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Time Series Modelling with Semiparametric Factor Dynamics

Abstract

High-dimensional regression problems which reveal dynamic behavior are typically

analyzed by time propagation of a few number of factors. The inference on the

whole system is then based on the low-dimensional time series analysis. Such high-

dimensional problems occur frequently in many different fields of science. In this paper

we address the problem of inference when the factors and factor loadings are estimated

by semiparametric methods. This more flexible modelling approach poses an important

question: Is it justified, from inferential point of view, to base statistical inference on

the estimated times series factors? We show that the difference of the inference based

on the estimated time series and ‘true’ unobserved time series is asymptotically negligi-

ble. Our results justify fitting vector autoregressive processes to the estimated factors,

which allows one to study the dynamics of the whole high-dimensional system with

a low-dimensional representation. We illustrate the theory with a simulation study.

Also, we apply the method to a study of the dynamic behavior of implied volatilities

and discuss other possible applications in finance and economics.

AMS 2000 subject classification: 62G08, 62G20, 62M10

JEL classification codes: C14, C32, G12

Keywords: semiparametric models, factor models, implied volatility surface, vector autore-

gressive process, asymptotic inference
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1 Introduction

Modelling for high-dimensional data is a challenging task in statistics especially when the

data comes in a dynamic context and is observed at changing locations with different sample

size. Such modelling challenges appear in many different fields. In empirical macroeconomics

one is interested in analyzing the dynamics of the plethora of economic indicators that

reflect the state of the economy, see Stock and Watson (2005). In mortality analysis one

builds a model for forecasting death rate or life expectancy, as is done in Lee and Carter

(1992). The statistical analysis of financial term structure dynamics is crucial for bond

portfolio risk management or derivative pricing, see Nelson and Siegel (1987) and Diebold

and Li (2006). In bio-medical research the interest can be focussed on time improvement

of the patients’ treatment, as in the children growth history analysis by Martinussen and

Scheike (2000). Other examples include the studies of radiation treatment of prostate cancer

by Kauermann (2000) and evoked potentials in EEG analysis by Gasser et al. (1983). In

financial engineering, it is common to analyze the dynamics of implied volatility surface for

pricing exotic options.

A successful modelling approach utilizes factor type models, which allow low-dimensional

representation of the data. In an orthogonal L-factor model an observable J-dimensional

random vector Yt = (Yt,1, . . . , Yt,J)> can be represented as

Yt,j = m0,j + Zt,1m1,j + · · ·+ Zt,LmL,j + εt,j, (1)

where Zt,l are common factors, εt,j are errors or specific factors and the coefficients ml,j are

factor loadings. In most applications, the index t = 1, . . . , T reflects the time evolution of

the whole system, and Yt can be considered as a multi-dimensional time series. For a method

to identify common factors in this model we refer to Peña and Box (1987). The study of

high-dimensional Yt is then simplified to the modelling of Zt = (Zt,1, . . . , Zt,L)>, which is a

more feasible task when L� J .

In a variety of applications, one has explanatory variablesXt,j at hand that may influence

the factor loadings ml. An important refinement of the model (1) is to incorporate the

existence of observable covariates Xt,j. The factor loadings are now generalized to functions
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Figure 1: The typical IV data design on two different days. In the maturity direction obser-

vations appear in the discrete points for each particular day. Bottom solid lines indicate the

observed maturities, which move towards the expiry. Left panel: observations on 20040701,

Jt = 5606. Right panel: observations on 20040819, Jt = 8152.

of Xt,j, so that the model (1) is generalized to

Yt,j = m0(Xt,j) +
L∑

l=1

Zt,l ml(Xt,j) + εt,j. (2)

The model (2) can be regarded as a regression model with embedded time evolution. In par-

ticular, lagged observations of the component series (Yt−1,j , . . . , Yt−p,j)
> may be the regressor

Xt,j, but we allow here any external variable Xt = (Xt,1, . . . , Xt,J)>. Additionally, the regu-

larity of the multi-dimensional time series may be omitted by allowing J depending on t, say

Jt. The model (2) is different from varying-coefficient models, such as in Fan et al. (2003)

and Yang et al. (2006), since Zt is unobservable. Our model also has some similarities to the

one considered in Connor and Linton (2007) and Connor et al. (2007) which generalized the

study of Fama and French (1992) on the common movements of stock price returns. There,

the covariates, denoted by Xl,j, are time-invariant and are different for different ml, which

allows a direct application of backfitting procedures and makes the problem quite different

from our setting. Some linear models which allow time-varying coefficients, as considered in

Hansen et al. (2004) and Brumback and Rice (1998), may be recognized as a special case of

(2).

In this paper we consider the model (2) with nonparametric functions ml. We call this

4



model a dynamic semiparametric factor model (DSFM). The evolution of complex high-

dimensional objects may be described by (2), so that their analysis can be reduced to the

study of a low-dimensional vector of factors Zt. In the present paper, we consider an efficient

nonparametric method of fitting the model. We provide relevant theory for the method as

well as illustrate its empirical aspects through a simulation and a real data application.

One of the main motivations for the model (2) comes from a special structure of the

implied volatility (IV) data. The IV is a volatility parameter that matches the observed

plain vanilla option prices with the theoretical ones given by the formula of Black and

Scholes (1973). Enforcing relatively simple assumptions their model and pricing formula have

achieved enormous popularity, and it is now a common market standard to communicate

in terms of IV. Due to the trading regulation one may observe, on a particular day, only

those options with certain times-to-maturity. This feature causes a typical ‘string’ structure

in the IV data, which can be clearly observed in Figure 1. The data were obtained from

the European option prices on the German stock index DAX (ODAX). The plots represent

the values of IV calculated from option trades with maturities and moneyness–a monotone

transformation of strike price. While the observations lie relatively dense in the moneyness

direction, they appear only at a few discrete points in the maturity direction. Moreover, the

volatility strings shift towards expiry. This is indicated by the bottom lines in the figure,

where one may also observe that the maturities of the options on the two different days are

different. The latter means that the observed design points changes each day.

These IV dynamics may be represented well through the model (2). In this particular

example, Yt,j are the values of IV or those of its transformation on the day t, and Xt,j are the

two-dimensional vectors of the moneyness and time-to-maturity. For the analysis of IV data,

Hafner (2004) considered a stochastic implied volatility model which assumes a parametric

form for the functions ml. This method, however, may incur a significant model-bias when

the actual model is far from the assumed parametric one. Cont and da Fonseca (2002)

applied the Karhunen-Loéve decomposition in functional principal component analysis to

the daily variations of IV surfaces that are estimated on the whole design space by a kernel

method. This approach depends crucially on the initial estimation of IV surfaces, which may

fail due to the design-sparseness that we discussed in the previous paragraph. DSFM is a

flexible semiparametric model which neither assumes any parametric form for the functions
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ml nor requires the initial smoothing as in Cont and da Fonseca (2002). The model has been

used by Fengler et al. (2007) to study the dynamic behavior of implied volatility surfaces

obtained from the ODAX data.

DSFM, fitted to the IV data, has numerous applications. First, the model can be seen

as a low dimensional projection of the IV risk factors. Certain exotic options, whose prices

strongly depend on the whole IV surface, have to be hedged additionally against undesirable

surface movements. This, so called ‘vega hedging’, can be refined by adjusting the hedging

portfolio according to the new hedging ratios, defined as the derivatives of the option price

with respect to Zt. Second, the model provides a useful tool for distributional forecasting of

future IV, which is essential in risk management of large options’ portfolios. It also serves

for pricing certain exotic options as an extension of the Monte Carlo pricing methodology.

Our methods produce estimates of the true unobservable Zt, say Ẑt, as well as estimates

of the unknown functions ml. In practice, one operates on these estimated values of Zt for

further statistical analysis of the data. In particular, for the applications that we discuss in

the above paragraph, one needs to fit an econometric model to the estimated factors Ẑt. For

example, Hafner (2004) and Cont and da Fonseca (2002) fitted an AR(1) process to each

factor, and Fengler et al. (2007) considered a multivariate VAR(2) model. The main question

that arises from these applications is whether the inference based on Ẑt is equivalent to the

one based on Zt. Attempting to give an answer to this question forms the core of this paper.

It is worthwhile to note here that Zt is not identifiable in the model (2). There are many

versions of (Zt,m), where m = (m0, . . . ,mL)>, that give the same distribution of Yt. This

means that estimates of Zt and ml are not uniquely defined. We show that for any version

of {Zt} there exists a version of {Ẑt} whose lagged covariances are asymptotically the same

as those of {Zt}. This justifies the inference based on {Ẑt} when {Zt} is a VAR process, in

particular. We confirm this theoretical result by a Monte Carlo simulation study. We also

discuss fitting the model to the real ODAX IV data.

Although DSFM has been motivated from analyzing IV surfaces, it may be applied to

many other problems. A prominent example is modelling of yield curve evolution. Here,

the standard approach is to use the parametric factor model proposed by Nelson and Siegel

(1987), where the empirical form of the yield curve is fitted with some pre-specified functions
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of the bonds’ maturities. A possible refinement is the penalized spline smoothing, employed

simultaneously in time and maturity dimensions, adopted by Krivobokova et al. (2006).

Apart from this, other modelling strategies based on principal component analysis or factor

models are commonly used, see Rebonato (1998), Bliss (1997) and Molgedey and Galic (2001)

among others. Clearly, DSFM enhances flexibility of these approaches for modelling the term

structure of interest rates. In a similar manner, DSFM may be employed to analyze the term

structure of the variance swaps as in Detlefsen and Härdle (2006), and to study future prices

of CO2 emission allowances as in Trück et al. (2006). Other examples include mortality trend

fitting, where the current standard is to use the model proposed by Lee and Carter (1992).

In that model the age-specific death rates are regressed additively on a time-invariant age-

specific component and another age-specific component multiplied by a time-varying factor.

Here, one can let the age specific components be nonparametric functions of some particular

covariates and extend the model to the reduced DSFM with L = 1. The mortality forecast is

then obtained by a standard statistical method applied to the estimated factor time series.

For each t, the set of observations Yt = {Yt,j : 1 ≤ j ≤ Jt} may be viewed as representing

discretized values of a smooth surface St. Therefore interest may be similarly put on the

functional objects St, which has a direct linkage to the functional data analysis (Ramsay and

Silverman, 1997). The standard practice is to obtain an estimate of St from Yt and proceed

to build up a factor model as in Cont and da Fonseca (2002). However this procedure requires

an initial fit for St, which may suffer from the design-sparseness problem as we mentioned

earlier. DSFM avoids this preliminary estimation and shifts the discrete representation

directly to the functions ml.

The paper is organized as follows. In the next section we propose a new method of fitting

DSFM and an iterative algorithm that converges at a geometric rate. In Section 3 we present

the results of a simulation study that illustrate the theoretical findings given in Section 5. In

Section 4 we apply the model to the ODAX IV data and discuss some further applications.

Section 5 is devoted to the asymptotic analysis of the method. Technical details are provided

in the Appendix.
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2 Methodology

We observe (Xt,j, Yt,j) for j = 1, . . . , Jt and t = 1, . . . , T such that

Yt,j = Z>
t m(Xt,j) + εt,j. (3)

Here Zt = (Zt,0, . . . , Zt,L)> is an unobservable L+ 1-dimensional process with Zt,0 ≡ 1. The

function m is a tuple (m0, . . . ,mL) of unknown real-valued functions mj defined on a subset

of IRd. The variables X1,1, . . . , XT,JT
, ε1,1, . . . , εT,JT

are independent. The errors εt,j have

zero means and finite second moments. For simplicity of notation, we will assume that the

covariates Xt,j have support [0, 1]d, and also that Jt ≡ J do not depend on t.

For the estimation of m, we use a series estimator. For an integer K ≥ 1, we choose

functions ψ1, . . . , ψK : [0, 1]d → IR which are normed so that
∫

[0,1]d
ψ2

k(x) dx = 1. For

example, one may take {ψk : 1 ≤ k ≤ K} to be a tensor B-spline basis, see e.g. de Boor

(2001). Then, a tuple of functions m = (m0, . . . ,mL)> may be approximated by Aψ, where

A = (αl,k) is a (L + 1) × K matrix and ψ = (ψ1, . . . , ψK)>. We define the least squares

estimators Ẑt = (Ẑt,0, . . . , Ẑt,L)> and Â = (α̂l,k):

S(A,Z) ≡
T∑

t=1

J∑

j=1

{
Yt,j − Z>

t Aψ(Xt,j)
}2

= min
A,Z

! (4)

where Z =
(
Z>1 , . . . , Z

>
T

)>
. The minimization runs over all values of Ẑt with

Zt,0 = 1. (5)

With Â at hand, we estimate m by m̂ = Âψ.

We note that, given Z or A, the function S in (4) is quadratic with respect to the other

variables, and thus has an explicit unique minimizer. However, minimization of L with

respect to A and Z simultaneously is a fourth-order problem. The solution is neither unique

nor explicit. It is unique only up to the values of Ẑ>1 Â, . . . , Ẑ
>
T Â. We will come back to this

identifiability issue later in this section.

To find a solution (Â, Ẑ) of the minimization problem (4), one might adopt the following

iterative algorithm: (i) Given an initial choice Z (0), minimize S(A,Z(0)) with respect to A,
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which is an ordinary least squares problem and thus has an explicit unique solution. Call it

A(1). (ii) Minimize S(A(1), Z) with respect to Z now, which is also an ordinary least squares

problem. (iii) iterate (i) and (ii) until convergence. This is the approach taken by Fengler

et al. (2007). However, the procedure is not guaranteed to converge to a solution of the

original problem.

We propose to use a Newton-Raphson algorithm. Let α ≡ α(A) denote the stack form

of A = (αl,k), i.e.,

α = (α0,1, . . . , αL,1, α0,2, . . . , αL,2, . . . , α0,K , . . . , αL,K)>.

In a slight abuse of notation we write S(α,Z) for S(A,Z). Define

F10(α,Z) =
∂

∂α
S(α,Z), F01(α,Z) =

∂

∂Z
S(α,Z),

F20(α,Z) =
∂2

∂α2
S(α,Z), F11(α,Z) =

∂2

∂α∂Z
S(α,Z), F02(α,Z) =

∂2

∂Z2
S(α,Z).

Let Ψt =
[
ψ(Xt,1), . . . , ψ(Xt,J)

]
be a K × J matrix. Then, it can be shown that

F10(α,Z) = 2
T∑

t=1

[
(ΨtΨ

>
t )⊗ (ZtZ

>
t )
]
α− 2

T∑

t=1

(ΨtYt)⊗ Zt,

F20(α,Z) = 2
T∑

t=1

[
(ΨtΨ

>
t )⊗ (ZtZ

>
t )
]
,

F01(α,Z) = 2




AΨ1Ψ
>
1 A

>Z1 − AΨ1Y1

AΨ2Ψ
>
2 A

>Z2 − AΨ2Y2

...

AΨT Ψ>
TA

>ZT − AΨTYT



,

F02(α,Z) = 2




AΨ1Ψ
>
1 A

> 0 · · · 0

0 AΨ2Ψ
>
2 A

> · · · 0
...

...
. . . 0

0 0 · · · AΨT Ψ>
TA

>



.

Here and below, ⊗ denotes the Kronecker product operator. Also, by some algebraic ma-

nipulations it can be shown that

[
(ΨtΨ

>
t )⊗ (ZtZ

>
t )
]
α = (ΨtΨ

>
t A

>Zt)⊗ Zt.
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Thus, we get

F11(α,Z) = 2 (F11,1(α,Z), F11,2(α,Z), . . . , F11,T (α,Z)) ,

where

F11,t(α,Z) = (ΨtΨ
>
t A

>)⊗ Zt + (ΨtΨ
>
t A

>Zt)⊗ IL+1 − (ΨtYt)⊗ IL+1

and Iq denotes the identity matrix of dimension q. Let

F (α,Z) =

(
F10(α,Z)

F01(α,Z)

)
, F ′(α,Z) =

(
F20(α,Z) F11(α,Z)

F11(α,Z)> F02(α,Z)

)
.

We need to solve the equation F (α,Z) = 0 simultaneously for α and Z. Given (αOLD, ZOLD),

the Newton-Raphson algorithm gives the updating equation for (αNEW, ZNEW):

(
αNEW

ZNEW

)
=

(
αOLD

ZOLD

)
− F ′(αOLD, ZOLD)−1F (αOLD, ZOLD). (6)

The algorithm (6) is shown to converge to a solution of (4) at a geometric rate under

some week conditions on the initial choice (α(0), Z(0)), as is demonstrated by Theorem 2.1

below. We collect the conditions for the theorem.

(C1) F ′(α(0), Z(0)) is invertible.

(C2) There exists a solution (α̂, Ẑ) of the equation F (α,Z) = 0 such that
∑

t=1 ẐtẐ
>
t and∑

t=1 ẐtZ
(0)>
t are invertible, and α̂l = (α̂l1, . . . , α̂lK)> for l = 0, . . . , L are linearly

independent, i.e., the matrix Â that corresponds to α̂ has full rank.

Let α(k) and Z(k) denote the kth updated vectors in the iteration with the algorithm (6).

Also, we write A(k) for the matrix that corresponds to α(k).

Theorem 2.1. Suppose that the initial choice (α(0), Z(0)) satisfies (C1) and (C2). Then, for

any 0 < γ < 1 there exists r > 0 and C > 0 such that, if
∑T

t=1 ‖Z
(0)>
t A(0)− Ẑ>t Â‖2 ≤ r, then

T∑

t=1

‖Z(k)>
t A(k) − Ẑ>t Â‖2 ≤ C2−(k−1)γ2k−1.

10



The minimization problem (4) has no unique solution. If (Ẑt, Â) or (Ẑt, m̂ = Âψ) is a

minimizer, then also (B̃>Ẑt, B̃
−1m̂) is a minimizer. Here B̃ is an arbitrary matrix of the

form

B̃ =

(
1 0

0 B

)
(7)

for an invertible matrix B. The special structure of B̃ assures that the first component of

B̃>Ẑt equals 1. In Section 5, we will show that, for any solution Ẑt and for any version of

true Zt, there exists a random matrix B̃ such that Z̃t = B̃>Ẑt has asymptotically the same

covariance structure as Zt. This means that the difference of the inferences based on Z̃t and

Zt is asymptotically negligible.

We also note that one can always choose m̂ = Âψ such that the components m̂1, . . . , m̂L

are orthonormal in L2([0, 1]
d) or in other L2, e.g. in L2(T

−1
∑T

t=1 f̂t) where f̂t is a kernel

estimate of the density of Xt,j . If one selects m̂ in this way, then the matrix B should be an

orthogonal matrix and the underlying time series Zt is estimated up to such transformations.

The following proposition will be used to prove Theorem 2.1, but it has an important

implication in its own right. Let (αOLD, ZOLD) be the ‘old’ value to be updated by (6) and

(αNEW, ZNEW) be the updated value as defined there. For an (L+ 1)× (L+ 1) nonsingular

square matrix B̃, define

ÃOLD = B̃−1AOLD, Z̃OLD
t = B̃>ZOLD

t .

The stack form of ÃOLD can be written as

α̃OLD = (IK ⊗ B̃−1)αOLD. (8)

Also, we have

Z̃OLD = (Z̃OLD>
1 , . . . , Z̃OLD>

T )> = (IT ⊗ B̃>)ZOLD. (9)

The proposition demonstrates that updating α̃OLD and Z̃OLD directly by the formula (6)

is equivalent to first updating αOLD and ZOLD by (6) and then transforming the updated

vectors αNEW and ZNEW according to (8) and (9), respectively.

Proposition 2.2. Let α̃NEW and Z̃NEW be obtained from α̃OLD and Z̃OLD by the updating

equation (6). Then α̃NEW = (IK ⊗ B̃−1)αNEW and Z̃NEW = (IT ⊗ B̃>)ZNEW.

11



Proof. Given (α,Z), let α̃ = (IK ⊗ B̃−1)α and Z̃ = (IT ⊗ B̃>)Z. We prove

F ′(α̃, Z̃)−1F (α̃, Z̃) =

(
IK ⊗ B̃−1 O

O IT ⊗ B̃>

)
F ′(α,Z)−1F (α,Z). (10)

First, we collect several useful algebraic identities. Let M be an arbitrary u× v matrix. For

matrices P, Q, R where PQR is defined,

M ⊗ (PQR) = (Iu ⊗ P )(M ⊗Q)(Iv ⊗R). (11)

In particular, for a vector q where Pq is defined, we have from (11) by taking R = 1 that

M ⊗ (Pq) = (Iu ⊗ P )(M ⊗ q). (12)

On the other hand, for a vector q and a matrix P where MP is defined, we obtain

(MP )⊗ q = (M ⊗ q)P. (13)

Finally, for an r × r invertible square matrix Q

M ⊗ Ir = (Iu ⊗Q)(M ⊗ Ir)(Iv ⊗Q−1). (14)

For simplicity, write Fij = Fij(α,Z) and F̃ij = F (α̃, Z̃) for (i, j) = (1, 0), (0, 1), (2, 0), (1, 1)

and (0, 2). Using the facts (10)–(14), it can be shown that

F̃20 = (IK ⊗ B̃>)F20(IK ⊗ B̃),

F̃02 = (IT ⊗ B̃−1)F02(IT ⊗ (B̃>)−1), (15)

F̃11 = (IK ⊗ B̃>)F11(IT ⊗ (B̃>)−1).

From (15) it can be also seen that

F̃02 − F̃>
11F̃

−1
20 F̃11 = (IT ⊗ B̃−1)

(
F02 − F>

11F
−1
20 F11

)
(IT ⊗ (B̃>)−1). (16)

For each of (i, j) = (2, 0), (1, 1), (0, 2), let Gij denote the block matrix of F ′(α,Z)−1 whose

the dimension equals that of Fij. Likewise, define G̃ij with F ′(α̃, Z̃)−1. Then, from (15),

(16) and the inversion formula for a partitioned matrix, we obtain

G̃20 = (IK ⊗ B̃−1)G20(IK ⊗ (B̃>)−1),

G̃02 = (IT ⊗ B̃>)G02(IT ⊗ B̃), (17)

G̃11 = (IK ⊗ B̃−1)G11(IT ⊗ B̃).

The proposition follows immediately from (17) and the facts F̃10 = (IK ⊗ B̃>)F10 and

F̃01 = (IT ⊗ B̃−1)F01.
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3 Simulation Study

In Section 5 we will argue that the inference based on the covariances of the unobserved

factors Zt is asymptotically equivalent to the one based on B̃>Ẑt for some invertible B̃, see

Eq. (34). In this section we illustrates the equivalence by a simulation study. For this, we

compare the covariances of Zt and Z̃t ≡ B̃>Ẑt.

We took T = 500, 1000, 2000, J = 100, 250, 1000 and K = 36, 49, 64. We considered

d = 2, L = 3 and the following tuple of 2-dimensional functions:


m0

m1

m2

m3




(x1, x2) =




1

3.46(x1 − 1
2
)

9.45
{
(x1 − 1

2
)2 + (x2 − 1

2
)2
}
− 1.6

1.41 sin(2πx2)



. (18)

0
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0

0.5

1
−2

−1

0

1

2

x1

m1

x2 0

0.5

1

0

0.5

1
−2

0

2

4

x1

m2

x2 0

0.5

1

0

0.5

1
−2

−1

0

1

2

x1

m3

x2

Figure 2: True functions m1,m2,m3 from which the data were generated.

The coefficients in (18) were chosen so that m1,m2,m3 are close to orthogonal. The factor

loading functions are displayed in Figure 2. We generated Zt from a centered VAR(1) process

Zt = AZt−1 + Ut, where Ut is N3(0,ΣU) random vector and

A =




0.95 −0.2 0

0 0.8 0.1

0.1 0 0.6


 , ΣU =




10−4 0 0

0 10−4 0

0 0 10−4


 .
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The design points Xt,j were independently generated from a uniform distribution on the unit

square, εt,j were i.i.d. N(0, σ2) with σ = 0.05, and Yt,j were obtained according to the model

(3). The simulation experiment was repeated 250 times for each combination of (T, J,K).

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.5

1

Figure 3: Tensor linear B-spline basis used in the estimation. Left panel: one particular

basis function ψk. Right panel: the whole set of basis functions for K = 36.

For the estimation we employed, for ψj, the tensor products of linear B-splines. The one-

dimensional linear B-splines ψ̃k are defined on a consecutive equidistant knots xk, xk+1, xk+2

by ψ̃k(x) = (x − xk)/(xk+1 − xk) for x ∈ (xk, xk+1], ψ̃k(x) = (xk+2 − x)/(xk+2 − xk+1) for

x ∈ (xk+1, xk+2], and ψ̃k(x) = 0 otherwise. The tensor spline basis functions in the case

K = 36 are plotted in Figure 3. In the simulation we increased the number of the basis

functions K to 49 and 64, which correspond to more dense layouts in the right panel of

Figure 3.

We plotted in Figure 4 the entries of the scaled difference of the covariance matrices

D̃ =
1√
T

{
T∑

t=1

(
Z̃t − Z̃

)(
Z̃t − Z̃

)>
−

T∑

t=1

(
Zt − Z

) (
Zt − Z

)>
}
. (19)

Each panel of Figure 4 corresponds to one entry of the matrix D̃, and the three boxplots

in each panel represent the distributions of the 250 values of the corresponding entry for

T = 500, 1000, 2000. In the figure we also depicted, by thick lines, the 95% and 5% quantiles

of

D =
1√
T

{
T∑

t=1

(
Zt − Z

) (
Zt − Z

)> − Γ

}
, (20)
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Figure 4: The boxplots based on 250 values of the entries of the scaled difference of the

covariance matrices given at (19). The lengths of the series Zt and Z̃t were 500, 1000, 2000.

The thick lines represent the 95% and 5% quantiles of (20).
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where Γ is the true covariance matrix of the simulated VAR process. It is known that Γ can

be represented as γ = (IL2 −A⊗A)−1σU , where γ and σU are the stack forms of Γ and ΣU

respectively. We refer to Lütkepohl (1993) for more details.

Our theory in Section 5 tells that the size of D̃ is of smaller order than the normalized

error D of the covariance estimator based on Zt. It is known that the latter converges to a

non-degenerate law as T →∞. This is well supported by the plots in Figure 4 showing that

the distance between the two thick lines in each panel is invariant as T increases. The fact

that the additional error incurred by using Z̃t instead of Zt is negligible for large T is also

confirmed. In particular, the long stretches at tails of the distributions of D̃ as well as their

interquartile ranges get shorter as T increases.

4 Applications

This section presents an application of DSFM. We fit the model to the intra-day IV based

on ODAX prices and discuss related issues. We also give a brief overview for other possible

applications.

For our analysis we chose the the data observed from July 1st 2004 to June 29th 2005.

The one year period corresponds to the financial regulatory requirements. The data were

taken from Financial and Economic Data Center of Humboldt-Universität zu Berlin. The IV

data were regressed on the two-dimensional space of future moneyness and time-to- maturity,

denoted by (κt, τt)
>. The future moneyness κt is a monotone function of the strike price K:

κt = K/(Ste
−rtτt), where St is the spot price at time t and rt is the interest rate. We chose

rt as a daily EURIBOR rate taken from Ecowin Reuters database. The time-to-maturity of

the option were measured in years. We took all trades with 10/365 < τ < 0.5. We limit also

the moneyness range to κ ∈ [0.7, 1.2].

The structure of the IV data, described already in Section 1, requires a careful treatment.

Apart from the dynamic degeneration, one may also observe nonuniform frequency of the

trades with significantly greater market activities for the options closer to expiry or at-

the-money. Here, ‘at-the-money’ means a condition in which the strike price of an option
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equals the spot price of the underlying security, i.e., K = St. To avoid the problems with

the highly skewed empirical distribution of Xt = (κt, τt), we transformed the initial space

[0.7, 1.2] × [0.03, 0.5] to [0, 1]2 by using the marginal empirical distribution functions. We

applied the estimation algorithm to the transformed space, and then transformed back the

results to the original space.

Since the model is not nested, the number of the dynamic functions needs to be deter-

mined in advance. Based on computed values

RV (L) =

∑T
t

∑Jt

j {Yt,j −
∑L

l=0 Ẑt,lm̂l(Xt,j)}2

∑T
t

∑Jt

j (Yt,j − Ȳ )2
, (21)

which are given in Table 1 for various L, we chose L = 2. The quantity 1 − RV (L) can be

interpreted as a proportion of the variation explained by the model among the total variation.

Table 1 indicates that the third, fourth and fifth factor make only a small improvement in

the fit.

No. Factors 1−RV (L)

L = 1 0.848

L = 2 0.969

L = 3 0.976

L = 4 0.978

L = 5 0.980

Table 1: Proportion of the explained variation by the models with L = 1, . . . , 5 dynamic

factors.

For the series estimators of m̂l we used tensor B-splines that are cubic in the moneyness

and quadratic in the maturity direction. In the transformed space we placed 10 × 5 knots

– 10 in the moneyness and 5 in the maturity direction. We found that the results were not

sensitive to the choice of the number of knots and the orders of splines, see Table 2. Since

the model is identifiable only up to the transformation (7), one has a freedom for the choice

of factors. Here, we chose m̂1 and m̂2 that are orthogonal to each other in L2[0, 1]
2 in such

a way that
∑T

t=1 Ẑ
2
t,1 is maximized, as is described in Fengler et al. (2007).
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knots order 1−RV (2)

moneyness maturity moneyness maturity

15 10 3 2 0.974

10 10 3 2 0.972

10 5 3 2 0.969

5 5 3 2 0.961

15 10 2 2 0.972

10 10 2 2 0.969

10 5 2 2 0.965

5 5 2 2 0.951

15 10 2 1 0.971

10 10 2 1 0.968

10 5 2 1 0.967

5 5 2 1 0.949

Table 2: Proportion of the explained variation by the models when L = 2 for different

numbers of knots and different orders of splines.

The estimated functions m̂1 and m̂2 are plotted in Figure 5 in the transformed estima-

tion space. The intercept function m̂0 is almost flat around zero, thus is not given. By

construction, m̂0 + Ẑt,1m̂1 explain the principal movements of the surface. It was observed

by Cont and da Fonseca (2002) Fengler et al. (2007) that most dominant innovations of the

entire surface are parallel level shifts. Note that VDAX is an estimated at-the-money IV for

an option with 45 days to maturity, and thus indicates up-and-down shifts. The left panel

of Figure 6 shows the values of VDAX together with m̂0(Xt,0) + Ẑt,1m̂1(Xt,0), where Xt,0

is the moneyness and maturity corresponding to an option at-the-money with 45 days to

maturity. The right panel of Figure 6 depicts the factor Ẑt, where one can find that Ẑt shows

almost the same dynamic behavior as the index VDAX. This similarity supports that DSFM

catches leading dynamic effects successfully. Obviously the model in its full setting explains

other effects, such as skew or term structure changes, which are not explicitly stated here.

Statistical analysis on the evolution of a high-dimensional system ruling the option prices

can be simplified to a low-dimensional analysis of the Ẑt. In particular, as our theory in
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Figure 5: The estimated factor functions for the ODAX IV data from 20040701 to 20050629.
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Figure 6: Left panel: VDAX from 20040701 to 20050629 (solid) and the dynamics of the

corresponding IV given by the sub-model m̂0 + Ẑt,1m̂1 (dashed). Right panel: The obtained

time series Ẑt on the ODAX IV data from 20040701 to 20050629. The solid line represents

Ẑt,1, the dashed line Ẑt,2.

Section 5 and the simulation results in Section 3 assert, the inference based on the Ẑt is

well justified in the VAR context. To select a VAR model we computed the Schwarz (SC),

the Hannan-Quinn (HQ) and the Akaike criterion, as given in Table 3. One can find that

SC and HQ suggest a VAR(1) process, while AIC selects VAR(2). The parameter estimates

for each selected model are given in Table 4. The roots of the characteristic polynomial lie
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order AIC SC HQ

1 -14.06 -13.98* -14.03*

2 -14.07* -13.93 -14.02

3 -14.06 -13.86 -13.98

4 -14.06 -13.81 -13.96

5 -14.07 -13.76 -13.95

Table 3: The VAR model selection criteria. The smallest value for each criterion is marked

by (*).

VAR(1) VAR(2)

Ẑt−1,1 Ẑt−1,2 const. Ẑt−1,1 Ẑt−1,2 Ẑt−2,1 Ẑt−2,2 const.

Ẑt,1 0.984 -0.029 -0.001 0.913 -0.025 0.071 -0.004 -0.001

Ẑt,2 0.055 0.739 0.005 0.124 0.880 -0.065 -0.187 0.006

Table 4: The estimated parameters for VAR(1) and VAR(2) models.

inside the unit circle, so the specified models satisfy the stationarity condition. For each

of VAR(1) and VAR(2) models, we conducted a portmanteau test for the hypothesis that

the autocorrelations of the error term at lags up to 12 are all zero, and also a series of LM

tests, each of which tests whether the autocorrelation at a particular lag up to 5 equals zero.

Some details on selection of lags for these tests can be found in Hosking (1980, 1981) and

Brüggemann et al. (2006). We found that in any test the null hypothesis was not rejected at

5% level. A closer inspection on the autocorrelations of the residuals, however, revealed that

the autocorrelation of Ẑt,2 residuals at lag one is slightly significant in the VAR(1) model,

see Figure 7. But, this effect disappears in the VAR(2) case, see Figure 8. Similar analyses

of characteristic polynomials, portmanteau and LM tests supported VAR(2) as a successful

model for Ẑt.

Although DSFM is motivated from modelling IV data, it can be applied to many other

problems. A number of possible applications have been already discussed in Section 1.

We close this section by adding two other applications of DSFM. One is to analyze some
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Figure 7: Cross-autocorrelogram for the VAR(1) residuals. The dashed line-bounds indicate

± 2× (standard deviations), which correspond to an approximate 95% confidence bound.
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Figure 8: Cross-autocorrelogram for the VAR(2) residuals. The dashed line-bounds indicate

± 2× (standard deviations), which correspond to an approximate 95% confidence bound.

important characteristics of state price density (SPD). SPD describes the distribution of

the risk-neutral price of an underlying asset at some future date. The knowledge of SPD
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can be beneficial for an objective interpretation of market expectations. The SPD dynamics

may also be modelled via (3), where the functions ml are one-dimensional nonparametric

functions of the future underlying states. They can be described in terms of a symmetric or

asymmetric contribution of the probability to reflect the changes in skewness and kurtosis

over time. The other application is the analysis of book orders. It allows to recover at any

time the supply and demand structure, usually given as bid and ask curves. These curves may

serve to construct a measure of liquidity. A tradable asset is called ‘liquid’ if it is possible

to exchange a big volume ‘rapidly’ without too much damage to the price of the asset. In

practical term this means that the difference between the bid and ask prices (as a function

of volume) is not too large. One can obtain for every day a surface of bid-ask differences as

a function of time and volume. DSFM may help here in quantifying the dynamics of this

liquidity measure.

5 Asymptotic analysis

In the simulation study and the real data application in Sections 3 and 4, we considered the

case where Zt is a VAR-process. Here, we only make some weak assumptions on the average

behavior of the process. For the asymptotic analysis, we let K, J, T →∞. Our first result

relies on the following assumptions.

(A1) The variables X1,1, . . . , XT,J , ε1,1, . . . , εT,J are independent.

(A2) For t = 1, . . . , T the variables Xt,1, . . . , Xt,J are identically distributed, have support

[0, 1]d and a density ft that is bounded from below and above on [0, 1]d, uniformly over

t = 1, . . . , T .

(A3) We assume that

E[εt,j] = 0 for t = 1, . . . , T, j = 1, . . . , J,

sup
t=1,...,T,j=1,...,J

E[ε2
t,j] < ∞.

(A4) The functions ψk may depend on the increasing indices T and J , but are normed so

that
∫

[0,1]d
ψ2

k(x) dx = 1 for k = 1, . . . , K.
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(A5) The components m0, . . . ,mL can be approximated by ψ1, . . . , ψK , i.e.

δK = sup
x∈[0,1]d

inf
A∈IR(L+1)×K

|m(x)− Aψ(x)| → 0

as K → ∞. We denote a matrix that fulfills supx∈[0,1]d |m(x)− Aψ(x)| ≤ 2δK by A∗.

We assume that δK = O(K1/2J−1/2) for K, J →∞.

(A6) There exist constants 0 < CL < CU < ∞ such that all eigenvalues of the random

matrix T−1
∑T

t=1 ZtZ
>
t lie in the interval [CL, CU ] with probability tending to one.

(A7) It holds that (K logK)/J → 0 and log T/J → 0.

(A8) The minimization (4) runs over all values of (A, z) with zt,0 = 1 and with

sup
x∈[0,1]

max
1≤t≤T

‖z>t Aψ(x)‖ ≤MT ,

where the constant MT fulfils max1≤t≤T ‖Zt‖ ≤ MT/Cm for a constant Cm such that

supx∈[0,1] ‖m(x)‖ < Cm, and M 2
T (K logK/J) → 0, M 2

T (log T/J) → 0.

Condition (A8) and the additional bound MT in the minimization is introduced for purely

technical reasons.

Our first result gives rates of convergence for the least squares estimators Ẑt and Â.

Theorem 5.1. Suppose that model (3) holds and that (Ẑt, Â) is defined by the minimization

problem (4) under the constraint (5). Make the assumptions (A1)–(A8). Then it holds that

1

T

∑

1≤t≤T

∥∥∥Ẑ>t Â− Z>
t A

∗
∥∥∥

2

= OP (KJ−1). (22)

The proof of Theorem 5.1 is given in Section A.2.

At this point we have made no assumptions on the sequence Zt : 1 ≤ t ≤ T , besides

the bound in (A8). Up to now it is allowed to be a deterministic or a random sequence.

We now assume that it is a random process. We discuss how a statistical analysis differs if

inference on Zt is based on Ẑt instead of using (the unobserved) process Zt. We will show that

the differences are asymptotically negligible (except an orthogonal transformation). This is
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the content of the following theorem, where we consider estimators of autocovariances and

show that these estimators differ only by second order terms. This asymptotic equivalence

carries over to classical estimation and testing procedures in the framework of fitting a vector

autoregresssive model. For the statement of the theorem we need the following assumptions:

(A9) The bound max1≤t≤T ‖Zt‖ ≤ MT holds with probability tending to one, and it holds

that M 2
T{(K logK)/J} → 0 and M 2

T (log T/J) → 0.

(A10) Zt is strictly stationary with E(Zt) = 0 and E‖Zt‖γ < ∞ for some γ > 2. It is

strongly mixing with
∑∞

i=1 α(i)(γ−2)/γ < ∞. The matrix EZtZ
>
t has full rank. The

process Zt is independent of X11, . . . , XTJ , ε11, . . . , εTJ .

(A11) The functions m0, . . . ,mL are linearly independent. In particular, no function is

equal to 0. Furthermore, it holds that supx∈[0,1] ‖ψ(x)‖ = O(K1/2).

(A12) It holds that K/J + δK = O(T−1/2), log T = O(K), K5J−4(logK)2 = O(T−1), and

K7J−5(logK)2 = O(T−1).

Condition (A10) implies that T−1
∑T

t=1 Zt has a bounded second moment, see e.g. Corollary

1.1 in Bosq (1998).

Theorem 5.2. Suppose that model (3) holds and that (Ẑt, Â) is defined by the minimization

problem (4) under the constraint (5). Make the assumptions (A1)–(A12). Then there exists

a random matrix B̃, which is of the form (7), such that for h ≥ 0

1

T

T∑

t=h+1

(
Z̃t − Z̃

)(
Z̃t−h − Z̃

)>
− 1

T

T∑

t=h+1

(
Zt − Z

) (
Zt−h − Z

)>
= OP (T−1/2),

Z̃ − Z = OP (T−1/2),

where Z̃t = B̃>Ẑt, Z̃ = T−1
∑T

t=1 Z̃t and Z = T−1
∑T

t=1 Zt.

To illustrate an implication of Theorem 5.2, suppose that the factor loading process Zt

in (3) is a stationary VAR(p) process in a mean adjusted form:

Zt − µ = Θ1(Zt−1 − µ) + · · ·+ Θp(Zt−p − µ) + Ut, (23)
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where µ = E(Zt), Θj is a L × L matrix of coefficients and Ut is a white noise with some

nonsingular covariance matrix ΣU . Here, we take the L components of Zt, omitting the first

Zt,0 ≡ 1. In a slight abuse of notation, we continue to refer to the resulting vector as Zt.

Let Γh be the autocovariance matrix of the process Zt with the lag h ≥ 0, which is

estimated by Γ̂h = T−1
∑T

t=h+1(Zt − Z)(Zt−h − Z)>. Let Y = (Zp+1 − µ, . . . , ZT − µ),

Θ = (Θ1, . . . ,Θp) and U = (Up+1, . . . , UT ). Define Wt =
(
(Zt − µ)>, . . . , (Zt−p+1 − µ)>

)>

and W = (Wp, . . . ,WT−1). Then, the model (23) can be rewritten as Y = ΘW + U and the

least squares estimator of Θ is given by Θ̂ = Ŷ Ŵ>(ŴŴ>)−1, where Ŷ and Ŵ are the same

as Y and W , respectively, except that µ is replaced by Z. Likewise, fitting a VAR(p) model

with the estimated factor loading process Z̃t yields Θ̃ = Ỹ W̃>(W̃W̃>)−1, where Ỹ and W̃

are defined as Ŷ and Ŵ with Zt being replaced by Z̃t. Both Ŷ and Ŵ are matrices composed

of Γ̂h for various h. The matrices Ỹ and W̃ have the same forms as Ŷ and Ŵ , respectively,

but with Γ̂h being replaced by Γ̃h = T−1
∑T

t=h+1(Z̃t − Z̃)(Z̃t−h − Z̃)>. It is well known that√
T (Θ̂−Θ) = OP (1), see Lütkepohl (1993). By Theorem 5.2, we have

√
T (Θ̃− Θ̂) = OP (1).

A Appendix

A.1 Proof of Theorem 2.1.

We use the following lemma to prove the theorem.

Lemma A.1. (Newton-Kantorovich) Let X and Y be Banach spaces and F : D ⊂ X → Y .

Suppose that on an open convex set D0 ⊂ D, F is Fréchet differentiable and

‖F ′(x)− F ′(y)‖ ≤ γ‖x− y‖, x, y ∈ D0.

Let x0 ∈ D0 be the initial point. Assume that F ′(x0)
−1 is defined on all of Y and

‖F ′(x0)
−1‖ ≤ α, ‖F ′(x0)

−1F (x0)‖ ≤ β

for some constants α and β such that q ≡ 2αβγ ≤ 1. Define

t∗ =
1

αγ
(1−

√
1− q), t∗∗ =

1

αγ
(1 +

√
1− q),
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and assume that S ≡ {x
∣∣ ‖x− x0‖ ≤ t∗} ⊂ D0. Then, the Newton iterates

xk+1 = xk − F ′(xk)
−1F (xk), k = 0, 1, . . .

are well defined, lie in S and converge to a solution x∗ of F (x) = 0 at a geometric rate:

‖xk − x∗‖ ≤ β 2−(k−1)q2k−1.

When q < 1, the solution x∗ is unique in D0∩{x
∣∣ ‖x−x0‖ < t∗∗}. When q = 1 (in this case

t∗ = t∗∗), the solution x∗ is unique in D0 ∩ {x
∣∣ ‖x− x0‖ ≤ t∗∗}.

The proof of the lemma can be found in Kantorovich and Akilov (1982), for example.

We now prove the theorem. Suppose that
∑T

t=1 ‖Z
(0)>
t A(0) − Ẑ>t Â‖2 ≤ r for some r > 0

which will be chosen later. Define

B0 =

(
T∑

t=1

ẐtZ
(0)>
t

)−1 T∑

t=1

ẐtẐ
>
t .

Also, define Ã(0) = B−1
0 A(0) and Z̃

(0)
t = B>

0 Z
(0)
t . Let α̃(0) be the stack form of Ã(0), i.e.,

α̃(0) = (IK ⊗ B−1
0 )α(0). Note that

∑T
t=1 ẐtẐ

>
t =

∑T
t=1 ẐtZ̃

(0)>
t . With the Frobenius norm

‖M‖ for a matrix M , we get

‖α̃(0) − α̂‖2 = ‖Ã(0) − Â‖2

≤
∥∥∥
( T∑

t=1

ẐtẐ
>
t

)−1∥∥∥
2

·
∥∥∥

T∑

t=1

ẐtẐ
>
t (Ã(0) − Â)

∥∥∥
2

=
∥∥∥
( T∑

t=1

ẐtẐ
>
t

)−1∥∥∥
2

·
∥∥∥

T∑

t=1

ẐtZ̃
(0)>
t Ã(0) −

T∑

t=1

ẐtẐ
>
t Â)

∥∥∥
2

(24)

≤
∥∥∥
( T∑

t=1

ẐtẐ
>
t

)−1∥∥∥
2
(

T∑

t=1

∥∥∥ẐtZ
(0)>
t A(0) − ẐtẐ

>
t Â)

∥∥∥
)2

≤ r
∥∥∥
( T∑

t=1

ẐtẐ
>
t

)−1∥∥∥
2
(

T∑

t=1

‖Ẑt‖2

)

≡ r c1.

Now, for a matrix M , define ‖M‖2 = sup
‖x‖=1

‖Mx‖. It is known that ‖M‖2 ≤ ‖M‖. We
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get

‖Â>(Z̃
(0)
t − Ẑt)‖ ≥ ‖Â‖−1

2 · ‖ÂÂ>(Z̃
(0)
t − Ẑt)‖ (25)

≥ ‖Â‖−1
2 · ‖(ÂÂ>)−1‖−1 · ‖Z̃(0)

t − Ẑt‖.

On the other hand,

‖(Z̃(0)
t − Ẑt)

>Â‖ ≤ ‖Z̃(0)>
t (Â− Ã(0))‖+ ‖Z̃(0)>

t Ã(0) − Ẑ>t Â‖ (26)

≤ ‖Z̃(0)
t ‖ · ‖Â− Ã(0)‖+ ‖Z(0)>

t A(0) − Ẑ>t Â‖.

The two inequalities (25) and (26) together with (24) give

‖Z̃(0) − Ẑ‖2 =
T∑

t=1

‖Z̃(0)
t − Ẑt‖2 ≤ 2 r ‖Â‖2

2 · ‖(ÂÂ>)−1‖2 (27)

×
[
1 +

( T∑

t=1

‖Z̃(0)
t ‖2

)( T∑

t=1

‖Ẑt‖2
)∥∥∥
( T∑

t=1

ẐtẐ
>
t

)−1∥∥∥
2
]

≡ r c2.

Since F ′(α,Z) is quadratic in (α,Z), there exists 0 < c3 < ∞ for any compact set

D in R
(K+T )(L+1) such that ‖F ′(α′, Z ′) − F ′(α,Z)‖2 ≤ c3‖(α′>, Z ′>)> − (α>, Z>)>‖ for all

(α>, Z>)>, (α′>, Z ′>)> ∈ D. Let c4 = ‖F ′(α̃(0), Z̃(0))−1‖2 < ∞. Since F is continuous and

F (α̂, Ẑ) = 0, there exists r′ > 0 such that, if ‖α̃(0) − α̂‖2 + ‖Z̃(0) − Ẑ‖2 ≤ r′, then

‖F ′(α̃(0), Z̃(0))−1F (α̃(0), Z̃(0))‖ ≤ γ

2c3c4
.

By Lemma A.1, the Newton iterates (α̃(k), Z̃(k)) based on the algorithm (6) starting from

(α̃(0), Z̃(0)) converges to (α̂, Ẑ) at a geometric rate:

‖α̃(k) − α̂‖2 + ‖Z̃(k) − Ẑ‖2 ≤ C12
−(k−1)γ2k−1 (28)

for some C1 > 0. By Proposition 2.2,

α̃(k) = (IK ⊗B−1
0 )α(k), Z̃(k) = (IT ⊗B>

0 )Z(k),

or equivalently

Ã(k) = B−1
0 A(k), Z̃

(k)
t = B>

0 Z
(k)
t
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for k ≥ 1. This and (28) give that, if ‖α̃(0) − α̂‖2 + ‖Z̃(0) − Ẑ‖2 ≤ r′, then

T∑

t=1

‖Z(k)>
t A(k) − Ẑ>t Â‖2 =

T∑

t=1

‖Z̃(k)>
t Ã(k) − Ẑ>t Â‖2

≤ C2

(
‖α̃(k) − α̂‖2 + ‖Z̃(k) − Ẑ‖2

)

≤ C2−(k−1)γ2k−1

for some C,C2 > 0. We take r = (c1 + c2)
−1r′. Then, by (24) and (27), ‖α̃(0)− α̂‖2 +‖Z̃(0)−

Ẑ‖2 ≤ r′ if
∑T

t=1 ‖Z
(0)>
t A(0) − Ẑ>t Â‖2 ≤ r. This completes the proof of the theorem.

A.2 Proof of Theorem 5.1.

We write d>t = Ẑ>t Â− Z>
t A

∗. We have to show that

1

T

∑

1≤t≤T

‖dt‖2 = OP (KJ−1 + δ2
K). (29)

For the proof of this claim we first note that by definition of our estimator it holds that

T∑

t=1

J∑

j=1

{
Yt,j − Ẑ>t Âψ(Xt,j)

}2

≤
T∑

t=1

J∑

j=1

{
Yt,j − Z>

t A
∗ψ(Xt,j)

}2
. (30)

This implies that

T∑

t=1

J∑

j=1

{
d>t ψ(Xt,j)

}2 ≤ 2
T∑

t=1

J∑

j=1

d>t ψ(Xt,j)εt,j (31)

+2
T∑

t=1

J∑

j=1

d>t ψ(Xt,j)
{
Z>t m(Xt,j)− Z>

t A
∗ψ(Xt,j)

}
. (32)

With ‖d‖2
J,T = T−1J−1

∑
1≤j≤J,1≤t≤T

{
d>t ψ(Xt,j)

}2
and ‖d‖2 = T−1

∑
1≤t≤T ‖dt‖2 this gives

with (A5)

‖d‖2
J,T ≤ 2‖d‖





1

T

T∑

t=1

∥∥∥∥∥
1

J

J∑

j=1

ψ(Xt,j)εt,j

∥∥∥∥∥

2




1/2

+ 4‖d‖J,T δK . (33)
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We now argue that with c, C > 0 small enough it holds for all vectors e ∈ E(MT ) with

E(C) = {e ∈ IRK : ‖e‖ = 1 and supx∈[0,1] |e>ψ(x)| ≤ C} and for 1 ≤ t ≤ T

P

[
J−1

∑

1≤j≤J

{
e>ψ(Xt,j)

}2 ≤ c

]
≤ exp(−CJ/M 2

T ).

This follows by application of Bernstein‘s inequality, see also (A4). Now we use that for all

C ′ > 0 the unit sphere in IRK can be covered by o{(C ′)−KKK} balls with radius C ′K−1.

Furthermore, it holds almost surely with a constant C ′′ (not depending on C ′):

sup
‖e‖=‖f‖=1,‖e−f‖≤C′K−1

∣∣∣∣∣J
−1
∑

1≤j≤J

{
e>ψ(Xt,j)

}2 − J−1
∑

1≤j≤J

{
f>ψ(Xt,j)

}2

∣∣∣∣∣ ≤ C ′′C ′.

This implies that with a constant C ′′′

P

[
min

1≤t≤T
inf

e∈E(MT )
J−1

∑

1≤j≤J

{
e>ψ(Xt,j)

}2 ≤ c/2

]
≤ C ′′′(C ′)−KKKT exp(−CJ/M 2

T ).

The right hand side converges to 0 because of (A8). This shows that

‖d‖2
J,T ≥

c

2
‖d‖2

with probability tending to one. Therefore we get from (33) that with probability tending

to one
√
c

2
‖d‖ ≤ ‖d‖J,T ≤ c





1

T

T∑

t=1

∥∥∥∥∥
1

J

J∑

j=1

ψ(Xt,j)εt,j

∥∥∥∥∥

2




1/2

+ 4δK .

The right hand side is of order OP (K1/2J−1/2). This concludes the proof of Theorem 5.1.

A.3 Proof of Theorem 5.2.

We choose B̃ as

B̃ =

(
T−1

T∑

t=1

ZtẐ
>
t

)−1

T−1

T∑

t=1

ZtZ
>
t . (34)

For this definition we have to check that the matrix T−1
∑T

t=1 ZtẐ
>
t is invertible. We suppose

that this is not the case and we define a random vector e (depending on T ) with ‖e‖ = 1
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and e>
∑T

t=1 ZtẐ
>
t = 0. We now use that

∥∥∥∥∥T
−1

T∑

t=1

ZtẐ
>
t Â− T−1

T∑

t=1

ZtZ
>
t A

∗

∥∥∥∥∥ (35)

≤ T−1

T∑

t=1

∥∥∥ZtẐ
>
t Â− ZtZ

>
t A

∗
∥∥∥

= T−1

T∑

t=1

∥∥∥Zt

(
Ẑ>t Â− Z>

t A
∗
)∥∥∥

≤ T−1

T∑

t=1

‖Zt‖
∥∥∥Ẑ>t Â− Z>

t A
∗
∥∥∥

≤
(
T−1

T∑

t=1

‖Zt‖2

)1/2(
T−1

T∑

t=1

∥∥∥Ẑ>t Â− Z>
t A

∗
∥∥∥

2
)1/2

= OP (K1/2/J1/2),

because of (A6) and Theorem 5.1. This gives with f = T−1
∑T

t=1 ZtZ
>
t e,

‖f>m‖ = ‖f>(A∗ψ)‖+O(δK) = OP (K1/2/J1/2)

and this would imply that m0, . . . ,md are linearly dependent, in contrast to assumption

(A11). Note also that ‖T−1
∑T

t=1 ZtZ
>
t − EZtZ

>
t ‖ = OP (T−1/2) = OP (1), because of (A6).

We now define Z̃t = B̃>Ẑt and Ã = B̃−1Â. Then Z̃>t Ã = Ẑ>t Â and T−1
∑T

t=1 ZtZ̃
>
t =

T−1
∑T

t=1 ZtZ
>
t . This gives with (35)

∥∥∥Ã− A∗
∥∥∥ =

∥∥∥∥∥T
−1

T∑

t=1

ZtZ
>
t (Ã− A∗)

∥∥∥∥∥OP (1) (36)

=

∥∥∥∥∥T
−1

T∑

t=1

ZtZ̃
>
t Ã− T−1

T∑

t=1

ZtZ
>
t A

∗

∥∥∥∥∥OP (1)

= OP (K1/2/J1/2).
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Furthermore, from (A11), (A5),(36) and Theorem 5.1 one gets that

T−1

T∑

t=1

∥∥∥Z̃t − Zt

∥∥∥
2

(37)

= T−1

T∑

t=1

∥∥∥Z̃>t m− Z>
t m
∥∥∥

2

OP (1)

= T−1

T∑

t=1

∥∥∥Z̃>t A∗ − Z>
t A

∗
∥∥∥

2

OP (1) +OP (δ2
K)

= T−1

T∑

t=1

∥∥∥Z̃>t Ã− Z̃>t A
∗
∥∥∥

2

OP (1) + T−1

T∑

t=1

∥∥∥Z̃>t Ã− Z>
t A

∗
∥∥∥

2

OP (1) +OP (δ2
K)

= T−1

T∑

t=1

∥∥∥Z̃t

∥∥∥
2 ∥∥∥Ã− A∗

∥∥∥
2

OP (1) +OP (K/J)

= T−1

T∑

t=1

∥∥∥Z̃t − Zt

∥∥∥
2 ∥∥∥Ã− A∗

∥∥∥
2

OP (1) +
∥∥∥Ã− A∗

∥∥∥
2

OP (1) +OP (K/J)

= OP (K/J).

We will show that for h ≥ 0

T−1

T∑

t=h+1

(
Z̃t − Zt

)
Z>t−h = OP (T−1/2). (38)

Because of Zt,0 ≡ 1, the equation (38) with the choice h = 0 implies that

T−1

T∑

t=1

(
Ẑt − Zt

)
= OP (T−1/2).

These two equations imply the statement of Theorem 5.2, because of

T−1

T∑

t=h

(
Z̃t − Zt

)(
Z̃>t−h − Z>

t−h

)
= OP (K/J) = OP (T−1/2),

see (A12).

For the proof of (38) we use the representation Z>
t A

∗ψ(Xt,j) = {ψ(Xt,j)⊗Zt}>α∗, where

α∗ is the stack form of A∗. Similarly, Z̃>t Ãψ(Xt,j) = {ψ(Xt,j)⊗ Z̃t}>α̃, where α̃ is the stack
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form of Ã. Now, by definition

Z̃t = S̃−1
t,ZJ

−1

J∑

j=1

Yt,jÃψ(Xt,j), (39)

α̃ = S̃−1
α T−1J−1

T∑

t=1

J∑

j=1

{ψ(Xt,j)⊗ Z̃t}Yt,j, (40)

where

S̃t,Z = J−1

J∑

j=1

Ãψ(Xt,j)ψ(Xt,j)
>Ã>,

S̃α = T−1J−1

T∑

t=1

J∑

j=1

{ψ(Xt,j)⊗ Z̃t}{ψ(Xt,j)⊗ Z̃t}>.

We now argue that

‖S̃t,Z − St,Z‖ = OP (J1/2K−1/2T−1/2), (41)

‖S̃α − Sα‖ = OP (J1/2K−1/2T−1/2), (42)

where

St,Z = A∗E
{
ψ(Xt,j)ψ(Xt,j)

>
}
A∗>,

Sα = T−1

T∑

t=1

E
[
{ψ(Xt,j)⊗ Zt}{ψ(Xt,j)⊗ Zt}>

∣∣Zt

]
.

We show (41). Claim (42) can be shown similarly. For the proof of (41) it suffices to show
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that

J−1

J∑

j=1

A∗
[
ψ(Xt,j)ψ(Xt,j)

> − E
{
ψ(Xt,j)ψ(Xt,j)

>
}] (

Ã− A∗
)>

(43)

= OP (J1/2K−1/2T−1/2),

J−1

J∑

j=1

(
Ã− A∗

) [
ψ(Xt,j)ψ(Xt,j)

> − E
{
ψ(Xt,j)ψ(Xt,j)

>
}] (

Ã− A∗
)>

(44)

= OP (J1/2K−1/2T−1/2),

J−1

J∑

j=1

A∗
[
ψ(Xt,j)ψ(Xt,j)

> − E
{
ψ(Xt,j)ψ(Xt,j)

>
}]
A∗> (45)

= OP (J1/2K−1/2T−1/2),

J−1

J∑

j=1

A∗E
{
ψ(Xt,j)ψ(Xt,j)

>
}(

Ã− A∗
)>

(46)

= OP (J1/2K−1/2T−1/2),

J−1

J∑

j=1

(
Ã− A∗

)
E
{
ψ(Xt,j)ψ(Xt,j)

T
}(

Ã− A∗
)>

(47)

= OP (J1/2K−1/2T−1/2).

The proof of (45)–(47) follows by simple arguments, note also that because of (A12) it

holds that K1/2J−1/2 = O(J1/2K−1/2T−1/2) by assumption. We now show (43). Claim (44)

can be shown similarly. For the proof of (43) we use Bernstein‘s inequality for the following

sum:

P

(
|

J∑

j=1

Wj| > x

)
≤ 2 exp

(
1

2

x2

V +Mx/3

)
. (48)

Here for a value of t with 1 ≤ t ≤ T and for a vector e ∈ IRK with ‖e‖ = 1 the random

variable Wj is a row of the vector

J−1A∗
[
ψ(Xt,j)ψ(Xt,j)

> − E
{
ψ(Xtj)ψ(Xtj)

>
}]
e.

In (48), V is an upper bound for the variance of
∑J

j=1Wj and M is a bound for the absolute

values of Wj, i.e. |Wj| ≤M for 1 ≤ j ≤ J , a.s. With some constants C1 and C2 that do not
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depend on t, e and the row number we get V ≤ C1J
−1 and M ≤ C2K

1/2J−1. One can check

that for x with x/[JK−1T−1/2] → 0 slowly enough, it holds that

KKT exp

(
1

2

x2

V +Mx/3

)
→ 0.

Using similar arguments as in the proof of Theorem 5.1 this implies claim (43).

From (36), (37), (39), (40), (41) and (42) we get the following expansions (uniformly for

1 ≤ t ≤ T ):

Z̃t − Zt = S−1
t,Z

{
J−1

J∑

j=1

εt,jA
∗ψ(Xtj) + J−1

J∑

j=1

εt,j(Ã− A∗)ψ(Xt,j) (49)

+J−1

J∑

j=1

Z>t (Ã− A∗)ψ(Xt,j)(Ã− A∗)ψ(Xt,j)

+J−1

J∑

j=1

∆(Xt,j)Ãψ(Xt,j) +
J∑

j=1

Z>t (Ã− A∗)ψ(Xt,j)A
∗ψ(Xt,j)

}
+ OP (T−1/2)

= S−1
t,ZJ

−1

J∑

j=1

εt,jA
∗ψ(Xt,j) + S−1

t,ZJ
−1

J∑

j=1

εt,j(Ã− A∗)ψ(Xt,j)

+S−1
t,ZJ

−1

J∑

j=1

Z>t (Ã− A∗)ψ(Xt,j)A
∗ψ(Xt,j) + OP (T−1/2)

= ∆t,1,Z + ∆t,2,Z + ∆t,3,Z + OP (T−1/2),
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α̃− α∗ = S−1
α T−1J−1

T∑

t=1

J∑

j=1

{ψ(Xt,j)⊗ Zt}εt,j (50)

+S−1
α T−1J−1

T∑

t=1

J∑

j=1

{ψ(Xt,j)⊗ (Z̃t − Zt)}εt,j

+S−1
α T−1J−1

T∑

t=1

J∑

j=1

{ψ(Xt,j)⊗ Zt}{ψ(Xt,j)⊗ (Z̃t − Zt)}>α

+S−1
α T−1J−1

T∑

t=1

J∑

j=1

{ψ(Xt,j)⊗ (Z̃t − Zt)}{ψ(Xt,j)⊗ (Z̃t − Zt)}>α

+S−1
α T−1J−1

T∑

t=1

J∑

j=1

{ψ(Xt,j)⊗ Zt}∆(Xt,j)

+S−1
α T−1J−1

T∑

t=1

J∑

j=1

{ψ(Xt,j)⊗ (Z̃t − Zt)}∆(Xt,j) +R,

where ∆(x) = m(x)− A∗ψ(x) and R is a vector with ‖R‖ = OP (T−1/2).

For the proof of the theorem it remains to show that for 1 ≤ j ≤ 3

T−1

T∑

t=h+1

∆t,j,ZZt−h = OP (T−1/2). (51)

This can be easily checked for j = 1. For j = 2 it follows from

E

{
‖J−1

J∑

j=1

εt,jS
−1
t,Zψ(Xt,j)‖2

}
= O(KJ−1T−1)

and ‖Ã− A∗‖2 = O(KJ−1). For the proof of (51) for j = 3 we note first that for 0 ≤ l ≤ L

T−1

T∑

t=h+1

∆t,3,ZZt−h,l = T−1J−1

T∑

t=h+1

J∑

j=1

S−1
t,ZA

∗ψ(Xt,j)Zt−h,l{ψ(Xt,j)⊗ Zt}>(α̃− α∗)

= QT (α̃− α∗) + ‖α̃− α∗‖OP (K1/2J−1/2T−1/2)

= QT (α̃− α∗) + OP (T−1/2),

where

QT = E

[
T−1

T∑

t=h+1

S−1
t,ZA

∗ψ(Xt,j)Zt−h,l{ψ(Xt,j)⊗ Zt}>
]
.
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Thus claim (51) for j = 3 follows from

QT (α̃− α∗) = OP (T−1/2).

This claim can be checked by noting that ‖QT‖ = O(1) and by applying the expansion (50).

Note that under our assumptions it does not hold in general that ‖α̃−α∗‖ = OP (T−1/2). For

this reason a careful treatment that we have just described above is needed. This concludes

the proof of Theorem 5.2.
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