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Abstract. We consider the problem of estimating the conditional quantile of a time
series at time t given observations of the same and perhaps other time series available
at time t − 1. We discuss sieve estimates which are a nonparametric versions of
the Koenker-Bassett regression quantiles and do not require the specification of the
innovation law. We prove consistency of those estimates and illustrate their good
performance for light- and heavy-tailed distributions of the innovations with a small
simulation study. As an economic application, we use the estimates for calculating
the value at risk of some stock price series.
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1. Introduction

Reliable measures of market risk are crucial tools for an effective risk management
which financial institutions have to employ for internal and regulatory purposes. There
are now established procedures for modelling asset returns and for subsequent calcu-
lation of risk measures, but there is still room for improvement and more flexibility
dealing with the shortcomings of standard methodology. An extensive discussion of
these issues has been given recently by (Engle and Manganelli 2002).

The standard measure of market risk is currently the value at risk (VaR). If Yt is
the return of an asset a time t, the value at risk of level 1 − α at time t (V aRt) is
determined by the conditonal α-quantile qt of Yt given information up to time t − 1
represented by the σ-algebra It−1, i.e.

pr(Yt ≤ qt|It−1) = α.

Then, V aRt = −qt where we follow the convention that the value at risk is com-
monly reported as a positive number. It provides a bound on future losses at time t
which is not exceeded with high probability 1−α given currently available information.

We concentrate on the VaR as a risk measure, but our exposition can be easily ex-
tended to the expected shortfall as another popular measure of risk, i.e. the conditional
expectation of the loss given that it exceeds the value at risk

(1) est = E
{− Yt

∣∣ It−1,−Yt ≥ V aRt

}
.

The expected shortfall provides more information than V aRt about the size of extreme
losses and, moreover, is a coherent risk measure as shown by (Artzner et al. 1997).

A broad class of approaches to estimating VaR is volatility based, i.e. the distri-
bution of the return time series {Yt,−∞ < t < ∞} is assumed to conform with some
form of stochastic volatility model of the general form

(2) Yt = µt + σtηt

where µt, σt denote the conditional mean and volatility of Yt given information on the
past up to time t − 1, and the innovations ηt are i.i.d. with mean 0 and variance
1. If qη

α denotes the α-quantile of ηt, then for a time series following (2), we imme-
diately have V aRt = µt + σtq

η
α. Typical examples are based on the classical ARCH-

and GARCH-models for financial returns and their extensions, compare (Engle 1982),
(Bollerslev 1986). For the GARCH(1,1) model, which currently is quite popular for
market risk analysis, we have, e.g., µt = 0, σ2

t = ω + αY 2
t−1 + βσ2

t−1. To calculate an
estimate of V aRt given data Y1, . . . , Yt−1, we only need estimates of the model pa-
rameters ω, α, β and some initial value for the first volatility σ1, where the influence
of the latter will be neglible for large t under short memory asumptions like (A1) below.
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As pointed out by (Engle and Manganelli 2002), volatility based estimates of
VaR assume that the extreme negative returns follow the same process as the re-
mainder of typical returns. Additionally, it is assumed that the standardized returns
ηt = (Yt − µt)/σt are i.i.d., and, moreover, their distribution has to be specified, fre-
quently as standard normal. To avoid relying on those assumptions which may well
be not satisfied for real data, (Engle and Manganelli 2002) propose to estimate the
VaR directly without taking a detour over estimating volatility and without having to
make an ad-hoc choice of an innovation distribution. They consider a class of models
where the conditional quantile qt is specified as a function of finitely many of its own
past values as well as of past returns. The different functions which they consider
are specified up to finitely many parameters and are quite similar to the manner how
volatility is given as a function of the past in GARCH models and their modifications
like, e.g., TGARCH (Rabemananjara and Zakoian 1993), (Glosten et al. 1993). (Engle
and Manganelli 2002) call such models CAViaR, i.e. conditional autoregressive value
at risk, and discuss how to estimate the parameters following the regression quantiles
approach of (Koenker and Bassett 1978).

Models like GARCH for volatility or CAViaR for value at risk have a particular
parametric form to be chosen in advance. A more flexible alternative is given by
nonparametric approaches. For volatility based models, these have been extensively
studied in the last years. E.g., we may choose µt = m(Xt), σt = σ(Xt) in the volatil-
ity based model (2), where Xt is a vector of finitely many Yt−1, . . . , Yt−p and perhaps
some additional financial data known at time t − 1, we get a nonparametric AR(d)-
ARCH(d)-model including exogeneous variables. Local smoothing estimates of the
trend and volatility functions m, σ and their use for market risk management have
been studied by (Härdle and Tsybakov 1997), (Hafner 1998) and (Franke et al. 2004)
among many others. Nonparametric sieve estimates of m, σ based on neural networks
or on other approximating function classes are discussed in (Gouriéroux and Montfort
1992), (Franke 1998), (Franke 2000) and, in a similar general context as in this paper,
in (Franke and Diagne 2006). If the main interest in fitting such nonparametric models
to financial data is estimating the value at risk, then they suffer from similar problems
as the volatility-based parametric approaches. The innovation distribution has to be
specified somewhat arbitrarily, and the crucial volatility estimate is mainly influenced
by the bulk of the data, i.e. by small and medium returns which are not important for
managing extreme risks. The latter is only partially true for estimates based on local
smoothing, e.g. kernel or local polynomial estimates, but those suffer from the curse of
dimensionality which in particular leads to highly unreliable estimates in regions with
low data density, in particular in the regions of the few extreme data.

In this paper, we try to combine both approaches, i.e. nonparametric estimation
to get flexibility and the Koenker-Bassett method of accessing regression quantiles di-
rectly which does not require the specification of the innovation law and focusses on
the extreme data which are important for quantifying risk. We study general sieve
estimates as, in assessing the risk of an asset, we want to allow for incorporating not
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only past asset prices, but also other available information on the market. This leads to
the problem of estimating functions on higher-dimensional spaces than local smoothers
can easily handle.

In the following, the information available at time t−1 is represented by an observ-
able random vector Xt ∈ R

d which may consist of past observations Yt−1, . . . , Yt−p of
the time series of interest but also on past observations of other time series. Our goal
is to estimate the conditional α-quantile function q(x) given by

(3) pr(Yt ≤ q(Xt) |Xt = x) = α.

q(x) solves the minimization problem

(4) E{|Yt − q(Xt)|α |Xt = x} = min
f∈L1(µ)

E{|Yt − f(Xt)|α |Xt = x}

Here, |u|α denotes the skew absolute value given by

(5) |u|α = αu+ + (1 − α)u− = u( α − 1(−∞,0)(u) ) = αu + u−

where u+, u− denote the positive and negative part of u.

In section 2 we introduce general nonparametric sieve estimates for q(x) and formu-
late a nonparametric consistency result. In the following two sections, we consider two
special case: qualitative threshold quantile estimates similar to the trend and volatil-
ity estimates proposed by (Gouriéroux and Montfort 1992) and neural network based
quantile estimates. In section 5 we present some simulations and application to quan-
tifying market risk. Some technical results and all the proofs are deferred to the last
section 6.

2. Consistency of sieve quantile estimates

We need the following assumptions on the time series of interest.

(A1) (Yt, Xt) is α-mixing with geometrically decreasing mixing coefficients,
i.e. the mixing coefficients αs satisfy

αs ≤ a1e
−a2s, s ≥ 1,

for some a1, a2 > 0. Furthermore, E|Yt| < ∞.

(A2) Let pε(z|x) denote the conditional density of εt = Yt − q(Xt) given Xt = x.
There are functions π(x), ζ(x) and a constant γ0 such that for all x

a) pε(z|x) ≥ π(x) > 0 for all |z| ≤ ζ(x),

b) π(x)ζ(x) ≥ γ0 > 0.

(A1) is a standard short-memory condition. (A2) corresponds to the usual assumption
for quantile asymptotics that the probability density of Yt is uniformly bounded away
from 0 in a neighbourhood of the quantile - in our case conditional on x with a certain
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degree of uniformity w.r.t. x. The condition is not very strong. For example, consider
the case

(6) Yt = q(Xt) + s(Xt) ηt,

where q(x) is the conditional α-quantile of Yt given Xt = x, s(x) is the conditional
α-scale of Yt given Xt = x, i.e. the conditional α-quantile of |Yt−q(Xt)|α given Xt = x,
and ηt, −∞ < t < ∞, are i.i.d. real random variables with α-quantile 0, α-scale 1
and density pη. If we assume that pη is bounded away from 0 in a neighbourhood of its
α-quantile 0, i.e. for some π0, ζ0 > 0

pη(u) ≥ π0 > 0 for |u| ≤ ζ0,

then (A2) is satisfied with π(x) = π0/s(x), ζ(x) = ζ0s(x) and γ0 = π0ζ0 as εt = s(Xt)ηt

and, therefore,

pε(z|x) =
1

s(x)
pη

(
z

s(x)

)
≥ π0

s(x)
for |z| ≤ ζ0s(x).

We remark that for the special case Xt = (Yt−1, . . . , Yt−p)
T , (6) is a quantile AR(p) -

ARCH(p)-process as discussed in (Franke and Mwita 2003).

Let Fn, n ≥ 1, denote an increasing sequence of subsets of L1(µ), and let F∞ denote
their union. We estimate the conditional quantile function q(x) by solving the sample
version of (4) restricted to functions in Fn, i.e.

(7) qn = argminf∈Fn

1

n

n∑
t=1

∣∣Yt − f(Xt)
∣∣
α
.

Estimating q by qn belongs to the broad class of nonparametric regression estimates
based on Grenander’s method of sieves (Grenander 1981). To get consistency of these
estimates we have to assume that F∞ is dense in L1(µ), the space of integrable functions
on R

d w.r.t. µ. Mark that q ∈ L1(µ) as we have assumed E|Yt| < ∞.

Examples for Fn are given by piecewise constant functions or by feedforward neural
networks which we discuss in detail in sections 3 resp. 4.

Typically, the functions in Fn are parametrized by some parameter vector with
finite dimension increasing with n. For proving consistency of the estimate qn of (7),
we could assume uniform boundedness of the functions in Fn which usually is achieved
by bounding the parameter vector or, in the case of feedforward neural networks, like
in Theorem 3.3 of (White 1990) or Theorem 3.2 of (Franke and Diagne 2006). This
procedure has some computational drawbacks discussed in section 10.1 of (Györfy et al.
2002) where, as an alternative to bounding the functions in Fn in advance, the original
estimate qn is replaced by a truncated version instead, i.e. for some sequence ∆n → ∞
we consider

(8) q̂n(x) = T∆nqn(x),
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where the truncation operator TL is defined as

TLu = u, if |u| ≤ L, and TLu = L sgn(u), else.

Let

F̂n = {T∆nf ; f ∈ Fn}
denote the truncated functions of Fn. We assume that F̂n satisfies the following as-
sumption on bounded real-valued functions.

(A3) G is a class of bounded, real-valued measurable functions on R
d such that

for all δ > 0, N ≥ 1, there exists kN(δ) such that for all z1, . . . , zN ∈ R
d

there are functions g∗
k : R

d → R, k = 1, . . . , kN(δ), with:

for any g ∈ G there is a k ≤ kN(δ) such that 1
N

∑N
j=1 |g(zj) − g∗

k(zj)| < δ.

kN(δ) is a bound on the δ-covering number of G w.r.t. the L1-norm of the discrete
measure with point masses 1/N in z1, . . . , zN , assumed to hold uniformly in z1, . . . , zN ,
compare ch.9 of (Györfy et al. 2002). Let KN(δ) denote the size of the smallest δ-cover,
i.e. the minimal value of kN(δ) in (A2).

Assumption (A2) is satisfied for many function classes G. By Lemma 9.2 and
Theorem 9.4 of (Györfy et al. 2002), we have, e.g., for all N and some bound B on the
absolute value of functions in G

(9) KN(δ) ≤ 3

(
4eB

δ
log

6eB

δ

)V(G+)

if the Vapnik-Chervonenkis dimension V(G+) of G+ = {(z, t); t ≤ g(z) + B, g ∈ G}
is at least 2 and if δ < B/2. Mark that (9) differs slightly from the version in (Györfy
et al. 2002) as we do not assume that G contains only nonnegative functions.

For later reference, we remark that each δ-covering of G w.r.t. z1, . . . , z2N is auto-
matically a 2δ-covering w.r.t. z1, . . . , zN as

1

N

N∑
j=1

|g(zj) − g∗
k(zj)| ≤ 2

1

2N

2N∑
j=1

|g(zj) − g∗
k(zj)|,

which immediately implies

(10) KN(2δ) ≤ K2N (δ) for all N ≥ 1, δ > 0.

Theorem 1. Let {(Yt, Xt)} be a stationary stochastic process satisfying (A1) and (A2).
Let Fn be increasing classes of bounded functions in L1(µ), such that their union F∞
is dense in L1(µ), and, for ∆n → ∞, the corresponding classes of truncated functions

F̂n satisfy (A3). Let

κn(ε) = log K2n

( ε

32

)
.

Let q̂n = T∆nqn, given by (7) and (8) be the truncated sieve estimate for the conditional
α-quantile q(z) given by (3).
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a) If, for n → ∞, ∆nκn(ε)/
√

n → 0 for all ε > 0, then q̂n is a consistent estimate
of q in the mean sense, i.e. for n → ∞

E

∫
|q̂n(z) − q(z)|µ(dz) → 0.

b) Let, additionally, {Yt} satisfy Cramér’s condition, i.e. E|Yt|j ≤ cj−2j!EY 2
t ,

j = 3, 4, . . . for some c > 0. If, for some β > 0 and some sequence δn → 0
we have ∆nκn(εδn)/

√
n → 0 and ∆n/(δnn

1
2
−β) → 0, then q̂n is even strongly

L1(µ)-consistent, i.e. for n → ∞∫
|q̂n(z) − q(z)|µ(dz) → 0 a.s.

By this result, proving consistency of the truncated sieve estimate of the conditional
quantile q(z) for specific function classes Fn reduces to finding bounds on the covering
numbers. In the next two sections, we consider two specific examples.

3. Qualitative threshold quantile estimates

(Gouriéroux and Montfort 1992) have introduced the class of qualitative threshold
ARCH models for financial time series. For order d, they have the form

Yt =
H∑

j=1

aj1Aj
(Yt−1, . . . , Yt−d) +

H∑
j=1

bj1Aj
(Yt−1, . . . , Yt−d)ηt

where A1, . . . , AH is a given partition of R
d, i.e. the sets are pairwise disjoint and

their union is R
d, and the ηt are white noise with zero mean and unit variance. A

straightforward extension would allow the conditional mean and volatility of Yt given
the past to depend on a general random vector Xt observable at time t − 1 including
past values Ys, s < t as well as other market data. The elements Aj of the partition
may correspond to phases of increasing and decreasing prices, to phases of low and
high volatility, etc.

Based on this intuition, we consider approximating the conditional quantile function
q(x) of (3) by a simple function from

(11) P(H) = {f(x) =

H∑
j=1

cj1Aj
(x); c1, . . . , cH ∈ R}.

Applying this approach to VaR-calculation is based on the assumption that approxi-
mately the market can be in H different states characterized by the value of the risk
variable Xt observable at time t − 1 and that the VaR of the asset of interest is ap-
proximately constant in each state. If H is chosen large enough and the A1, . . . , AH

provide a suitable partition of R
d, then we get a reasonable approximation of q(x) even
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if it is not locally constant. This follows from the following consistency result which is
a special case of Theorem 1 for the function classes

Fn = P(Hn) = {f(x) =
Hn∑
j=1

cj1Anj
(x); c1, . . . , cHn ∈ R}.

We have to assume that Fn is increasing in n and that F∞ is dense in L1(µ) which
follows from Hn → ∞ and the following assumptions on the partitioning:

(A4) For all n, An = {An1, . . . , AnHn} is a partition of R
d, such that

a) for m > n and any i ≤ Hm, Ami ⊂ Anj for some j ≤ Hn,
b) for all bounded subsets B of R

d, supj≤Hn
diam(Anj ∩ B) → 0 for n → ∞.

a) states that An+1 is a subpartition of An, and b) guarantees that the partitions
become finer and finer with increasing n except for the extreme part of R

d. For given
Hn, we get as a nonparametric quantile estimate of q(x):

qn(x) =

Hn∑
j=1

cnj1Anj
(x) where(12)

cn = argminb1,...,bHn

1

n

n∑
t=1

∣∣Yt −
Hn∑
j=1

bj1Anj
(Xt)

∣∣
α

with cn = (cn1, . . . , cnHn) ∈ R
Hn. As only one term in the sum does not vanish,

truncating qn(x) is equivalent to just truncating the coefficients cnj , and we get

(13) q̂n(x) = T∆nqn(x) =
Hn∑
j=1

ĉnj1Anj
(x) with ĉnj = T∆ncnj .

Theorem 2. Let {(Yt, Xt)} be a stationary process satisfying (A1) and (A2). For
Hn → ∞, ∆n → ∞, let q̂n be the truncated qualitative threshold quantile estimate for q
given by (12) and (13). Assume that the sequence of partitions An satisfies (A4).

a) If for n → ∞, ∆nHn log(∆n)/
√

n → 0, then

E

∫
|q̂n(x) − q(x)|µ(dx) → 0 (n → ∞)

b) If, additionally, {Yt} satisfies Cramér’s condition and ∆2
n/n1−β → 0 for some

β > 0, then ∫
|q̂n(z) − q(z))|µ(dz) → 0 a.s. (n → ∞).



QUANTILE SIEVE ESTIMATES FOR TIME SERIES 9

4. Neural networks

As a second example, we now consider estimates for q(z) based on fitting neural
networks to the data. Given an input variable x = (x1, x2, ..., xd)

T ∈ R
d, a feedforward

neural network with one hidden layer consisting of H ≥ 1 neurons defines a function
f(x) = fH(x, θ) of the following form

fH(x; θ) = v0 +

H∑
h=1

vhΨ(xT wh + wh0)

where wh = (wh1, ..., whd)
T . The so-called activation function Ψ is fixed in advance,

whereas the network weights v0, ..., vH , whi, h = 1, ..., H, i = 0, ..., d, which we combine
to a M(H)-dimensional parameter vector θ with M(H) = 1 + H + H(1 + d), may be
chosen appropriately. We denote the class of such neural network output functions by

(14) O =
{
fH(x; θ); θ ∈ R

M(H), H ≥ 1
}
.

In the following, we consider only sigmoid activation functions satisfying

(A5) Ψ is continuous and strictly increasing, 0 < lim
x→∞

Ψ(x) = Ψ(∞) ≤ 1 and

0 ≥ lim
x→−∞

Ψ(x) = Ψ(−∞) ≥ −1.

Assuming |Ψ(u)| ≤ 1 is no restriction but only a convenient standardization. A
typical example of such a function is the hyperbolic tangent or symmetrized logistic
function

(15) Ψ(u) = tanh(u) =
2

1 + exp (−2u)
− 1.

We also consider neural networks of finite complexity characterized by subclasses of O
of the form

(16) O(H, ∆) =
{
fH(x; θ); θ ∈ R

M(H),
H∑

h=0

|vh| ≤ ∆
}

for some given number H ≥ 1 of neurons and some bound ∆ on the �1-norm of the
output weights. We consider the increasing function classes

Fn = O(Hn, ∆n) for some increasing sequences Hn, ∆n → ∞.

Their union F∞ = O is dense in L2(µ) by Theorem 1 of (Hornik 1991), compare also
Lemma 16.2 of (Györfy et al. 2002), if Ψ satisfies (A3). But O ⊂ L1(µ) too, as, by
(A5), it consists of bounded functions, and for any f ∈ L1(µ), g ∈ O, L > 0 we have
by the triangular and by Jensen’s inequality∫

|f(x) − g(x)|µ(dx) ≤
∫

|f(x) − TLf(x)|µ(dx) +
( ∫ |TLf(x) − g(x)|2µ(dx)

)1/2
,

which implies denseness of O in L1(µ) too.
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Now, we consider the estimate qn(x) of q(x) based on feedforward neural networks,
i.e.

(17) qn(x) = fHn(x; θ̂n), θ̂n = argminθ∈Θn

1

n

n∑
t=1

∣∣Yt − fHn(Xt; θ)
∣∣
α

with Θn = {θ ∈ R
M(Hn);

∑Hn

h=0 |vh| ≤ ∆n}. From Theorem 1, we get immediately

Theorem 3. Let {(Yt, Xt)} be a stationary process satisfying (A1) and (A2). For
Hn → ∞, ∆n → ∞, let qn be the neural network quantile estimate for q(x) given by
(17). Assume that Ψ satisfies (A5).

a) If for n → ∞, ∆nHn log(∆nHn)/
√

n → 0, then

E

∫
|qn(x) − q(x)|µ(dx) → 0 (n → ∞)

b) If, additionally, {Yt} satisfies Cramér’s condition and ∆2
n/n1−β → 0 for some

β > 0, then ∫
|qn(z) − q(z))|µ(dz) → 0 a.s. (n → ∞).

5. Simulations and applications

In this section, we first apply nonparametric quantile sieve estimates to some arti-
ficially generated data. As approximating function classes, we use feedforward neural
networks as in section 4. For an easy graphical comparison of the function estimate
with the true quantile function, we restrict ourselves to the case of a one-dimensional
regressor. Finally, we use the quantile sieve approach for estimating the conditional
VaR of some real stock price series. In each case, we have chosen the size of the net-
work such that a further increase of the number of neurons did not change the visual
impression significantly.

For simulation, we consider a nonlinear AR-ARCH processes of order 1, i.e.

Yt = m(Yt−1) + σ(Yt−1)ηt

with i.i.d. innovations ηt having mean 0 and variance 1. In each case, we generate a
sample of size 2500, use the first 2000 data as a training set from which we get the
estimates of the network parameters. The last 500 observations are set aside as a vali-
dation set to check the out-of-sample performance of the estimate.

In the first two examples, we consider pure autoregressive processes with a bump
function as the autoregressive function

m(x) = −0.7x + 1.5ϕ0.5,0.4(x), σ(x) = 0.2,

where ϕµ,v denotes the density of the normal law with mean µ and variance v. We use a
feedforward neural network with H=7 neurons to estimate the conditional 5%-quantile
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Figure 1a: Conditional 0.05−quantile−estimate for NLAR(1)−process with normal innovations − training set (N=2000)
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Figure 1b: Conditional 0.05−quantile−estimate for NLAR(1)−process with normal innovations − validation set (N=500)

function q(x).

For standard normal innvoations, Figure 1a shows the scatter plot Yt against Yt−1, t =
2, . . . , 2000, of the training set as well as the true quantile function q(x) (green curve)
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Figure 2a: Conditional 0.05−quantile−estimate for NLAR(1)−process with t
4
 innovations − training set (N=2000)
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Figure 2b: Conditional 0.05−quantile−estimate for NLAR(1)−process with t
4
 innovations − vakdation set (N=500)

and the neural-network based quantile estimate qn(x) (red curve). Mark that for pure
autoregressive processes, the conditional quantile function is just a shifted version of
the conditional mean m(x). Figure 1b shows the same picture for the data of the
validation set. On the training set, we get an empirical level of 4.95%, i.e. a fraction
of 0.0495 of the data Yt are below the estimated conditional quantile qn(Yt−1). For the
validation set, the empirical level is 5.61%.

For the second example, we consider the same autoregressive process but with
heavy-tailed (t4-distributed) innovations ηt. Figures 2a and 2b show the corresponding
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Figure 3a: Conditional 0.05−quantile−estimate for NLAR(1)−ARCH(1)−process with normal innovations − training set (N=2000)
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Figure 3b: Conditional 0.05−quantile−estimate for NLAR(1)−ARCH(1)−process with normal innovations −validation set (N=500)

results for the training and the validation set. The empirical levels are 5.00% and
6.81% resp.

As the last example, we generate data from a genuine AR-ARCH-process, again
with a bump function as autoregressive function m(x) and with a volatility function
σ(x) as in the parametric ARCH(1)-model of (Engle 1982):

m(x) = −0.2x + 1.5ϕ0.5,0.4(x), σ2(x) = 0.01 + 0.5x2

As innovations, we use again standard normal variables, such that the conditional law
of Yt given Yt−1 = x is normal with mean m(x) and variance σ2(x). Therefore, the true
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conditional quantile function is no longer just a shifted conditional mean. As the basis
for the nonparametric quantile estimate we use a neural network with H = 9 neurons.
Figures 3a and 3b show the scatter plots for training and validation set and the true
and estimated quantile function. The empirical levels are 5.00% and 4.21% resp.

Finally, we consider the problem of estimating the conditional 5%-VaR for the
BASF-stock for the period 1990 to 1992 (N=745) which covers the first Gulf War as a
phase of high volatility and the attempted coup d’etat in Moscow as an example of an
isolated event, having a strong, but very local effect on the market.

The figures show only data starting with February 13, 1990 (N=716), as only then,
the exogeneous variables discussed below are available. As a benchmark, we first
consider the VaR calculated from fitting a GARCH(1,1)-model with standard normal
innovations to the data, where the model parameters are estimated by conditional
maximum likelihood. Figure 4a shows the usual backtesting plot, i.e. the actual log
returns Yt (dots), where for better visibility only the negative values are plotted, and
the (negative) VaR (solid line), i.e. the conditional quantile of Yt given the last log
return Yt−1 and the last volatility σt−1.

Figure 4b shows the corresponding backtesting plot with value at risk based on a
neural network quantile estimate as described in section 4. As input, we have chosen
the last log return Yt−1, the corresponding log return Dt−1 of the market index, i.e.
the DAX, a 30-days moving average Mt−1 = {Dt−1 + ... + Dt−30}/30 as a local market
trend indicator, and an exponentially weighted 30-days historical variance of Yt:

Vt−1 =
1 − ρ

1 − ρ 30

30∑
k=1

ρ k−1
(
Yt−k − Ȳt−1

)2
with ρ = 0.95 and Ȳt−1 = {Yt−1 + ... + Yt−30}/30. The neural network used in calcu-
lating the conditional quantile estimate qn(Yt−1, Dt−1, Mt−1, Vt−1) had H = 4 neurons
and the symmetrized logistic function (15) as activation function.

The neural network based VaR shows somewhat better than the GARCH-VaR.
The empirical levels are 5.04% and 3.91% resp., i.e. the GARCH-fit leads to a rather
conservative view of risk whereas the nonparametric approach leads to a rather good
agreement with the nominal level 5%. Moreover, the network-based risk measure re-
covers much faster form the shock of an isolated extreme event in a phase of otherwise
stable volatility like the Moscow coup (t=376) compared to the GARCH-procedure.
The neural network based VaR has, therefore, some kind of robustness, but still reacts
as fast to significant increases in volatility as the GARCH-VaR. On the other hand, an
advantage of GARCH is the more stable visual appearance of the backtesting plot in
Figure 4a; the nonparametric quantile estimate leads to considerably larger fluctuations
of the corresponding VaR from day to day.
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Figure 4a: Negative BASF log returns (13.2.1990 to 30.12.1992), GARCH−based conditional 5%−VaR                           
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Figure 4b: Negative BASF−log returns (Feb 13, 1990, to Dec. 30, 1992) and nonparametric conditional 5%−VaR

6. Technical results and proofs

In this section we formulate some auxiliary results needed for the proof of the main
Theorem 1. The first result is a variant of the Vapnik-Chervonenkis inequality (Vapnik
and Chervonenkis 1971) which holds for dependent data from a stationary process.
The proof can be found in (Franke and Diagne 2006).

Theorem 4. Let {Zt,−∞ < t < ∞} be a R
d-valued stationary stochastic process

satisfying an α-mixing condition with exponentially decreasing mixing coefficients. Let
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G be a set of measurable functions g : R
d → [0, B] satisfying (A3). Then, for any

ε > 0, n ≥ 1

(18) pr

(
sup
g∈G

∣∣ 1

n

n∑
t=1

g(Zt) − Eg(Z1)
∣∣ > ε

)
≤ K2n

( ε

32

)
c1e

−c2
√

nε/B

where c1, c2 > 0 are some constants not depending on n.

Lemma 1. Let q denote the α-quantile of the real random variable Y. Let Fε, pε denote
the distribution function and density of ε = Y − q. Then, for any f ∈ R

E|Y − f |α − E|Y − q|α =

∫ f−q

0

(Fε(z) − Fε(0))dz

Proof. Using |u|α = α u+u−, Fε(0) = α and distinguishing the two cases d = f−q > 0
and d = f − q < 0, we get using integration by parts

E|Y − f |α − E|Y − q|α = E|ε − d|α − E|ε|α
= 1(0,∞)(d)

∫ d

0

(d − z)pε(z)dz + 1(−∞,0)(d)

∫ 0

d

(z − d)pε(z)dz

= 1(0,∞)(d)

∫ d

0

(Fε(z) − Fε(0))dz + 1(−∞,0)(d)

∫ 0

d

(Fε(0) − Fε(z))dz. �

A corresponding relation holds analogously for the conditional quantile q(x) of Y
given X = x where ε = Y − q(X), Fε(·|x), pε(·|x) denote the conditional distribution
function and density of ε given X = x, expectation E is replaced by conditional ex-
pectation E{.|X = x}, and f(x) is an arbitrary function in L1(µ).

Theorem 5. Let (Yt, Xt),−∞ < t < ∞, be a stationary time series with Yt ∈ R, Xt ∈
R

d satisfying assumption (A2). Let E|Yt| < ∞, and let µ denote the stationary distri-
bution of Xt.

Let Fn ⊂ L1(µ), n ≥ 1, be increasing classes of functions f : R
d → R such that

F∞ =
⋃∞

n=1 Fn is dense in L1(µ). Let qn ∈ Fn denote the regression quantile given by
(7), and q̂n = T∆nqn the truncated version for some sequence ∆n > 0, limn→∞ ∆n = ∞.

Let F̂n = {f̂n = T∆nf ; f ∈ Fn}. Assume furthermore

(19) lim
n→∞

inf
f∈Fn,||f ||∞≤∆n

∫
|f(z) − m(z)|µ(dz) = 0.

a) If for all L > 0

(20) lim
n→∞

E sup
f∈bFn

∣∣∣∣1n
n∑

t=1

|TLYt − f(Xt)|α − E|TLY1 − f(X1)|α
∣∣∣∣ = 0,
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with TLYt denoting the random variable Yt truncated at ±L, then

(21) lim
n→∞

E

∫
|m̂n(z) − m(z)|µ(dz) = 0.

b) If there is a sequence δn → 0 such that for all L > 0

1

δn

(1
n

n∑
t=1

|Yt − TLnYt| − E|Y1 − TLnY1|
)→ 0 a.s.(22)

1

δn

sup
f∈bFn

∣∣1
n

n∑
t=1

|TLnYt − f(Xt)|α − E|TLnY1 − f(X1)|α
∣∣→ 0 a.s.(23)

then

lim
n→∞

∫
|m̂n(z) − m(z)|µ(dz) = 0 a.s.

Proof. We use Lemma 1 and assumption (A2) to relate ||q̂n−q||1 to E|Y − q̂n(X)|α−
E|Y − q(X)|α where, here, E is taken conditional on the data, i.e. q̂n(x) is given. In
the first part of the proof we bound this term from above by terms converging to 0.

i) By definition of q as conditional quantile function we have

0 ≤ E|Y − q̂n(X)|α − E|Y − q(X)|α
= E|Y − q̂n(X)|α − inf

f∈Fn,||f ||∞≤∆n

E|Y − f(X)|α
+ inf

f∈Fn,||f ||∞≤∆n

E|Y − f(X)|α − E|Y − q(X))|α
≤ sup

f∈Fn,||f ||∞≤∆n

{E|Y − q̂n(X)|α − E|Y − f(X)|α} + inf
f∈Fn,||f ||∞≤∆n

E|q(X) − f(X)|α
≤ sup

f∈Fn,||f ||∞≤∆n

{E|Y − q̂n(X)|α − E|Y − f(X)|α} + inf
f∈Fn,||f ||∞≤∆n

||f − q||1

where we have used the triangular inequality for |u|α and |u|α ≤ |u|. For a yet arbitrary
L ≤ ∆n, let YL, YtL denote TLY, TLYt. We decompose the first term on the right-hand
side.

sup
f∈Fn,||f ||∞≤∆n

{E|Y − q̂n(X)|α − E|Y − f(X)|α}

≤ sup
f∈Fn,||f ||∞≤∆n

{
E|Y − q̂n(X)|α − E|YL − q̂n(X)|α(24)

+ E|YL − q̂n(X)|α − 1

n

n∑
t=1

|YtL − q̂n(Xt)|α(25)

+
1

n

n∑
t=1

|YtL − q̂n(Xt)|α − 1

n

n∑
t=1

|YtL − qn(Xt)|α(26)

+
1

n

n∑
t=1

|YtL − qn(Xt)|α − 1

n

n∑
t=1

|YtL − qn(Xt)|α(27)
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+
1

n

n∑
t=1

|Yt − qn(Xt)|α − 1

n

n∑
t=1

|Yt − f(Xt)|α(28)

+
1

n

n∑
t=1

|Yt − f(Xt)|α − 1

n

n∑
t=1

|YtL − f(Xt)|α(29)

+
1

n

n∑
t=1

|YtL − f(Xt)|α − E|YL − f(X)|α(30)

+ E|YL − f(X)|α − E|Y − f(X)|α
}

.(31)

By definition of qn, (28) is bounded from above by 0. As L ≤ ∆n and as YtL, q̂n(Xt) ≤
∆n, we immediately get |YtL − q̂n(Xt)|α − |YtL − qn(Xt)|α ≤ 0, and (26) is bounded

from above by 0, too. By definition of q̂n and F̂n, (25) and (30) both are bounded by

sup
f∈F̂n

∣∣∣∣ 1n
n∑

t=1

|YtL − f(Xt)|α − E|YL − f(X)|α
∣∣∣∣.

Again using the triangular inequality for |u|α and |u|α ≤ |u|, (24), (31) are bounded by

1

n

n∑
t=1

|Yt − YtL|.

Therefore, we have

0 ≤ E|Y − q̂n(X)|α − E|Y − q(X)|α
≤ 2 sup

f∈F̂n

∣∣∣∣ 1n
n∑

t=1

|YtL − f(Xt)|α − E|YL − f(X)|α
∣∣∣∣

+ inf
f∈Fn,||f ||∞≤∆n

‖f − q‖1 + 2 E|Y − YL| + 2

n

n∑
t=1

|Yt − YtL|.(32)

ii) By Lemma 5.1, applied to conditional quantiles and expectations, we have for
any f ∈ L1(µ), 0 ≤ δ ≤ 1,

E|Y − f(X)|α − E|Y − q(X)|α = E
[
E{|Y − f(X)|α|X} − E{|Y − q(X)|α|X}]

= E

[
1(0,∞)(f(X) − q(X))

∫ f(X)−q(X)

0

(Fε(z|X) − Fε(0|X)) dz

+1(−∞,0)(f(X) − q(X))

∫ 0

f(X)−q(X)

(Fε(0|X) − Fε(z|X)) dz

]
≥ E

[
π(X)1(0,∞)(f(X) − q(X))

∫ f(X)−q(X)

0

min(δζ(X), z) dz

+π(X)1(−∞,0)(f(X) − q(X))

∫ 0

f(X)−q(X)

min(δζ(X),−z) dz

]
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as, by assumption (A2a)

Fε(z|X) − Fε(0|X) =

∫ z

0

pε(z|X)dz ≥
{

π(X)z for 0 ≤ z ≤ δζ(X)
π(X)δζ(X) for δζ(X) ≤ z

and, analogously, Fε(0|X) − Fε(z|X) ≥ π(X) min(δζ(X),−z) for z ≤ 0.

Using (A2b) and distinguishing the cases f(X) − q(X) > δζ(X), f(X) − q(X) <
−δζ(X) and |f(X) − q(X)| ≤ δζ(X), we get

E|Y − f(X)|α − E|Y − q(X)|α ≥ δ γ0 E(f(X) − q(X) − δζ(X))+

+δ γ0 E(q(X) − f(X) − δζ(X))+

+
1
2

E π(X)|f(X) − q(X)|2 · 1[0,δζ(X)] (|f(X) − q(X)|)
≥ δ γ0

[
E(f(X) − q(X) − δζ(X))+ + E(q(X) − f(X) − δζ(X))+

]
Replacing f by q̂n and taking expectations with respect to q̂n we get by a monotone

convergence argument for δ = δn → 0 (n → ∞), as ζ(x) > 0,

E

∫
|q̂n(x) − q(x)|µ(dx)

= lim
n→∞E

∫ [
(q̂n(x) − q(x) − δnζ(x))+ + (q(x) − q̂n(x) − δζ(x))−

]
µ(dx)

≤ lim
n→∞

1
δnγ0

E

[
E|Y − q̂n(X)|α − E|Y − q(X)|α

]
−→ 0

by i), by choosing δn → 0 slowly enough and by letting L → ∞.

We get part b) of the assertion by applying the same argument without expectations
using assumptions (22) and (23). �

Proof of Theorem 1: The assertion follows from Theorem 5 if we show that
(19) and (20) resp. (22)-(23) are satisfied.

i) For arbitrary ε > 0 there are n1 and f ∈ Fn1 such that ‖f − q‖1 ≤ ε by dense-
ness of F∞ ∈ L1(µ). As f is bounded and ∆n → ∞, there is a n ≥ n1 such that
f ∈ Fn1 ⊆ Fn and ‖f‖∞ ≤ ∆n. (19) follows.

ii) Let L > 0 be arbitrary and n large enough such that L ≤ ∆n. We use as
abbreviation Zt = (Yt, Xt), t = 1, . . . , n, and we set for z = (y, x)

g(z) = |TLy − f(x)|α.

Let Ĝn denote the class of such functions g : R
d+1 −→ R which we get if f ranges over

F̂n.

Let δ > 0, N > 0, z1, . . . , zN ∈ R
d+1 be arbitrary. We write zj = (yj, xj), j =

1, . . . , N. By (A3), there are f ∗
k , k = 1, . . . , kN(δ) such that for all f ∈ F̂n
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1

N

N∑
j=1

|f(xj) − f ∗
k (xj)| < δ for some k.

Let g∗
k(z) = |TLy − f ∗

k (x)|α, k = 1, . . . , kN(δ), and let g(z) = |TLy − f(x)|α ∈ Ĝn,

i.e. f ∈ F̂n. We have

1

N

N∑
j=1

|g(zj) − g∗
k(zj)| =

1

N

N∑
j=1

∣∣∣∣|TLyj − f(xj)|α − |TLyj − f ∗
k (xj)|α

∣∣∣∣
≤ 1

N

N∑
j=1

|f(xj) − f ∗
k (xj)| < δ.

i.e. for every δ-covering of F̂n we get a corresponding δ-covering of Ĝn with the
same size kN(δ). We conclude K̃N(δ) ≤ KN(δ) for the minimal δ-covering numbers

K̃N(δ), KN(δ) of Ĝn resp. F̂n.

As 0 ≤ g(z) ≤ 2∆n for g ∈ Ĝn, we have by Theorem 4 for arbitrary ε > 0

pr

{
sup
f∈F̂n

∣∣ 1
n

n∑
t=1

|TLYt − f(Xt)|α − E|TLY1 − X1|α
∣∣ > ε

}

= pr

{
sup
g∈Ĝn

∣∣ 1
n

n∑
t=1

g(Zt) − Eg(Z1)
∣∣ > ε

}
≤ K2n

(
ε

32

)
c1e

−c2
√

nε/(2∆n)(33)

iii)As for any nonnegative variable V and ε > 0

E V =

∫ ∞

0

pr(V > u) du ≤ ε +

∫ ∞

ε

pr(V > u) du

we get by (33), using that KN (δ) is decreasing in δ,

E sup
f∈F̂n

∣∣∣∣ 1n
n∑

t=1

|TLYt − f(Xt)|α − E|TLY1 − X1|α
∣∣∣∣

≤ ε + K2n

(
ε

32

)∫ ∞

ε

c1e
−c2

√
nu/(2∆n)

= ε + K2n

(
ε

32

)
2∆n

c2

√
n

e−c2
√

nε/(2∆n) −→ ε (n → ∞)

by our assumptions. For ε → 0, (20) follows.
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iv) Under assumption (A1), Yt −TLYt is α-mixing with geometrically mixing coeffi-
cients. Furthermore, it satisfies Cramér’s condition by our assumption on Yt. Therefore,
by Theorem 1.6 of (Bosq 1996), we have

1√
n log n log log n

n∑
t=1

(|Yt − TLYt| − E|Y1 − TLY1|) → 0 a.s.,

and (22) is satisfied for any δn = O(
√

log n log log n/
√

n).

v) Again by (33) we have for any ε > 0

∞∑
n=1

pr

(
1

δn
sup
f∈F̂n

∣∣∣∣ 1n
n∑

t=1

|TLYt − f(Xt)|α − E|TLY1 − f(X1)|α
∣∣∣∣ > ε

)

≤
∞∑

n=1

K2n

(
εδn

32

)
c1e

−c2
√

nεδn/(2∆n)

=
∞∑

n=1

c1 exp{−nβ n
1
2
−β

∆n

(
c2εδn

2
− κn(εδn)∆n√

n

)}
< ∞

as, by our assumptions, n
1
2
−βδn/∆n −→ ∞ and κn(εδn)∆n/

√
n −→ 0 for n → ∞. (23)

follows from the Borel-Cantelli-Lemma. �

To prove Theorem 2 we need an auxiliary result which is closely related to Lemma
9.3 of (Györfy et al. 2002) and proven in an analogous manner. Let G, δ > 0, z1, . . . , zN ∈
R

d and g∗
1, . . . , g

∗
kN

be as in assumption (A3). For given z = (z1, . . . , zN ), let KN(δ,G, z)
denote the smallest value of kN such that for any g ∈ G there is a k ≤ kN with
1
N

∑N
j=1 |g(zj) − g∗

k(zj)| < δ.

Lemma 2. Let A1, . . . , AH be disjoint subsets of R
d, and let P(H) be the class of

corresponding simple functions given by (11). For arbitrary r > 0, N ≥ 1, z1, . . . , zN ∈
R

d let

G = {f ∈ P(H);
1

N

N∑
i=1

|f(zi)| ≤ r}.

Then, KN(δ,G, z) ≤ (1 + 4r/δ)H.

Proof. For f ∈ P(H), c ∈ R
H we write

‖f‖N =
1

N

N∑
j=1

|f(zj)|, ‖c‖ =
H∑

j=1

|cj |.

Set dj = ‖1Aj
‖N , and let D denote the diagonal matrix with entries d1, . . . , dH . As

1Aj
(zi), j = 1, . . . , H, vanish except for at most one j, we have for f =

∑
cj 1Aj

∈ G
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‖f‖N =
1

N

N∑
i=1

|
H∑

i=1

cj 1Aj
(zi)| =

1

N

N∑
i=1

H∑
j=1

|cj|1Aj
(zi)

=
H∑

j=1

|cj| ‖1Aj
‖N = ‖Dc‖(34)

Let f1, . . . , fK ∈ G be an arbitrary δ-packing of G, i.e. ‖fk − fl‖N ≥ δ for all
1 ≤ k < l ≤ K. From Lemma 9.2 of (Györfy et al. 2002), it suffices to show K ≤
(1 + 4r/δ)H. As fk ∈ G, we have, using (34), for 1 ≤ k < l ≤ K

fk =
H∑

j=1

a
(k)
j 1Aj

, ‖Da(k)‖ = ‖fk‖N ≤ r, ‖Da(k) − Da(l)‖ = ‖fk − fl‖N ≥ δ.

Therefore, by the triangular inequality, the sets

Bk = {u ∈ R
H ; ‖u − Da(k)‖ ≤ δ

4
}, k = 1, . . . , K

are disjoint subsets of {u ∈ R
H ; ‖u‖ ≤ r + δ

4
}, and we have for the volumes

K cH(
δ

4
)H ≤ cH(r +

δ

4
)H

where cH denotes the volume of the l1-unit ball {u,‖u‖ ≤ 1} in R
H . �

Proof of Theorem 2: It only remains to check the rate conditions of Theorem 1. As
A1, . . . , AHn are disjoint we have for all c1, . . . , cHn ∈ R

T∆n(
Hn∑
j=1

cj1Aj
) =

Hn∑
j=1

T∆ncj1Aj
∈ {f ∈ P(Hn); ‖f‖∞ ≤ ∆N}.

Therefore, for any z1, . . . , z2n ∈ R
d, z = (z1, . . . , z2n), we have

F̂n = T∆nP(Hn) ⊆ {f ∈ P(Hn);
1

2n

2n∑
j=1

|f(zj)| ≤ ∆n} = G.

From Lemma 2 we conclude

K2n(
ε

32
) ≤ K2n(

ε

32
,G, z) ≤ (1 +

128∆n

ε
)Hn,

or κn(ε) ≤ Hn log(1 + 128∆n/ε). a) follows.

For b), choose δn → 0 such that δ−1
n = O(∆γ

n) with 0 < γ < β. Setting β ′ =

(β − γ)/2, we have ∆n(δnn
1
2
−β′

) −→ 0 and, using the same type of upper bound for
κn(εδn) as above, we also get ∆nκn(εδn)/

√
n −→ 0. �
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Proof of Theorem 3: By (A5), we have |qn(z)| ≤ ∆n, and qn and the truncated
estimate q̂n given by (8) coincide in this case. Therefore, we only have to check the
assumptions of Theorem 1. By (16.19) in the proof of Theorem 16.1 of Györfy et al.
(Györfy et al. 2002), Fn satisfies (A3) with

K2n

( ε

32

)
= eκn(ε) ≤

(
12 e ∆n(Hn + 1)

ε
32

)(2d+5)Hn+1

with κn(ε) ≤ {(2d + 5)Hn + 1} log(384 e ∆n(Hn + 1)/ε). Neglecting constant factors
and terms of smaller order, a) follows immediately from Theorem 1.

For b), choose δn → 0 such that δ−1
n = O((∆nHn)γ) with 0 < γ < β. Setting

β ′ = (β − γ)/2, we have ∆n/(δnn1/2−β′
) → 0, and using the same upper bound on the

log covering number κn(εδn) as for showing a), the other rate condition of Theorem 1
b) follows too. �
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