composed of a basket of risky assets, the whole set of stocks included in
the Dow Jones stock market index, and a riskless asset, a 3 months constant maturity US
Treasury bill.

We consider daily data ranging from 11.01.1999 to 11.08.2008 for a total of 2501 dat-
apoints. For stocks, returns were calculated as the first difference of log-transformed (ad-
justed) daily closing prices while returns on the risk free asset were measured in terms of
the interest rate on the 3 months US Treasury bill, adjusting for weekends and holidays.
All the data were downloaded from Datastream. Again, as candidate models, we select a
DCC and a VEC model. The conditional mean series xt is assumed to be constant. The
dataset is divided into three parts, observations from 1 to 1000 are used to generate initial
estimates of the parameters of the two candidate models. Conditional on these estimates,
we generate volatility forecasts for observations from 1001 to 2000. These predictions are
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Figure 4: Estimated weights distribution over 435 bivariate subsystems

then used to estimate the combination weights and to calculate the optimal combined
volatility predictor. Finally, observations from 2001-2500 are used for out-of-sample fore-
cast evaluation.

Namely, the first step is to fit the candidate models to data points included in period 1
and use the estimated parameters to generate 1-day-ahead volatility predictions for period
2. The estimated models are

Qt = R(1 − 0.0060 − 0.6714) + 0.0060
(0.0023)

(ǫt−1ǫ
′

t−1) + 0.6714
(0.2602)

Qt−1

Ht = S(1 − 0.0080 − 0.9563) + 0.0080
(0.0008)

(ut−1u
′

t−1) + 0.9563
(0.0050)

Ht−1

with S = var(rt). Volatility predictions generated from these models are used to estimate
the optimal combination weights (w̃).

Relying on the estimated weights w̃ we generate volatility predictions for period 3.
These predictions are then used for determining the optimal portfolio allocation over the
same period. Finally, the results of step 3 are compared with those obtained by separately
estimating the 2 candidate models using data from period 2. In this way both the com-
bined predictor and the individual models used for comparison are based on ”concurrent”
information sets.

The distributions of the estimated combination weights w̃i over 435 bivariate subsystems
are reported in Figure 5. The medians of these distributions are equal to 0.4192, for the
DCC, and to 0.4921 for the VEC model. The vector of optimal portfolio weights at time
t (ω̂t) is obtained as a solution of the constrained optimization problem

argmin
ωt

ω
′

tHtωt

subject to
ω

′

tµ + (1 − ω
′

tu)rf,t = µp

10



where u = 1n,1, µ = E(rt+1), µp is the expected target rate of return and rf,t is the daily
return rate on the risk free asset. The solution is analytically found as

ω̂t =
(µp − rf,t)H

−1
t (µp − rf,tu)

(µ − rf,tu)′H−1
t (µ − rf,tu)

(9)

So, at each time point, the portfolio weights at time (t + 1) are recalculated as a function
of the current prediction of the future conditional variance matrix Ht+1. In our exercise
we allow for short selling (and so for negative portfolio weights) while we do not consider
the effect of transaction costs.

Using equation (9) we have computed the optimal portfolios based on the combined
predictor and the candidate models estimated using data from period 2. We have then
compared their performances in terms of mean and variance of the implied portfolio returns
rp,t, autocorrelation function of standardized portfolio returns, final wealth (W) × unit
investment, expected utility (U), Sharpe ratio (SR).

The expected utility is calculated as in Fleming et al. (2001)

U(γ) =
1

T

T−1
∑

t=0

[

rp,t+1 −
γ

2(1 + γ)
r2
p,t+1

]

In the above formula the constant γ can be interpreted as a measure of the investor’s
relative risk aversion. The results are summarized in Table 2. We consider two different
values of the annual target return µp, 0.10 and 0.20. In both cases, the VEC model returns
the portfolio with the minimum variance. The portfolio implied by the combined predictor
is characterized by a slightly higher variance but also by the highest average return, final
end of the period wealth and Sharpe ratio. The value of expected utility measure gives
a summary measure of the overall performance of the investment strategies associated to
each competing model. We compute the expected utility for two different values of the risk
aversion parameter γ, 1 and 10. In both cases the highest expected utility is that returned
by the portfolio associated to the investment strategy implied by the combined predictor.

As a further benchmark for evaluating the perfomances of the different approaches,
for each strategy, we consider the autocorrelation functions of the implied standardized
portfolio residuals

ztj(p) = rt(p)/ĥtj(p) j = 0, 1, . . . , k

where, letting Ĥt0 = H̃t in order to compact notation, ξ
′

tj =
(

ω̂
′

tj 1 − ω̂tju
)

is the vector of

portfolio weights implied by model j and ĥ2
tj(p) = ξ

′

tjĤtjξtj is the portfolio variance implied
by the j − th candidate model. In Figure 5 we report the p-values of the Ljung-Box
Q-test performed on the sample autocorrelation functions of ztj(p) and z2

tj(p), taking into
account lags from 1 to 10. For ztj(p), both the DCC and VEC portfolios show significant
serial correlation at lag 1. For the DCC model, there is also evidence of autocorrelation
at lag 10. The portfolio generated by the combined predictor is not affected by this
problem. When we move to consider the autocorrelation function of z2

tj(p), we note that
the DCC portfolio’s squared residuals are characterized by a significant autocorrelation
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mup = 0.10+

comb. DCC VEC
var(rp,t)

∗ 0.0559 0.0570 0.0545
mean(rp,t)

+ 0.0582 0.0216 0.0362
W 1.1209 1.0424 1.0730

U(1)∗ 2.2973 0.8442 1.4229
U(10)∗ 2.2857 0.8325 1.4117

SR 0.0731 0.0115 0.0366
mup = 0.20+

comb. DCC VEC
var(rp,t)∗ 0.2612 0.2647 0.2527

mean(rp,t)
+ 0.1123 0.0324 0.0649

W 1.2414 1.0594 1.1304
U(1)∗ 4.6633 1.3003 2.6301
U(10)∗ 4.3370 1.1652 2.4622

SR 0.0758 0.0137 0.0397

Table 2: Summary statistics for alternative portfolio allocations based on the combined
volatility predictor, DCC and VEC models. Legend: (+) annualized value; (∗) × 104

.

pattern providing evidence that the DCC model is not able to characterize the volatility
dynamics of the portfolio returns. Again, this problem disappears when the conditional
covariance matrix estimates generated by the combined predictor are used to determine
the optimal portfolio.

6 Concluding Remarks

In multivariate modelling of conditional volatility for large dimensional portfolios, model
identification is not an easy task due to data scarcity and computational constraints. In
this framework, combining volatility forecasts from different models offers a simple and
practical solution for dealing with model uncertainty avoiding the risks related to having
to select a single candidate model.

Also, the two-step GMM approach to the estimation of the combination weights which
is discussed in this paper allows to deal with the prediction of volatility matrices in high
dimensional systems, overcoming the curse of dimensionality problem typically arising in
MGARCH models.

The results of our Monte Carlo simulation study provide encouraging evidence on the
finite sample properties of the proposed procedure in terms of both bias and variance.
Finally, the results of an application to a portfolio optimization problem suggest that our
GMM approach to combining volatility forecasts can be effectively applied in routine risk
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Figure 5: p-values vs. lag of the Ljung-Box Q-statistic for the standardized portfolio
residuals from different models (zp,t, left) and their squares (z2

p,t, right) (µp = 0.10). Similar
results are obtained for µp = 0.20.

management applications, allowing to improve over the performance of single (possibly
misspecified) volatility models.
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