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1 Introduction

A sample X1, . . . , Xn is considered biased if it is sampled from a density p
which is represented as

p(x) =
q(x)w(x)∫
q(u)w(u) du

. (1)

Here q is some ‘natural’ pdf (probability density function) for the problem,
representing the ‘true’ underlying distribution, while w is a given weight
function that biases the sample. In a standard example, X represents the
severity of the disease, and q is the density of X among patients at admis-
sion to the hospital. However, it may be more convenient to take a random
sample from the population of patients who are in the hospital at a given
time. If the time of hospitalization is proportion to the severity of the case,
then the sample is taken from the density p, which is equal to q ‘length
biased’ with w(x) ≡ x. Vardi (1985) was the first to analyze systemati-
cally these type of models. Asymptotic theory was develop in Gill, Vardi
and Wellner (1988). Gilbert, Lele, and Vardi (1999) extended the model
to the situation where the weight function depends on some parameter,
w(x) = w(x; f). The large sample properties were discussed in Gilbert
(2000).

Our paper is about estimating f , the parameter of the weight function,
w(x) = w(x; f). Two semiparametric models are discussed in this paper.
The first model is an experimental design problem in which the concept
of biased sample is introduced in a situation where a direct sample is in
fact impossible. The model for q is semiparametric, while the parameter
of interest, f , is Euclidean. In the second model we consider, q is taken as
known, while the weight function is parametrized by a non-Euclidean pa-
rameter. This brings us to an inverse problem of estimating and demixing
the weight.

The purpose of the first model is to design an experiment in order to
evaluate the relative attractiveness of different baits. See for example Ji,
Veitch, and Craig (1999). It can be described as follows. Suppose that traps
are distributed with different baits. We do not know much about the animal
population. We do not know even how many animals visited each trap.
We know only the number and characteristics of the animals who were
tempted by each of the baits and were captured. For simplicity we assume
that each trap and bait can attract and catch unlimited number of animals.
We want to estimate the attractiveness of each type of bait as a function of

2



the animal characteristics, and do that from the sample in which a datum
is a pair of an animal and a bait.

The second model is motivated by research on risk aversion and pro-
clivity, more precisely on the empirical pricing kernel (EPK). See Detlefsen,
Härdle and Moro (2007) (hereafter DHM). The EPK describes the apparent
utility behavior as function of individual investors utility function.

In this model q is the risk neutral density of assets pricing. It is derived
from theoretical considerations. The density p on the other hand is the em-
pirical (historical) prices. See Figure 1 (a) and (b) for an example. In asset
pricing the EPK links risk neutral investor’s behavior to individual utilities,
which gives in our notation a semiparametric modeling of the weight func-
tion w. The integral function of the pricing kernel q/p is the utility function
used by a representing individual. Knowing p and q yields the exact form
of the utility function, cf. Ait-Sahalia and Lo (2000). The risk neutral (state
price) density (SPD) q can be calculated from the market data on European
options, in the DAX data-set. There are more than 5000 observations each
day for maturity from 1 week to 2 years. The SPD can therefore be esti-
mated very precisely. Much empirical research work has demonstrated the
so called EPK paradox: The resulting utility function is partially concave
and partially convex, more precisely of the Friedman and Savage type. See
Friedman and Savage (1948).

It is assumed in DHM that the observed density of the DAX value has
density of the form p(x) = cq(x)w(x; f) where q ∈ {qν , ν ∈ N ⊆ Rd} is the-
oretical derived risk neutral density, assumed to follow a given parametric
function and c is a normalization factor. That is, of the type of equation (1).
The weight function is theoretically derived to be given by 1/U ′(x), where
U is the market utility function, and prime denotes derivative. The mar-
ket utility function itself is assumed to be a function of the mixture of the
individual investors:

x = U−1(u) =
∫

g(u; ξ)f(ξ) dξ.

Here ξ denotes an investor type, f is the density of the investors’ distrib-
ution, and the function g(·; ·) is the inverse utility function and it is con-
sidered known. A subject of type ξ has the inverse utility function g(·; ξ),
or equivalently, the utility function u(·; ξ) satisfying g{u(x; ξ); ξ} ≡ x. The
problem we consider in this paper is to find the density f . We obtain the
representation:

p(x) = cq(x)
∫

∂

∂u
g(u; ξ)f(ξ) dξ, with x =

∫
g(u; ξ)f(ξ) dξ. (2)
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Figure 1: The DAX data, 24/03/2000 half a year look ahead: (a) p, the
historical density; (b) q, the risk neutral density; (c) The estimate of f , the
mixing density. Figures are taken from DHM

See Figure 1 for an example taken from DHM of estimates of p, q, and f .
We will investigate the estimation rate for a few utility functions. The

result is typical for inverse problems, in that slightly different assumption
will yield completely different results. In fact, we will present three similar
models, similar to those investigated in DHM, that exhibit three different
type of behavior:

(i) There is no consistent estimator of f ;

(ii) f can be estimated at a regular nonparametric rate of n−α;

(iii) f can be estimated but at a very slow rate.

We will also show a sort of uncertainty principle. The better we can
estimate the function U−1(u), the worse we can demix it and estimate f .
This is reasonable. We cannot estimate f well, when large differences in f
have only minor impact on

∫
g(·; ξ)f(ξ) dξ.

There are two unified themes to the paper. The first is the usefulness of
the concept of biased sample of unknown weight function, even in mod-
els where this point of view is not automatic. The second is the technical
analysis of inverse problem which starts with a naive estimator that not
much is known about it, and then improving it. The structure of the rest
of the paper is as follows. In Section 2 we consider a parametric model
for the weight function, and show the simplicity of the result. Then, in Sec-
tion 3 , we suggest an algorithm for calculating the generalized maximum-
likelihood estimator (GMLE) for the semiparametric weight function of the
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model suggested by DHM. Finally rates of convergence of the demixing
estimator for the DHM’s model are discussed in Section 4 , as well as of
estimates of the mixture itself.

2 The parametric bait problem

Animals of type z are trapped by a bait of type u with probability which is
proportional to w(z, u; f). We do know about the animals only after they
are caught by the traps. Our aim is to design an experiment and to esti-
mate f . The solution in a nutshell is to distribute many different baits and
compare the difference between the animals captured by the different baits,
somewhat similar to what is done in case-control studies.

Let X = (U,Z) where U denotes the bait property (e.g., percentage of
fat) and Z is a vector of measurement for each animal (e.g., gender, weight,
and age). Baits with known (designed!) distribution g are spread, and are
encountered by the animals. We assume therefore that the data is sampled
from the joint density given by

p(u, z) =
w(u, z; f)g(u)h(z)∫ ∫

w(ũ, z̃; f)g(ũ)h(z̃) µ. (ũ) dν(z̃) (3)

with respect to the product measure µ × ν, and where w(u, z; f) is some
parametric weight function, for example, if u is a scalar and z ∈ Rd, we can
consider

w(u, z; f) = exp{ufTz}. (4)

Our aim is to estimate f . The density h is an unknown distribution over
Rd, d large.

Suppose we consider the weight function (4), then the likelihood equa-
tion for f is

0 =
∑

UiZi − n

∫ ∫
uzeufTzg(u)h(z) dµ(u) dν(z)∫ ∫
eufTzg(u)h(z) dµ(u) dν(z)

Assuming that Z has at least one Lebesgue continuous component, the
GMLE (generalized maximum likelihood estimator) of its distribution is
discrete with a point mass at each observation, so that we obtain

0 =
n∑

i=1

UiZi − n

∑
j

∫
uzje

ufTzjg(u)ĥj dµ(u)
∑

j

∫
eufTzjg(u)ĥj dµ(u)

.
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where ĥj is the estimated mass at the point Zj . However, the likelihood
equation for h is

0 =
1

ĥj

− n

∫
eufTZjg(u) dµ(u)∑n

i=1

∫
eufTZig(u) dµ(u)ĥi

Plugging this into the profiled log-likelihood equation for f we obtain

0 =
1
n

˙̀(f) =
1
n

n∑

i=1

UiZi −
n∑

j=1

∫
uzje

ufTzjg(u) dµ(u)∫
eufTzjg(u) dµ(u)

=
1
n

n∑

i=1

Zi

{
Ui − Ef (U |fTZi)

}

=
1
n

n∑

i=1

T (Ui, Zi; f), say.

For example, in the simple case where g is uniform on the interval (a, b):

Ef (U |z) =

∫ b
a ueufTz dz∫ b
a eufTz du

=
bebfTu − aeafTz

ebfTz − eafTz
− 1

fTz

if fTz 6= 0, and (a + b)/2 otherwise.
Generally, the derivative of Ef (U |fTZi) is −Varf (U |fTz)ZZT. Hence

` is concave in f . This yields that the maximizer of ` is simple to find
and is asymptotically normal with asymptotic covariance function given
by E

{
Varf (U |fTz)ZZT

}

3 EPK: Model and an EM estimator

We consider now the EPK problem. We start now from (2) and we assume
that q is known. In practice, it is assumed only to belong to some parametric
family {qν}. However, we will deal in the following in rates which are
slower than the parametric

√
n rate, and the estimate of ν is based on much

larger sample than the estimates of the rest of the parameters. Therefore,
the assumption that ν is known simplifies the discussion without a real
impact on the results.

Rewrite (2) as

p
{∫

g(u; ξ)f(ξ) dµ(ξ)
}∫

∂

∂u
g(u; ξ)f(ξ) dµ(ξ)

= cq
{∫

g(u; ξ)f(ξ) dµ(ξ)
}{∫

∂

∂u
g(u; ξ)f(ξ) dµ(ξ)

}2
,

(5)
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where µ is some dominating measure (i.e., the Lebesgue or the counting
meausres). Noting that the LHS of (5) is integrated to 1, we can solve for c
and obtain

p
{∫

g(u; ξ)f(ξ) dµ(ξ)
}

=
q
{∫

g(u; ξ)f(ξ) dµ(ξ)
} ∫

∂
∂ug(u; ξ)f(ξ) dµ(ξ)

∫
q
{∫

g(v; ξ)f(ξ) dµ(ξ)
}{∫

∂
∂ug(v; ξ)f(ξ) dµ(ξ)

}2
dv

The market utility U(x) = U(x; f) is given by

x ≡
∫

g
{
U(x; f); ξ

}
f(ξ) dµ(ξ) ≡ ψf

{
U(x; f)

}
.

We obtain

p(x) =
q(x)

∫
∂
∂ug(U(x; f); ξ)f(ξ) dµ(ξ)∫

q(y)
∫

∂
∂ug(U(y; f); ξ)f(ξ) dµ(ξ) dy

=
q(x)ψ′f

{
ψ−1

f (x)
}

∫
q(y)ψ′f

{
ψ−1

f (y)
}

dy
.

(6)

The statistical model assumed by DHM is that we obtain a simple random
sample from p, where p is parametrized in (6) by the non-Euclidean para-
meter f . A natural approach is to estimate f by the MLE or a variant of
it, which we develop now. Note that ∇fψf (u) = g(u; ·), and by taking the
gradient of x ≡ ∫

g
{
ψ−1

f (x); ξ
}
f(ξ) dµ(ξ) we obtain

0 = g
{
ψ−1

f (x); ·} + ψ′f
{
ψ−1

f (x)
}∇fψ−1

f (x).

The derivative of the log-likelihood is given therefore by

˙̀
f (ξ) =

n∑

i=1

1
ψ′f

{
ψ−1

f (Xi)
}

[ ∂

∂u
g
{
ψ−1

f (Xi); ξ
}− ψ′′f

ψ′f

{
ψ−1

f (Xi)
}
g
{
ψ−1

f (Xi); ξ
}]

− nAf (ξ), ξ ∈ supp f

=
n∑

i=1

1
ψ′f

{
Ui

}{ ∂

∂u
g
{
Ui; ξ

}− ψ′′f
ψ′f

(Ui)g(Ui; ξ)
}− nAf (ξ),

Ui = ψ−1
f (Xi), ξ ∈ supp f,

where Af (ξ) is the mean of the first term under f . Since the density of Ui is
given by

rf (u) = p
{
ψf (u)

}
ψ′f (u) =

q
{
ψf (u)

}{
ψ′f (u)

}2

∫
q
{
ψf (v)

}{
ψ′f (v)

}2
dv

.
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We obtain that

Af (ξ) =

∫
q
{
ψf (u)

}{
ψ′f (u) ∂

∂ug(u; ξ)− ψ′′f (u)g(u; ξ)
}

du
∫

q
{
ψf (v)

}{
ψ′f (v)

}2
dv

.

The model of random sample from the density p can be well approx-
imated as σ → 0 by a Xi = ψf (Ui) + εi, i = 1, . . . , n, where ε1, . . . , εn

is a random sample from N(0, σ2) independent from the random sample
U1, . . . , Un taken from the density rf . Now, the log-likelihood of the joint
density is given by

`f =
n∑

i=1

[
log q

{
ψf (Ui)

}
+ 2 log

{
ψ′f (Ui)

}]
− nCf − 1

2σ2

n∑

i=1

(Xi − ψf (Ui))2,

where

Cf = log
∫

q
{
ψf (v)

}{
ψ′f (v)

}2
dv.

By a well known formula for the Bayes estimator in the Gaussian measure-
ment error model, under the above model, the distribution of ψf (Ui) −Xi

given Xi is normal with mean σ2f ′X(Xi)/fX(Xi) and a second moment
equal to σ4f ′′X(Xi)/fX(Xi) + σ2, where fX is the marginal density of Xi.
At the limit as σ2 → 0, the conditional expectation of the log-likelihood
given the Xis amounts therefore to replacing Ui by ψ−1

f (Xi). We conclude
that the limiting EM algorithm iterates therefore between

The E step: Ui ← ψ−1
f (Xi), i = 1, . . . , n,

and

The M step: f ← arg max
[ n∑

i=1

{
log q

{
ψf (Ui)

}
+ 2 log

{
ψ′f (Ui)

}}
− nCf

]
.

Let U = (U1, . . . , Un), X = (X1, . . . , Xn), and denote the E-step by U =
ψ−1

f (X). The M-step can be solved by solving the likelihood equation:

0 = ˙̀M
f (ξ;U)

=
n∑

i=1

[
q′

{
ψf (Ui)

}

q
{
ψf (Ui)

} g(Ui; ξ) +
2

ψ′f (Ui)
∂

∂u
g(Ui, ξ)− Ċf (ξ)

]
,

(7)
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for all ξ ∈ supp f , where

Ċf (ξ) =

∫ [ q′
{

ψf (v)
}

q
{

ψf (v)
} g(v; ξ) + 2

ψ′f (v)
∂
∂ug(v, ξ)

]
q
{
ψf (v)

}{
ψ′f (v)

}2
dv

∫
q
{
ψf (v)

}{
ψ′f (v)

}2
dv

= Ef

[q′
{
ψf (U)

}

q
{
ψf (U)

} g(U ; ξ) +
2

ψ′f (U)
∂

∂u
g(U, ξ)

]

= Ef

{
Tf (U ; ξ)

}
, say.

An approximate M-step (which is enough, since all we need in the M-step
is that the likelihood will be strictly increased) is obtained by considering
an approximate Newton-Raphson solution of (7), where Op(

√
n) terms in

the Hessian of the log-likelihood are discarded. That is the term
n∑

i=1

{∇fTf (Ui; ξ)− Ef ∇fTf (U ; ξ)
}
.

We consider therefore the algorithm:

fi+1 = fi + H−1
fi

`M
fi

{·; ψ−1
fi

(X)
}
, i = 1, 2, . . . ,

where Hf : L2(µ) → L2(µ) is the operator given by:

Hf (ξ, ζ) = covf

{
Tf (U ; ξ) , Tf (U ; ζ)

}
.

4 EPK: Rates of convergence

In the previous section we considered the MLE estimate of f . In this sec-
tion we consider simple estimators of the type suggested by DHM. Using
these estimators we will be able to discuss possible minimax rates of con-
vergence. In essence, we start with some naive nonparametric estimator
and improve it or demix it for f . One simple method for demixing the EPK
is to start with (2) which can be written as

1 = c

∫
∂

∂u
g(u; ξ)f(ξ) dξ

q

p

{∫
g(u; ξ)f(ξ) dξ

}

= c
∂

∂u

q

p

{∫
g(u; ξ)f(ξ) dξ

}
.

Hence
q

p

{∫
g(u; ξ)f(ξ) dξ

}
= α + βu

9



for some α and β, or
∫

g(u; ξ)f(ξ) dξ =
(p

q

)−1
(α + βu).

The utility function of an individual is defined up to affine transformation.
To assure that it is well defined, we assume that that utility at a return of 1
is 0, and its derivative there is 1. In other words we assume that g(0, ξ) ≡
∂
∂ug(0, ξ) ≡ 1. Hence

α =
p(1)
q(1)

β =
p′(1)
q(1)

− p(1)
q(1)

q′(1)
q(1)

.

We therefore want to solve∫
g(u; ξ)f(ξ) dξ = ψ(u), (8)

for some ψ. Since q is estimated as a parametric density (based on a much
larger sample), and p can be estimated at a standard non-parametric rate
based on a direct sample from p, ψ can as well be estimated at a regular
density estimation rate. The analysis of this section starts with (8). We
assume that ψ and its relevant derivatives can be estimated in some poly-
nomial rate ‖ψ̂(i)−ψi‖∞ = Op(n−αi) for some αi > 0. The natural estimator
suggested by DHM is given by the inverse function of a weighed density
estimator. Under strict monotonicity and boundness, the inverse function
inherits most properties from the density kernel estimator.

Note that model (8) looks like a linear model. For example if f is ap-
proximated by a finite distribution with point mass at ξ1, . . . , ξm, and we
consider the equation at the k points u1, . . . , uk then we can write (8) as

ψ̂(ui) =
m∑

j=1

βjg(ui; ξj) + εi, i = 1, . . . , k. (9)

(9) looks like a standard linear model, and indeed we suggest to estimate
f by solving it. However, it is not. Most linear model assumptions are vio-
lated. E.g., ε1, . . . , εk are not i.i.d. , they are not independent of the random
u1, . . . , uk, which are in fact an estimated function of the observed values
x1, . . . , xk.

The basic idea of this section is as follow. We assume that we have some
naive nonparametric estimator of ψ. We then proceed to use the pseudo
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linear model (9) to to estimate the mixing distribution and to improve the
estimate of ψ itself. We show that this method yields the minimax rates.

How fast can f be estimated? In the rest of the section we present sim-
ple examples following DHM. These examples show that in a very similar
models very different type of behavior can be obtained. It can be that (i)
There is no consistent estimator of f ; (ii) f can be estimated at a regular
nonparametric rate of n−α; (iii) f can be estimated but at a very slow rate.
Thus one can suspect that any optimistic result of demixing depends too
heavily on assumptions, and are a priori not robust (at least in the minimax
sense). In particular, any result should be checked to stand against different
changes in the model.

4.1 Switching between two utilities

Following DHM assume that for x, ξ > 0:

U(x; ξ) = α2(1− c)1−1/α2{[x− ξ]1/α1
+ ∨ (x− c)1/α2} − α2(1− c), (10)

where α2 > α1 > 1 are given, c < 0, and [x]+ = x1(x > 0). See Figure 2 .
Then

g(u; ξ) = min{βα2{u + α2(1− c)}α2 + c, βα1{u + α2(1− c)}α1 + ξ},
where β = α−1

2 (1 − c)−1+1/α2 . To simplify and generalize the discussion,
we consider the slightly more general case:

g(u; ξ) =

{
g2(u) −∞ < u ≤ h(ξ)
g1(u) + ξ ∞ > u > h(ξ)

, ξ > 0,

where

h−1 = g2 − g1 (11)

is a strictly increasing function. Note that g(u; ξ) is continuous in ξ. Then
(8) is translated to

ψ(u) =
∫ h−1(u)

ξf(ξ) dξ + g2(u)F
{
h−1(u)

}
+ g2(u)

{
1− F

{
h−1(u)

}}
,

where F is the cdf corresponding to the pdf f . Changing variables and
considering (11)

ψ
{
h(s)

}
=

∫ s

ξf(ξ) dξ − sF (s) + g2

{
h(s)

}
.

11
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Figure 2: The utility function U(·; ξ) of (10) (α1 = 2, α2 = 2.25, c = 2) for
two different values of ξ (solid lines), and of (12) for two values (broken
lines).

Taking derivative:

F (s) = h′(s)
{

g′2
{
h(s)

}− ψ′
{
h(s)

}}
.

Hence estimating F at s is equivalent to the estimation of ψ′ at h(s). In
other words, f(·) can be estimated at the same rate as the rate of the es-
timation of second derivative of ψ, which in turn is essentially governed
by the rate of estimation of the second derivative of p, which depends on
the level of smoothness assumption we are willing to accept. Thus if we
assume that p has s bounded derivatives, then f can be estimated with an
Op(n−(s−2)/(2s+1)) error. See Silverman (1986) for a general review of den-
sity estimation.

4.2 Polynomial and exponential inverse utility function

The previous example was a relatively optimistic example. However, mod-
est changes in the inverse utility function may create situations in which f
can hardly estimated, or even not at all.

12



Suppose a CRRA (constant relative risk aversion) utility:

g(u; ζ) = (αζα−1)−1
{
(u + ζ)α − ζα

}
+ 1, u ∈ R, ζ ∈ R+,

where α is known. Note that g is scaled such that both its value and deriv-
ative at 0 are equal to 1. That is, we consider only one branch of (10). If α
is an integer, then ψ(·) is a function of only the first α moments of f , and
hence there is no consistent estimator of f .

Seemingly, more and more moments are revealed as α →∞. However,
it is not clear that they could be estimated effectively. The limiting form of
the inverse utility function, as α →∞ and α/ζ → ξ is given by

g(u; ξ) ≡ ξ−1(euξ − 1) + 1. (12)

The density f is now identified. For example, all its moments can be esti-
mated, e.g., by

∫
ξif(ξ) dξ = ψ(i+1)(0). We are going now to analyze this

model in some detail. We will argue now that if f(·) is assumed to have
two bounded derivatives, then its value at a point can indeed be estimated,
but this can be done only in a very slow convergence rate, slower than any
polynomial rate. To be more exact,we argue

Theorem 4.1 Assume that g is given by (12) and f is bounded and has two
bounded derivatives. Suppose the minimax rate of estimation of ψ is nγ , γ ∈
(0, 1/2). Then there is an estimator f̂ such that f̂(s)−f(s) = Op(n−α log log n/ log n)
for some α, and there is no estimator f̃(s), such that f̃(s)−f(s) = Op(n−α/ log log n)
for some α.

The proof is given in Appendix A .

4.3 Smoothing the empirical estimate and an uncertainty princi-
ple

As in the previous subsections we start with a nonparametric ψ̂. The pur-
pose of this subsection is to show that a simple projection of this initial
estimator yields a considerably better estimator.

We argued in Subsection 4.2 there that there is no reasonable estima-
tor of f for g given in (12). Is this model useless? The surprising answer
is no. Although f cannot be estimated per-se, many of its functionals can
be estimated quite easily and quite well. For example, as mentioned, its
moments. Similarly ψ(u) considered as a simple linear functional can be

13



estimated quite easily. Suppose that f is supported on some compact inter-
val [a, b]. Then one can approximate

ψ(u) =
m∑

i=1

βiu
i + Rm(u)

where for some ũ ∈ (0, u):

0 ≤ Rm(u) =
1

(m + 1)!
ψm+1(ũ)

=
1

(m + 1)!

∫ b

a
ξmeũξf(ξ) dξ

≤ bmeub

(m + 1)!
.

(13)

Generally speaking, the faster the coefficients β are converging to 0, the
easier it is to estimate ψ and the harder it is to estimate the mixing density
g. As (13) shows, we need only very few terms to approximate ψ quite
well. In fact we show that in this smooth case, where on one hand f can
be hardly estimated, ψ can be estimated almost at the parametric rate. This
is not an accident — these are two faces of one phenomena. The shape
of the observable ψ hardly depends on f , and essentially depends only
on a few aspects of f . These aspects can be estimated well (and hence ψ
can be estimated well too). The other aspects can hardly be estimated and
hence f cannot be estimated in a reasonable rate. This yields an uncertainty
principle — the more you are certain about ψ the less you are about f .

Recall that a function g is called completely monotone if (−1)kg(k) ≥
0, and it is called Bernstein function if its first derivative is completely
monotone. It is well known (Feller, 1996) g is completely monotone if, and
only if g(u) =

∫∞
0 e−uξ dF (ξ). In other words, ψ is a Bernstein function.

Nonparametric maximum likelihood estimation for exponential mixture
(and hence completely monotone density) was discussed in Jewel (1982).
Balabdaoui and Wellner (2007) discussed the estimation of a k-monotone
density.

We assume that at our disposal there is an estimate ψ̂ = ψ̂n. For any
u1, . . . , uk > 0, let Σ(u1, . . . , uk) ∈ Rk×k, where

Σij(u1, . . . , uk) = cov
{
ψ̂(ui) , ψ̂(uj)

}
.

Consider the following assumption:

14



A1. For any n there is k = kn, and u1, . . . , uk ∈ (c, d), 0 < c < d, such
that the spectral radius of Σ(u1, . . . , uk) is O(k/n) and maxi |Eψ(ui)−
ψ(ui)|2 = O(log n/n).

Assumption A1 is satisfied by many nonparametric density and regression
estimators when they are strictly under-smooth. We care much more about
bias than about variance of the original estimator ψ̂. Thus, we have in mind
a kernel estimator with bandwidth of order n−1/4+ε. The spectral radius is
based on the assumptions that the estimator at points that are a multiply of
the bandwidth apart are (almost) independent, for example this is trivially
the case with kernel estimator with compact support. The relationships in
the assumption are derived from assuming that the bias of the estimator is
O(σ2), the variance is O(1/nσ), and k = O(σ−1).

Consider now the least squares regression of Y =
{
ψ̂(u1), . . . , ψ̂(uk)

}T

on the design matrix Z ∈ Rk×m, Zij = uj
i . That is β̂ = (Z ′Z)−1Z ′Y , where

β̂ ∈ Rm. Finally let ψ̃(u) =
∑m

j=1 β̂ju
j , u > 0. We argue that the error

achieved by ψ̃ is almost the parametric rate even although β̂ achieves can
be estimated in strictly lower rate.

Theorem 4.2 Suppose g(u; ξ) ≡ ξ−1(euξ − 1) and that f is supported on a
compact interval. Assume A1 holds and m = mn = log n/ log log n. Then
k−1

∑k
i=1

{
ψ̃(ui)− ψ(ui)

}2 = Op

{
(log n)2/n

}
.

Proof. Let β0 be the true value β0
j =

∫
ξj−1f(ξ) dξ/j!. Write Y = Zβ + ε,

where ε include both the random error and the bias terms due to both the
estimator and the truncation. The latter term is given in (13). By standard
least squares results

k−1E
k∑

i=1

{
ψ̃(ui)− ψ(ui)

}2 = k−1E
{
εTZ(ZTZ)−1ZTε

}

= k−1 trace
{
Z(ZTZ)−1ZTE(εεT)

}
.

Since Z(ZTZ)−1ZT is a projection matrix on a m-dimensional space, the
RHS is bounded by the largest eigenvalue of E(εεT) times m/k. This has
three sources (variance and two biases) and hence

k−1E
k∑

i=1

{
ψ̃(ui)− ψ(ui)

}2 = O
[m

k

{k

n
+ k

log n

n
+ k

(bm

m!

)2}]
.
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The factor k before the last two terms is due to the norm of the unit vector
in Rk, and, the last term is by (13). The theorem follows by taking m =
log n/ log log n ¤

A more general result can be based on an assumption like the following

A2. Assume that for some c, d and each ε there are hε,1, . . . , hε,M(ε) such
that

sup
ξ

min
γ

max
c<u<d

∣∣g(u; ξ)−
M(ε)∑

j=1

γjhj(u)
∣∣ < ε

Note that clearly the assumption ensures the existence of γ(·) such that
maxc<u<d |g(u; ξ) − ∑M(ε)

j=1 γj(ξ)hj(u)| < ε, but then there are also βj =∫
γj(ξ)f(ξ) dξ, j = 1, . . . , M(ε), such that maxc<u<d |ψ(u)−∑M(ε)

j=1 βjhj(u)| <
ε.

The following theorem can be proved similarly to Theorem 4.2 :

Theorem 4.3 Suppose assumptions A1 and A2 hold. Define εn by

εn = arg min
ε

{M(ε)/n + ε}.

Let ψ̃ be the least squares estimate of the regression of ψ̂ on hεn,1, . . . , hεn,M(εn).
Then k−1

∑k
i=1

{
ψ̃(ui)− ψ(ui)

}2 = Op(εn).

In practice, Theorems 4.2 and 4.3 may seem to be of a limited use —
a knowledge of the structure of the span of the individual utility functions
is needed, and the regression is based on an identified efficient base, which
may be not natural. For example, we used a polynomial base for the expo-
nential utility function. The practical approach is an histogram or discrete
approximation of f . We want now to discuss when such a procedure does
yield an effective estimator, an estimator which is both statistically speak-
ing efficient, but at the same time easy to compute and can be be used in
off-the-shelf manner.

This is indeed the case. Let ξ1, . . . , ξM(ε) be reasonably spaced points in
the support of f . With the notation introduced after Assumption A2 , and
by a similar argument, for a vector β on the simplex

sup
u

∣∣∣
M(ε)∑

j=1

βjg(u; ξj)−
M(ε)∑

j=1

βj

M(ε)∑

l=1

γl(ξj)hl(u)
∣∣∣ ≤ ε.

Hence, one can use the base function g(·; ξ1), . . . , g(·; ξM(ε)) as well.
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A Appendix: Proof of Theorem 4.1 .

We start the proof with the negative result. The proof is standard. We ex-
hibit a small perturbation that cannot be detected. The perturbed density
should remain a probablity density function with bounded second deriv-
ative. It should be however very wiggly so that the exponential mixing
would smooth it out to make it hardly detectable through ψ. Very con-
venient candidates could be high derivatives of the normal density, but
the supports of these functions are not bounded, while the support of f is
bounded at least from below. We therefore use derivatives of approxima-
tions of the normal density. Here are the details.

Consider

πm(ξ) = πm(ξ; c, d) =
{

1−
(ξ − c

d

)2}m
1{ξ ∈ (c− d, c + d)}

for some c, d, where 1 denotes the indicator function. πm is approximately
the normal pdf normalized improperly, cf. (24) below. Note that for k ≤ m:

∫ c+d

c−d
euξπ(k)

m (ξ) dξ = (−1)kuk

∫
euξπm(ξ) dξ. (14)

and

π(2k)
m (c) = (−1)kd−2k

(
m

k

)
(2k)! (15)

Write

πm(ξ) = (1− ξ − c

d
)m(1 +

ξ − c

d
)m

and taking the derivative of the RHS:

π2k
m (ξ)

= d−2k
2k∑

i=0

(
2k

i

)
(−1)i m!

(m− i)!
(1− ξ̃)m−i m!

(m− 2k + i)!
(1 + ξ̃)m−2k+i

= d−2k
k∑

i=0

(−1)iai, say.

(16)

For simplicity we write ξ̃ = (ξ − c)/d. Note that

ai+1

ai
=

2k − i

i + 1
m− i

m− 2k + i + 1
1 + ξ̃

1− ξ̃
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Hence the sum in the RHS of (16) is of unimodal terms with alternating
signs. Let l be the index where the maximum is achieved:

2k − l

l + 1
m− l

m− 2k + l + 1
= {1 + O(1)}1− ξ̃

1 + ξ̃
. (17)

Then

al ≥ al −
∑

j=1

(al+2j−1 − al+2j)−
∑

j=1

(al−2j+1 − al−2j)

= (−1)l
2k∑

i=0

(−1)iai

= al − al+1 +
∑

j=1

(al+2j − al+2j+1)− al−1 +
∑

j=1

(al−2j − al−2j−1)

≥ −al

(18)

where, if necessarily, the sequences are padded by zeros at the ends. But
then for some C = O(1), C may vary from line to line:

al = (2k)!
(

m

l

)(
m

2k − l

)
(1− ξ̃)m−l(1 + ξ̃)m−2k+l

≤ C(2k)!
m2m(1− ξ̃)m−l(1 + ξ̃)m−2k+l

ll(m− l)m−l(2k − l)2k−l(m− 2k + l)m−2k+l

= C(2k)! (1− ξ̃2)m−2k
{k(1− ξ̃)

2k − l

}2k−l {k(1 + ξ̃)
l

}l {m

k

}2k

× {
1 +

l

m− l

}m−l{1 +
2k − l

m− 2k + l

}m−2k+l

(19)

To deal with the following terms of the RHS of (19) we assume that 0 < l ≤
k. The case 2k > l ≥ k is dealt similarly. The cases of l ∈ {0, 2k} are simple

{k(1− ξ̃)
2k − l

}2k−l {k(1 + ξ̃)
l

}l
=

{k(1− ξ̃)
2k − l

}2(k−l){1 + ξ̃

1− ξ̃

2k − l

l

}l

≤ 2k
{1 + ξ̃

1− ξ̃

2k − l

l + 1

}l

≤ 3k
{m− 2k + l + 1

m− l

}l
, by (17)

≤ 3k

(20)
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The next bound is easy,

{
1 +

l

m− l

}m−l{1 +
2k − l

m− 2k + l

}m−2k+l
< e2k, (21)

since (1 + 1/x)x < ex for any x > 0. We conclude from (16), (18), (20), and
(21):

‖π(2k)
m ‖∞ ≤ al ≤ C(2k)!

{
c2

m

k

}2k (22)

for c2 > 1.
Let

∆m,k(ξ) =
d2k

(2k + 2)!(c1c2)2k
π(2k)

m (ξ)

where we take m = dc1ke. Note that by (22) ∆(2)
m,k is uniformly bounded,

while by (15)

∆m,k(c) ≥ c3k
−2(c1c2)−2k

(
m

k

)
≥ c−k

4 (23)

for some c4 > 1. However by (14)
∫

ξ−1
{
euξ − 1

}{
f(ξ) + ξ∆m,k(ξ)

}
dξ

= ψ(u) +
d−2(m−k)

(2k + 2)!c2k
2

u2k

∫ b

a
πm(ξ)euξ dξ

= ψ(u) + (−1)k
{
1 + O(1)

} d2k

(2k + 2)!c2k
2

u2k

∫ b

a
e−m(ξ−c)2/d2

euξ dξ

= ψ(u) + (−1)k
{
1 + O(1)

} √
2πd2k+1

(2k + 2)!m1/2c2k
2

u2keuc.

Hence if

d2k+1

(2k + 2)!m1/2(c1c2)2k
= O(n−1/2),

or k log k − log n → ∞, then one would not be able to test between f to
f + ξ∆m,k. In particular this happens when k = log n/ log log n. However,
then, by (23), nα∆m,k(c) → ∞ for any α > 0. This proves that f can be
estimated in any nα, α > 0 rate.
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We move now to the positive result. We suggest an estimator of the
mixing density f whose rate of convergence is easy to evaluate. Of course,
the practical way would be the standard least squares as discussed in Sub-
section 4.3 , but then rates are difficult to evaluate. We suggest therefore in
the proof a kernel estimator of g given by

∫
ψ̂(u)K̄(u) du for some K̄ given

below. Here are the details.
If ψ(u) =

∫
g(u; ξ) f(ξ) dξ, let ψs = ψs(u) = e−us(ψ(u)-1). Assume for

simplicity that by assumption f(ξ) = 0 for ξ 6∈ (s0 − d, s0 + d). Then since

ψs(u) =
∫

eu(ξ−s)ξ−1f(ξ) dξ − e−us

∫
ξ−1f(ξ) dξ

ψ(k)
s (u) =

∫
(ξ − s)keu(ξ−s)ξ−1f(ξ) dξ − (−1)kske−us

∫
ξ−1f(ξ) dξ,

then formally:

√
m

2πd2

m∑

k=0

(
m

k

){−1
d2

}k
ψ(2k)

s (u)

=
√

m

2πd2

∫
πm(ξ; s, d)eu(ξ−s)ξ−1f(ξ) dξ

−
√

m

2πd2
πm(s; 0, d)e−us

∫
ξ−1f(ξ) dξ

where πm(·) = πm(·; s, d). Note that for any smooth bounded function h
with two bounded derivatives:

√
m

2πd2

∫
πm(ξ; s, d)h(ξ) dξ ≈

√
m

d2

∫
ϕ
{√

m(ξ − s)/d
}
h(ξ) dξ

≈ h(s) + O(m−1),
(24)

where ϕ is the standard normal density. Hence

√
m

2πd2

m∑

k=0

(
m

k

)(−1
d2

)k
ψ(2k)

s (u) → s−1ξ(s) as m →∞. (25)

Let ψ̂s be an estimator of ψs. Let K be a smooth kernel of order 2m,
integrated to 1, and with bounded support kernel. Then by (25) we can
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estimate f(s) by

f̂(s) = s

√
m

2πd2

m∑

k=0

(
m

k

)(−1
d2

)k
∫

K(u)ψ̂(2k)
s (u) du

= s

√
m

2πd2

m∑

k=0

(
m

k

)(−1
d2

)k
∫

K(2k)(u)ψ̂s(u) du

=
∫

K̄(u)ψ̂s(u) du

(26)

where

K̄(u) ≡ s

√
m

2πd2

m∑

k=0

(
m

k

)(−1
d2

)k
K(2k)(u)

Since we have already developed the machinery we pick

K(u) = γm

√
2m

2πσ2
π2m(u; u0, σ)

where γm = 1 + O(1). Hence by (22)

‖K̄‖∞ ≤ s
m

2πσd

m∑

k=0

(
m

k

)(cm

k

)2k
(2k)! = O(cmmm). (27)

If ψs can be estimated at a standard polynomial rate, ψ̂−ψ = Op(n−γ), then
we obtain from (26) and (27) that ψ̂ induce an error of O(cmmm/nγ). To this
we have to add the bias of O(m−1) as given by (24). The minimization of
the error estimate is obtained therefore of the order of the value at m when
these two terms are equal:

m log m− γ log n = log m.

By taking m = mn = α log n/ log log n we achieve the rate of

f̂(s)− f(s) = Op

(
n−α log log n/ log n

)
,

for any α < 1. We have shown that the optimal rate of convergence is nαn

for some αn → 0 slowly.
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