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Abstract

In this paper we provide a review of copula theory with applications
to finance. We illustrate the idea on the bivariate framework and discuss
the simple, elliptical and Archimedean classes of copulae. Since the cop-
ulae model the dependency structure between random variables, next we
explain the link between the copulae and common dependency measures,
such as Kendall’s tau and Spearman’s rho. In the next section the copulae
are generalized to the multivariate case. In this general setup we discuss
and provide an intensive literature review of estimation and simulation
techniques. Separate section is devoted to the goodness-of-fit tests. The
importance of copulae in finance we illustrate on the example of asset
allocation problems, Value-at-Risk and time series models. The paper is
complemented with an extensive simulation study and an application to
financial data.
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1 Modeling Dependencies with Copulae
Wolfgang Härdle, Ostap Okhrin and Yarema Okhrin

1.1 Introduction

The modeling and estimation of multivariate distributions is one of the most
critical issues in financial and economic applications. The distributions are
usually restricted to the class of multivariate elliptical distributions. This
limits the analysis to a very narrow class of candidate distribution and re-
quires the estimation of a large number of parameters. Two further problems
are illustrated in Figure 1.1. The scatter plot in the first figure shows re-
alizations of two Gaussian random variables, the points are symmetric and
no extreme outliers can be observed. In contrast, the second picture exhibits
numerous outliers. The outliers in the first and third quadrants show that ex-
treme values often occur simultaneously for both variables. Such behavior is
observed in crisis periods, when strong negative movements on financial mar-
kets occur simultaneously. In the third figure we observe that the dependency
between negative values is different compared to positive values. This type
of non-symmetric dependency cannot be modeled by elliptical distributions,
because they impose a very specific radially symmetric dependency structure.
Both types of dependencies are often observed in financial applications. The
assumption of Gaussian distribution is therefore rarely consistent with the
empirical evidence and possibly leads to incorrect inferences from financial
models. Moreover, the correlation coefficient is equal for all three samples,
despite clear differences in the dependencies. This questions the suitability
of the correlation coefficient as the key measure of dependence for financial
data.

The seminal result of Sklar (1959) provides a partial solution to these prob-
lems. It allows the separation of marginal distributions from the dependency
structure between the random variables. Since the theory on modeling and
estimation of univariate distributions is well established compared to the
multivariate case, the initial problem reduces to modeling the dependency by
copulae. This approach has several important advantages. Firstly, it dramat-
ically widens the class of candidate distribution. Secondly, it allows a simple
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Figure 1.1. Scatter plots of bivariate samples with different
dependency structures

construction of distributions with less parameters than imposed by elliptical
models. Thirdly, the copula-based models reflect the real-world relationships
on financial markets better.

The purpose of this chapter is twofold. Firstly, to provide the theoretical
background, dealing with the estimation, simulation and testing of copula-
based models, and secondly, to discuss several important applications of cop-
ulae to financial problems. The chapter is structured as follows. The next
section provides a review of bivariate copulae. Here we also consider differ-
ent copula families and dependency measures. The third section extends the
discussion to a multivariate framework. The fourth and fifth sections provide
estimation and simulation techniques. The final section illustrates the use
of copulae in financial problems. We omit all proofs and follow the notation
used in Joe (1997).

1.2 Bivariate Copulae

Modeling and measuring the dependency between two random variables using
copulae is the subject of this section. There are several equivalent definitions
of the copula function. We define it as a bivariate distribution function with
both marginal distributions being uniform on [0, 1].

DEFINITION 1.1 The bivariate copula is a function C: [0, 1]2 → [0, 1]
with the following properties:

1. For every u1, u2 ∈ [0, 1] C(u1, 0) = 0 = C(0, u2).

2. For every u1, u2 ∈ [0, 1] C(u1, 1) = u1 and C(1, u2) = u2.

3. For every (u1, u2), (u′1, u
′
2) ∈ [0, 1]2 such that u1 ≤ u2 and u′1 ≤ u′2

C(u2, u
′
2)− C(u2, u

′
1)− C(u1, u

′
2) + C(u1, u

′
1) ≥ 0.
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Copulae gained their popularity due to a seminal paper by Sklar (1959),
where this term was first coined. The separation of the bivariate distribu-
tion function into the copula function and margins is formalized in the next
theorem (Nelsen (2006), Theorem 2.3.3).

PROPOSITION 1.1 Let F be a bivariate distribution function with mar-
gins F1 and F2, then there exists a copula C such that

F (x1, x2) = C{F1(x1), F2(x2)}, x1, x2 ∈ R. (1.1)

If F1 and F2 are continuous then C is unique. Otherwise C is uniquely
determined on F1(R)× F2(R).

Conversely, if C is a copula and F1 and F2 are univariate distribution func-
tions, then function F in (1.1) is a bivariate distribution function with mar-
gins F1 and F2.

The theorem allows us to depart an arbitrary continuous bivariate distribu-
tion into its marginal distributions and the dependency structure. The latter
is defined by the copula function.

The representation (1.1) also shows how new bivariate distributions can be
constructed. We can extend the class of standard elliptical distributions by
keeping the same elliptical copula function and varying the marginal distribu-
tions or vice versa. Going further we can take elliptical margins and impose
some non-symmetric form of dependency by considering non-elliptical cop-
ulae. This shows that copulae substantially widen the family of elliptical
distributions. To determine the copula function of a given bivariate distribu-
tion we use the transformation

C(u1, u2) = F{F−1
1 (u1), F

−1
2 (u2)}, u1, u2 ∈ [0, 1], (1.2)

where F−1
i , i = 1, 2 are generalized inverses of the marginal distribution

functions.

Since the copula function is a bivariate distribution with uniform margins, it
follows that the copula density could be determined in the usual way

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2
, u1, u2 ∈ [0, 1]. (1.3)

Being armed with the Theorem 1.1 and (1.3) we could write density function
f(·) of the bivariate distribution F in terms of copula as follows

f(x1, x2) = c{F1(x1), F2(x2)}f1(x1)f2(x2), x1, x2 ∈ R.



6 Wolfgang Härdle et al.

A very important property of copulae is given in Theorem 2.4.3 in Nelsen
(2006), in it, it is shown that copula is invariant under strictly monotone
transformations. This implies that the copulae capture only those features of
the joint distribution, which are invariant under increasing transformations.

1.2.1 Copula Families

Naturally there is an infinite number of different copula functions satisfying
the assumptions of Definition 1. In this section we discuss in details three
important sub-classes of simple, elliptical and Archimedean copulae.

Simplest Copulae

We are often interested in some extreme, special cases, like independence and
perfect positive or negative dependence. If two random variables X1 and X2
are stochastically independent, from the Theorem 1.1 the structure of such a
relationship is given by the product (independence) copula defined as

Π(u1, u2) = u1u2, u1, u2 ∈ [0, 1].

The contour diagrams of the bivariate density function with product copula
and either Gaussian or t-distributed margins are given in Figure 1.2.

Another two extremes are the lower and upper Fréchet-Hoeffding bounds.
They represent the perfect negative and positive dependences respectively

W (u1, u2) = max(0, u1+u2−1) and M(u1, u2) = min(u1, u2), u1, u2 ∈ [0, 1].

If C = W and (X1, X2) ∼ C(F1, F2) then X2 is a decreasing function of X1.
Similarly, if C = M , then X2 is an increasing function of X1. In general
we can argue that an arbitrary copula which represents some dependency
structure lies between these two bounds, i.e.

W (u1, u2) ≤ C(u1, u2) ≤M(u1, u2), u1, u2 ∈ [0, 1].

The bounds serve as benchmarks for the evaluation of the dependency mag-
nitude.

Elliptical Family

Due to the popularity of Gaussian and t-distributions in financial applica-
tions, the elliptical copulae also play an important role. The construction of
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this type of copulae is based directly on the Theorem 1.1 and (1.2). By the
Theorem 2.3.7 of Nelsen (2006) bivariate copula is elliptical (has reflection
symmetry) if and only if

C(u1, u2, θ) = u1 + u2 − 1 + C(1− u1, 1− u2, θ), u1, u2 ∈ [0, 1].

From (1.2) the Gaussian copula and its copula density are given by

CN(u1, u2, δ) = Φδ{Φ−1(u1),Φ
−1(u2)},

cN(u1, u2, δ) = (1− δ2)−
1
2 exp

{
− 1

2
(1− δ2)−1(u2

1 + u2
2 − 2δu1u2)

}
× exp

{1

2
(u2

1 + u2
2)
}
, for all u1, u2 ∈ [0, 1], δ ∈ [−1, 1]

where Φ is the distribution function of N(0, 1), Φ−1 is the functional inverse
of Φ and Φδ denotes the bivariate standard normal distribution function with
the correlation coefficient δ. The level plots of the respective density are given
in Figure 1.2. The t-distributed margins lead to more mass and variability
in the tails of the distribution. However, the curves are symmetric, which
reflects the ellipticity of the underlying copula.

In the bivariate case the t-copula and its density are given by

Ct(u1, u2, ν, δ) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞

Γ
(

ν+2
2

)
Γ
(

ν
2

)
πν
√

(1− δ2)

×
(

1 +
x2

1 − 2δx1x2 + x2
2

(1− δ2)ν

)−ν
2−1

dx1dx2,

ct(u1, u2, ν, δ) =
fνδ{t−1

ν (u1), t
−1
ν (u2)}

fν{t−1(u1)}fν{t−1(u2)}
, u1, u2, δ ∈ [0, 1],

where δ denotes the correlation coefficient, ν is the number of degrees of
freedom. fνδ and fν are joint and marginal t-distributions respectively, while
t−1
ν denotes the quantile function of the tν distribution. In-depth analysis of

the t-copula is done in Demarta and McNeil (2004).

Using (1.2) we can derive the copula function for an arbitrary elliptical dis-
tribution. The problem is, however, that such copulae depend on the in-
verse distribution functions and these are rarely available in an explicit form.
Therefore, the next class of copulae and their generalizations provide an im-
portant flexible and rich family of alternatives to the elliptical copulae.

Archimedean Family

Opposite to elliptical copulae, the Archimedean copulae are not constructed
using (1.2), but are related to Laplace transforms of bivariate distribution
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functions (see Section 1.6.2). Let L denote the class of Laplace transforms
which consists of strictly decreasing differentiable functions Joe (1997), i.e.

L = {φ : [0;∞)→ [0, 1] |φ(0) = 1, φ(∞) = 0; (−1)jφ(j) ≥ 0; j = 1, . . . ,∞}.

The function C : [0, 1]2 → [0, 1] defined as

C(u1, u2) = φ{φ−1(u1) + φ−1(u2)}, u1, u2 ∈ [0, 1]

is a 2-dimensional Archimedean copula, where φ ∈ L and is called the gener-
ator of the copula. It is straightforward to show that C(u1, u2) satisfies the
conditions of Definition 1. The generator usually depends on some param-
eters, however, generators with a single parameter θ are mainly considered.
Joe (1997) and Nelsen (2006) provide a thoroughly classified list of popular
generators for Archimedean copulae and discuss their properties. The most
useful in financial applications (see Patton (2004)) appears to be the Gumbel
copula with the generator function

φ(x, θ) = exp (−x1/θ), 1 ≤ θ <∞, x ∈ [0,∞].

It leads to the copula function

C(u1, u2, θ) = exp
[
−
{
(− log u1)

θ + (− log u2)
θ
}1/θ

]
,

1 ≤ θ <∞, u1, u2 ∈ [0, 1].

Consider a bivariate distribution based on the Gumbel copula with univariate
extreme valued marginal distributions. Genest and Rivest (1989) show that
this distribution is the only bivariate extreme value distribution based on an
Archimedean copula. Moreover, all distributions based on Archimedean cop-
ulae belong to its domain of attraction under common regularity conditions.

In contrary to the elliptical copulae, the Gumbel copula leads to asymmetric
contour diagrams in Figure 1.2. The Gumbel copula shows stronger linkage
between positive values, however, more variability and more mass in the
negative tail. The opposite is observed for the Clayton copula with the
generator and copula functions

φ(x, θ) = (θx+ 1)−
1
θ , 1 ≤ θ <∞, θ 6= 0, x ∈ [0,∞],

C(u1, u2, θ) = (u−θ
1 + u−θ

2 − 1)−
1
θ , 1 ≤ θ <∞, θ 6= 0, u1, u2 ∈ [0, 1].

Another popular copula generator is the Frank generator given by

φ(x, θ) = θ−1 log{1− (1− e−θ)e−x}, 0 ≤ θ <∞, x ∈ [0,∞].
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The respective Frank copula is the only elliptical Archimedean copula, with
the copula function

C(u1, u2, θ) = −θ−1 log

{
1− e−θ − (1− e−θu1)(1− e−θu2)

1− e−θ

}
,

0 ≤ θ <∞, u1, u2 ∈ [0, 1].

1.2.2 Dependence Measures

Since copulae define the dependency structure between random variables,
there is a relationship between the copulae and different dependency mea-
sures. The classical measures for continuous random variables are Kendall’s
τ and Spearman’s ρ. Similarly as copula functions, these measures are in-
variant under strictly increasing transformations. They are equal to 1 or −1
under perfect positive or negative dependence respectively. In contrast to
τ and ρ, the Pearson correlation coefficient measures the linear dependence
and, therefore, is unsuitable for measuring nonlinear relationships. Next we
discuss the relationship between τ , ρ and the underlying copula function.

DEFINITION 1.2 Let F be a continuous bivariate cumulative distribution
function with the copula C. Moreover, let (X1, X2) ∼ F and (X ′1, X

′
2) ∼ F

be independent random pairs. Then Kendall’s τ2 is given by

τ2 = P{(X1 −X ′1)(X2 −X ′2) > 0} − P{(X1 −X ′1)(X2 −X ′2) < 0}

= 2P{(X1 −X ′1)(X2 −X ′2) > 0} − 1 = 4

∫∫
[0,1]2

C(u1, u2) dC(u1, u2)− 1.

Kendall’s τ represents the difference between the probability of two random
concordant pairs and the probability of two random discordant pairs.

For most copula functions with a single parameter θ there is a one-to-one
relationship between θ and the Kendall’s τ2. For example, it holds that

τ2(Gaussian and t) =
2

π
arcsin δ,

τ2(Archimedean) = 4

∫ 1

0

φ−1(t)

(φ−1(t))′
dt+ 1, (Genest and MacKay (1986)),

τ2(Π) = 0, τ2(W ) = 1, τ2(M) = −1.

This implies, that for Gaussian, t and an arbitrary Archimedean copula we
can estimate the unknown copula parameter θ using a type of method of
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Gaussian margins t margins

p
ro

d
u
ct

co
p
u
la

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
2

−
1

0
1

2

G
a
u
ss

ia
n

co
p
u
la

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
2

−
1

0
1

2

G
u
m

b
e
l
co

p
u
la

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
2

−
1

0
1

2

C
la

y
to

n
co

p
u
la

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
2

−
1

0
1

2

Figure 1.2. Contour diagrams for product, Gaussian, Gum-
bel and Clayton copulae with Gaussian (left column) and t3
distributed (right column) margins.
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moments procedure with a single moment condition. This requires, however,
an estimator of τ2. Naturally (Kendall (1970)) it is computed by

τ̂2n =
4

n(n− 1)
Pn − 1,

where n stands for the sample size and Pn denotes the number of concordant
pairs, e.g. such pairs (X1, X2) and (X ′1, X

′
2) that (X1 − X ′1)(X2 − X ′2) > 0.

However, as argued by Genest, Ghoudi and Rivest (1995) the MM estimator
of copula parameters is highly inefficient (see Section 1.4). Next we provide
the definition and similar results for the Spearman’s ρ.

DEFINITION 1.3 Let F be a continuous bivariate distribution function
with the copula C and the univariate margins F1 and F2 respectively. Assume
that (X1, X2) ∼ F . Then the Spearman’s ρ is given by

ρ2 = 12

∫∫
R2

F1(x1)F2(x2) dF (x1, x2)− 3 = 12

∫∫
[0,1]2

u1u2 dC(u1, u2)− 3.

Similarly as for Kendall’s τ , we provide the relationship between Spearman’s
ρ and copulae.

ρ2(Gaussian and t) =
6

π
arcsin

δ

2
,

ρ2(Π) = 0, ρ2(W ) = 1, ρ2(M) = −1.

Unfortunately there is no explicit representation of Spearman’s ρ2 for Archimedean
in terms of generator functions as by Kendall’s τ . The estimator of ρ is easily
computed using

ρ̂2n =
12

n(n+ 1)(n− 1)

n∑
i=1

RiSi − 3
n+ 1

n− 1
,

where Ri and Si denote the ranks of two samples. For a detailed discussion
and relationship between these two measures we refer to Fredricks and Nelsen
(2004), Chen (2004), etc.

1.3 Multivariate Copulae

In this section we generalize the above theory to the multivariate case. First
we define the copula function and state Sklar’s theorem.
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DEFINITION 1.4 A d-dimensional copula is a function C: [0, 1]d → [0, 1]
with the following properties:

1. C(u1, . . . , ud) is increasing in each component ui ∈ [0, 1], i = 1, . . . , d.

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui for all ui ∈ [0, 1], i = 1, . . . , d.

3. For all (u1, . . . , ud), (u′1, . . . , u
′
d) ∈ [0, 1]d with ui < u′i we have

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(vj1, . . . , vjd) ≥ 0,

where vj1 = uj and vj2 = u′j, for all j = 1, . . . , d.

Thus a d-dimensional copula is the distribution function on [0, 1]d where
all marginal distributions are uniform on [0,1]. In the Sklar’s theorem the
very importance of copulae in the area of multivariate distributions has been
recapitulated in an exquisite way.

PROPOSITION 1.2 (Sklar (1959)) Let F be a multivariate distribution
function with margins F1, . . . , Fd, then there exists the copula C such that

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}, x1, . . . , xd ∈ R.

If Fi are continuous for i = 1, . . . , d then C is unique. Otherwise C is uniquely
determined on F1(R)× · · · × Fd(R).

Conversely, if C is a copula and F1, . . . , Fd are univariate distribution func-
tions, then function F defined above is a multivariate distribution function
with margins F1, . . . , Fd.

The representation in Sklar’s Theorem can be used to construct new multi-
variate distributions by changing either the copula function or the marginal
distributions. For an arbitrary continuous multivariate distribution we can
determine its copula from the transformation

C(u1, . . . , ud) = F{F−1
1 (u1), . . . , F

−1
d (ud)}, u1, . . . , ud ∈ [0, 1], (1.4)

where F−1
i are inverse marginal distribution functions. Copula density and

density of the multivariate distribution with respect to copula are

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 . . . ∂ud
, u1, . . . , ud ∈ [0, 1],

f(x1, . . . , xd) = c{F1(x1), . . . , Fd(xd)}
d∏

i=1

fi(xi), x1, . . . , xd ∈ R.

For the multivariate case as well as for the bivariate case copula function is
invariant under monotone transformations.
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1.3.1 Copula Families

It is straightforward to generalize the independence copula and the upper and
lower Fréchet-Hoeffdings bounds to the multivariate case. The independence
copula is defined by the product

Π(u1, . . . , ud) =
d∏

i=1

ui.

The upper and lower Fréchet-Hoeffdings bounds are given by

W (u1, . . . , ud) = max
(
0,

d∑
i=1

ui + 1− d
)
,

M(u1, . . . , ud) = min(u1, . . . , ud), u1, . . . , ud ∈ [0, 1].

respectively. An arbitrary copula C(u1, . . . , ud) lies between the upper and
lower Fréchet-Hoeffdings bounds

W (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤M(u1, . . . , ud).

Note, however, that the lower Fréchet-Hoeffding bound is not a copula func-
tion for d > 2.

The generalization of elliptical copulae to d > 2 is straightforward. In the
Gaussian case we have:

CN(u1, . . . , ud,Σ) = ΦΣ{Φ−1(u1), . . . ,Φ
−1(ud)},

cN(u1, . . . , ud,Σ) = |Σ|−1/2×

exp

{
− [Φ−1(u1), . . . ,Φ

−1(ud)](Σ
−1 − I)[Φ−1(u1), . . . ,Φ

−1(uk)]

2

}>
,

for all u1, . . . , ud ∈ [0, 1],

where ΦΣ is a d-dimensional normal distribution with zero mean and the
correlation matrix Σ. The variances of the variables are imposed by the
marginal distributions. Note, that in the multivariate case the implemen-
tation of elliptical copulae is very involved due to technical difficulties with
multivariate cdf’s.

Archimedean and Hierarchical Archimedean copulae

In contrast to the bivariate case, the multivariate setting allows construc-
tion methods for copulae. The simplest multivariate generalization of the
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Archimedean copulae is C : [0, 1]d → [0, 1] and is defined as

C(u1, . . . , ud) = φ{φ−1(u1) + · · ·+ φ−1(ud)}, u1, . . . , ud ∈ [0, 1], (1.5)

where φ ∈ L. This definition provides a simple, but rather limited technique
for the construction of multivariate copulae. The whole complex multivariate
dependency structure is determined by a single copula parameter. Further-
more, the multivariate Archimedean copulae imply that the variables are ex-
changeable. This means, that the distribution of (u1, . . . , ud) is the same as
of (uj1, . . . , ujd

) for all j` 6= jv. This is certainly not an acceptable assumption
in practical applications.

A much more flexible method is provided by hierarchical Archimedean copu-
lae (HAC), discussed by Joe (1997), Whelan (2004), Savu and Trede (2006),
Embrechts, Lindskog and McNeil (2003), Okhrin, Okhrin and Schmid (2007).
In the most general case of fully nested copulae, the copula function is given
by

C(u1, . . . , ud) = φd−1
{
φ−1

d−1 ◦ φd−2
(
. . . [φ−1

2 ◦ φ1{φ−1
1 (u1) + φ−1

1 (u2)} (1.6)

+ φ−1
2 (u3)] + · · ·+ φ−1

d−2(ud−1)
)

+ φ−1
d−1(ud)

}
= φd−1[φ

−1
d−1 ◦ C({φ1, . . . , φd−2})(u1, . . . , ud−1) + φ−1

d−1(ud)]

for φ−1
d−i ◦ φd−j ∈ L∗, i < j, where

L∗ = {ω : [0;∞)→ [0,∞) |ω(0) = 0,

ω(∞) =∞; (−1)j−1ω(j) ≥ 0; j = 1, . . . ,∞},

and “◦” is the composition operator. In contrast to the usual Archimedean
copula (1.5), the HAC defines the whole dependency structure in a recursive
way. At the lowest level, the dependency between the first two variables is
modeled by a copula function with the generator φ1, i.e. z1 = C(u1, u2) =
φ1{φ−1

1 (u1) + φ−1
1 (u2)}. At the second level another copula function is used

to model the dependency between z1 and u3, etc. Note, that the generators
φi can come from the same family and differ only through the parameter or,
to introduce more flexibility, come from different generator families. As an
alternative to the fully nested model, we can consider copula functions, with
arbitrary chosen combinations at each copula level, so-called partially nested
copulae. For example the following 4-dimensional copula, where the first and
the last two variables are joined by individual copulae with generators φ12
and φ34. Further, the resulted copulae are combined by a copula with the
generator φ.

C(u1, u2, u3, u4) = φ
(
φ−1[φ12{φ−1

12 (u1) + φ−1
12 (u2)}] (1.7)

+ φ−1[φ34{φ−1
34 (u3) + φ−1

34 (u4)}]
)
.
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Whelan (2004) and McNeil (2007) provide tools for generating samples from
Archimedean copulae, Savu and Trede (2006) derived the density of such cop-
ulae and Joe (1997) proves their positive quadrant dependence (see Theorem
4.4). Okhrin et al. (2007) considered methods for determining the optimal
structure of the HAC and provided asymptotic theory for the estimated pa-
rameters.

1.3.2 Dependence Measures

MMeasuring dependence in a multivariate framework is a tedious task. This
is due to the fact that, the generalizations of bivariate measures are not
unique. One of the multivariate extensions of the Kendall’s τ and its estima-
tor is proposed in Barbe, Genest, Ghoudi and Rémillard (1996)

τd =
2d

2d−1 − 1
E(V )− 1 =

2d

2d−1 − 1

∫
t dK(t)− 1, (1.8)

τ̂dn =
2d

2d−1 − 1
· 1
n

n∑
i=1

Vin − 1 =
2d

2d−1 − 1

∫
t dKn(t)− 1, (1.9)

where Vin = 1
n−1

∑n
m=1

∏d
j=1 1(xjm ≤ xim) and V = C{F1(X1), . . . , Fd(Xd)} ∈

[0, 1]. Kn(t) and K(t) are distribution functions of Vin and V respectively.
The expression in (1.8) implies that τd is an affine transformation of the ex-
pectation of the value of the copula. Genest and Rivest (1993) and Barbe
et al. (1996) provide in-depth investigation and derivation of the distribution
K.

A multivariate extension of Spearman’s ρ based on multivariate copula was
introduced in Wolff (1980):

ρd =
d+ 1

2d − (d+ 1)

{
2d

∫
· · ·
∫

[0,1]d
C(u1, . . . , ud) du1 . . . dud − 1

}
.

Schmid and Schmidt (2006a) and Schmid and Schmidt (2006b) discuss its
properties and provide a detailed analysis of its estimator given by

ρ̂dn =
d+ 1

2d − d− 1

[
2d

n

n∑
i=1

d∏
j=1

{1− F̂ (xij)} − 1

]
.

A version of the pairwise Spearman’s ρ was introduced in Kendall (1970)

ρr = 22
∑
m<l

(
d

2

)−1 ∫∫
[0,1]2

Cml(u, v) dudv − 1,

where Cml denotes the bivariate copula of the variables m and l.
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Generalizations

There are numerous techniques which allow for the construction of new types
of copulae from simple, elliptical or Archimedean copulae. For example,
copula families B11 and B12 (Joe (1997)) arise as a combination of the upper
Fréchet-Hoeffding bound and the product copula

CB11(u1, u2, θ) = θM(u1, u3) + (1− θ)Π(u1, u2)

= θmin{u1, u2}+ (1− θ)u1u2,

CB12(u1, u2, θ) = M θ(u1, u2)Π
1−θ(u1, u2)

= (min{u1, u2})θ(u1u2)
1−θ, u1, u2, θ ∈ [0, 1].

For the family B11 we used the property, that every convex combination of
copulae is a copula too. Family B12 is also known as Spearman or Cuadras-
Augé copula, which is a weighted geometric mean of the upper Fréchet-
Hoeffding bound and the product copula. Further generalization is done by
using power mean over the upper Fréchet-Hoeffding bound and the product
copula

Cp(u1, u2, θ1, θ2) = {θ1M
θ2(u1, u2) + (1− θ1)Π

θ2(u1, u2)}1/θ2

= {θ1 min(u1, u2)
θ2 + (1− θ1)(u1u2)

θ2}1/θ2,

θ1 ∈ [0, 1], θ2 ∈ R.

Nelsen (2006), Chapter 3 provides further methods of constructing multi-
variate copulae, one of them is based on the Archimedean n-copulae. This
family of copulae arises from simple multivariate Archimedean copula from
reparametrization λ = e−φt. We get

C(u1, . . . , ud) = λ−1{λ(u1) . . . λ(ud)} = λ−1[Π{λ(u1), . . . , λ(ud)}].

The function λ is known as a multiplicative generator of C. Replacing product
copula Π with an arbitrary copula C1 of dimension d we get a new copula
family, investigated in Morillas (2005).

Another popular approach to modeling multivariate distributions is based on
vines. This class was introduced in Joe (1996) and then discussed by Bedford
and Cooke (2001), Bedford and Cooke (2002), Kurowicka and Cooke (2006),
Aas, Czado, Frignessi and Bakken (2006) and Berg and Aas (2007). The
idea is based on the decomposition of a multivariate density into d(d− 1)/2
bivariate densities. In the literature we have only come accross two types of
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such structures D-vines and canonical vines. For the D-vine the density is

f(x1, . . . , xd) =

=
d∏

m=1

f(xm)
d−1∏
j=1

d−j∏
i=1

cji{F (xi|xi+1, . . . , xi+j−1), F (xi+j|xi+1, . . . , xi+j−1)},

where the conditional distribution is computed as a derivative with respect
to known arguments (in details in Sections 2.5 and 2.6.1). To get the copula
function we integrate the density over the d-dimensional hyper cube. As
noted by Berg and Aas (2007) there are only d(d− 1)/2 possible copulae to
be described using vines. For d = 10 it is only 45 different models, while using
HAC as in Okhrin et al. (2007) more than 300 million copulae are available.
However the estimation of the parameters of the model and simulation from
the copula are faster when vines are used.

1.4 Estimation Methods

The estimation of a copula-based multivariate distribution involves both the
estimation of the copula parameters θ and the estimation of the margins Fj,
j = 1, . . . , d. The properties and quality of the estimator of θ heavily depend
on the estimators of Fj, j = 1, . . . , d. We distinguish between a parametric
and a nonparametric specification of the margins. If we are interested only
in the dependency structure, the estimator of θ should be independent of
any parametric models for the margins. In practical applications, however,
we are interested in a complete distribution model and, therefore, parametric
models for margins are preferred (see Joe (1997)).

In the bivariate case a standard method of estimating the univariate param-
eter θ is based on Kendall’s τ statistic by Genest and Rivest (1993). The
estimator of τ complemented by the method of moments allows for the es-
timation of the parameters. However, as shown in Genest et al. (1995) the
maximum-likelihood method lead to substantially more efficient and general
estimators. For non-parametrically estimated margins, Genest et al. (1995)
show the consistency and asymptotic normality of ML estimators and derive
the moments of the asymptotic distribution. The maximum-likelihood esti-
mation can be performed simultaneously for the parameters of the margins
and of the copula function. Alternatively, a two-stage procedure can be ap-
plied, where we estimate the parameters of margins at the first stage and the
copula parameters at the second stage (see Joe (1997), Joe (2005)). Ferma-
nian and Scaillet (2003), Chen, Fan and Patton (2004) and Chen, Fan and
Tsyrennikov (2006) analyze the case of nonparametrically estimated margins.
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Chen and Huang (2007) considered a fully nonparametric estimation of the
copula. Next we provide details on both approaches.

Parametric margins

Let α = (α>1 , . . . ,α
>
d )> denote the vector of parameters of marginal distri-

butions and θ parameters of the copula. The classical full ML estimator η̂
of η = (α>,θ>)> solves the system

∂L(η,X)

∂η>
= 0,

where L(η,X) =
n∑

i=1

log

[
c{F1(x1i,α1), . . . , Fd(xdi,αd),θ}

d∏
j=1

fj(xji,αj)

]

=
n∑

i=1

[
log c{F1(x1i,α1), . . . , Fd(xdi,αd),θ}

+
d∑

j=1

log fj(xji,αj)
]
.

Following the standard theory on ML estimation, the estimator is efficient
and asymptotically normal, however, it is often computationally demanding
to solve the system simultaneously. Alternatively the multistage optimization
proposed in Joe (1997), Chapter 10 also known as inference of margins, can
be applied. First, we estimate separately the parameters of the margins and
then use them in the estimation of the copula parameters as known quantities.
The above optimization problem is then replaced by(

∂L1

∂α>1
, . . . ,

∂Ld

∂α>d
,
∂Ld+1

∂θ>

)>
= 0, (1.10)

where Lj =
n∑

i=1

lj(Xi), for j = 1, . . . , d+ 1,

lj(Xi) = log fj(xji,αj), for j = 1, . . . , d, i = 1, . . . , n,

ld+1(Xi) = log
[
c
{
F1(x1i,α1), . . . , Fd(xdi,αd)

}]
, for i = 1, . . . , n.

The first d components in (1.10) correspond to the usual ML estimation of
the parameters of the marginal distributions. The last component reflects
the estimation of the copula parameters. Detailed discussion on this method
could be found in Joe and Xu (1996). Note, that this procedure does not
lead to efficient estimators; however, as argued by Joe (1997) the loss in the
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efficiency is modest. The advantage of the two-stage procedure lies in the dra-
matic reduction of the numerical complexity. This is especially pronounced
in the case of hierarchical Archimedean copulae (see Okhrin et al. (2007)).
This method is a special case of the generalized method of moments with
an identity weighting matrix (see Cherubini, Luciano and Vecchiato (2004),
Section 4.5).

Canonical Maximum Likelihood

In this section we consider a nonparametric estimation of the marginal dis-
tributions. The asymptotic properties of the multistage estimators of θ do
not depend explicitly on the type of the nonparametric estimator, but on its
convergence properties. Here we use the rectangular kernel (histogram). The
estimator is given by

F̂j(x) =
1

n+ 1

n∑
i=1

1(xji ≤ x), j = 1, . . . , d.

The factor n/(n+1) is used to bound the cdf from one. Let F̂1, . . . , F̂d denote

the nonparametric estimators of F1, . . . , Fd. The canonical ML estimator θ̂ of
θ solves the system by maximizing the pseudo log-likelihood with estimated
margins F̂1, . . . , F̂d, i.e.

∂L
∂θ>

= 0,

where L =
n∑

i=1

l(Xi),

l(Xi) = log
[
c
{
F̂1(x1i), . . . , F̂d(xdi)

}]
, for i = 1, . . . , n.

As in the parametric case, the semiparametric estimator θ̂ is asymptotically
normal under suitable regularity conditions. This method was first used in
Oakes (2005) and then investigated by Genest et al. (1995) and Shih and
Louis (1995). For properties we refer to these papers.

1.5 Goodness-of-Fit Tests for Copulae

In this section we review the goodness-of-fit (GOF) tests for copulae. With
the GOF tests we test whether the underlying copula is equal to some target
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copula function or belongs to some copula family. The test problem could be
written as a composite or a simple null hypothesis

H0 : C ∈ C0, against H1 : C /∈ C0,

H0 : C = C0, against H1 : C 6= C0,

where C0 is some known parametric family of copulae, C0 is some known
target copula and C is the underlying true copula. The test problem is in
general equivalent to the GOF tests for multivariate distributions. However,
since the margins are estimated we cannot apply the standard test procedures
directly.

Several related tests have been introduced into the literature. As a simple
generalization of the standard χ2 an adopted χ2-test is proposed in Fermanian
(2005) (Section 2) which is based directly on the distance between C and C0.
Genest and Rivest (1993) consider, in a bivariate setup, a test based on the
true and empirical distributions of the pseudo-variable Z = C0(X, Y ). As a
measure they use the L2 norm. This approach is extended to the multivariate
case and other measures of proximity by Barbe et al. (1996), Wang and
Wells (2000), Genest, Quessy and Rémillard (2006). Wang and Wells (2000)
propose to compute a Crámer-von-Mises statistic of the form

Snξ =

∫ 1

ξ

{Kn(w)−K(w)}2 dw, ξ ∈ (0, 1),

where Kn(w) and K(w) are empirical and theoretical K-distributions from
Section 2.3.2. However exact p-values for this statistic cannot be com-
puted explicitly. Savu and Trede (2004) propose a χ2-test based on the
K-distribution. Tests of LR type were proposed in Chen and Fan (2005).
Unfortunately in most cases the distribution of the test statistic does not
follow a standard distribution and either bootstrap or other computationally
intensive methods should be used.

An alternative approach is based on the probability integral transform intro-
duced in Rosenblatt (1952) and applied in Breymann, Dias and Embrechts
(2003), Chen et al. (2004). The idea of the transformation is to construct the
variables

Y1 = F1(X1),

Yj = C0{Fj(Xj)|F1(X1), . . . , Fj−1(Xj−1)}, for j = 2, . . . , d,

where the conditional copula is defined as

C0(uj|u1, . . . , uj−1) =

∂j−1

∂u1...∂uj−1
C0(u1, . . . , uj, 1, . . . , 1)

∂j−1

∂u1...∂uj−1
C0(u1, . . . , uj−1, 1, . . . , 1)

.
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Under H0 the variables Yi, for i = 1, . . . , d are independently and uniformly
distributed on [0, 1]. Since the variables Yi are not directly observable, we

compute the pseudo variables Ŷji defined by

Ŷ1i = F̂1(X1i), (1.11)

Ŷji = C{F̂j(Xji)|F̂1(X1i), . . . , F̂j−1(Xj−1,i)},

for j = 2, . . . , d, i = 1, . . . , n. Chen et al. (2004) proposed two tests based on

Ŷji. Both can be used for our purposes, however here we discuss the second

test. Consider the variable W =
∑d

j=1[Φ
−1(Yj)]

2. Under H0 it holds that

W ∼ χ2
d. Similarly as Yj’s, W is not observed and its pseudo-observations

are computed as Ŵi =
∑d

j=1[Φ
−1(Yji)]

2. Breymann et al. (2003) assume
that estimating margins and copula parameters does not significantly affect
the distribution of Ŵi and apply a standard χ2 test directly to the pseudo-
observations.

Chen et al. (2004) develop a kernel-based test for the distribution of W and,
thus, account for estimation errors. Let ĝW (w) denote the kernel estimator

of the density of W , i.e. ĝW (w) = 1
nh

∑n
i=1Kh{w,Fχ2

d
(Ŵi)}, where Kh is

the univariate boundary kernel with the second order kernel function k(·).
Under H0 the density gW (w) is equal to one. As a measure of divergency

we use Ĵn =
∫ 1

0 {ĝW (w)− 1}2dw. Assuming non-parametric estimator of the
marginal distributions Chen et al. (2004) prove under regularity conditions
that

Tn = (n
√
hĴn − cn)/σ → N(0, 1),

where the parameters are defined in Chen et al. (2004). The proof of this
statement does not depend explicitly on the type of the non-parametric esti-
mator of the marginals Fi, but uses the order of F̂j(Xji)−Fj(Xji) as a function
of n. It can be shown that if the parametric families of marginal distribu-
tions are correctly specified and their parameters are consistently estimated,
then the statement holds also if we use parametric estimators for marginal
distributions. Since the test is distribution-free it is convenient to use it as
a GOF measure for different copulae in different dimensions. Moreover as
argued by Chen et al. (2004), the power and size of the test are comparable
with other more sophisticated tests.

1.6 Simulation Methods

Monte-Carlo simulations are often a single reliable solution method in many
financial problems. Within the simulation study the random variables are
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generated from some prescribed distributions. There are numerous methods
of simulating from copula-based distributions (see Frees and Valdez (1998),
Whelan (2004), Marshall and Olkin (1988), McNeil (2007), Embrechts, Mc-
Neil and Straumann (1999), Frey and McNeil (2003), Devroye (1986), etc.).
Here we focus on two of them, on the conditional inversion method and on
the method proposed by Marshall and Olkin (1988) for Archimedean copulae
with generalizations to hierarchical Archimedean copulae by McNeil (2007).

1.6.1 Conditional Inverse Method

The conditional inverse method is a general approach aimed of simulating
random variables from an arbitrary multivariate distribution. Here we sketch
this method on the example of simulating from copulae. The idea is to gen-
erate random variables recursively from the conditional distributions. Let
u1, . . . , ud be the sample we generate and let v1, . . . , vd ∼ U(0, 1) be a uni-
formly distributed random sample. We set u1 = v1. The rest of the variables
we generate using the recursion ui = C−1

i (vi|u1, . . . , ui−1) for i = 2, . . . , d,
where Ci = C(u1, . . . , ui, 1, . . . , 1) and the conditional distribution of Ui is
given by

Ci(ui|u1, . . . , ui−1) = P(Ui ≤ ui|U1 = u1 . . . Ui−1 = ui−1) =

∂i−1Ci(u1,...,ui)
∂u1...∂ui−1

∂i−1Ci−1(u1,...,ui−1)
∂u1...∂ui−1

.

The method is numerically expensive, since it depends on higher order deriva-
tives of C and the inverse of the conditional distribution function.

1.6.2 Marshal-Olkin Method

For simulating from Archimedean copulae a simpler method is introduced in
Marshall and Olkin (1988). The idea of the method is based on the fact that
the Archimedean copulae are derived from Laplace transforms. Let M be a
univariate cumulative distribution function of a positive random variable (so
that M(0) = 0) and φ is the Laplace transform of M , i.e.

φ(s) =

∫ ∞
0

exp{−sw} dM(w), s ≥ 0.

For any univariate distribution function F , a unique distribution G exists
such that

F (x) =

∫ ∞
0

Gα(x) dM(α) = φ{− logG(x)}.



1 Modeling Dependencies with Copulae 23

Considering d different univariate distributions F1, . . . , Fd, we obtain that

C(u1, . . . , ud) =

∫ ∞
0

d∏
i=1

Gα
i dM(α) = φ

[
d∑

i=1

φ−1{Fi(ui)}

]
is a multivariate distribution function. To add even more generality we re-
place the product of univariate distributions Gi with an arbitrary copula
function R

C(u1, . . . , ud) =

∫ ∞
0

. . .

∫ ∞
0

R(Gα
1 , . . . , G

α
d ) dM(α).

Note that for the classical Archimedean copula R is equal to a product cop-
ula. Following the paper of Marshall and Olkin (1988) we proceed with the
following three steps to make a draw from a distribution described by an
Archimedean copula:

1. generate an observation u from M ;

2. generate observations (v1, . . . , vd) from R;

3. the generated vector is computed by x = {G−1
1 (v

1/u
1 ), . . . , G−1

d (v
1/u
d )}.

This method works much faster than the classical conditional inverse tech-
nique. The drawback is that the distribution M can be determined explicitly
only for a few generator functions φ. This can be done, for example, for
Frank, Gumbel and Clayton families (see McNeil (2007), Marshall and Olkin
(1988)). The same problem arises in the case of hierarchical copulae, where
φi◦φ−1

i+1 should satisfy the properties of generator functions. A slightly modi-
fied but more simple procedure for simulating from hierarchical Archimedean
copulae is considered in McNeil (2007).

1.7 Applications to Finance

The dependency plays a key role in many financial applications. Elliptical
distributions, with the correlation coefficient as the main measure of depen-
dency, constitute a well established class of dependency models commonly
used in finance. However, the symmetry assumption and the imposed tail
behavior do not reflect the empirical evidence on financial time series. This
leads to numerous extensions of Gaussian models to copula-based distribu-
tions. In this section we discuss three such extensions. Firstly, we consider
the asset allocation problem with non-Gaussian asset returns. Secondly, we
discuss the peculiarities of the Value-at-Risk estimation in the non-elliptical
framework. Thirdly, we consider the time series models with the residuals
following a copula-based distribution.
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1.7.1 Asset Allocation

In this section we illustrate the extension of the classical asset allocation
problem to copula-based models following Patton (2004). Further discussion
and application of the impact of copula-based distribution on portfolio selec-
tion procedures can be found in Longin and Solnik (2001) and Hennessy and
Lapan (2002).

We consider an investor with a CRRA utility function U(x) = (1− γ)−1x1−γ

willing to allocate his wealth to d risky assets. We denote the d-dimensional
vector of continuously compounded asset returns at time t + 1 by rt+1 =
(r1,t+1, . . . , rd,t+1)

> and the vector of portfolio weights by w = (w1, . . . , wd)
>.

Let Ft+1 be the d-dimensional distribution function of rt+1 with the mean
µt+1 and covariance matrix Σt+1. The aim is to forecast Ft+1 for the time
period t + 1 using the data up to time t. The estimator is denoted by F̂t+1
with the mean µ̂t+1, the covariance matrix Σ̂t+1 and the density f̂t+1. The
objective of the investor is to maximize the expected utility at the time point
t+ 1. This leads to the optimization problem

max
w∈W

EU(1 + w>rt+1). (1.12)

In the case of no-short-sales constraint we set W = {w ∈ [0, 1]d : w>1 = 1}
else we set W = {w ∈ Rd : w>1 = 1}. The conditional expectation in
(1.12) implies that we integrate the utility with respect to the forecasted

distribution F̂t+1. This reduces the problem (1.12) to the problem

max
w∈W

∫
· · ·
∫
U(1 + w>rt+1)f̂t+1(rt+1)drt+1.

There are several alternative parametric approaches to modeling Ft+1. Let
Σd,t+1 denote the diagonal matrix containing only the main diagonal of Σt+1.

Then Σt+1 = Σ
1/2
d,t+1Rt+1Σ

1/2
d,t+1, where Rt+1 denotes the correlation matrix.

A standard approach is to define the model of the asset returns in the form

Σ
−1/2
d,t (rt − µt) ∼ Nd(0,Rt), (1.13)

where the conditional moments µt and Σt are modeled by a GARCH-in-mean
type of process (Franke, Härdle and Hafner (2008)). As a simpler alternative
we can consider a Bayesian framework where Ft+1 denotes the predictive dis-
tribution of the asset returns as in Barberis (2000). The unknown parameters
of the conditional moments are usually estimated numerically using the ML
methodology.

To introduce a copula-based distribution into the asset allocation we deviate
from the normality assumption and, following the Sklar’s theorem, assume
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that F = C(F1, . . . , Fd). Thus the model (1.14) is replaced with the model

Σ
−1/2
d,t (rt − µt) ∼ C(F1, . . . , Fd) (1.14)

with some given functional forms of the copula and the marginal distributions.
Similarly as above, the parameters of the conditional moments, of the copula
and of the marginal distributions are estimated using the ML method.

In Patton (2004) the investor allocates his wealth between small cap and
large cap stocks (i.e. d = 2). The conditional mean is defined as linear
function of the lagged asset returns and additional explanatory variables. The
conditional variance is stated in the TARCH(1,1) form. The rotated Gumbel
copula with skewed t margins are used to construct the bivariate distribution
of the residuals. This model reveals the highest likelihood function and the
lowest AIC and BIC criterion. It is concluded that unconstrained portfolios
derived from the normality assumption performed worse in 9 of 10 different
trading strategies compared to the Gumbel model.

1.7.2 Value-at-Risk

One of the main advantages of copulae is the fact that they allow for flexible
modeling of the tail behavior of multivariate distributions. Since the tail
behavior explains the simultaneous outliers of asset returns, it is of special
interest in risk management. Therefore, in this section we illustrate the
use of copulae for computing the Value-at-Risk (VaR) of portfolios following
Embrechts et al. (1999) and Junker and May (2005). The VaR of a portfolio
at level α is defined as the lower α-quantile of the distribution of the portfolio
return rp = w>r, i.e.

V aR(α) = F−1
rp

(α).

The VaR is a reasonable measure of risk if we assume that the returns are
elliptically distributed. This follows from the fact that VaR is a coherent
risk measure (see Embrechts et al. (1999)). Moreover, the assumption of
ellipticity implies that minimizing the variance in the Markowitz problem also
minimizes the VaR, the expected shortfall and any other coherent measure
of risk. However, this statement is false in the non-elliptical case. Moreover,
regarding the effect of diversification the variance is the smallest (highest)
for perfect negative (positive) correlation of the assets. This also holds for
the VaR in the elliptical case, however, not for the non-elliptical distributions
(see Embrechts et al. (1999), Theorem 5). This implies that for copula-based
distribution the VaR should be used with caution and its computation should
be awarded more attention.
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Consider the probability that the portfolio return rp does not exceed some
predetermined value ξ, i.e. P(rp ≤ ξ). Our aim is to determine the lower
α-quantile of the distribution of rp, or, equivalently, to determine such ξ that
P(rp ≤ ξ) = α. Note that

rp = w>r =
d∑

i=1

wiri =
d∑

i=1

wiF
−1
i (ui),

where Fi denote the marginal distributions of individual asset returns, ui =
Fi(ri) ∼ U [0, 1] for all i = 1, . . . , d and u1, . . . , ud ∼ C. The copula C defines
the dependency structure between the asset returns. This implies that

P(rp ≤ ξ) =

∫
U
c(u1, . . . , ud)du1 . . . dud, (1.15)

with

U = {[0, 1]d−1 × [0, ud(ξ)]}, ud(ξ) = Fd

[
ξ/wd −

d−1∑
i=1

wiF
−1
i (ui)/wd

]
.

For fixed α, the VaR is determined by solving (1.15) numerically for ξ. Di-
rect multidimensional numerical integration is a tedious task which can be
substantially simplified by using the Monte-Carlo integration. For this pur-
pose we have to generate random samples from C using methods described
in Section 1.6.

Junker and May (2005) apply the above methodology to a portfolio consisting
of two assets, Hoechts and Volkswagen shares. The returns are standardized
by the sample mean and the conditional volatility from the GARCH(1,1)
process. The copula function is defined as a convex linear combination of
the Frank copula and its survival copula. It is concluded that empirical
or t-margins and asymmetric copula-based dependency structures provide
the best fit in terms of χ2 goodness-of-fit test of Diebold, Gunther and Tay
(1998). Moreover, the VaR estimator from this model well approximates the
empirical estimator. The assumption of Gaussian GARCH(1,1) standardized
returns renders the worst results.

1.7.3 Time Series Modeling

Time series models constitute one of the most important tools in dealing
with financial data. However, multivariate modeling used up to now does
not properly describe financial and economic time series. The reason is that
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these models are mainly based on the Gaussian or on elliptical distributions.
Nowadays there are numerous papers extending the classical time series mod-
els to model copula distributed residuals. First we consider the semiparamet-
ric copula-based multivariate dynamic model (SCOMDY) of Chen and Fan
(2006). Let {y>t ,x>t }nt=1 be stochastic processes, where xt contains the ex-
ogenous variables and the d-dimensional vector yt contains the variables of
interest. Let Ft−1 denote the information up to the time point t. They
specified the model in the following way

yt = µt(θ1) +
√

Ht(θ)εt,

where

θ = {θ>1 ,θ>2 }>

µt(θ1) = (µ1,t(θ1), . . . , µd,t(θ1))
>

= E{yt|Ft−1}
Ht(θ) = diag{h1,t(θ), . . . , hd,t(θ)}

= diag{h1,t(θ1,θ2), . . . , hd,t(θ1,θ2)}
= diag

(
E[{y1t − µt(θ1)}2|Ft−1], . . . ,E[{ydt − µt(θ1)}2|Ft−1]

)
.

µt(·) is the true conditional mean of the yt given Ft−1 and hjt(·) is the true
conditional variance of the yjt given Ft−1. The residuals are assumed to
be serially independent with zero mean and unit variances, i.e. E[εjt] = 0
and E[ε2

jt] = 1 for j = 1, . . . , d. The joint distribution of ε is assumed to
be given by C{F1(ε1), . . . , Fd(εd)}, where the margins and the copula func-
tion are unknown. This general specification includes the standard processes
GARCH, ARCH, VAR as special cases, however, it allows for much more flex-
ibility in the choice of the dependency structure of the residuals. For exam-
ple considering θ1 = (δ>

1 , . . . , δ
>
d )>, θ2 = (κ1, . . . , κd; β1, . . . , βd; γ1, . . . , γd)

>,
µt = (x>1tδ1, . . . ,x

>
dtδd)

>, Ht = diag{h1t, . . . , hdt} and the copula for ε is as-
sumed to be the Gaussian copula, where κj > 0, βj ≥ 0, γj ≥ 0 and βj+γj < 1
for j = 1, . . . , d we get GARCH(1,1) model with normal innovations

yjt = x>jtδj +
√
hjtεjt

hjt = κj + βjhj,t+1 + γj(yj,t−1 − x>j,t−1δj)
2, j = 1, . . . , d.

Chen and Fan (2006) consider maximum likelihood estimators of the parame-
ters in these models and establish large sample properties when the copula is
mis-specified. For the choice between two SCOMDY models they introduce
a pseudo likelihood ratio test and provide the limiting distribution of the test
statistic.

In contrast to the paper by Chen and Fan (2006), Fermanian and Scaillet
(2003) consider a nonparametric estimation of copulae for time series and
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derived asymptotic properties of the kernel estimator of copulae. Further
generalization is discussed in Giacomini, Härdle and Spokoiny (2008), where
the parameter of the copula is assumed to be time dependent. The aim is to
determine the periods with constant dependency structure.

1.8 Simulation Study and Empirical Results

In this section we illustrate the considered algorithms on simulated and real-
world data. The next sub-section contains the simulation study, where we
show that the aggregated binary structures outperform the alternative strate-
gies of artificial data. In Section 1.8.2 we used Bayes and Akaike information
criterion to compare the performance of the HAC-based model with the clas-
sical Gaussian and t-models on real data.

1.8.1 Simulation Study

Setup of the study

The aim of this simulation study is the comparison of grouping methods on
the example of simulated data. We consider two different true structures
s = (123)(45) and s = (12(34))5 with the Gumbel generator function given
by

φ−1 = {− log(u)}θ, φ = exp(−u
1
θ ).

This naturally corresponds to the Gumbel copula. The parameters are set
for the first structure equal to θ123 = 4, θ45 = 3 and θ(123)(45) = 2 and for
the second structure to θ34 = 4, θ12(34) = 3 and θ(12(34))5 = 2. Without loss
of generality the marginal distributions are taken as uniform on [0, 1]. We
simulate a sample of 1000 observations. The procedure is repeated 101 times.
This number is selected to simplify the interpretation and computation of
median structures.

For the simulation we use the conditional inversion method. This method is
also used by Frees and Valdez (1998) and Whelan (2004) and we discussed it
in Section 1.6. The copula parameters are estimated using the multistage ML
method with the nonparametric estimation of margins based on the Epanech-
nikov kernel. The vector of bandwidths h = {hi}i=1,...,d in the estimation of
the density and in the estimation of the distribution function is based on the
Silverman’s rule of thumb.
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Discussion of the results

The results of the simulation study are summarized in Table 1.1 for the first
structure and in Table 1.2 for the second structure. For each simulated data
set and for each structure we compare the fit and the structure obtained from
the grouping procedures. We consider the simple Archimedean copula (sAC)
and groupings based on the Chen et al. (2004) test statistics (Chen), on the
θ (θ), binary copulae (θbinary) and aggregated binary copulae (θbinary aggr.).
As benchmark models we consider the 5-dimensional multivariate normal
distribution (N) with Σ̂ and µ̂ estimated from the data; the multivariate
Gaussian copula with nonparametric margins (Nnonparam.); the multivariate

t-distribution with eight degrees of freedom and with Σ̂ and µ̂ estimated from
the data set (t8); the multivariate t-copula with eight degrees of freedom and
nonparametric margins (tnonparam.).

For each grouping method and each benchmark we compute the Kullback-
Leibler divergence from the empirical distribution function as in Giacomini
et al. (2008) and the test statistic of Chen et al. (2004). The Kulback-
Leibler functional for the distribution functions estimated using two different
methods is

K(F̂method 1, F̂method 2) =
1

n

n∑
i=1

log

{
f̂method 1(x1i, . . . , xdi)

f̂method 2(x1i, . . . , xdi)

}
The Kullback-Leibler divergence for the multivariate distribution which is
based on copula, can be regarded as a distance between two copula densities.

The first blocks of Table 1.1 and Table 1.2 contain the results for groupings
based on the Kullback-Leibler divergence. The columns “K” contain the
value of the Kullback-Leibler divergence which is the closest to the median
divergence given in parenthesis. The corresponding structure and the test
statistic of Chen et al. (2004) are given in the columns “copula structure”
and “Chen.” respectively. The variance of the Kullback-Leibler divergence is
given in the last column. The same holds for the lower blocks of both tables,
however, here we find the structure which has the test statistics of Chen et al.
(2004) which is the closest to the median of the test statistics. Note that we
provide the results for the median performance measures and not for the best
replications of the simulation study. This makes the conclusions more robust.

The results show that the grouping method based on the aggregated binary
structure is dominant. It provides for both structures the smallest Kullback-
Leibler divergence as well as the lowest test statistics. The simple binary
copula also provides good results, however, we see that some of the parame-
ters are very close. This indicates that the variables can be joined together
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into an aggregated copula. Although, the method based on θ’s performs bet-
ter than the benchmark strategies, it leads, however, to incorrect structures
and much higher goodness-of-fit measures compared to the binary copula.
The grouping based on the test statistic of Chen et al. (2004) provides very
poor results, which indicates a low power of the test against similar struc-
tures. Similarly, the ignorance of the hierarchical structure of the distribution
imposed by the simple Archimedean copulae leads to the worst results among
copula-based methods. The comparison with normal and t-distributions is
possible only on the basis of the Kullback-Leibler divergence. We see that,
despite of the substantially larger number of parameters, the normal and
t-distributions cannot outperform the θ-based grouping methods. Thus we
conclude that the proposed grouping methodology based on the aggregated
binary structure provides robust and precise results. Moreover, the method
is computationally more efficient than the considered alternatives.

method copula structure Chen. K (µ̂K) σ̂2
K(10−3)

N 1.074 (1.074) 4.0
Nnonparam. 0.282 (0.283) 1.0
t8 1.104 (1.104) 3.0
tnonparam. 0.199 (0.199) 0.0
sAC (1.2.3.4.5) 85.535463 0.811 (0.809) 3.0
CHEN ((1.3)4.517.(2.4.5)2.341)2.34 31.432 0.611 (0.613) 78.0
θ ((1.3.4.5)2.288.2)2.286 82.510 0.697 (0.560) 142.0
θbinary (((1.(2.3)4.39)4.282.5)2.078.4)2.077 3.929 0.132 (0.133) 0.4
θbinary aggr. (((1.3)4.26.2)3.868.(4.5)3.093)2.259 2.737 0.022 (0.021) 0.0

method copula structure Chen. (µ̂Chen) K σ̂2
Chen stat

sAC (1.2.3.4.5) 88.842 (88.850) 0.704 68.127
CHEN ((1.2)4.316.(3.4.5)2.256)2.255 31.558 (32.419) 0.585 490.059
θ ((1.2.4.5)2.376.3)2.375 56.077 (56.910) 0.769 1407.632
θbinary ((((1.2)4.487.3)4.469.5)2.247.4)2.246 4.789 (4.827) 0.112 4.388
θbinary aggr. (((1.3)4.228.2)3.68.(4.5)3.369)2.333 2.253 (2.248) 0.021 1.914

Table 1.1. Model fit for the true structure (123)(45): Averages
of the Kullback-Leibler Divergence and Averages of the Chen
Statistics separately

1.8.2 Empirical Example

In this subsection we apply the proposed estimation techniques to financial
data. We consider the daily returns of four companies listed in DAX index:
Commerzbank (CBK), Merck (MRK), Thyssenkrupp (TKA) and Volkswa-
gen (VOW). The sample period covers more than 2300 observations from
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method copula structure Chen. K (µ̂K) σ̂2
K(10−3)

N 1.088 (1.089) 4
Nnonparam. 0.289 (0.289) 1
t8 1.113 (1.114) 3
tnonparam. 0.202 (0.202) 1
sAC (1.2.3.4.5) 78.604 0.502 (0.502) 2
CHEN (((1.2)3.22.3)3.177.(4.5)2.116)2.114 8.544 0.305 (0.304) 23
θ (((1.2.3)3.207.4)3.205.5)2.15 5.741 0.079 (0.079) 0
θbinary (((1.(3.4)4.157)3.099.2)3.012.5)2.028 2.293 0.003 (0.003) 0
θbinary aggr. (((3.4)4.32.1.2)3.268.5)1.83 1.220 0.019 (0.019) 0

method copula structure Chen. (µ̂Chen.) K σ̂2
Chen stat

sAC (1.2.3.4.5) 86.245 (86.278) 0.480 142.714
CHEN (((1.3)2.835.5)1.987.(2.4)2.898)1.986 16.263 (16.512) 0.453 281.615
θ (((1.2.4)3.009.3)3.007.5)1.973 4.235 (4.222) 0.083 6.229
θbinary (((1.(3.4)4.122)3.155.2)3.07.5)2.027 1.934 (1.955) 0.000 1.520
θbinary aggr. (((3.4)4.195.1.2)3.305.5)1.724 2.561 (2.526) 0.014 3.287

Table 1.2. Model fit for the true structure (12(34))5: Averages
of the Kullback-Leibler Divergence and Averages of the Chen
Statistics separately

13.11.1998 to 18.10.2007. Margins are estimated nonparametrically with
Epanechnikov kernel, normal and t-distributed with three degrees of freedom.
The results are given in Tables 1.3, 1.4 and 1.5 respectively. For goodness-
of-fit measures we choose BIC (Bayes or Schwarz Information Criteria) and
AIC (Akaike Information Criteria) and provide the value of the likelihood as
intermediate results.

We fit the following multivariate copula functions to the data: HAC with
binary and binary aggregated structure, simple Archimedean copula. For
comparison purposes we also provide the results for the multivariate normal
distribution and multivariate t-distribution with eight degrees of freedom in
each table. We also provide the optimal binary and aggregated binary HACs
and the simple Archimedean copula for all types of the margins.

We calculate the maximum likelihood value as described in Section 1.4. For
the copula-base distributions we use

ML =
n∑

i=1

log{c(u1, . . . , ud,θ)f1(u1) . . . fd(ud)},

where c is the copula density and fi for i = 1, . . . , d are marginal densities.
For the multivariate normal and t-distribution, we computed the likelihood
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as

ML =
n∑

i=1

log{f(u1, . . . , ud,θ)},

where f denotes the joint multivariate density function and θ is the set of
parameters. To penalize the likelihood for large number of parameters we
consider the AIC and BIC criterion computed as

AIC = −2ML+ 2m, BIC = −2ML+ 2 log(m),

where m is the number of the parameters to be estimated. The values of ML
for the best structure should the the highest, while AIC and BIC should be
as small as possible.

We emphasize with bold font the best strategy in each column and with italic
the worst strategies. We can conclude that the multivariate t distribution
outperforms all other methods and shows the best results for all types of the
margins. Nevertheless, note that with the properly selected marginal distri-
butions and copula function, the HAC outperforms the normal distribution.
Moreover, note that we considered only HACs based on the Gumbel gener-
ator functions. Alternative generator specifications and HACs dependent on
several different generators may outperform the t-distribution as well.

ML AIC BIC
HAC 28319.3701 -56632.7402 -56614.9003
HACbinary 28319.3701 -56632.7402 -56614.9003
AC 28028.5201 -56055.0403 -56049.0937
N 28027.4098 -56026.8195 -55943.5669
t8 28726.8637 -57425.7273 -57342.4747

Table 1.3. Information Criteria: Nonparametric Margins

Optimal binary structure = (((CBK VOW)1.5631 TKA)1.4855 MRK)1.1437

Optimal structure = (((CBK VOW)1.5631 TKA)1.4855 MRK)1.1437

Simple Archimedean Copula = (CBK MRK TKA VOW)1.4116
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ML AIC BIC
HAC 27961.0997 -55918.1995 -55906.3062
HACbinary 27961.2399 -55916.4799 -55898.6400
AC 27737.7392 -55473.4784 -55467.5317
N 28027.4098 -56026.8195 -55943.5669
t8 28726.8637 -57425.7273 -57342.4747

Table 1.4. Information Criteria: Normal margins

Optimal binary structure = (((CBK VOW)1.3756 TKA)1.3571 MRK)1.1071

Optimal structure = ((CBK TKA VOW)1.3756 MRK)1.1071

Simple Archimedean Copula = (CBK MRK TKA VOW)1.1944

ML AIC BIC
HAC 28613.9640 -57223.9280 -57212.0347
HACbinary 28612.2069 -57218.4138 -57200.5740
AC 28404.8899 -56807.7798 -56801.0347
N 28027.4098 -56026.8195 -55943.5669
t8 28726.8637 -57425.7273 -57342.4747

Table 1.5. Information Criteria: t margins

Optimal binary structure = (((CBK VOW)1.3416 TKA)1.3285 MRK)1.1007

Optimal structure = ((CBK TKA VOW)1.3416 MRK)1.1007

Simple Archimedean Copula = (CBK MRK TKA VOW)1.1987

1.9 Summary

In this chapter we provide a detailed review of the copula models in discrete
time. We review the construction and simulation of bivariate and multi-
variate copula models. For practical applications we discuss the alternative
estimation procedures and goodness-of-fit tests. Special attention is paid to
the hierarchical Archimedean copulae. The chapter is complemented with an
extensive simulation study and an application to financial data.
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