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Abstract

Measuring dependence in a multivariate time series is tantamount to modelling its dynamic

structure in space and time. In the context of a multivariate normally distributed time series,

the evolution of the covariance (or correlation) matrix over time describes this dynamic. A wide

variety of applications, though, requires a modelling framework different from the multivariate

normal. In risk management the non-normal behaviour of most financial time series calls for

nonlinear (i.e. non-gaussian) dependency. The correct modelling of non-gaussian dependencies

is therefore a key issue in the analysis of multivariate time series. In this paper we use copulae

functions with adaptively estimated time varying parameters for modelling the distribution of

returns, free from the usual normality assumptions. Further, we apply copulae to estimation

of Value-at-Risk (VaR) of a portfolio and show its better performance over the RiskMetrics

approach, a widely used methodology for VaR estimation.

JEL classification: C 14
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Financial support from Deutsche Forschungsgemeinschaft via SFB 649 “Economic Risk” is grate-

fully acknowledged.

1



1 Introduction

Time series of financial data are high dimensional and have typically a non-gaussian behavior. The

classical linear modelling therefore fails to reproduce the stylized facts (i.e. fat tails, asymmetry),

Granger (2003). A correct understanding of the time varying multivariate (conditional) distribution

is vital to many standard applications in finance: portfolio selection, option pricing, asset pricing

models, Value-at-Risk (VaR) etc.

The dependency (over time) of asset returns is especially important in risk management since

the profit and loss (P&L) function determines the Value-at-Risk. More precisely, Value-at-Risk

of a portfolio is determined by the multivariate distribution of risk factor increments. If w =

(w1, . . . , wd)> ∈ Rd denotes a portfolio of positions on d assets and St = (S1,t, . . . , Sd,t)> a non-

negative random vector representing the prices of the assets at time t, the value Vt of the portfolio

w is given by

Vt =
d∑

j=1

wjSj,t.

The random variable

Lt = (Vt − Vt−1), Sj,0 = 0 (1.1)

called profit and loss (P&L) function, expresses the change in the portfolio value between two

subsequent time points. Defining the log-returns Xt = logSt − logSt−1, (1.1) can be written as

Lt =
d∑

j=1

wjSj,t−1 {exp(Xj,t)− 1} . (1.2)

The distribution function of Lt is given by Ft,Lt(x) = Pt(Lt ≤ x). The Value-at-Risk at level α

from a portfolio w is defined as the α-quantile from Ft,Lt :

V aRt(α) = F−1
t,Lt

(α). (1.3)
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Figure 1: Dependence over time for DaimlerChrysler, Volkswagen, Bayer, BASF, Allianz and
Münchener Rückversicherung, 20000101-20041231.

It follows from (1.2) and (1.3) that Ft,Lt depends on the specification of the d-dimensional distri-

bution of the risk factors Xt. Thus, modelling their distribution over time is essential to obtain the

quantiles (1.3).

The RiskMetrics technique, a widely used methodology for VaR estimation assumes that the log-

returns follow a multivariate normal distribution. Here L(Xt) = Nd(0,Σt) a d− dimensional

multivariate distribution. A more general approach is based on copulae which avoids the procrustes

bed of a normality assumptions resulting in better fits of the empirical characteristics (e.g. fat tails,

tail dependency) of financial returns. Modelling the distribution of returns by copulae with time

varying parameters, can therefore be expected to perform better. The question though is how to

steer the time varying copulae parameters. This is exactly the focus of this paper.

Figure 1 shows the time varying copula parameter for DaimlerChrysler, Volkswagen, Bayer, BASF,

Allianz and Münchener Rückversicherung from 1.Jan 2000 (20000101) to 31.Dec 2004 (20041231).

In contrast the “global” copula parameter is shown by a constant horizontal line. The “local”
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choice of copula is performed via an adaptive estimation method based on Spokoiny (2007). The

adaptive estimation is based on the assumption of local homogeneity: for every time point there

exists an interval of time homogeneity in which the copula parameter can be well approximated by

a constant. This interval is recovered from the data using local change point analysis. For a stock

portfolio, we estimate copulae with time varying parameters and simulate the VaR accordingly.

Backtesting underlines the improved performance of the proposed adaptive time varying copulae

fitting.

This paper is organized as follows: section 2 presents the basic copulae definitions and introduces

modelling log-returns with copulae. Section 3 discusses the VaR and its estimation procedure

and section 4 describes three possible copulae estimation procedures. The adaptive estimation

and the moving window approach are presented in section 5 and in applied on simulated data in

section 6. Using real data, the performance of the copula-based VaR estimation in comparison with

RiskMetrics approach is evaluated by means of Backtesting in section 7.

2 A short introduction into copulae

Copula functions have a long history in probability theory and statistics: they are well known

and can be found in a variety of the financial literature. The word copula first appears in Sklar

(1959), although the ideas related to copulae originate in Hoeffding (1940). Since that, copula

funcions have been studied in a variety of the statistics literature such as Nelsen (1998), Mari

and Kotz (2001) and Franke et al. (2004). The application of copulae in finance is very recent:

the idea first appears in Embrechts et al. (1999) in connection with correlation as a measure of

dependence. Futher financial applications can be found in Embrechts et al. (2003b) and Embrechts

et al. (2003a). Copulae constitute an essential part in quantitative finance, see Härdle et al. (2002),

and as mentioned above are recognized as an important tool in VaR calculations.

Copulae represent an elegant concept of connecting marginals with joint cummulative distribution
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functions. Copulae are functions that join or “couple” multivariate distribution functions to their

1-dimensional marginal distribution functions. They can preliminary be defined as multvariate dis-

tribution functions on the unit cube [0, 1]d with uniform-(0,1) marginals. Copulae provide a natural

way for measuring the dependence structure between random variables. The most reasonable way

to define copulae regarding their applications is obtained by using Sklar’s theorem:

Definition 2.1. A d-dimensional copula is a function C : [0, 1]d → [0, 1] with uniform-(0,1)

marginals. If F is a d-dimensional distribution function with marginals F1 . . . , Fd, then there exists

a copula C with

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)} (2.1)

for every x1, . . . , xd ∈ R. If F1, . . . , Fd are continuous, then C is unique. Converserly, if C is a

copula and F1, . . . , Fd are distribution functions, then the function F defined in (2.1) is a joint

distribution function with marginals F1, . . . , Fd.

Sklar’s theorem reveals that the multivariate dependence structure and the univariate marginals

can be modelled separately and that the dependence structure is modelled by means of copulae.

For all u = (u1, . . . , ud)> ∈ [0, 1]d, every copula C satisfies

W (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤M(u1, . . . , ud) where

M(u1, . . . , ud) = min(u1, . . . , ud) and

W (u1, . . . , ud) = max

(
d∑

i=1

ui − d+ 1, 0

)
.

M(u1, . . . , ud) is called Fréchet-Hoeffding upper bound and W (u1, . . . , ud) the Fréchet-Hoeffding

lower bound. They have been introduced in Fréchet (1951). For d = 2, the lower and the upper

Fréchet-Hoeffding bounds are themselves copulae: they introduce the bivariate distribution func-

tions of random vectors (U, 1 − U)> respectively (U,U)>, whereas U is the uniform-(0,1) random
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variable. In this case, the perfect negative dependence is described by W whereas M describes per-

fect positive dependence. For d > 2 W is a copula while M is not, see Nelsen (1998) or Embrechts

et al. (1999).

If X = (X1, . . . , Xd)> is a random vector with distribution X ∼ FX and continuous marginals

Xj ∼ FXj , the copula of X is the distribution function CX of u = (u1, . . . , ud)> where uj = FXj (xj):

CX(u1, . . . , ud) = FX{F−1
X1

(u1), . . . , F−1
Xd

(ud)}. (2.2)

For an absolutely continuous copula C, the copula density is defined as

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)
∂u1 . . .∂ud

. (2.3)

Some d-dimensional parametric copulae are presented below.

2.1 Gaussian copula for Gaussian marginals

The Gaussian copula represents the dependence structure of the multivariate normal distribution.

For Y = (Y1, . . . , Yd)> ∼ Nd(0,Ψ), Ψ a correlation matrix, the Gaussian copula is:

CGa
Ψ (u1, . . . , ud) = FY {Φ−1(u1), . . . ,Φ−1(ud)} (2.4)

=
∫ Φ−1(u1)

−∞
. . .

∫ Φ−1(ud)

−∞
2π−

d
2 | Ψ |−

1
2 exp

(
−1

2
r>Ψ−1r

)
dr1 . . . drd.

Defining ζj = Φ−1(uj), ζ = (ζ1, . . . , ζd)>, the density of the Gaussian copula is

cGa
Ψ (u1, . . . , ud) = | Ψ |−

1
2 exp

{
−1

2
ζ>(Ψ−1 − Id)ζ

}
.
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The copula parameter is here Ψ.

2.2 Gumbel copula

Cθ(u1, . . . , ud) = exp

−


d∑
j=1

(− log uj)θ


θ−1
 , 1 ≤ θ ≤ ∞.

For θ > 1 this copula presents upper tail dependence while for θ = 1 it reduces to the product

copula (independence):

Cθ(u1, . . . , ud) =
d∏

j=1

uj .

When θ tends to infinity we obtain the Fréchet-Hoeffding upper bound:

Cθ(u1, . . . , ud)
θ→∞−→ min(u1, , . . . , ud).

The copula parameter is θ and for θ →∞ it indicates maximal dependence.

2.3 Clayton copula

Cθ(u1, . . . , ud) =


 d∑

j=1

u−θ
j

− d+ 1


−θ−1

, θ > 0

where the density of the Clayton copula is:

cθ(u1, . . . , ud) =
d∏

j=1

{1 + (j − 1)θ}u−(θ+1)
j

 d∑
j=1

u−θ
j − d+ 1

−(θ−1+d)

.

As the copula parameter θ tends to infinity, dependence becomes maximal and as θ tends to zero,

we have independence. As θ goes to 1, copula achieves the lower Fréchet bound. The Clayton

copula can mimic lower tail dependence but no upper tail dependence.
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2.4 Kullback-Leibler Divergence and Copulae

For our further analysis of a jump in the copula parameter θ, the concept of Kullback-Leibler diver-

gence will be required. LetX denote a random variable distributed as follows: X ∼ Cθ{FX1(x1), . . . , FXd
(xd)}.

The density function of X is given by

fθ(x1, . . . , xd) = cθ(u1, . . . , ud)
d∏

i=1

fi(xi)

where ui = FXi(xi) and cθ is the corresponding copula density. The Kullback-Leibler divergence for

copulae can be regarded as a distance between two copula densities. It follows from the definition

of Kullback-Leibler divergence (for details refer to Spokoiny (2007)):

K(Cθ0 , Cθ1) = Eθ0

[
log
{
cθ0(U1, . . . , Ud)
cθ1(U1, . . . , Ud)

}]

where Ui = FXi(Xi) ∼ U [0, 1] are i.i.d. random variables, i = 1, . . . , d. Moreover, for the indepen-

dence copula C⊥(u1, . . . , ud) =
∏d

i=1 ui with density c⊥(u1, . . . , ud) = 1[0,1]d it holds:

K(C⊥, Cθ) = −E⊥[log cθ(U1, . . . , Ud)]

K(Cθ, C⊥) = Eθ[log cθ(U1, . . . , Ud)].

3 Value-at-Risk and Copulae

The RiskMetrics VaR procedure assumes that the risk factor Xt have a conditional multivariate

normal distribution. For the estimation of Σt the covariance matrix of Xt, RiskMetrics employs

the exponentially weighted moving average model (EWMA). More precisely, the conditional distri-
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bution of log-returns is estimated by N(0, Σ̂t):

Σ̂t = (eλ − 1)
∑
s<t

e−λ(t−s)XsX
>
s .

The parameter λ of the model (0 < λ < 1) is the so-called decay factor, determined by an opti-

mization procedure. The value 0.05, which according to Morgan/Reuters (1996) provides the best

backtesting results, is used as the exponential moving average decay factor.

In the copulae based approach one first corrects the contemporaneous volatility in the log-returns

process:

Xj,t = σj,tεj,t

where εt = (ε1,t, . . . , εd,t)> are standardised innovations for j = 1, . . . , d and

σ2
j,t = E[X2

j,t | Ft−1]

is the conditional variance given Ft−1. The innovations ε = (ε1, . . . , εd)> have joint distribution

Fε and εj have continuous marginal distributions Fj , j = 1, . . . , d. The innovations ε have a

distribution function described by

Fε(ε1, . . . , εd) = Cθ{F1(ε1), . . . , Fd(εd)}

where Cθ is a copula belonging to a parametric family C = {Cθ, θ ∈ Θ}. For details on the

above model specification see Chen and Fan (2004), Chen and Fan (2006), Chen et al. (2006).

For the Gaussian copula with Gaussian marginals we recover the conditional Gaussian RiskMetrics

framework.

To obtain the Value-at-Risk in this set up, the dependence parameter and distribution function

from residuals are estimated from a sample of log-returns and used to generate P&L Monte Carlo

samples. Their quantiles at different levels are the estimators for the Value-at-Risk, see Embrechts

9



et al. (1999), Bouyé et al. (1996). The whole procedure can be summarized as follows:

For a portfolio w ∈ Rd and a sample {xj,t}T
t=1, j = 1, . . . , d of log-returns, the Value-at-Risk at

level α is estimated according to the following steps, see Giacomini and Härdle (2005), Härdle et al.

(2002):

1. determination of innovations {ε̂t}T
t=1 by e.g. deGARCHing

2. specification and estimation of marginal distributions Fj(ε̂j)

3. specification of a parametric copula family C and estimation of the dependence parameter θ

4. generation of Monte Carlo sample of innovations ε and losses L

5. estimation of V̂ aRt(α), the empirical α-quantile of FL.

4 Copula Estimation

Consider a vector of random variables: X = (X1, ..., Xd)> with parametric univariate marginal

distributions FXj (xj , δj), j = 1, ..., d. With (2.3) and α = (θ, δ1, ..., δd)> the log-likelihood function

is given by:

`(α;x1, . . . , xT ) =
T∑

t=1

log c{FX1(x1,t; δ1), . . . , FXd
(xd,t; δd); θ}+

T∑
t=1

d∑
j=1

log fj(xj,t; δj). (4.1)

The objective is to maximize this log-likelihood. The estimation can be done in three different ways,

see Joe (1997), Durrleman et al. (2000). The full maximum likelihood (FML) method estimates

parameter α in one step through

α̃FML = arg max
α

`(α).

The drawback of the FML method is that with an increasing scale of the problem the algorithm

becomes computationally very burdensome.
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In the inference for margins (IFM) method for maximizing (4.1) the parameters δj are estimated

first:

δ̂j = arg max
δ

`j(δj)

where

`j(δj) =
T∑

t=1

ln fj(xj,t; δj)

is the log-likelihood function for each of the marginal distributions. The pseudo log-likelihood

function

`(θ, δ̂1, . . . , δ̂d) =
T∑

t=1

ln c{FX1(x1,t; δ̂1), . . . , FXd
(xd,t; δ̂d); θ}

is then maximized over θ to get the dependence parameter estimate θ̂. The IFM is faster and

computationally easier to implement.

Canonical Maximum Likelihood (CML) maximizes the pseudo log-likelihood function with empirical

marginal distributions:

`(θ) =
T∑

t=1

log c{F̂X1(x1,t), . . . , F̂Xd
(xd,t); θ}

ϑ̂CML = arg max
θ

`(θ)

where

F̂Xj (x) =
1

T + 1

T∑
t=1

1{Xj,t ≤ x}.

An advantage of the CML over both the other methods is that we do not need to make any

assumptions about the parametric form of the marginal distributions. Figure 2 shows that both

methods, IFM and CML provide nearly the same estimates for the estimated Clayton copula

dependence parameter θ.
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Figure 2: Copula dependence parameter θ estimated using Clayton copula for DaimlerChrysler,
Volkswagen, Bayer, BASF, Allianz and Münchener Rückversicherung, 20000101-20041231. Esti-
mated using IFM approach (dashed line) and CML approach (solid line).

5 Inhomogeneous Dependence Modelling with Time Varying Cop-

ulae

Very similar to the Risk Metrics procedure, one can perform a moving window estimation of the

copula parameter. This procedure though does not fine tune local changes in dependencies. In

fact, the joint distribution Ft,Lt from (1.3) is modelled as Ft,Lt = Cθt{Ft,1(L1), . . . , Ft,d(Ld)} with

probability measure Pθt . The moving window of fixed width will estimate a θt for each t but will

not provide precise estimates close to e.g. a change point in θt.

In order to choose an interval of homogeneity we employ a local parametric fitting approach as

introduced by Mercurio and Spokoiny (2004) and Härdle et al. (2003). The complete theory is

given in Spokoiny (2007). The basic idea is to adaptively estimate an interval of homogeneity in

which the hypothesis of a locally constant copula parameter is supported. Using Local Change
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Point (LCP) detection procedure, see Spokoiny (2007), we sequentially test: θt is constant (i.e.

θt = θ) within some interval I (local parametric assumption). Thereby we define the ”Oracle“

choice as the largest interval I = [t0−mk∗ , t0], for which the small modelling bias condition (SMB):

∆I(θ) =
∑
t∈I

K(Pθ, Pθt) ≤ ∆ (5.1)

where θ is constant and

K(Pϑ, Pϑ′) = Eϑ log
p(y, ϑ)
p(y, ϑ′)

denotes the Kullback-Leibler divergence, is fulfilled. The ”range point” t0 − mk∗ indicates the

largets interval fulfilling (5.1) and θt0 is ideally estimated from I = [t0 −mk∗ , t0]. The error and

risk bounds are calculated in Spokoiny (2007). Other measures of differences between Pθ and Pθt

may be employed. The Kulback-Leibler divergence though is most convenient in our setting since

we base our adaptive choice of interval of homogeneity on likelihood ratio theory.

5.1 LCP procedure

The choice of the homogeneity interval is done by the local change point (LCP) detection procedure.

LCP is based on the adaptive choice of the interval of homogeneity for the endpoint t0. Defining

a family of intervals of the form I = {Ik, k = −1, 0, 1, ...} such that Ik = [t0 − mk, t0] with mk:

m−1 < m0 < ... ≤ t0, m−1 = ρ2m1, m0 = ρ1m1 and ρ1 > ρ2 ∈ (0, 1) and defining sets of internal

points Tk ⊂ Ik of the form Tk = [t0 −mk−1, t0 −mk−2] for k = 1, 2, . . . we start the procedure with

k = 1 and

1. test the H0,k hypothesis of homogeneity within Ik on Tk

2. if H0,k is not rejected, take the next larger interval Ik+1 and repeat the previous step until

homogeneity is rejected or the largest possible interval [0, t0] is reached

3. if H0,k is rejected within Ik, the estimated interval of homogeneity is the last accepted interval
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Î = Ik−2

4. if the largest possible interval is reached we take Î = [0, t0].

t0 −m3 t0 −m2 t0 −m1
t0 − ρ1m1 t0 − ρ2m1

t0

︸ ︷︷ ︸
T3

︸ ︷︷ ︸
I1︸ ︷︷ ︸

I2︸ ︷︷ ︸
I3

We estimate the copula dependence parameter θ from observations in Î, assuming the homogeneous

model within Î, i.e. we define θ̂t0 = θ̃bI . We now describe how to perform the local homogeneity

test.

5.1.1 Test of homogeneity against a change point alternative

Let I = [t0 − m, t0] be an interval candidate and TI be a set of internal points within I. The

null hypothesis H0 means that ∀τ ∈ TI , θt = θ, i.e., the observations in I follow the model

with dependence parameter θ. The alternative hypothesis H1 claims that ∃τ ∈ TI : θt = θ1 for

t ∈ J = [τ, t0] and θt = θ2 6= θ1 for t ∈ Jc = [t0−m, τ [, i.e. the parameter θ changes spontaneously

in some internal point τ of the interval I.

If `I(θ) and `J(θ1)+`Jc(θ2) are the log-likelihood functions corresponding toH0 andH1 respectively,

the likelihood ratio test for the single change point with known fixed location τ can be written as:

TI,τ = max
θ1,θ2

{`J(θ1) + `Jc(θ2)} −max
θ
`I(θ)

= `J(θ̂J) + `Jc(θ̂Jc)− `I(θ̂I)

= ˆ̀
J + ˆ̀

Jc − ˆ̀
I .
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The test statistics for unknown change point location is defined as

TI = max
τ∈TI

TI,τ

and tests the homogeneity hypothesis in I against the change point alternative with unknown

location τ belonging to the set of considered locations TI . The change point test compares this test

statistics with a critical value λI which may depend on the interval I and the nominal first kind

error probability α. One rejects the hypothesis of homogeneity if TI > λI . The estimator of the

change point is then defined as

τ̂ = arg max
τ∈TI

TI,τ .

5.1.2 Parameters of the LCP procedure

To start the procedure, we have to specify some parameters. This includes: selection of interval

candidates I and internal points TI for each of this intervals; choice of the critical values λI , which

may depend on the interval I and the nominal first kind error probability α. One possible example

of an implementation is presented below.

Selection of interval candidates I and internal points TI : It is usefull to take the set I of

interval candidates in form of a geometric grid. We fix the length of the interval I1 to m1, define

1. m0 = ρ1m1 and m−1 = ρ2m1 for ρ1 > ρ2 ∈ (0, 1)

2. mk = [m1c
k−1] for k = 1, 2, . . . ,K and c > 1 where [x] means the integer part of x

We set Ik = [t0 −mk, t0] and Tk = [t0 −mk−1, t0 −mk−2] for k = 1, 2, . . . ,K

Choice of the critical values λI : The event ”accept homogeneity in Ik−1, reject in Ik” may be
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represented by the set

Bk =
k−1⋂
j=1

{TIj ≤ λIj} ∩ {TIk
> λIk

}

and it holds Bi∩Bj = ∅ for i 6= j, i, j = 1, 2, . . .. Thus, defining βIk
= P (Bk) and αIk

= P
(⋃k

j=1 Bj

)
we verify

αIk
=

k∑
j=1

βIj

The critical values λIk
are sequentially selected by Monte Carlo simulation to provide, under the

homogeneity hypothesis, probability of ”false alarm” βIk
for every interval Ik

PH0

k−1⋂
j=1

{Tj ≤ λIj} ∩ {TIk
> λIk

}

 = βIk

and it follows that αIk
is the probability of at least one false alarm until step k. The standard

approach for choosing the critical values is to provide a prescribed first kind error probability

αK = α. A reasonable proposal is to set

βIK−k+1
= αm−1

k

 k∑
j=1

m−1
j

−1

where mk denotes the number of points in interval Ik.

6 Simulated Examples

6.1 Clayton Copula: sudden jump in dependence

The LCP procedure is applied to different sets of simulations from d-dimensional Clayton copula

with parameter given by
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Figure 3: Pointwise median (full), 0.25, 0.75 quantiles (dotted) of estimated parameter θ̂t, true
parameter θt (dashed), top. Median of estimated size of homogeneity intervals |Ît|, bottom. Based
on 200 simulations, Clayton copula, ϑ = 3, d = 2, m1 = 20 and c = 1.25

θt =


0.1 if 1 ≤ t ≤ 100

ϑ if 101 ≤ t ≤ 200

0.1 if 201 ≤ t ≤ 300

For each pair of values ϑ and d (for jumps to and from ϑ = 1.5, 3 and 6 and 2−, 6− and 10−

dimensional copulae), 200 distinct simulations are generated. The dependence parameter and

homogeneity intervals are estimated and the detection delay to the jumps computed for each of the

sets. Figures 3, 4 and 6 show the pointwise median and quantiles of the estimated parameter θ̂t

and pointwise median of the size of estimated homogeneity intervals |Ît|.

The detection delay δ at rule r ∈ [0, 1] to jump of size ∆ = θt− θt−1 and t ∈ {101, 201} is expressed

by

δ(t,∆, r) = δ∗1{δ∗<100} + (100)1{δ∗≥100}
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Figure 4: Pointwise median (full), 0.25, 0.75 quantiles (dotted) of estimated parameter θ̂t, true
parameter θt (dashed), top. Median of estimated size of homogeneity intervals |Ît|, bottom. Based
on 200 simulations, Clayton copula, ϑ = 3, d = 6, m1 = 20 and c = 1.25
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Figure 5: Critical values λIk
for α = 0.05, m1 = 20, c = 1.25, d = 2 (dotted), 6 (dashed) and 10

(full)
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Figure 6: Pointwise median (full), 0.25, 0.75 quantiles (dotted) from estimated parameter θ̂t and
true parameter θt (dashed), from left to right ϑ = 1.5, 3, 6, from top to bottom d = 2, 6, 10. Based
on 200 simulations from Clayton copula, m1 = 20 and c = 1.25
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where

δ∗ = min{k ≥ t : θ̂k = θt−1 + r∆} − t

and θ̂t is the estimated parameter at t. It represents the number of steps necessary for the estimated

parameter to reach the r-fraction of a jump in the real parameter (if the fraction is not reached in

100 steps, the delay is set to 100).

Detection delays are proportional to probability of error of type II, i.e., probability of accepting

homogeneity in case of jump. Thus, tests with higher power correspond to lower detection delays.

The Kullback-Leibler divergences for upward (Kd(0.1, ϑ)) and downward (Kd(ϑ, 0.1)) jumps for

d-dimensional Clayton copulae are proportional to the power of the respective homogeneity tests

and are displayed in table 1. We verify that for Clayton copulae the divergence is increasing in the

size of jump and in dimension and is also higher for upward than for downward jumps (fig. 8)

The descriptive statistics for detection delays to jumps at t = 101 and 102 are in table 1. The mean

detection delay decreases with ϑ and dimension d. Moreover they are higher for downward jumps

(at t = 101) than for upward (at t = 102). Figure 7 displays the logarithm of mean detection delay

against jump size for r = 0.6 for upward and downward jumps and respective dimensions.

6.2 Clayton Copula: linear change in dependence

The procedure is applied on simulated data with linear increase and decrease in dependence. Sim-

ilarly to the last section, different sets of simulations from d-dimensional Clayton copula with

parameter given by
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ϑ = 1.5 ϑ = 3 ϑ = 6
d t r mean std dev. max min mean std dev. max min mean std dev. max min

2

101 40% 35.64 16.49 93 1 23.05 9.41 62 6 14.31 6.39 38 4
50% 41.70 19.23 100 2 26.34 11.79 67 6 15.24 7.60 41 4

60% 50.04 21.93 100 7 29.31 13.82 84 6 16.00 8.62 41 4

201 40% 9.27 10.39 62 1 8.27 5.79 30 1 5.55 2.43 16 1
50% 14.70 13.38 74 1 10.62 6.20 32 1 6.07 2.73 17 1
60% 25.78 21.04 100 1 12.87 7.30 45 1 6.66 3.21 22 1

6

101 40% 8.84 3.53 31 2 5.82 1.07 9 2 6.22 0.80 7 4
50% 9.35 4.39 34 2 6.07 0.97 9 3 6.43 0.68 7 4

60% 10.00 5.57 34 3 6.32 0.92 9 4 6.62 0.61 9 5

201 40% 5.33 2.69 14 1 2.89 1.39 7 1 1.61 0.74 4 1
50% 5.87 3.13 15 1 3.01 1.45 7 1 1.62 0.75 4 1
60% 6.31 3.57 20 1 3.07 1.46 7 1 1.74 0.81 4 1

10

101 40% 5.84 1.57 13 2 5.67 1.00 7 2 6.34 0.68 7 4
50% 6.04 1.51 13 2 6.04 0.91 7 3 6.60 0.55 7 5

60% 6.26 1.40 13 3 6.37 0.75 7 4 6.68 0.52 7 5

201 40% 3.61 1.68 10 1 2.01 0.90 4 1 1.24 0.46 3 1
50% 3.69 1.72 10 1 2.07 0.95 4 1 1.26 0.49 3 1
60% 3.79 1.71 10 1 2.31 1.06 5 1 1.51 0.66 3 1

Table 1: Statistics for detection delay δ to downward (t = 101) and upward (t = 201) jump of size
ϑ− 0.1 at rule r, based on 200 simulations from d-dimensional Clayton copula, m1 = 20, c = 1.25

ϑ K2(0.1, ϑ) K2(ϑ, 0.1) K6(0.1, ϑ) K6(ϑ, 0.1) K10(0.1, ϑ) K10(ϑ, 0.1)
1.5 0.41 0.26 3.52 1.57 7.30 2.89
3.0 1.28 0.56 11.49 3.25 24.69 5.89
6.0 3.51 1.01 31.52 5.56 68.35 10.00

Table 2: Kullback-Leibler divergence between d-dimensional Clayton copulae with parameters 0.1
and ϑ
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Figure 7: Logarithm of mean detection delays at r = 0.6 for different upward (left) and downward
(right) jump sizes, d-dimensional Clayton Copula, d = 2 (dashed), 6 (dotted) and 10 (full)
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Figure 8: Kd(0.1, ϑ) (dashed), Kd(ϑ, 0.1) (full), corresponding to upward and downward jumps,
d-dimensional Clayton copula, d = 2 (left), 6 (middle) and 10 (right)
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Figure 9: Pointwise median (full), 0.25, 0.75 quantiles (dotted) from estimated parameter θ̂t and
true parameter θt (dashed), ϑ = 3, d = 6. Based on 200 simulations from Clayton copula, m1 = 20
and c = 1.25

θt =



0.1 if 1 ≤ t ≤ 100

0.1 + 1
50∆(t− 100) if 101 ≤ t ≤ 150

ϑ if 151 ≤ t ≤ 250

ϑ− 1
50∆(t− 250) if 251 ≤ t ≤ 300

0.1 if 301 ≤ t ≤ 400

and ∆ = ϑ − 0.1 are generated. Figures 9 and 10 depict the pointwise median and quantiles of

the estimated parameter θ̂t and the true parameter θt for ϑ = 1.5, 3 and 6 and 2−, 6− and 10−

dimensional copulae.
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Figure 10: Pointwise median (full), 0.25, 0.75 quantiles (dotted) of estimated parameter θ̂t, true
parameter θt (dashed), from left to right ϑ = 1.5, 3, 6, from top to bottom d = 2, 6, 10. Based on
200 simulations from Clayton copula, m1 = 20 and c = 1.25
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t r mean std dev. max min
100 40% 18.11 7.15 43 6

50% 19.69 7.74 43 6
60% 22.24 9.42 46 8

200 40% 16.02 9.08 45 2
50% 20.42 13.19 63 2
60% 25.21 18.16 100 2

Table 3: Statistics for detection delay δ to downward (t = 101) and upward (t = 201) jump of size
0.8 at rule r, based on 100 simulations from Gaussian copula, m1 = 20, c = 1.25

6.3 Gaussian Copula: sudden jump in correlation

The Gaussian copula is parametrized by its correlation matrix (2.4). In the 2 dimensional Gaussian

copula the parameter is the correlation coefficient ρ. As in previous sections, the LCP procedure

is applied to sets of simulations from 2-dimensional Gaussian copula with parameter given by

ρt =


0 if 1 ≤ t ≤ 100

% if 101 ≤ t ≤ 200

0 if 201 ≤ t ≤ 300

Figure 11 shows the pointwise median and quantiles of the estimated parameter ρ̂t and the true

parameter ρt for % = 0.8. The Kullback-Leibler divergences corresponding to up and downward

jumps in the 2-dimensional Gaussian copula are displayed in fig. 12 as a function of %. For % = 0.8

the divergences are K2(0, 0.8) = 1.78 and K2(0.8, 0) = 0.51. The detection delay statistics for

sudden jump in correlation for Gaussian copula at rule 60% are depicted in table 3.

In the 3-dimensional case the parameter is the correlation matrix Ψ. The LCP procedure is applied

to sets of simulations from a 3-dimensional Gaussian copula with correlation given by
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Figure 11: Pointwise median (full), 0.25, 0.75 quantiles (dotted) from estimated parameter ρ̂t and
true parameter ρt (dashed), % = 0.8. Based on 100 simulations from Gaussian copula, m1 = 20
and c = 1.25
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Figure 12: K2(0, %) (dashed), K2(%, 0) (full), corresponding to upward and downward jumps, 2-
dimensional Gaussian copula
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Ψt =


I3 if 1 ≤ t ≤ 100

R if 101 ≤ t ≤ 200

I3 if 201 ≤ t ≤ 300

where I3 is the identity matrix of size 3 and

R =


1 0.8 0

0.8 1 −0.5

0 −0.5 1


The distance between the estimated Ψ̂ and the true correlation matrix Ψ, d(Ψ̂,Ψ) is given by

d(Ψ̂,Ψ) = ||ψ̂ − ψ||2 (6.1)

where ψ = (ψ12, ψ13, ψ23)> and ψij is the (i, j) element of matrix Ψ. This distance is motivated by

the Frobenius norm for a matrix A, ||A||F =
(∑

i,j |aij |2
) 1

2 and we have d(R, I3) = 0.9434. Figure

13 depicts the pointwise median and quantiles of distance d(Ψ̂t,Ψt) between estimated and true

correlation matrices.

7 Empirical Results

The estimation methods described in the preceeding section (RiskMetrics, moving window and

adaptive estimation procedure) are applied to a portfolio composed of two different sets of DAX

stocks. At first we apply the procedure to DaimlerChrysler (DCX), Volkswagen (VW), Allianz

(ALV), Münchener Rückversicherung (MUV2), Bayer (BAY) and BASF (BAS) and afterwards

to Siemens (SIE), ThyssenKrupp (THY), Schering (SCH), E.ON AG (EOA), Henkel (HEN) and

Lufthansa (LHA). The observation period for both data sets covers January 1st to December 31st,

2004 (data available in http://sfb649.wiwi.hu-berlin.de/fedc). For the log-returns {Xj,t}
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Figure 13: Pointwise median (full), 0.25, 0.75 quantiles (dotted) of distance d(Ψ̂t,Ψt) between
estimated and true correlation matrices. Based on 200 simulations from Gaussian copula, d = 3,
m1 = 20 and c = 1.25

modelled as

Xj,t = σj,tεj,t

we estimate the parameters σ2
j,t using exponential smoothing techniques for every time point t:

σ̂2
j,t = (eλ − 1)

∑
s<t

e−λ(t−s)X2
s,j

where Xj,s, j = 1, ..., 6 denotes log returns of DCX, VW, ALV, MUV, BAY and BAS (SIE, THY,

SCH, EOA, HEN and LHA) at time point s (we set λ = 1/20).

The chosen copula belongs to the Clayton family since it allows to capture the dependence in the

lower tail which is essential for VaR calculation. For the moving window approach we fix w = 250;

for the LCP procedure we set α = 0.05, c = 1.25 and m1 = 20. We have chosen these parameters

from our experience in simulations. For details on robustness of the reported results with respect

to the choice of the parameters c, ρ1, ρ2 and m1 refer to Spokoiny (2007).

28



The performance of VaR estimation is evaluated based on backtesting. The estimated values for the

VaR are compared with the true realizations {lt} of the P&L function, an exceedance occuring for

each lt smaller than V̂ aRt(α). The ratio of the number of exceedances to the number of observations

gives the exceedances ratio α̂:

α̂ =
1

T − w

T∑
t=w

1{lt<V̂ aRt(α)}

7.1 DCX, VW, ALV, MUV, BAY and BAS

At first, we analyze the performance of the procedure by applying it to the first portfolio of the

DAX stocks: DCX, VW, ALV, MUV, BAY and BAS. Figures 14 and 15 represent the copula

dependence parameter and the intervals of homogeneity estimated with the parameters m1 = 20

and m1 = 50, respectively. From the aforementioned Figures in combination with Figure 16 we

can observe that with increasing m1 the estimated copula parameter θ takes on smaller values

and its peaks diminish. Accordingly, the intervals of homogeneity become smoother. Further, the

analysis shows a September 11 effect: before the terror attack the copula parameter experienced

small fluctuations below the value of the global parameter. At the same time, the lengths of the

intervals of homogeneity reached high levels. After the attack, the dependence among the stocks

becomes larger and the lengths of intervals of homogeneity increase.

The results of the VaR estimation are summarized in Table 4 for Riskmetrics, in Table 5 for the

moving window and in Table 6 for the adaptive estimation procedure. They represent exceedance

ratios at different levels α = 1% to α = 5%, at which the VaR has been calculated. Further, the

absolute and the relative sum of squared deviations of the exceedance α̂ from the actual level α

are calculated. We can observe that Riskmetrics outperforms the moving window and the adap-

tive estimation procedures for higher quantiles: relative squared deviation
∑

w∈W (α̂ − α)2/α for

Riskmetrics accounts to 13.34, 17.01 and 26.55 at 5%, 4% and 3% levels respectively, whereas for

the moving window and the LCP approach we observe values between 19.67 at 5% level and 30.5

at 3% level (see Table 7). However, Riskmetrics fails to capture the lower tail dependence while
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Figure 14: Upper panel: estimated copula dependence parameter θ for 6-dim data: Daimler-
Chrysler, Volkswagen, Bayer, BASF, Allianz and Münchener Rückversicherung and the global
parameter. Lower panel: estimated intervals of time homogeneity; with parameters m1 = 20,
c = 1.25 and α = 0.05.
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Figure 15: Upper panel: estimated copula dependence parameter θ for 6-dim data: Daimler-
Chrysler, Volkswagen, Bayer, BASF, Allianz and Münchener Rückversicherung and the global
parameter. Lower panel: estimated intervals of time homogeneity; with parameters m1 = 50,
c = 1.25 and α = 0.05.
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Exceedances ratio α(×102)
Portfolio 5.00 4.00 3.00 2.00 1.00

(1, 1, 1, 1, 1, 1) 6.77 5.88 4.90 4.02 3.43
(1, 2, 3, 2, 1, 3) 6.86 5.69 4.61 4.12 3.33
(2, 1, 2, 3, 1, 3) 5.59 5.00 4.51 3.63 2.84
(3, 2, 3, 2, 3, 1) 7.16 5.98 5.10 4.31 3.43
(3, 1, 2, 1, 3, 2) 7.94 7.16 5.79 5.00 3.63
(1, 3, 1, 2, 3, 1) 6.47 5.59 4.61 4.21 2.94
(2, 1, 3, 2, 1, 3) 6.67 5.49 4.61 4.12 3.43
(2, 3, 3, 2, 1, 1) 6.96 5.79 4.90 4.12 3.53
(3, 1, 2, 2, 2, 3) 6.77 5.88 4.90 3.92 3.43
(2, 3, 1, 1, 2, 3) 8.24 7.16 5.79 4.51 3.63
(2, 3, 2, 3, 2, 3) 6.18 5.59 4.61 3.92 2.84
(3, 2, 3, 2, 3, 3) 7.26 6.47 5.39 4.31 3.53

(1, 1, 1, 1, 1,−1) 5.39 4.80 4.41 3.82 3.04
(1, 2, 3, 2, 1,−3) 5.00 4.41 4.31 3.53 2.64
(2, 1, 2, 3, 1,−3) 4.41 4.21 3.63 3.14 2.15
(3, 2, 3, 2, 3,−1) 6.86 5.79 4.90 4.12 3.53
(3, 1, 2, 1, 3,−2) 7.55 6.28 5.10 4.41 3.72
(1, 3, 1, 2, 3,−1) 5.69 4.80 4.51 3.92 2.74
(2, 1, 3, 2, 1,−3) 5.10 4.51 4.31 3.43 2.64
(2, 3, 3, 2, 1,−1) 6.47 5.29 4.71 4.02 3.43
(3, 1, 2, 2, 2,−3) 5.00 4.51 4.41 3.63 2.84
(2, 3, 1, 1, 2,−3) 6.47 5.69 5.29 4.21 3.04
(2, 3, 2, 3, 2,−3) 4.80 4.41 4.12 3.43 2.74
(3, 2, 3, 2, 3,−3) 6.37 5.10 4.61 3.92 3.23

avg. 6.33 5.48 4.75 3.99 3.16
std.dev. 1.01 0.81 0.49 0.40 0.40∑

w∈W (α̂− α)2 0.66 0.68 0.79 0.99 1.15∑
w∈W (α̂− α)2/α 13.34 17.00 26.54 49.62 115.89

Table 4: Exceedances ratio α̂ for different portfolios, estimated using RiskMetrics approach for
6-dim data: DCX, VW, ALV, MUV, BAY and BAS.
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Exceedances ratio α(×102)
Portfolio 5.00 4.00 3.00 2.00 1.00

(1, 1, 1, 1, 1, 1) 7.06 6.08 4.80 3.43 1.76
(1, 2, 3, 2, 1, 3) 7.36 6.28 4.80 3.72 1.76
(2, 1, 2, 3, 1, 3) 7.45 6.37 4.80 3.63 1.37
(3, 2, 3, 2, 3, 1) 7.45 6.28 4.80 3.53 1.96
(3, 1, 2, 1, 3, 2) 6.67 5.69 4.71 3.33 1.86
(1, 3, 1, 2, 3, 1) 6.47 5.59 4.12 3.04 1.66
(2, 1, 3, 2, 1, 3) 7.36 6.28 4.80 3.82 1.76
(2, 3, 3, 2, 1, 1) 7.55 6.28 5.00 3.63 1.96
(3, 1, 2, 2, 2, 3) 6.96 6.08 4.90 3.82 1.86
(2, 3, 1, 1, 2, 3) 6.47 5.39 4.31 3.04 1.76
(2, 3, 2, 3, 2, 3) 7.06 6.08 4.61 3.43 1.57
(3, 2, 3, 2, 3, 3) 7.06 6.08 4.80 3.33 1.86

(1, 1, 1, 1, 1,−1) 7.06 6.18 5.59 3.72 1.66
(1, 2, 3, 2, 1,−3) 7.75 6.67 5.29 4.21 1.86
(2, 1, 2, 3, 1,−3) 7.65 6.67 5.49 4.41 1.57
(3, 2, 3, 2, 3,−1) 7.16 6.37 4.80 3.82 1.66
(3, 1, 2, 1, 3,−2) 7.36 6.08 4.90 4.02 1.96
(1, 3, 1, 2, 3,−1) 6.86 5.98 4.31 3.14 1.37
(2, 1, 3, 2, 1,−3) 7.85 6.67 5.39 4.02 1.86
(2, 3, 3, 2, 1,−1) 7.65 6.08 5.10 4.02 1.76
(3, 1, 2, 2, 2,−3) 7.65 6.37 5.39 3.92 1.57
(2, 3, 1, 1, 2,−3) 6.86 5.88 4.90 3.04 1.37
(2, 3, 2, 3, 2,−3) 7.06 6.28 5.10 3.92 1.66
(3, 2, 3, 2, 3,−3) 7.55 6.28 5.20 4.02 1.57

avg. 7.22 6.17 4.91 3.67 1.71
std.dev. 0.38 0.31 0.36 0.38 0.18∑

w∈W (α̂− α)2 1.22 1.15 0.91 0.70 0.12∑
w∈W (α̂− α)2/α 24.55 28.83 30.50 35.23 12.96

Table 5: Exceedances ratio α̂ for different portfolios, estimated with Clayton copula using moving
window approach for 6-dim data: DCX, VW, ALV, MUV, BAY and BAS.
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Exceedances ratio α(×102)
Portfolio 5.00 4.00 3.00 2.00 1.00

(1, 1, 1, 1, 1, 1) 7.06 6.08 4.80 2.84 1.57
(1, 2, 3, 2, 1, 3) 7.06 6.37 4.71 3.14 1.76
(2, 1, 2, 3, 1, 3) 7.06 6.28 4.90 3.04 1.37
(3, 2, 3, 2, 3, 1) 7.16 6.08 5.00 3.33 1.76
(3, 1, 2, 1, 3, 2) 6.57 5.79 4.41 3.33 1.76
(1, 3, 1, 2, 3, 1) 6.18 5.59 4.41 2.94 1.57
(2, 1, 3, 2, 1, 3) 7.16 6.28 4.61 3.33 1.76
(2, 3, 3, 2, 1, 1) 7.06 6.47 5.10 3.43 1.66
(3, 1, 2, 2, 2, 3) 6.96 5.88 4.71 3.04 1.66
(2, 3, 1, 1, 2, 3) 6.28 5.20 4.61 2.84 1.86
(2, 3, 2, 3, 2, 3) 6.77 5.88 4.80 2.94 1.37
(3, 2, 3, 2, 3, 3) 6.96 6.08 4.90 3.14 1.86

(1, 1, 1, 1, 1,−1) 7.26 6.18 5.49 3.33 1.37
(1, 2, 3, 2, 1,−3) 7.26 6.37 5.20 3.63 1.66
(2, 1, 2, 3, 1,−3) 7.75 6.37 4.90 4.02 1.66
(3, 2, 3, 2, 3,−1) 7.26 6.08 5.10 3.72 1.57
(3, 1, 2, 1, 3,−2) 6.77 5.69 4.90 3.53 1.57
(1, 3, 1, 2, 3,−1) 6.47 5.49 4.31 3.04 1.37
(2, 1, 3, 2, 1,−3) 7.65 6.18 5.39 3.82 1.57
(2, 3, 3, 2, 1,−1) 7.36 6.28 5.00 3.82 1.47
(3, 1, 2, 2, 2,−3) 7.26 6.08 5.29 3.53 1.47
(2, 3, 1, 1, 2,−3) 5.98 5.69 4.90 3.14 1.17
(2, 3, 2, 3, 2,−3) 6.96 6.18 4.90 3.33 1.37
(3, 2, 3, 2, 3,−3) 7.16 6.08 5.00 3.63 1.37

avg. 6.97 6.03 4.89 3.33 1.57
std.dev 0.43 0.31 0.29 0.33 0.18∑

w∈W (α̂− α)2 0.98 1.01 0.88 0.45 0.08∑
w∈W (α̂− α)2/α 19.6 25.33 29.38 22.57 8.57

Table 6: Exceedances ratio α̂ for different portfolios, estimated with Clayton copula using adaptive
estimation procedure for 6-dim data: DCX, VW, ALV, MUV, BAY and BAS.

Exceedances ratio α(×102)
Method 5 4 3 2 1

Riskmetrics 13.34 17.00 26.54 49.62 115.89
Moving Window 24.55 28.83 30.50 35.23 12.96

LCP 19.66 25.33 29.38 22.57 8.57

Table 7: Relative squared deviation
∑

w∈W (α̂−α)2/α for Riskmetrics, Moving Window and LCP
approach (DCX, VW, ALV, MUV, BAY and BAS).
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Figure 16: Estimated copula dependence parameter θ for 6-dim data: DaimlerChrysler, Volkswa-
gen, Bayer, BASF, Allianz and Münchener Rückversicherung estimated with parameter m1 = 20
(dashed line) and m1 = 50 (solid line).

copula-based approaches provide better results: for example, the relative squared deviation at the

1% level is in case of Riskmetrics is at least 10 times as high as for the adaptive procedure. Further,

the exceedances ratios in Riskmetrics case are more volatile: the standard deviations account to

1.02 to 4.03 for Riskmetrics, whereas with a copula-based approch we obtain values between 0.18

and 0.43 .

7.2 SIE, THY, SCH, EOA, HEN and LHA

We consider now a portfolio consisting of the DAX stocks SIE, THY, SCH, EOA, HEN and LHA.

The copula dependence parameter and the intervals of homogeneity estimated with parameters

m1 = 20 and m1 = 50 are plotted in Figures 18 and 19 respectively. As in the case of DCX, VW,

ALV, MUV, BAY and BAS, with increasing m1 we observe diminishing of peaks in the estimated

values of copula dependence parameter (Figure 20) and smoother pattern for the length of the
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Figure 17: P&L (dots) and V̂ aR(α) at level α1 = 0.01; w = (3, 2, 3, 2, 3,−1)>, estimated us-
ing RiskMetrics approach (upper panel), moving window approach (middle panel) and adaptive
estimation procedure (lower panel) for 6-dim data: DaimlerChrysler, Volkswagen, Bayer, BASF,
Allianz and Münchener Rückversicherung.
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Figure 18: Upper panel: estimated copula dependence parameter θ for 6-dim data: Siemens,
ThyssenKrupp, Schering, E.ON AG, Henkel, Lufthansa and the global parameter. Lower panel:
estimated intervals of time homogeneity; with parameters m1 = 20, c = 1.25 and α = 0.05.

intervals of homogeneity.

The results of the VaR estimation are summarized in Table 8 for Riskmetrics, in Table 9 for the

moving window and in Table 10 for the adaptive estimation procedure. We can observe that at

the 5% level Riskmetrics performs better than moving window. However, the adaptive procedure

produces even better results: the relative squared deviations acount to 6.96, 7.38 and 3.59 for

Riskmetrics, moving window and LCP procedure, respectively (Table 11). For the quantiles at

levels α = 4% to α = 1% copula-based approaches outperform Riskmetrics, whereas the adaptive

procedure leads to the smallest values of the relative squared deviations: taking on values between

3.53 and 7.42, it produces results twice as good as moving window and Riskmetrics approaches.
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Figure 19: Upper panel: estimated copula dependence parameter θ for 6-dim data: Siemens,
ThyssenKrupp, Schering, E.ON AG, Henkel, Lufthansa and the global parameter. Lower panel:
estimated intervals of time homogeneity; with parameters m1 = 50, c = 1.25 and α = 0.05.
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Exceedances ratio α(×102)
Portfolio 5.00 4.00 3.00 2.00 1.00

(1, 1, 1, 1, 1, 1) 6.28 5.39 4.61 3.72 1.86
(1, 2, 3, 2, 1, 3) 6.47 5.69 4.41 3.33 1.76
(2, 1, 2, 3, 1, 3) 6.28 5.69 4.80 3.33 2.15
(3, 2, 3, 2, 3, 1) 6.47 4.90 4.41 3.72 1.86
(3, 1, 2, 1, 3, 2) 6.18 5.49 4.41 3.14 1.57
(1, 3, 1, 2, 3, 1) 6.18 5.49 4.71 3.04 1.96
(2, 1, 3, 2, 1, 3) 6.47 5.59 4.31 3.33 1.86
(2, 3, 3, 2, 1, 1) 6.37 5.69 4.21 3.43 2.06
(3, 1, 2, 2, 2, 3) 6.18 5.49 4.61 3.23 1.86
(2, 3, 1, 1, 2, 3) 6.37 5.39 4.90 3.92 1.86
(2, 3, 2, 3, 2, 3) 6.28 5.69 4.61 3.92 2.15
(3, 2, 3, 2, 3, 3) 6.18 5.49 4.51 3.63 1.86

(1, 1, 1, 1, 1,−1) 5.88 5.39 4.21 3.72 1.57
(1, 2, 3, 2, 1,−3) 5.79 5.10 4.51 2.94 1.66
(2, 1, 2, 3, 1,−3) 6.37 5.20 4.31 3.23 1.76
(3, 2, 3, 2, 3,−1) 6.47 5.29 4.41 3.63 1.76
(3, 1, 2, 1, 3,−2) 6.08 5.10 4.41 3.14 1.66
(1, 3, 1, 2, 3,−1) 5.98 5.39 4.31 2.74 1.86
(2, 1, 3, 2, 1,−3) 5.88 5.29 4.61 3.04 1.76
(2, 3, 3, 2, 1,−1) 6.28 5.29 4.31 3.23 1.86
(3, 1, 2, 2, 2,−3) 5.69 4.90 4.31 3.72 1.76
(2, 3, 1, 1, 2,−3) 5.98 5.10 4.31 3.53 1.96
(2, 3, 2, 3, 2,−3) 5.88 5.49 4.12 3.82 1.76
(3, 2, 3, 2, 3,−3) 6.28 5.20 4.51 3.43 1.47

avg. 6.18 5.36 4.45 3.41 1.82
std.dev. 0.23 0.23 0.19 0.32 0.16∑

w∈W (α̂− α)2 0.34 0.46 0.51 0.50 0.16∑
w∈W (α̂− α)2/α 6.96 11.55 17.26 25.34 16.93

Table 8: Exceedances ratio α̂ for different portfolios, estimated using RiskMetrics approach for
6-dim data: SIE, THY, SCH, EOA, HEN and LHA.
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Exceedances ratio α(×102)
Portfolio 5.00 4.00 3.00 2.00 1.00

(1, 1, 1, 1, 1, 1) 5.98 5.39 4.61 3.72 1.66
(1, 2, 3, 2, 1, 3) 5.88 5.10 3.63 2.35 1.37
(2, 1, 2, 3, 1, 3) 7.26 6.47 5.49 3.92 2.25
(3, 2, 3, 2, 3, 1) 5.59 5.00 4.31 3.33 1.66
(3, 1, 2, 1, 3, 2) 6.08 5.20 4.31 3.33 1.47
(1, 3, 1, 2, 3, 1) 5.10 4.02 3.14 2.84 1.57
(2, 1, 3, 2, 1, 3) 6.96 5.59 4.51 3.33 2.06
(2, 3, 3, 2, 1, 1) 6.57 5.29 4.61 3.63 1.96
(3, 1, 2, 2, 2, 3) 7.16 6.18 5.39 4.41 2.15
(2, 3, 1, 1, 2, 3) 7.06 5.98 5.10 3.82 1.96
(2, 3, 2, 3, 2, 3) 6.86 5.59 4.71 3.33 2.06
(3, 2, 3, 2, 3, 3) 5.98 5.20 4.41 3.43 1.57

(1, 1, 1, 1, 1,−1) 5.59 5.00 4.21 2.94 1.57
(1, 2, 3, 2, 1,−3) 4.71 4.12 3.23 2.15 1.37
(2, 1, 2, 3, 1,−3) 6.47 5.59 4.21 3.43 1.96
(3, 2, 3, 2, 3,−1) 5.69 4.80 4.21 3.14 1.66
(3, 1, 2, 1, 3,−2) 5.39 4.80 4.21 2.94 1.37
(1, 3, 1, 2, 3,−1) 4.31 3.53 2.94 2.45 1.66
(2, 1, 3, 2, 1,−3) 5.88 5.10 3.92 2.84 1.76
(2, 3, 3, 2, 1,−1) 6.18 5.29 4.41 3.23 1.96
(3, 1, 2, 2, 2,−3) 6.28 5.29 5.10 3.43 2.15
(2, 3, 1, 1, 2,−3) 5.69 5.00 4.31 2.74 1.66
(2, 3, 2, 3, 2,−3) 5.59 4.80 4.02 3.14 1.66
(3, 2, 3, 2, 3,−3) 5.59 4.90 3.63 2.64 1.66

avg. 5.99 5.13 4.28 3.19 1.76
std.dev. 0.75 0.64 0.65 0.52 0.26∑

w∈W (α̂− α)2 0.36 0.40 0.49 0.40 0.15∑
w∈W (α̂− α)2/α 7.38 10.21 16.39 20.27 15.55

Table 9: Exceedances ratio α̂ for different portfolios, estimated with Clayton copula using moving
window approach for 6-dim data: SIE, THY, SCH, EOA, HEN and LHA.
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Exceedances ratio α(×102)
Portfolio 5.00 4.00 3.00 2.00 1.00

(1, 1, 1, 1, 1, 1) 5.49 4.61 3.82 2.84 1.37
(1, 2, 3, 2, 1, 3) 5.10 3.92 3.23 2.55 1.37
(2, 1, 2, 3, 1, 3) 6.77 5.49 4.61 3.23 2.25
(3, 2, 3, 2, 3, 1) 5.20 4.21 3.43 2.45 1.37
(3, 1, 2, 1, 3, 2) 5.29 4.61 3.43 2.25 1.37
(1, 3, 1, 2, 3, 1) 4.02 3.23 2.64 2.45 1.17
(2, 1, 3, 2, 1, 3) 5.98 5.10 4.12 2.94 1.57
(2, 3, 3, 2, 1, 1) 5.88 5.00 4.12 3.23 1.66
(3, 1, 2, 2, 2, 3) 6.77 5.49 4.71 3.14 1.66
(2, 3, 1, 1, 2, 3) 6.57 5.49 4.41 2.94 1.37
(2, 3, 2, 3, 2, 3) 6.37 4.71 3.82 2.94 1.57
(3, 2, 3, 2, 3, 3) 5.29 4.31 3.72 2.74 1.37

(1, 1, 1, 1, 1,−1) 5.10 4.12 3.33 2.35 1.47
(1, 2, 3, 2, 1,−3) 4.51 3.82 2.74 2.06 1.37
(2, 1, 2, 3, 1,−3) 5.79 5.20 3.92 3.14 1.86
(3, 2, 3, 2, 3,−1) 5.10 4.21 3.23 2.45 1.37
(3, 1, 2, 1, 3,−2) 5.29 4.21 3.33 2.15 1.17
(1, 3, 1, 2, 3,−1) 3.72 2.94 2.55 2.15 1.37
(2, 1, 3, 2, 1,−3) 5.29 4.61 3.53 2.84 1.57
(2, 3, 3, 2, 1,−1) 5.29 4.90 4.02 3.23 1.57
(3, 1, 2, 2, 2,−3) 5.88 4.90 4.31 2.74 1.66
(2, 3, 1, 1, 2,−3) 5.39 4.80 3.63 2.45 1.57
(2, 3, 2, 3, 2,−3) 5.29 4.12 3.43 2.35 1.66
(3, 2, 3, 2, 3,−3) 5.00 4.12 2.94 2.15 1.37

avg. 5.43 4.51 3.63 2.66 1.50
std.dev 0.75 0.66 0.59 0.38 0.22∑

w∈W (α̂− α)2 0.17 0.16 0.17 0.13 0.07∑
w∈W (α̂− α)2/α 3.53 4.08 5.85 6.97 7.42

Table 10: Exceedances ratio α̂ for different portfolios, estimated with Clayton copula using adaptive
estimation procedure for 6-dim data: SIE, THY, SCH, EOA, HEN and LHA.

Exceedances ratio α(×102)
Method 5.00 4.00 3.00 2.00 1.00

Riskmetrics 6.96 11.55 17.26 25.34 16.93
Moving Window 7.38 10.21 16.39 20.27 15.55

LCP 3.52 4.08 5.85 6.97 7.42

Table 11: Relative squared deviation
∑

w∈W (α̂−α)2/α for Riskmetrics, Moving Window and LCP
approach (SIE, THY, SCH, EOA, HEN and LHA).
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Figure 20: Estimated copula dependence parameter θ for 6-dim data: Siemens, ThyssenKrupp,
Schering, E.ON AG, Henkel, Lufthansa estimated with parameter m1 = 20 (dashed line) and
m1 = 50 (solid line).

However, we can observe higher standard deviations in the LCP case than in the moving window

and Riskmetrics case.

We conclude by summarizing the main findings. The Clayton copula was used to estimate the

Value-at-Risk from the 6-dimensional portfolio: at first, DCX, VW, ALV, MUV, BAY and BAS

and then, SIE, THY, SCH, EOA, HEN and LHA with adaptive estimation and moving window

approach. Backtesting was used to compare the performance of the copula-based Value-at-Risk

estimation with the RiskMetrics approach. All three methods overestimate the Value-at-Risk in

average. In terms of capital requirement, a financial institution would be requested to keep more

capital aside than necessary to guarantee the desired confidence level. In the case of the portfolio

consisting of DCX, VW, ALV, MUV, BAY and BAS, the Riskmetrics approach performed well,

providing the relative squared deviation smaller than in the case of the moving window and the

LCP procedure. However, one observes higher standard deviations in the case of Riskmetrics.

For the second portfolio consisting of SIE, THY, SCH, EOA, HEN and LHA, Riskmetrics lead to
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Figure 21: P&L (dots) and V̂ aR(α) at level α1 = 0.01; w = (3, 2, 3, 2, 3,−1)>, estimated using
RiskMetrics approach (upper panel), moving window approach (middle panel) and adaptive es-
timation procedure (lower panel) for 6-dim data: Siemens, ThyssenKrupp, Schering, E.ON AG,
Henkel, Lufthansa.
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smaller standard deviations fitting well only at the 5% level. It failed to capture the dependence at

lower quantiles: the correlation structure contains nonlinearities that can not be captured by the

multivariate normal distribution. Further, the adaptive estimation procedure allows for dynamic

selection of the interval for dependence structure estimation and thus produces smaller relative

squared deviations which leads to better backtesting results.
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E. Bouyé, V. Durrleman, A. Nikeghbali, G. Riboulet, and T. Roncalli. Copulas for Finance. Groupe

de Recherche Opérationnelle Crédit Lyonnais, 1996.

X. Chen and Y. Fan. Estimation and Model Selection of Semiparametric Copula-Based Multivariate

Dynamic Models under Copula Misspecification. Journal of Econometrics, forthcoming, 2004.

X. Chen and Y. Fan. Estimation of Copula-Based Semiparametric Time Series Models. Journal of

Econometrics, 130:307–335, 2006.

X. Chen, Y. Fan, and V Tsyrennikov. Efficient Estimation of Semiparametric Multivariate Copula

Models. Journal of the American Statistical Association, forthcoming, 2006.

V. Durrleman, A. Nikeghbali, and T. Roncalli. Which Copula is the Right One? Groupe de

Recherche Opérationnelle Crédit Lyonnais, 2000.

P. Embrechts, A. McNeil, and D. Straumann. Correlation and Dependence in Risk Management:

Properties and Pitfalls. Correlation, Risk Management: Value at Risk and Beyond, 1999.

P. Embrechts, A. Hoeing, and A. Juri. Using Copulae to Bound the Value-at-Risk for Functions

of Dependent Risks. Finance and Stochastics, 7(2):145–167, 2003a.

P. Embrechts, F. Lindskog, and A McNeil. Modelling Dependence with Copulas and Applications

to Risk Management. Handbook of Heavy Tailed Distributions in Finance, 8:329–384, 2003b.
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de Lyon, Sciences., 14:53–77, 1951.
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