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Abstract

The paper discusses the nested logit model for choices between
a set of mutually exclusive alternatives (e.g. brand choice, strategy
decisions, modes of transportation, etc.). Due to the ability of the
nested logit model to allow and account for similarities between pairs
of alternatives, the model has become very popular for the empiri-
cal analysis of choice decisions. However the fact that there are two
different specifications of the nested logit model (with different out-
comes) has not received adequate attention. The utility maximiza-
tion nested logit (UMNL) model and the non-normalized nested logit
(NNNL) model have different properties, influencing the estimation
results in a different manner. This paper introduces distinct specifi-
cations of the nested logit model and indicates particularities arising
from model estimation. The effects of using various software packages
on the estimation results of a nested logit model are shown using sim-
ulated data sets for an artificial decision situation.

Keywords: nested logit model, utility maximization nested logit, non-
normalized nested logit, simulation study

JEL-Codes: C13, C51, C87, M31

1 Introduction

For modelling discrete choice decisions, e.g. brand choice, in the context of
random utility theory usually the multinomial logit model (MNL) (Guadagni

1Financial support by the Deutsche Forschungsgemeinschaft (DFG) through the re-
search project #BO1952/1 and the SFB 649 ”Economic Risk” is gratefully acknowledged.
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and Little, 1983) is used. This has some well known limitations (McFadden,
1974). The MNL assumes proportional substitution patterns (Independence
of Irrelevant Alternatives, IIA). To overcome this restrictive assumption, one
possible alternative is to use the nested logit model for estimation in practical
applications (Guadagni and Little, 1998; de Dios Ortúzar, 2001). The nested
logit model admits more general substitution patterns and nevertheless re-
mains, in contrast to the probit model as another alternative to overcome
the aforementioned restrictive assumptions, analytically tractable.
The existence of two unequal forms of the nested logit model has been un-
derresearched so far. The utility maximization nested logit (UMNL) model
and the non-normalized nested logit (NNNL) model have different properties
which impact the estimation results. In many publications, the specification
used is not explicitly mentioned. Both in simulation studies and in model
estimations with real data, the implemented nested logit model specification
within the software needs to be considered.
If there are only alternative-specific coefficients in the model, the nested
logit specification chosen can be accommodated merely by a nest-specific re-
scaling of the estimated coefficients obtained from the NNNL software before
interpretation. As soon as a generic coefficient enters the model, the non-
normalized nested logit model is not consistent with random utility theory
without imposing restrictions on the scale parameters.
Our contribution lies therein to use simulated data to demonstrate the dif-
ferences in software implementations. Section 2 introduces the nested logit
model and its application in marketing. In Section 3.1 the nested logit model
is presented in general, whereas Section 3.2 introduces the two different forms
of the nested logit model. In Section 3.3 their consistency with random utility
theory is revised. Section 4 goes into detail regarding the particularities in
model estimation with NNNL software. This addressed difficulty is clarified
with a simulation study in Section 5. Section 6 concludes with a summary.

2 Discrete Choice Models

Utility-based choice or choice based on the relative attractiveness of com-
peting alternatives from a set of mutually exclusive alternatives is called a
discrete choice situation. Discrete choice models are interpreted in terms of
an underlying behavioral model, the so called random utility maximization
(RUM) model. The decision-maker chooses the alternative with the highest
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utility. Characteristics of the choice alternatives and of the decision-maker
determine the alternatives’ utilities. The latter do not have a direct utility
contribution per se, but serve as proxies for consumer heterogeneity.
Modelling discrete consumer decisions is characterized by a trade-off between
flexibility and ease of the estimation (Munizaga and Alvarez-Daziano, 2001).
On the one hand, probit models assume a more realistic situation by allowing
a correlation structure of the error terms. However, the estimation of these
models can become very complex because of the underlying multidimensional
integrals. On the other hand, there are logit models which are distinguished
by closed choice probabilities but, due to restrictive substitution patterns
i.e. the above mentioned IIA assumption, are often not very realistic. Nev-
ertheless, because of its ease in estimation logit models are favored. Their
estimation is usually based on the multinomial logit (MNL) model. To over-
come the restrictive substitution assumptions between alternatives, various
extensions of the MNL exist, all with the general solution of allowing corre-
lations between the alternatives’ error terms.
The idea of the nested logit model lies in the grouping of similar alternatives
into nests, creating a hierarchical structure of the alternatives (Ben-Akiva
and Lerman, 1985; Train, 2003). The error terms of alternatives within a
nest are correlated with each other, and the error terms of alternatives in
different nests are uncorrelated. The nested logit approach is predominantly
used in the field of transportation research and logistics (Train, 1980; Bhat,
1997; Knapp et al., 2001), but can also be appropriate for marketing issues
(Kannan and Wright, 1991; Chintagunta, 1993; Chintagunta and Vilcassim,
1998; Guadagni and Little, 1998; Chib et al., 2004). The nested logit model
is the most often used hierarchical model in marketing (Suárez et al., 2004)
and can be used for modelling in any situation where subsets of alterna-
tives share unobservable utility components (Ben-Akiva and Lerman, 1985).
This is usually the case in the field of marketing, especially in brand choice
modelling (Kamakura et al., 1996; Ailawadi and Neslin, 1998; Guadagni and
Little, 1998; Sun et al., 2003; Chib et al., 2004), where brands are nested,
for example, regarding manufacturer (Anderson and de Palma, 1992); in a
purchase incidence decision (Chintagunta, 1993; Chintagunta and Vilcassim,
1998); or regarding brand type (Baltas et al., 1997).
Another important point to make is that the nested logit model is a combi-
nation of standard logit models. Marginal and conditional choice decisions
are combined by a nesting structure (Hensher et al., 2005). The only goal of
this process is to accommodate the violation of the IIA-assumption.
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The nested logit model differs from the standard logit model in that the er-
ror components of the choice alternatives do not necessarily need to have the
same distribution. Thus the nested logit model accounts for the fact that
each alternative may have specific information in its unobservable utility
component, which plays a role in the decision process. Subsets of alterna-
tives may have similar information content, such that correlations between
pairs of alternatives may exist (Hensher et al., 2005). The classification of
alternatives regarding their similarities into nests and the thus resulting tree
structure does not have anything in common with a stochastic valuation of
alternatives within the scope of a decision tree. Nested logit models do not
define the process of decision-finding, but account for differences in variances
in the unobservable utility components (Hensher et al., 2005).

3 The Specification of the Nested Logit Model

3.1 General Model Formulation

This article focuses on the example of a two-level nested logit model (see
Figure 1). In this case, the choice probability Pim of an alternative i within
nest m results from the product of the marginal choice probability Pm for
nest m (Level 2) and the conditional choice probability Pi|m for alternative
i within nest m (Level 1). Both the marginal and the conditional choice
probability have the form of standard logit models. The inclusive value IVm

as the expected utility of nest m connects the two decision levels and carries
the impact of lower level decisions into higher levels.
The random utility Uim of alternative im results from the sum of a marginal

utility component Um from Level 2 and a conditional utility component Ui|m
from Level 1, which both consist of a deterministic part V and a stochastic
part ν.

Uim = Um + Ui|m = (Vm + νm) + (Vi|m + νi|m) (1)

The error terms νm and νi|m are independent of each other. The error terms
νi|m are identically and independently distributed (i.i.d.) extreme-value with
scale parameter µm. This can be interpreted as a measure of the correlation
of the alternatives’ errors within nest m (Heiss, 2002). The compound error
term εim is the sum of two stochastic error terms νm and νi|m, coming from
the upper and lower level respectively. The compound error terms εim are
distributed such that the sum of Um and U∗

i|m, the maximum of the Ui|m, is
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Level 2

Nest 1 Nest 2

Level 1

Alternative Alternative Alternative Alternative
11 12 21 22

Figure 1: Tree structure of a nested logit model

distributed extreme-value with scale parameter λm (Ben-Akiva and Lerman,
1985; Hunt, 2000).

V ar(νi|m) =
π2

6 µ2
m

(2)

V ar(εim) = V ar(νm + ν∗i|m) =
π2

6 λ2
m

. (3)

The scale parameters µ and λ describe the variances of the unobservable
errors. Unconsidered utility components can variously impact the random
components. This leads to different variances, which are explicitly accounted
for by the introduction of these scale parameters. Each elemental alterna-
tive im has its own scale parameter µim. But as these need to be equal
for all alternatives within a nest, the differentiation by i is redundant. The
alternative-specific scale parameters µim are replaced by nest-specific scale
parameters µm. The scale parameters λm are associated with the upper level,
so that there is no need to replace them.
The compound unobservable utility components εim contain variance compo-
nents both from the lower and the upper decision level. Thus the variances
on the upper level cannot be smaller than those on the lower level. Therefore
the scale parameters need to satisfy the following condition (Carrasco and
de Dios Ortúzar, 2002; Hensher et al., 2005):

λm < µm . (4)
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3.2 Different Nested Logit Model Specifications

Koppelman and Wen (1998a,b), Hunt (2000), Heiss (2002), and Train (2003)
point to the existence of different nested logit model specifications and the
issues arising from this regarding different estimation results.
The non-normalized nested logit (NNNL) model was derived from the stan-
dard logit model to relax the IIA-assumption. The elementary NNNL form
is not consistent with utility maximization theory (Koppelman and Wen,
1998b). On the other hand, the utility maximization nested logit (UMNL)
model, which was derived from McFadden’s Generalized Extreme Value (GEV)
theory (McFadden, 1978, 1981), is consistent with the utility maximization
theory (Koppelman and Wen, 1998b).
The difference between these nested logit model specifications lies in the ex-
plicit scaling of the deterministic utility component in the UMNL form. In
the case of generic coefficients, this means for the NNNL specification that
the estimated parameters are indeed constant for all alternatives but not the
hidden ”true” parameters. The reason lies in the implicit nest-specific scaling
within the NNNL specification (Heiss, 2002).
Table 1 compares the two specifications (Koppelman and Wen, 1998a; Hunt,
2000). The letters m and n represent the nests on Level 2, with m6=n , and
the letters i and j denote the elemental alternatives on Level 1, with i6=j .
The set of all elemental alternatives within nest m is called Cm.

Due to identification problems, one of the scale parameters in the util-

Table 1: Specifications of the nested logit model

UMNL NNNL
utility maximization non-normalized
nested logit nested logit

Pm

exp (λm Vm + λm
µm

IVm)∑
n

exp (λn Vn + λn
µn

IVn)

exp (Vm + 1
µm

IVm)∑
n

exp (Vn + 1
µn

IVn)

Pi|m
exp (µm Vi|m)∑

j∈Cm

exp (µm Vj|m)
exp (Vi|m)∑

j∈Cm

exp (Vj|m)

IVm ln
∑

j∈Cm

exp (µm Vj|m) ln
∑

j∈Cm

exp (Vj|m)
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ity maximization nested logit (UMNL) specification needs to be normal-
ized to 1 (Daly, 2001; Hunt, 2000). A normalization on the lower Level
1 (µm = µn = 1) leads to the RU1 UMNL model; a normalization on the
upper Level 2 (λm = λn = 1) results in the RU2 UMNL model (Hensher
et al., 2005).

3.3 Testing the Nested Logit Models Regarding Con-
sistency with Random Utility Theory

To be consistent with utility maximization theory, each alternative’s choice
probability must not change when adding a constant term a to each alterna-
tive’s deterministic utility component (Koppelman and Wen, 1998b).
Formally, this means that the new deterministic utility component V new

i|m re-
sults from the sum of the old deterministic utility component Vi|m and a
constant term a.

V new
i|m = Vi|m + a (5)

To be theory-consistent, the new choice probability (P new
im ) has to be equal

to the old choice probability (Pim) for alternative im:

P new
im = Pim (6)

The procedure of testing for theory consistency is shown as an example with
the non-normalized nested logit (NNNL) specification. The new inclusive
value (IV new

m ) is compared with the old inclusive value (IVm), the new con-
ditional choice probability (P new

i|m ) is compared with the old conditional choice

probability (Pi|m), and the new marginal choice probability (P new
m ) is com-
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pared with the old marginal choice probability (Pm).

IV new
m = ln

∑
j∈Cm

exp
(
Vj|m + a

)

= ln
∑

j∈Cm

(
exp (Vj|m) exp (a)

)

= ln

(
exp (a)

∑
j∈Cm

exp (Vj|m)

)

= ln (exp (a)) + ln

( ∑
j∈Cm

exp (Vj|m)

)

= a + ln

( ∑
j∈Cm

exp (Vj|m)

)

= a + IVm (7)

P new
i|m =

exp (Vi|m + a)∑
j∈Cm

exp (Vj|m + a)

=
exp (Vi|m) exp (a)∑

j∈Cm

(
exp (Vj|m) exp (a)

)

=
exp (Vi|m) exp (a)

exp (a)
∑

j∈Cm

exp (Vj|m)

=
exp (Vi|m)∑

j∈Cm

exp (Vj|m)

= Pi|m (8)
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P new
m =

exp (Vm + 1
µm

IV ∗
m)∑

n

exp (Vn + 1
µn

IV ∗
n )

=
exp (Vm + 1

µm
(a + IVm))∑

n

exp (Vn + 1
µn

(a + IVn))

=
exp (Vm) exp

(
a

µm

)
exp

(
1

µm
IVm

)

∑
n

exp (Vn) exp
(

a
µn

)
exp

(
1

µn
IVn

)

only if µm = µn = µ holds, then

=
exp

(
a
µ

)
exp (Vm) exp

(
1
µ

IVm

)

exp
(

a
µ

) ∑
n

exp (Vn) exp
(

1
µ

IVn

)

=
exp (Vm + 1

µ
IVm)∑

n

exp (Vn + 1
µ

IVn)

= Pm (9)

Analogous to this procedure, consistency with random utility theory can be
tested for the Level 1 normalized (µm = µn = 1) utility maximization nested
logit (RU1 UMNL) model and the Level 2 normalized (λm = λn = 1) utility
maximization nested logit (RU2 UMNL) model.
Table 2 summarizes the results. In the NNNL and the RU1 UMNL specifica-

tion, the new inclusive value IV new
m equals the sum of the old inclusive value

IVm and the added constant term a. In the RU2 UMNL model, the added
constant term a is additionally scaled with the scale parameter µm. While the
new choice probability P new

i|m does not differ from the old choice probability
Pi|m in all three nested logit specifications, the new choice probability P new

m

on the upper level differs from the old one. Without imposing restrictions,
just the RU2 UMNL specification satisfies the demand of consistency with
utility theory. Only in the RU2 form does the choice probability Pim equal
the choice probability P new

im after adding a term a to the utility component
Vi|m. In the RU1 UMNL specification, consistency can only be reached by
imposing the restriction λm = λn = λ. As shown in (9), consistency with
random utility theory can be ensured in the NNNL form by imposing the
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Table 2: Nested logit specifications and utility maximization

NNNL UMNL
non-normalized utility maximization
nested logit nested logit

RU1 RU2
(µm = µn = 1) (λm = λn = 1)

V new
i|m Vi|m + a Vi|m + a Vi|m + a

IV new
m IVm + a IVm + a IVm + a µm

P new
i|m Pi|m Pi|m Pi|m

P new
m 6= Pm 6= Pm Pm

P new
im 6= Pim 6= Pim Pim

restriction µm = µn = µ.
The new choice probability of an alternative im results as the product of
the new marginal choice probability P new

m and the new conditional choice
probability P new

i|m . Because of the generally not theory-consistent results on
the level of the marginal choice probabilities in the non-normalized nested
logit (NNNL) and the Level 1 normalized utility maximization nested logit
(RU1 UMNL) specification, only the Level 2 normalized utility maximization
nested logit (RU2 UMNL) specification satisfies condition (6).

4 Estimation of Nested Logit Models

Before estimating a nested logit model with a specific software package, the
implemented nested logit model specification (utility maximization nested
logit or non-normalized nested logit) needs to be investigated.
The software packages SAS R© (SAS, 2004) and ALOGIT R© (see Carrasco
and de Dios Ortúzar (2002)) use the non-normalized nested logit (NNNL)
specification for model estimation. STATA R© (Heiss, 2002), LIMDEP R©
(Hunt, 2000; Hensher and Greene, 2002) and GAUSS R© (Carrasco and
de Dios Ortúzar, 2002) offer the possibility to choose between the non-
normalized nested logit (NNNL) and the utility maximization nested logit
(UMNL) specification.
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coefficients
generic
without

generic
coefficients

NNNL UMNL NNNL UMNL NNNL UMNL
(B) (C) (D) (E) (F)

IV−parameters IV−parameters

equality
constraint on

no equality
constraint on

(A)

red green  greenred/
green

Figure 2: Overview of different model types with color indication of theory
consistency

In case only NNNL software is available, there are several particularities
in model estimation to take into consideration. The crucial point is whether
there are only alternative-specific coefficients in the model, or also at least one
generic coefficient. Generic coefficients are constant for all alternatives. A
variation on the utility contribution could be reached via alternative-specific
values of the corresponding variables.
Moreover, Hunt (2000) points to the peculiarities of partially degenerate
model structures. Nests with only one elemental alternative are called de-
generate nests. For further and detailed information regarding the estimation
procedure when degenerate nests enter the model, the reader is referred to
the literature (Hunt, 2000; Heiss, 2002; Hensher et al., 2005).

4.1 Alternative-Specific Coefficients

If there are no generic coefficients in the model (Models E and F in Fig-
ure 2), the non-normalized nested logit (NNNL) and the utility maximization
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nested logit (UMNL) specification are equivalent (Heiss, 2002). To speak
with the colors of traffic-lights, the Models E and F have green light re-
garding their consistency with random utility theory. But the coefficients
estimated with NNNL software are to be re-scaled with the according esti-
mated IV-parameter. Only then a correct interpretation is possible. It must
be taken into account which alternative belongs to which nest. The estimated
alternative-specific coefficient βi|m has to be scaled with the corresponding
nest-specific IV-parameter 1

µm
.

βUMNL
i|m = βNNNL

i|m ∗
(

1

µm

)NNNL

(10)

The Models E and F are not focused on in detail, because in marketing
models usually at least one variable with a generic coefficient, i. e. one
exogenous variable with a constant coefficient for all alternatives, enters the
model. Typically in modelling purchase decisions, this is the variable ”price”
as one of the central marketing-mix elements.

4.2 Generic Coefficients

Random utility maximizing models can generally not be estimated with non-
normalized nested logit (NNNL) software when generic coefficients enter the
model (Model A in Figure 2). When it comes to consistency with random util-
ity theory, the ”lights are red”. If utility maximization nested logit (UMNL)
software is used in the case of generic coefficients in the model (Model B
in Figure 2), a distinction between the RU1 and RU2 normalization has
to be made (see Section 3.2). The RU1 normalization leads to a model
specification that is not consistent with random utility theory (red lights),
whereas the RU2 normalization results in a theory-consistent specification
(see Table 2) and gets green light. If an equality constraint is put on the IV-
parameters when generic coefficients are present in the model, both NNNL
software (Model C in Figure 2) and UMNL software (Model D in Figure 2)
can be used to estimate a model consistent with random utility theory (green
lights for both).
As can be seen from Table 1, only in the utility maximization nested logit
(UMNL) specification are the deterministic utility components Vm and Vi|m
scaled explicitly with the parameters λm and µm respectively. Table 3 refers
to this with an example of the conditional deterministic utility component.

12



The conditional deterministic utility component Vi|m results as the product
of a generic coefficient β and the alternative-specific values of the vector of
the exogenous variables Xi.

Table 3: Scaling of the deterministic utility component

NNNL UMNL
non-normalized utility maximization
nested logit nested logit

Vi|m = β Xi µm Vi|m = µm β Xi

Contrary to the explicit scaling in the UMNL specification, the coefficients
in the NNNL specification are automatically and implicitly nest-specifically
scaled. The coefficients estimated in the NNNL model are thus not the ”true”
coefficients. In fact the estimated coefficients are constant for all alternatives,
but not the hidden ”true” coefficients. And this is a violation of the defini-
tion of generic coefficients.
By imposing restrictions it can be guaranteed that, even when using NNNL
software, parameters consistent with random utility can be estimated (Model
C in Figure 2). It has to be assured that the coefficients in each nest are
scaled equally. The IV-parameters have thus to be constrained to be equal
for all nests. But, of course, each restriction on the parameter estimates
means a loss of information in the data.
Studies have shown that the restricted form of the non-normalized nested
logit (NNNL) model (Model C in Figure 2) reproduces the estimation results
of the restrictive Level 1 normalized utility maximization nested logit (RU1
UMNL) form (Model D in Figure 2) (Hunt, 2000; Heiss, 2002; Hensher and
Greene, 2002). Re-scaling the parameter estimates in the restrictive NNNL
model with the estimated IV-parameter results in the parameter estimates
of the restrictive Level 2 normalized utility maximization nested logit (RU2
UMNL) model.

NNNLres = RU1res (11)

NNNLres ∗ IVNNNLres = RU2res (12)

Koppelman and Wen (1998a) have shown a second possibility to guarantee
the consistency with utility maximizing theory without imposing restrictions
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on the IV-parameters. First, additional dummy nests below the lowest level
are to be introduced into the model, and second, the thus additionally esti-
mated scale parameters have to be defined in such a way that ”the product
of all the ratios of scale parameters between levels must be identical from the
root to all elemental alternatives” (Hensher and Greene (2002), p. 13).

5 Simulation Study with a Software Compar-

ison

An appropriate way to test model validity is to conduct a simulation study
where the true parameters are known and correlations are determined. When
the sample size is large, the estimated parameters should be very close to the
true parameters (Cameron and Trivedi, 2005).
As was shown in Section 3.3, without imposing restrictions, only the Level
2 normalized utility maximization nested logit (RU2 UMNL) specification is
consistent with random utility theory. In the following, four simulated data
sets (each having n = 4, 000 observations) are generated with the software
SAS R© 9.1.3.
In this simulation study the coffee market is simulated in a very simplistic
manner. The simulated market consists of only two brands A and B, where
both offer variants containing caffeine and decaffeinated. Figure 3 shows the
nest structure of this discrete choice situation.
According to Equation (1), the random utility Uim of each alternative im

results from the sum of a marginal utility component Um from Level 2 and
a conditional utility component Ui|m from Level 1, which both consist of a
deterministic part V and a stochastic part ν. In this study, the deterministic
marginal utility component Vm is neglected. It is often hard to find any
variables that are nest- rather than alternative-specific. But even if a nest-
specific variable does exist, specifying this variable for the nest or for all
alternatives within this nest does not make a difference (Heiss, 2002). The
stochastic marginal utility component νm, which captures all unobservable
and omitted effects, must be integrated into the model despite the non-
existence of the deterministic marginal utility component Vm. Consequently,
the overall utility for this simulation study arises from

Uim = Vi|m + (νi|m + νm) . (13)
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containing
caffeine

containing
caffeine

Level 2

Level 1

Brand A Brand B

decaffeinated decaffeinated

m=1,2

i=1,2,3,4

Figure 3: Two-level nested logit model

Furthermore, the explanatory variables price (PRI), promotion (PRO), and
age of the decision maker (AGE) are included in the model. Alternative-
specific constants (ASC) are neglected in this simulation study, but must
be integrated in the model when estimating with real data. The underlying
deterministic conditional utility component for this simulation study is as
follows

Vi|m = φi|m AGEh + βpri PRIi|m + βpro PROi|m . (14)

The variables PRI and PRO are such with generic coefficients (see section
4.2), i. e. they have a constant coefficient β for all alternatives. The alterna-
tive containing caffein in nest Brand A (cc|A) is declared as reference point,
and its alternative-specific coefficient φK|A is set to zero.
For the simulation of the data sets, the following assumptions are made:

• age

– AGE=1: p=0.15

– AGE=2: p=0.20

– AGE=3: p=0.30

– AGE=4: p=0.20

– AGE=5: p=0.15

• price

15



– normal with [2 .79 ; 0 .20 2 ]

• promotion

– uniform in [0;1], rounded to 0 or 1

In a first step, we calculate the choice probabilities P h
im for each household

h for all alternatives im according to the NNNL model structure (Table 1)
and the deterministic utility component as specified in Equation (14). Ac-
cording to Brownstone and Small (1989) we then randomly generate individ-
ual choices by drawing a random number x from a uniform distribution on
[0, 1]. The household chooses alternative k if

∑k−1
j=0 Pj < x ≤ ∑k

j=0 Pj, where
P0 = 0. These choices are then used as dependent variables to compute
the estimators. Model estimation is done with the procedure PROC MDC
in SAS R© 9.1.3, and with the commands nlogit and nlogitrum in STATA R©
9.1. The NNNL specification underlies the procedure PROC MDC and the
command nlogit (see SAS (2004) and Heiss (2002)), and the RU2 UMNL
specification underlies the command nlogitrum (see Heiss (2002)).

5.1 Models

According to the utility maximization nested logit RU2 (UMNL) specifica-
tion, the scale parameters λA and λB are set equal to 1. When simulating
data for the Models 1 and 2, the scale parameters µA and µB are not imposed
by an equality constraint. Whereas when simulating data for the Models 3
and 4, the scale parameters µA and µB are set equal. Table 4 gives a model
overview.
The data generation for the simulation study was done assuming random
utility maximization theory. According to Figure 2 four different cases (A,
B, C, D) need to be considered when estimating models with generic co-
efficients. Moreover, data generation and estimation were done with and
without equality constraint on the scale parameters. Taken together these
two aspects we can differentiate eight scenarios as shown in Table 5.
Model 1 corresponds to the Models A and B in Figure 2, Model 4 to the Mod-
els C and D accordingly. Model 1 estimated with NNNL software should not
be able to reproduce the input coefficients (branch A in Figure 2), but when
estimated with UMNL software (branch B in Figure 2) should reproduce the
input values. Model 4 is expected to reproduce the coefficients’ input values,
no matter what software is used for estimation (branches C and D in Figure
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Table 4: Model Overview

Estimation

without
equality constraint equality constraint

Data Generation (A), (B) (C), (D)

without
equality constraint Model 1 Model 2
(µA = 1.3, µB = 1.7)

equality constraint Model 3 Model 4
(µA = µB = 1.8)

Table 5: Overview of Scenarios

Data generation Estimation Expected
= consistent RUM consistent

estimation? with RUM? data reproduction

Model 1 NNNL yes no (A) no
UMNL yes yes (B) yes

Model 2 NNNL no yes (C) no
UMNL no yes (D) no

Model 3 NNNL no no (A) no
UMNL no yes (B) no

Model 4 NNNL yes yes (C) yes
UMNL yes yes (D) yes

2). The Models 2 and 3 should per se not be able to reproduce the input
coefficients, because when generating these input data sets conditions differ-
ent from those with data estimation were assumed, i.e. data generation
without equality constraint and estimation with equality constraint for
Model 2, and data generation with equality constraint and estimation
without equality constraint for Model 3.
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Even when using NNNL software, coefficients consistent with random utility
theory can be estimated with Models 2 and 4 because of the estimation with
equality constraint.
The coefficients of the exogenous variables generated with SAS R© are esti-
mated with SAS R© and STATA R©. The analysis was repeated for 100 artifi-
cial data sets with the same parameter values. The means and test results of
the estimated parameters for Model 1 and Model 4 are displayed in Tables 6
to 13.
In the utility maximization nested logit (UMNL) model, the IV-parameters
only capture the (dis-)similarity of the alternatives within the nest. The
IV-parameters in the non-normalized nested logit (NNNL) model capture
another effect: the relative importance of the variables with generic coeffi-
cients for the alternatives within the corresponding nest (see Heiss (2002),
p. 240). Although these two effects are not in line, they are captured in
the NNNL model with one single IV-parameter. The ”generic” specification
of the NNNL model implies a contradictory restriction. This is the reason
why ”generic” models should not be estimated with NNNL software without
imposing restrictions.
Only if it is a priori assumed that the IV-parameters are the same in all
nests, the scaling problem of the NNNL model can be avoided. The presence
of generic coefficients then does not bias the estimates of the NNNL model,
because the coefficients are equally scaled in each nest.

5.2 Estimation Results

For Model 1 data generation and estimation was done without putting an
equality constraint on the scale parameters. Only the estimation with the
UMNL software is consistent with random utility theory. As there are generic
coefficients (βpri and βpro) in the model, only the UMNL software estimation
should result in RUM consistent estimates (Table 5). As it was expected the
non-normalized nested logit (NNNL) software estimates do not equal their
input values, but the UMNL software estimates do. To confirm this obvious
result several t-tests were conducted (see Table 7). The hypothesis that the
estimated mean parameter value over 100 iterations equals the true (input)
value only has to be rejected for the φdc|B parameter. The hypotheses for
all other parameters cannot be rejected on the 95% confidence level. This
means that the means of the estimated parameters equal their input values
used for data generation.
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Table 6: Estimation results for Model 1

SAS R© STATA R© STATA R©
PROC MDC nlogit nlogitrum

parameter name input value NNNL NNNL RU2 UMNL

φdc|A 0.50 0.73∗∗∗ 0.73∗∗∗ 0.50∗∗∗

φcc|B -0.50 -0.69∗∗∗ -0.69∗∗∗ -0.51∗∗∗

φdc|B -1.00 -1.50∗∗∗ -1.50∗∗∗ -1.04∗∗∗

βpri -0.80 -0.84∗∗∗ -0.84∗∗∗ -0.80∗∗∗

βpro 1.70 2.38∗∗∗ 2.38∗∗∗ 1.71∗∗∗

IVA 0.77 0.73∗∗∗ 0.73∗∗∗ 0.78∗∗∗

IVB 0.59 0.51∗∗∗ 0.51∗∗∗ 0.60∗∗∗

Displayed estimates are mean values over 100 iterations.
∗∗∗ α = 0.01; observations = 4, 000; iterations = 100
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Table 7: Separate t-tests for Model 1 nlogitrum parameter estimates

name H0 mean t value Pr> |t|
φdc|A 0.50 0.50 0.53 0.5971
φcc|B -0.50 -0.51 -1.96 0.0531
φdc|B -1.00 -1.04 -2.59 0.0111
βpri -0.80 -0.80 -0.14 0.8875
βpro 1.70 1.71 0.30 0.7668
µ∗A 1.30 1.28 0.47 0.6389
µ∗B 1.70 1.67 0.36 0.7212

n = 100; df = 99; ∗µ = λ
IV with λ = 1

For Model 2 data generation was done without, estimation was done
with equality constraint, leading to RUM consistent estimates in any case.
But due to the different assumptions for data generation and estimation, the
estimated parameters are largely expected not to equal their input values.
The estimation with the NNNL software leads to wrong parameter estimates
without any re-scaling option. The main issue when estimating model 2
lies in the wrong scale parameter estimate for nest B. As the t-tests in
Table 9 show the parameters related to nest B (φcc|B, φdc|B, µ∗B) cannot be
reproduced with the nlogitrum command. The estimation with the nlogitrum
command is able to reproduce some of the input values, but in general all
three estimations lead to wrong parameter estimates.
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Table 8: Estimation results for Model 2

SAS R© STATA R© STATA R©
PROC MDC nlogit nlogitrum

parameter name input value NNNL NNNL RU2 UMNL

φdc|A 0.50 0.66∗∗∗ 0.66∗∗∗ 0.50∗∗∗

φcc|B -0.50 -0.71∗∗∗ -0.71∗∗∗ -0.53∗∗∗

φdc|B -1.00 -1.49∗∗∗ -1.49∗∗∗ -1.13∗∗∗

βpri -0.80 -1.07∗∗∗ -1.07∗∗∗ -0.80∗∗∗

βpro 1.70 2.28∗∗∗ 2.28∗∗∗ 1.70∗∗∗

IVA 0.77 0.76∗∗∗ 0.76∗∗∗ 0.75∗∗∗

IVB 0.59 0.76∗∗∗ 0.76∗∗∗ 0.75∗∗∗

Displayed estimates are mean values over 100 iterations.
∗∗∗ α = 0.01; observations = 4, 000; iterations = 100

21



Table 9: Separate t-tests for Model 2 nlogitrum parameter estimates

name H0 mean t value Pr> |t|
φdc|A 0.50 0.50 -0.55 0.5846
φcc|B -0.50 -0.53 -4.50 0.0001
φdc|B -1.00 -1.13 -9.19 0.0001
βpri -0.80 -0.80 0.01 0.9946
βpro 1.70 1.70 0.16 0.8717
µ∗A 1.30 1.33 -1.34 0.1827
µ∗B 1.70 1.33 12.98 0.0001

n = 100; df = 99; ∗µ = λ
IV with λ = 1

For Model 3 data generation was done with, estimation was done with-
out equality constraint. All three estimations result in the same scale param-
eter estimates which equal the input values constrained to equality. Thus,
even though different assumptions were taken for data generation and es-
timation, the estimation results solve this issue leading to RUM consistent
estimates in any case. The NNNL parameter estimates can be rescaled by
multiplication with the (equal) scale parameters. Unfortunately, the H0 hy-
potheses for the parameters φcc|B and φdc|B have to be rejected (Table 11).
In general, the estimation results for Model 3 are somewhat unexpected.
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Table 10: Estimation results for Model 3

SAS R© STATA R© STATA R©
PROC MDC nlogit nlogitrum

parameter name input value NNNL NNNL RU2 UMNL

φdc|A 0.50 0.91∗∗∗ 0.91∗∗∗ 0.50∗∗∗

φcc|B -0.50 -0.93∗∗∗ -0.93∗∗∗ -0.51∗∗∗

φdc|B -1.00 -1.85∗∗∗ -1.85∗∗∗ -1.04∗∗∗

βpri -0.80 -1.45∗∗∗ -1.45∗∗∗ -0.80∗∗∗

βpro 1.70 3.08∗∗∗ 3.08∗∗∗ 1.71∗∗∗

IVA 0.56 0.56∗∗∗ 0.56∗∗∗ 0.56∗∗∗

IVB 0.56 0.57∗∗∗ 0.57∗∗∗ 0.57∗∗∗

Displayed estimates are mean values over 100 iterations.
∗∗∗ α = 0.01; observations = 4, 000; iterations = 100
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Table 11: Separate t-tests for Model 3 nlogitrum parameter estimates

name H0 mean t value Pr> |t|
φdc|A 0.50 0.50 0.27 0.7850
φcc|B -0.50 -0.51 -2.08 0.0401
φdc|B -1.00 -1.04 -2.79 0.0064
βpri -0.80 -0.80 -0.00 0.9973
βpro 1.70 1.71 0.24 0.8092
µ∗A 1.80 1.79 -0.11 0.9147
µ∗B 1.80 1.75 0.46 0.6489

n = 100; df = 99; ∗µ = λ
IV with λ = 1

The remarkable particularity in Model 4 (data generation and estimation
with equality constraint) is that the parameter estimates with the NNNL
software can be transferred according to Equation (12), resulting in the
parameter estimates with the UMNL software. The parameters estimated
with STATA R© nlogitrum equal a multiple of the parameters estimated with
SAS R© PROC MDC or STATA R© nlogit respectively. The parameters esti-
mated in the NNNL models do not have any meaning before a re-scaling, i. e.
their multiplication with the estimated IV-parameter, and can therefore not
be interpreted in the sense of random utility theory. Possible discrepancies
of the parameters are caused by rounding. All except for one parameter esti-
mates with the command nlogitrum in STATA R© significantly equal the true
values, which were used when simulating the data set. Separate t-tests of the
hypotheses that the estimated parameters equal their true values shed more
light on this (Table 13). The hypotheses for all but one (φdc|B) parameter
cannot be rejected on the 95% confidence level.
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Table 12: Estimation results for Model 4

SAS R© STATA R© STATA R©
PROC MDC nlogit nlogitrum

parameter name input value NNNL NNNL RU2 UMNL

φdc|A 0.50 0.91∗∗∗ 0.91∗∗∗ 0.50∗∗∗

φcc|B -0.50 -0.93∗∗∗ -0.93∗∗∗ -0.51∗∗∗

φdc|B -1.00 -1.85∗∗∗ -1.85∗∗∗ -1.03∗∗∗

βpri -0.80 -1.45∗∗∗ -1.45∗∗∗ -0.80∗∗∗

βpro 1.70 3.08∗∗∗ 3.08∗∗∗ 1.70∗∗∗

IVA 0.56 0.56∗∗∗ 0.56∗∗∗ 0.56∗∗∗

IVB 0.56 0.56∗∗∗ 0.56∗∗∗ 0.56∗∗∗

Displayed estimates are mean values over 100 iterations.
∗∗∗ α = 0.01; observations = 4, 000; iterations = 100

Table 13: Separate t-tests for Model 4 nlogitrum parameter estimates

name H0 mean t value Pr> |t|
φdc|A 0.50 0.50 0.25 0.8042
φcc|B -0.50 -0.51 -1.91 0.0588
φdc|B -1.00 -1.03 -2.87 0.0050
βpri -0.80 -0.80 0.08 0.9354
βpro 1.70 1.70 0.20 0.8412
µ∗ 1.80 1.79 -0.09 0.9284

n = 100; df = 299; ∗µ = λ
IV with λ = 1
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6 Summary

Although the nested logit model has, because of its ability to account for
similarities between alternative via partial correlation of the error terms,
received increasing attention, the various specifications of the nested logit
model have only marginally been focused on. But this differentiation gets its
special relevance from the fact that generally only the RU2 UMNL specifica-
tion is consistent with random utility theory.
Both estimations with real data and simulation studies require investigating
the software’s underlying nested logit specification. Whereas in estimations
with utility maximization nested logit (UMNL) software no particularities
are to be considered, estimation with non-normalized nested logit (NNNL)
software proves to be more difficult. Only by imposing restrictions on the
IV-parameters or by introducing dummy nests can estimation results consis-
tent with random utility theory be reached.
It was demonstrated that when using NNNL software without imposing re-
strictions, a model consistent with random utility theory can not be esti-
mated (see Table 2 and Section 3.3).
Three cases are to be distinguished: (1) model without generic coefficients,
(2) model with generic coefficients and without equality constraint on the
scale parameters, and (3) model with generic coefficients and with equality
constraint on the scale parameters. In case (1) the coefficients estimated
with NNNL software (e. g. PROC MDC in SAS R©) can be transferred to the
coefficients estimated with UMNL software (e. g. nlogitrum in STATA R©) by
multiplying them with the estimated IV-parameter. The thus re-scaled coef-
ficients are the ”true” model coefficients. This article did not dwell on case
(1) as in marketing applications mostly at least one variable with a generic
coefficient (e. g. price) enters the model. A model estimated with NNNL
software in case (2) is not applicable. This becomes especially relevant if
the software user is not aware of the described issue of different nested logit
model specifications. Here the danger of a wrong model estimation is very
high. If UMNL software is used in case (2), the distinction between RU1
and RU2 normalization has to be made. A model with RU1 normalization
is not consistent with random utility theory and thus the same conclusions
as for the NNNL software are true. In contrast, the RU2 normalization is
theory-consistent. The estimation results in case (3) show that the coeffi-
cients estimated with NNNL software can be transferred to the coefficients
estimated with UMNL software by multiplying them with the estimated IV-
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parameter.
For data generation with an equality constraint on the nest-specific scale
parameters and model estimation with an equality constraint on the IV-
parameters (Model 4 in Table 4), leading to consistency with random utility
theory in any case, the reproduction of the generic coefficients’ input values
succeeds.
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