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Abstract

Due to its ability to allow and account for similarities between
pairs of alternatives, the nested logit model is increasingly used in
practical applications. However the fact that there are two different
specifications of the nested logit model has not received adequate at-
tention. The utility maximization nested logit (UMNL) model and the
non-normalized nested logit (NNNL) model have different properties,
influencing the estimation results in a different manner. As the NNNL
specification is not consistent with random utility theory (RUT), the
UMNL form is preferred. This article introduces distinct specifications
of the nested logit model and indicates particularities arising from
model estimation. Additionally, it demonstrates the performance of
simulation studies with the nested logit model. In simulation studies
with the nested logit model using NNNL software (e. g. PROC MDC
in SAS c©), it must be pointed out that the simulation of the utility
function’s error terms needs to assume RUT-conformity. But as the
NNNL specification is not consistent with RUT, the input parameters
cannot be reproduced without imposing restrictions. The effects of
using various software packages on the estimation results of a nested
logit model are shown on the basis of a simulation study.

Keywords: nested logit model, utility maximization nested logit, non-
normalized nested logit, simulation study
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1 Introduction

Modelling discrete choice decisions in the context of random utility theory is
usually done with the multinomial logit model (MNL) (Guadagni and Little,
1983). But the MNL assumes proportional substitution patterns (Indepen-
dence of Irrelevant Alternatives, IIA). To overcome this restrictive assump-
tion, the nested logit model can be used for estimation in practical applica-
tions (Guadagni and Little, 1998; de Dios Ortúzar, 2001). The nested logit
model admits more general substitution patterns and nevertheless remains,
in contrast to the probit model for example, analytically tractable.
The existence of two unequal forms of the nested logit model has been un-
derresearched so far. The utility maximization nested logit (UMNL) model
and the non-normalized nested logit (NNNL) model have different properties
which impact the estimation results. In many publications, the specification
used is not explicitly mentioned. Both in simulation studies and in model
estimations with real data, the implemented nested logit model specification
within the software needs to be considered.
If there are only alternative-specific coefficients in the model, the software
and thus the nested logit specification chosen can be accommodated merely
by a nest-specific re-scaling of the estimated coefficients obtained from the
NNNL software before interpretation. As soon as a generic coefficient enters
the model, the non-normalized nested logit model is not consistent with ran-
dom utility theory without imposing restrictions on the scale parameters.
Section 2 introduces the nested logit model and its application in marketing.
In Section 3.1 the nested logit model is presented in general, whereas Section
3.2 introduces the two different forms of the nested logit model. In Section
3.3 their consistency with random utility theory is revised. Section 3.4 deals
with the simulation of error terms and the necessary assumptions on their
distribution. Section 4 goes into detail regarding the particularities in model
estimation with NNNL software. This addressed difficulty is clarified with a
simulation study in Section 5. Section 6 concludes with a summary.

2 Discrete Choice Models

Utility-based choice or choice based on the relative attractiveness of com-
peting alternatives from a set of mutually exclusive alternatives is called a
discrete choice situation. Discrete choice models are interpreted in terms of
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an underlying behavioral model, the so called random utility maximization
(RUM) model. The decision-maker chooses the alternative with the highest
utility. Characteristics of the decision-maker and of the choice alternatives
determine the alternatives’ utilities. Demographics do not have a direct
utility contribution per se, but serve as proxies for observable consumer het-
erogeneity.
Modelling discrete consumer decisions is characterized by a trade-off between
flexibility and ease of the estimation (Munizaga and Alvarez-Daziano, 2001).
On the one hand, there are logit models which are distinguished by closed
choice probabilities but, due to restrictive substitution patterns, are often
not very realistic. On the other hand, probit models assume a correlation
structure of the error terms, the estimation of which can become very com-
plex because of multidimensional integrals.
Discrete choice decisions in the context of random utility theory are usually
modelled and estimated with the multinomial logit model (MNL) (Guadagni
and Little, 1983). But the MNL assumes proportional substitution patterns
(IIA), i. e. the ratio of the choice probabilities of two alternatives is not
dependent on the presence or absence of other alternatives in the model.
To overcome these restrictive substitution assumptions between alternatives,
various extensions of the MNL exist, all with the general solution of allowing
correlations between the alternatives’ error terms. The idea of the nested
logit model lies therefore in the grouping of similar alternatives into nests
and thus creating a hierarchical structure of the alternatives (Ben-Akiva and
Lerman, 1985; Train, 2003). The error terms of alternatives within a nest are
correlated with each other, and the error terms of alternatives in different
nests are uncorrelated.
Contrary to this, the mixed logit approach assumes that the stochastic influ-
ences are related to alternative-specific variables (Hensher and Greene, 2001).
The error terms of similar alternatives are correlated. The stochastic part of
the utility function is additively composed of an i.i.d. Gumbel-distributed
term corresponding to the standard logit approach and a stochastic scaling
parameter to account for heterogeneity. Not every single scaling parameter
is estimated, but the parameters of their distribution instead.
The nested logit approach is predominantly used in the field of transportation
research and logistics (Train, 1980; Bhat, 1997; Knapp et al, 2001), but can
also be appropriate for marketing issues (Kannan and Wright, 1991; Chin-
tagunta, 1993; Chintagunta and Vilcassim, 1998; Guadagni and Little, 1998;
Chib et al, 2004). The nested logit model is the most often used hierarchical
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model in marketing (Suárez et al, 2004) and can be used for modelling in
any situation where subsets of alternatives share unobservable utility com-
ponents (Ben-Akiva and Lerman, 1985). In the field of marketing the nested
logit model is mainly applied in brand choice modelling (Kamakura et al,
1996; Ailawadi and Neslin, 1998; Guadagni and Little, 1998; Sun et al, 2003;
Chib et al, 2004), where brands are nested, for example, regarding manu-
facturer (Anderson and de Palma, 1992); in a purchase incidence decision
(Chintagunta, 1993; Chintagunta and Vilcassim, 1998); or regarding brand
type (Baltas et al, 1997).
One important point to make is that the nested logit model is a combina-
tion of standard logit models. Marginal and conditional choice decisions are
combined by a nesting structure (Hensher et al, 2005). The only goal of this
process is to accommodate the violation of the IIA-assumption.
The nested logit model differs from the standard logit model in that the er-
ror components of the choice alternatives do not necessarily need to have the
same distribution. Thus the nested logit model accounts for the fact that
each alternative may have specific information in its unobservable utility
component, which plays a role in the decision process. Subsets of alterna-
tives may have similar information content, such that correlations between
pairs of alternatives may exist (Hensher et al, 2005). The classification of
alternatives regarding their similarities into nests and the thus resulting tree
structure does not have anything in common with a stochastic valuation of
alternatives within the scope of a decision tree. Nested logit models do not
define the process of decision-finding, but account for differences in variances
in the unobservable utility components (Hensher et al, 2005).

3 The Nested Logit Model

3.1 General Model Formulation

This article focuses on the example of a two-level nested logit model (see
Figure 1). In this case, the choice probability Pim of an alternative i within
nest m results from the product of the marginal choice probability Pm for
nest m (Level 2) and the conditional choice probability Pi|m for alternative i
within nest m (Level 1). Both the marginal and the conditional probability
are standard logit models. The inclusive value IVm as the expected utility
of nest m connects the two decision levels.
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Level 2

Nest 1 Nest 2

Level 1

Alternative Alternative Alternative Alternative
11 12 21 22

Figure 1: Tree structure of a nested logit model

The random utility Uim of alternative im results from the sum of a marginal
utility component Um from Level 2 and a conditional utility component Ui|m
from Level 1, which both consist of a deterministic part V and a stochastic
part ν.

Uim = Um + Ui|m = (Vm + νm) + (Vi|m + νi|m) (1)

The error terms νm and νi|m are independent. The error terms νi|m are
identically and independently distributed (i.i.d.) extreme-value with scale
parameter µm. This can be interpreted as a measure of the correlation of the
alternatives’ errors within nest m (Heiss, 2002). The compound error terms
εim are distributed such that the sum of Um and U∗

i|m, the maximum of the

Ui|m, is distributed extreme-value with scale parameter λm (Ben-Akiva and
Lerman, 1985; Hunt, 2000).

V ar(νi|m) =
π2

6 µ2
m

(2)

V ar(εim) = V ar(νm + ν∗i|m) =
π2

6 λ2
m

. (3)

The scale parameters µ and λ describe the variances of the unobservable
effects. Unconsidered utility components can variously impact the random
components. This leads to different variances, which are explicitly accounted
for by the introduction of these scale parameters. Each elemental alterna-
tive im has its own scale parameter µ∗i|m. But as these need to be equal
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for all alternatives within a nest, the differentiation by i is redundant. The
alternative-specific scale parameters µ∗i|m are replaced by nest-specific scale
parameters µm. The scale parameters λm are associated with the upper level,
so that there is no need to replace them.
The compound unobservable utility components εim contain variance compo-
nents both from the lower and the upper decision level. Thus the variances
on the upper level cannot be smaller than those on the lower level. Therefore
the scale parameters need to satisfy the following condition (Carrasco and
de Dios Ortúzar, 2002; Hensher et al, 2005):

λm < µm . (4)

3.2 Different Nested Logit Model Specifications

Train (2003), Heiss (2002), Hunt (2000) and Koppelman and Wen (1998a,b)
point to the existence of different nested logit model specifications and the
issues arising from this regarding different estimation results.
The non-normalized nested logit (NNNL) model was derived from the stan-
dard logit model to relax the IIA-assumption. The elementary NNNL form
is not consistent with utility maximization theory (Koppelman and Wen,
1998b). On the other hand, the utility maximization nested logit (UMNL)
model, which was derived from McFadden’s Generalized Extreme Value (GEV)
theory (McFadden, 1978, 1981), is consistent with the utility maximization
theory (Koppelman and Wen, 1998b).
The difference between these nested logit model specifications lies in the ex-
plicit scaling of the deterministic utility component in the UMNL form. In
the case of generic coefficients, this means for the NNNL specification that
the estimated parameters are indeed constant for all alternatives but not the
hidden ”true” parameters. The reason lies in the implicit nest-specific scaling
within the NNNL specification (Heiss, 2002).
Table 1 compares the two specifications (Hunt, 2000; Koppelman and Wen,
1998a). The letters m and n represent the nests on Level 2, with m6=n ,
and the letters i and j denote the elemental alternatives on Level 1, with
i 6=j . The set of all elemental alternatives within nest m is called Cm.

Due to identification problems, one of the scale parameters in the util-
ity maximization nested logit (UMNL) specification needs to be normal-
ized to 1 (Daly, 2001; Hunt, 2000). A normalization on the lower Level
1 (µm = µn = 1) leads to the RU1 UMNL model; a normalization on the
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Table 1: Specifications of the nested logit model

UMNL NNNL
utility maximization non-normalized
nested logit nested logit

Pm

exp (λm Vm + λm
µm

IVm)∑
n

exp (λn Vn + λn
µn

IVn)

exp (Vm + 1
µm

IVm)∑
n

exp (Vn + 1
µn

IVn)

Pi|m
exp (µm Vi|m)∑

j∈Cm

exp (µm Vj|m)
exp (Vi|m)∑

j∈Cm

exp (Vj|m)

IVm ln
∑

j∈Cm

exp (µm Vj|m) ln
∑

j∈Cm

exp (Vj|m)

upper Level 2 (λm = λn = 1) results in the RU2 UMNL model.

3.3 Testing the Nested Logit Models Regarding Con-
sistency with Random Utility Theory

To be consistent with utility maximization theory, each alternative’s choice
probability must not change when adding a constant term a to each alterna-
tive’s deterministic utility component (Koppelman and Wen, 1998b).
Formally, this means that the new deterministic utility component V ∗

i|m re-
sults from the sum of the old deterministic utility component Vi|m and a
constant term a.

V ∗
i|m = Vi|m + a (5)

To be theory-consistent, the new choice probability (P ∗
im) has to equal the

old choice probability (Pim) for alternative im:

P ∗
im = Pim (6)

The procedure of testing for theory consistency is shown as an example with
the non-normalized nested logit (NNNL) specification. The new marginal
choice probability (P ∗

m) is compared with the old marginal choice probability
(Pm), the new conditional choice probability (P ∗

i|m) is compared with the

old conditional choice probability (Pi|m), and the new inverse value (IV ∗
m) is
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compared with the old inverse value (IVm).

IV ∗
m = ln

∑
j∈Cm

exp
(
Vj|m + a

)

= ln
∑

j∈Cm

(
exp (Vj|m) exp (a)

)

= ln

(
exp (a)

∑
j∈Cm

exp (Vj|m)

)

= ln (exp (a)) + ln

( ∑
j∈Cm

exp (Vj|m)

)

= a + ln

( ∑
j∈Cm

exp (Vj|m)

)

= a + IVm (7)

P ∗
i|m =

exp (Vi|m + a)∑
j∈Cm

exp (Vj|m + a)

=
exp (Vi|m) exp (a)∑

j∈Cm

(
exp (Vj|m) exp (a)

)

=
exp (Vi|m) exp (a)

exp (a)
∑

j∈Cm

exp (Vj|m)

=
exp (Vi|m)∑

j∈Cm

exp (Vj|m)

= Pi|m (8)
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P ∗
m =

exp (Vm + 1
µm

IV ∗
m)∑

n

exp (Vn + 1
µn

IV ∗
n )

=
exp (Vm + 1

µm
(a + IVm))∑

n

exp (Vn + 1
µn

(a + IVn))

=
exp (Vm) exp

(
a

µm

)
exp

(
1

µm
IVm

)

∑
n

exp (Vn) exp
(

a
µn

)
exp

(
1

µn
IVn

)

only if µm = µn = µ holds, then

=
exp

(
a
µ

)
exp (Vm) exp

(
1
µ

IVm

)

exp
(

a
µ

) ∑
n

exp (Vn) exp
(

1
µ

IVn

)

=
exp (Vm + 1

µ
IVm)∑

n

exp (Vn + 1
µ

IVn)

= Pm (9)

Analogous to this procedure, consistency with random utility theory can be
tested for the Level 1 normalized (µm = µn = 1) utility maximization nested
logit (RU1 UMNL) model and the Level 2 normalized (λm = λn = 1) utility
maximization nested logit (RU2 UMNL) model.
Table 2 summarizes the results. In the NNNL and the RU1 UMNL speci-

fication, the new inverse value IV ∗
m equals the sum of the old inverse value

IVm and the added constant term a. In the RU2 UMNL model, the added
constant term a is additionally scaled with the scale parameter µm. While
the new choice probability P ∗

i|m does not differ from the old choice probabil-
ity Pi|m in all three nested logit specifications, the new choice probability P ∗

m

on the upper level differs from the old one. Without imposing restrictions,
only the RU2 UMNL specification satisfies the demand of consistency with
utility theory. Only in the RU2 form does the choice probability Pim equal
the choice probability P ∗

im after adding a term a to the utility component
Vi|m. In the RU1 UMNL specification, consistency can only be reached by
imposing the restriction λm = λn = λ. As shown in (9), consistency with
random utility theory can be ensured in the NNNL form by imposing the
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Table 2: Nested logit specifications and utility maximization

NNNL UMNL
non-normalized utility maximization
nested logit nested logit

RU1 RU2
(µm = µn = 1) (λm = λn = 1)

V ∗
i|m Vi|m + a Vi|m + a Vi|m + a

IV ∗
m IVm + a IVm + a IVm + a µm

P ∗
i|m Pi|m Pi|m Pi|m

P ∗
m 6= Pm 6= Pm Pm

P ∗
im 6= Pim 6= Pim Pim

restriction µm = µn = µ.
The new choice probability of an alternative im results as the product of the
new marginal choice probability P ∗

m and the new conditional choice probabil-
ity P ∗

i|m. Because of the generally not theory-consistent results on the level of

the marginal choice probabilities in the non-normalized nested logit (NNNL)
and the Level 1 normalized utility maximization nested logit (RU1 UMNL)
specification, only the Level 2 normalized utility maximization nested logit
(RU2 UMNL) specification satisfies condition (6).

3.4 Simulation of Error Terms for a Nested Logit Model

A good and appropriate way to test model validity is to conduct a simulation
study where the true parameters are known and correlations are determined.
When the sample size is large, the estimated parameters should be very close
to the true parameters (Cameron and Trivedi, 2005).
The nested logit model assumes error terms following an extreme-value type
I (Gumbel) distribution with location-parameter η and scale-parameter ζ
(Ben-Akiva and Lerman, 1985). This distribution has the density function

f(z) = ζ ∗ exp [(η − z) ζ] ∗ exp [− exp [(η − z) ζ]] (10)

and the cumulative density function

F (z) = exp [− exp [(η − z) ζ]] . (11)
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An Extreme[η;ζ]-distributed random variable Z has mean value

E(Z) = η +
γ

ζ
(12)

and variance

V ar(Z) =
π2

6 ζ2
(13)

with γ = 0.577216 denoting the Euler constant.
When simulating a utility function, mainly the stochastic part needs to be
taken into account. In the nested logit model, the two components νm and
νi|m are to be simulated and assumptions about their distributions are to
be made. The variance of the error term νi|m can be distinguished from
Equation (2). Further, the following is true (Hunt, 2000):

ηi = 0 (14)

Combining the expression for the variance and (12) and (14) gives the mean
value of the error term.

E(νi|m) =
γ

µm

(15)

Besides assumptions on the error term νi|m, assumptions on the error term
νm are to be made as well. These do not explicitly arise from the model’s
assumptions but are to be derived separately. The variance of the error term
ν∗i|m equals the variance of the error term νi|m and also results from Equation

(2). Hunt (2000) shows that

η∗i =
1

µm

ln
∑
i∈Cm

exp (µm ηi) , (16)

from which, together with (14), is yielded the following mean value:

E(ν∗i|m) =
1

µm

ln
∑
i∈Cm

exp (0) +
γ

µm

. (17)

The variance of the compound error term εim results from Equation (3), the
mean value results according to the extreme-value distribution with η∗m = 0
and ζ∗m = λm.

E(εim) = E(νm + ν∗i|m) =
γ

λm

(18)
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After clarifying assumptions on the distribution of the error terms ν∗i|m and
εim, assumptions on the distribution of the error term νm can be derived.

E(νm) = E(νm + ν∗i|m) − E(ν∗i|m)

= −
(

1

µm

ln
∑
i∈Cm

exp (0)

)
+


 γ(

µm λm

µm−λm

)

 (19)

V ar(νm) = V ar(νm + ν∗i|m) − V ar(ν∗i|m) − 2 Cov(νm ν∗i|m)

=
π2

6 λ2
m

− π2

6 µ2
m

− 0

=
π2

6
(

µ2
m λ2

m

µ2
m−λ2

m

) (20)

The error term νi|m (Level 1) follows an Extreme[0; µm]-distribution, the

error term νm (Level 2) is Extreme

[
−

(
1

µm
ln

∑
i∈Cm

exp (0)

)
;

√(
µ2

m λ2
m

µ2
m−λ2

m

)]
-

distributed. The simulation of a data set that is to be estimated with the
nested logit model requires the simulation of deterministic utility compo-
nents Vi|m for Level 1 and Vm for Level 2 according to Equation (1), and of
stochastic utility components νi|m and νm. Whereas the observable exoge-
nous variables are relatively straightforward to simulate by imposing specific
assumptions on the distribution and correlation patterns, the simulation of
the unobservable influences requires falling back on the assumptions (2), (15),
(19), and (20).

4 Estimation of Nested Logit Models

Before estimating a nested logit model with a specific software package, the
implemented nested logit model specification (utility maximization nested
logit or non-normalized nested logit) needs to be investigated.
The software packages SAS c© (SAS, 2004) and ALOGIT c© (see Carrasco
and de Dios Ortúzar (2002)) use the non-normalized nested logit (NNNL)
specification for model estimation. STATA c© (Heiss, 2002), GAUSS c© (Car-
rasco and de Dios Ortúzar, 2002) and LIMDEP c© (Hunt, 2000; Hensher and
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coefficients
generic
without

generic
coefficients

NNNL UMNL NNNL UMNL NNNL UMNL
(A) (B) (C) (D) (E) (F)

no equality

IV−parameters

equality

IV−parameters
constraint on constraint on

Figure 2: Overview model types

Greene, 2002) offer the possibility to choose between the non-normalized
nested logit (NNNL) and the utility maximization nested logit (UMNL) spec-
ification.
In case only NNNL software is available, there are several particularities
in model estimation to take into consideration. The crucial point is whether
there are only alternative-specific coefficients in the model, or also at least one
generic coefficient. Generic coefficients are constant for all alternatives. A
variation on the utility contribution could be reached via alternative-specific
values of the corresponding variables.
Moreover, Hunt (2000) points to the peculiarities of partially degenerate
model structures. Nests with only one elemental alternative are called de-
generate nests. For further and detailed information regarding the estimation
procedure when degenerate nests enter the model, the reader is referred to
the literature (Heiss, 2002; Hensher et al, 2005; Hunt, 2000).

4.1 Alternative-Specific Coefficients

If there are no generic coefficients in the model (models E and F in Figure 2),
the non-normalized nested logit (NNNL) and the utility maximization nested
logit (UMNL) specification are equivalent (Heiss, 2002). The coefficients esti-
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mated with NNNL software are to be re-scaled with the according estimated
IV-parameter. Only then is a correct interpretation possible. It must be
taken into account which alternative belongs to which nest. The estimated
alternative-specific coefficient βi|m has to be scaled with the corresponding
nest-specific IV-parameter IVm.

βUMNL
i|m = IV NNNL

m ∗ βNNNL
i|m (21)

The models E and F are not focused on in detail, because in marketing
models usually at least one variable with a generic coefficient, i. e. one
exogenous variable with a constant coefficient for all alternatives, enters the
model. Typically in modelling purchase decisions, this is the variable ”price”
as one of the central marketing-mix elements.

4.2 Generic Coefficients

Random utility maximizing models can generally not be estimated with non-
normalized nested logit (NNNL) software when generic coefficients enter the
model (model A in Figure 2).
As can be seen from Table 1, only in the utility maximization nested logit
(UMNL) specification are the deterministic utility components Vm and Vi|m
scaled explicitly with the parameters λm and µm respectively. Table 3 refers
to this with an example of the conditional deterministic utility component.
The conditional deterministic utility component Vi|m results as the product
of a generic coefficient β and the alternative-specific values of the vector of
the exogenous variables Xi.
Contrary to the explicit scaling in the UMNL specification, the coefficients

Table 3: Scaling of the deterministic utility component

NNNL UMNL
non-normalized utility maximization
nested logit nested logit

Vi|m = β Xi µm Vi|m = µm β Xi

in the NNNL specification are automatically and implicitly nest-specifically

14



scaled. The coefficients estimated in the NNNL model are thus not the ”true”
coefficients. In fact the estimated coefficients are constant for all alternatives,
but not the hidden ”true” coefficients. And this is a violation of the definition
of generic coefficients.
By imposing restrictions it can be guaranteed that, even when using NNNL
software, parameters consistent with random utility can be estimated (model
C in Figure 2). It has to be assured that the coefficients in each nest are
scaled equally. The IV-parameters are thus to be made equal for all nests.
But, of course, each restriction on the parameter estimates means a loss of
information in the data.
Studies have shown that the restricted form of the non-normalized nested
logit (NNNL) model (model C in Figure 2) reproduces the estimation results
of the restrictive Level 1 normalized utility maximization nested logit (RU1
UMNL) form (model D in Figure 2) (Heiss, 2002; Hensher and Greene, 2002;
Hunt, 2000). Re-scaling the parameter estimates in the restrictive NNNL
model with the estimated IV-parameter results in the parameter estimates
of the restrictive Level 2 normalized utility maximization nested logit (RU2
UMNL) model.

NNNLres = RU1res (22)

NNNLres ∗ IVNNNLres = RU2res (23)

Koppelman and Wen (1998a) have shown a second possibility to guarantee
the consistency with utility maximizing theory without imposing restrictions
on the IV-parameters. First, additional dummy nests below the lowest level
are to be introduced into the model, and second, the thus additionally esti-
mated scale parameters have to be defined in such a way that ”the product
of all the ratios of scale parameters between levels must be identical from the
root to all elemental alternatives” (Hensher and Greene (2002), p. 13).

5 Simulation Study with a Software Compar-

ison

As was shown in Section 3.3, without imposing restrictions, only the Level
2 normalized utility maximization nested logit (RU2 UMNL) specification is
consistent with random utility theory. In the following, two simulated data
sets (each having n = 10, 400 observations) are generated with the software
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m=1,2

i=1,2,3,4

Figure 3: Two-level nested logit model

SAS c© 9.1.3. When generating data set 1, a RU2 specification without re-
striction is assumed; generating data set 2, the restriction µm = µn = µ is
imposed on a RU2 specification.
In this simulation study the coffee market is simulated in a very simplistic
manner. The simulated market consists of only two brands A and B, where
both offer variants containing caffeine and decaffeinated. Figure 3 shows the
nest structure of this discrete choice situation.
According to Equation (1), the random utility Uim of each alternative im

results from the sum of a marginal utility component Um from Level 2 and
a conditional utility component Ui|m from Level 1, which both consist of a
deterministic part V and a stochastic part ν. In this study, the deterministic
marginal utility component Vm is neglected. It is often hard to find any vari-
ables that are nest- rather than alternative-specific. But even if a nest-specific
variable does exist, specifying this variable for the nest or for all alternatives
within this nest does not make a difference (Heiss, 2002). The stochastic
marginal utility component νm, which captures all unobservable and omit-
ted effects, must be integrated into the model despite the non-existence of
the deterministic marginal utility component Vm. Consequently, the overall
utility for this simulation study arises from

Uim = Vi|m + (νi|m + νm) . (24)

Furthermore, the explanatory variables price (PRI), promotion (PRO), age of
the decision maker (AGE) and sex of the decision maker (SEX) are included
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in the model. Alternative-specific constants (ASC) are neglected in this
simulation study, but must be integrated in the model when estimating with
real data. The underlying deterministic conditional utility component for
this simulation study is as follows

Vi|m = φi|m AGEh + τi|m SEXh + βpri PRIi|m + βpro PROi|m . (25)

The variables PRI and PRO are such with generic coefficients (see section
4.2), i. e. they have a constant coefficient β for all alternatives. The alterna-
tive containing caffein in nest Brand A (cc|A) is declared as reference point,
and its alternative-specific coefficients φK|A and τK|A are set to zero.
As was described in detail in Section 3.4, the error term νi|m on Level 1 is
distributed extreme-value [0; µm], the error term νm on Level 2 is distributed

extreme-value

[
−

(
1

µm
ln

∑
i∈Cm

exp (0)

)
;

√(
µ2

m λ2
m

µ2
m−λ2

m

)]
.

For the simulation of the data sets 1 and 2, the following assumptions are
made:

• age

– AGE=1: p=0.15

– AGE=2: p=0.20

– AGE=3: p=0.30

– AGE=4: p=0.20

– AGE=5: p=0.15

• sex

– female, SEX=0: p=0.53

– male, SEX=1: p=0.47

• price

– A containing caffein: normal with [3 .99 ; 0 .20 2 ]

– A decaffeinated: normal with [3 .89 ; 0 .20 2 ]

– B containing caffein: normal with [4 .29 ; 0 .10 2 ]

– B decaffeinated: normal with [4 .19 ; 0 .10 2 ]
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• promotion

– A containing caffein: uniform in [0;1], rounded to 0 or 1

– A decaffeinated: uniform in [0;1], rounded to 0 or 1

– B containing caffein: uniform in [0;1], rounded to 0 or 1

– B decaffeinated: uniform in [0;1], rounded to 0 or 1

Model estimation is done with the procedure PROC MDC in SAS c© 9.1.3, and
with the commands nlogit and nlogitrum in STATA c© 9.1. The NNNL spec-
ification underlies the procedure PROC MDC and the command nlogit (see
SAS (2004) and Heiss (2002)), and the RU2 UMNL specification underlies
the command nlogitrum (see Heiss (2002)).

5.1 Models Without Equality Constraint on the IV-
Parameters

According to the utility maximization nested logit (UMNL) RU2 specifica-
tion, the scale parameters λA and λB are set equal to 1. When simulating
data for the models A and B (Figure 2), the scale parameters µA and µB are
not imposed by an equality constraint.
The coefficients of the exogenous variables generated with SAS c© are esti-
mated with SAS c© and STATA c©. Table 4 gives an overview of the simulated
data sets for models A and B.
The data sets 1.1 to 1.4 share the fact that the NNNL model estimated

Table 4: Overview data sets for models A and B

µA = 1.3 µA = 1.2
µB = 1.7 µA = 1.5

input-parameter data set data set
set #1 1.1 1.3
input-parameter data set data set
set #2 1.2 1.4

with the procedure PROC MDC in SAS c© results in the same coefficients as
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the NNNL model estimated with the command nlogit in STATA c©. The RU2
UMNL model estimated with the command nlogitrum in STATA c© results in

different coefficients. The log-likelihood values and the IV-parameters
(

λ
µ

)

of the two non-normalized nested logit (NNNL) models are identical and dif-
fer from those of the RU2 UMNL model.
The non-normalized nested logit (NNNL) models estimated with nlogit in
STATA c© and PROC MDC in SAS c© estimate an inverse relation of the IV-
parameters in the two nests. The IV-parameter in nest A is smaller than

the IV-parameter in nest B, resulting in a higher correlation

(
1 −

(
λ
µ

)2
)

of the alternatives within nest A than within nest B. When generating the
simulated data, a higher correlation in nest B was assumed.
The Level 2 normalized utility maximization nested logit (UMNL RU2) model
is consistent with random utility theory (see Table 2) even without imposing
restrictions and should be able to reproduce the input-parameters with a high
reliability. This can only partially be confirmed. Moreover, the estimated
IV-parameter for the nest ”Brand A” is expectedly higher than the one for
the nest ”Brand B”, but the difference between those two IV-parameters is
substantially smaller than it was assumed when simulating the data. At this
point, one can not speak of a satisfying and reliable reproduction of the data.
The reasons for this are unknown for the present but should be part of fur-
ther investigations.
In the utility maximization nested logit (UMNL) model, the IV-parameters
only capture the (dis-)similarity of the alternatives within the nest. The
IV-parameters in the non-normalized nested logit (NNNL) model capture
another effect: the relative importance of the variables with generic coeffi-
cients for the alternatives within the corresponding nest (see Heiss (2002),
p. 240). Although these two effects are not in line, they are captured in
the NNNL model with one single IV-parameter. The ”generic” specification
of the NNNL model implies a contradictory restriction. This is the reason
why ”generic” models should not be estimated with NNNL software without
imposing restrictions.
Only if it is a priori assumed that the IV-parameters are the same in all
nests, the scaling problem of the NNNL model can be avoided. The presence
of generic coefficients then does not bias the estimates of the NNNL model,
because the coefficients are equally scaled in each nest.
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Table 5: Model estimation with data set 1.1 (RU2 without restriction)

SAS c© STATA c© STATA c©

input- PROC MDC nlogit nlogitrum
parameter parameter NNNL NNNL RU2 UMNL

set #1 (A) (A) (B)

φdc|A -0.50 -0.57∗∗∗ -0.57∗∗∗ -0.41∗∗∗

φcc|B 0.50 0.60∗∗∗ 0.60∗∗∗ 0.21∗∗∗

φdc|B 1.00 1.20∗∗∗ 1.20∗∗∗ 0.60∗∗∗

τdc|A 2.00 2.29∗∗∗ 2.29∗∗∗ 1.60∗∗∗

τcc|B -1.00 -1.20∗∗∗ -1.20∗∗∗ -1.01∗∗∗

τdc|B -2.00 -2.46∗∗∗ -2.46∗∗∗ -1.79∗∗∗

βpro 3.00 3.63∗∗∗ 3.63∗∗∗ 2.42∗∗∗

βpri -2.00 -2.25∗∗∗ -2.25∗∗∗ -1.97∗∗∗

IVA 0.77 0.55∗∗∗ 0.55∗∗∗ 0.75∗∗∗

IVB 0.59 0.74∗∗∗ 0.74∗∗∗ 0.64∗∗∗

LL -8,006 -8,006 -8,135

n = 10, 400; ∗∗∗ α = 0.01
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Table 6: Model estimation with data set 1.2 (RU2 without restriction)

SAS c© STATA c© STATA c©

input- PROC MDC nlogit nlogitrum
parameter parameter NNNL NNNL RU2 UMNL

set #2 (A) (A) (B)

φdc|A -1.00 -1.20∗∗∗ -1.20∗∗∗ -0.84∗∗∗

φcc|B 0.50 0.62∗∗∗ 0.62∗∗∗ 0.24∗∗∗

φdc|B 0.50 0.62∗∗∗ 0.62∗∗∗ 0.23∗∗∗

τdc|A 3.00 3.58∗∗∗ 3.58∗∗∗ 2.50∗∗∗

τcc|B -1.50 -1.78∗∗∗ -1.78∗∗∗ -1.28∗∗∗

τdc|B -1.00 -1.27∗∗∗ -1.27∗∗∗ -0.94∗∗∗

βpro 2.00 2.48∗∗∗ 2.48∗∗∗ 1.64∗∗∗

βpri -1.50 -1.71∗∗∗ -1.71∗∗∗ -1.46∗∗∗

IVA 0.77 0.55∗∗∗ 0.55∗∗∗ 0.74∗∗∗

IVB 0.59 0.73∗∗∗ 0.73∗∗∗ 0.63∗∗∗

LL -9,551 -9,551 -9,640

n = 10, 400; ∗∗∗ α = 0.01
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Table 7: Model estimation with data set 1.3 (RU2 without restriction)

SAS c© STATA c© STATA c©

input- PROC MDC nlogit nlogitrum
parameter parameter NNNL NNNL RU2 UMNL

set #1 (A) (A) (B)

φdc|A -0.50 -0.56∗∗∗ -0.56∗∗∗ -0.35∗∗∗

φcc|B 0.50 0.60∗∗∗ 0.60∗∗∗ 0.22∗∗∗

φdc|B 1.00 1.19∗∗∗ 1.19∗∗∗ 0.57∗∗∗

τdc|A 2.00 2.27∗∗∗ 2.27∗∗∗ 1.40∗∗∗

τcc|B -1.00 -1.22∗∗∗ -1.22∗∗∗ -0.89∗∗∗

τdc|B -2.00 -2.44∗∗∗ -2.44∗∗∗ -1.58∗∗∗

βpro 3.00 3.58∗∗∗ 3.58∗∗∗ 2.14∗∗∗

βpri -2.00 -2.19∗∗∗ -2.19∗∗∗ -1.59∗∗∗

IVA 0.83 0.51∗∗∗ 0.51∗∗∗ 0.65∗∗∗

IVB 0.67 0.64∗∗∗ 0.64∗∗∗ 0.58∗∗∗

LL -8,363 -8,363 -8,433

n = 10, 400; ∗∗∗ α = 0.01
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Table 8: Model estimation with data set 1.4 (RU2 without restriction)

SAS c© STATA c© STATA c©

input- PROC MDC nlogit nlogitrum
parameter parameter NNNL NNNL RU2 UMNL

set #2 (A) (A) (B)

φdc|A -1.00 -1.18∗∗∗ -1.18∗∗∗ -0.72∗∗∗

φcc|B 0.50 0.60∗∗∗ 0.60∗∗∗ 0.24∗∗∗

φdc|B 0.50 0.61∗∗∗ 0.61∗∗∗ 0.24∗∗∗

τdc|A 3.00 3.53∗∗∗ 3.53∗∗∗ 2.13∗∗∗

τcc|B -1.50 -1.78∗∗∗ -1.78∗∗∗ -1.13∗∗∗

τdc|B -1.00 -1.28∗∗∗ -1.28∗∗∗ -0.83∗∗∗

βpro 2.00 2.41∗∗∗ 2.41∗∗∗ 1.41∗∗∗

βpri -1.50 -1.67∗∗∗ -1.67∗∗∗ -1.17∗∗∗

IVA 0.83 0.51∗∗∗ 0.51∗∗∗ 0.62∗∗∗

IVB 0.67 0.63∗∗∗ 0.63∗∗∗ 0.57∗∗∗

LL -9,956 -9,956 -9,996

n = 10, 400; ∗∗∗ α = 0.01
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5.2 Models With Equality Constraint on the IV-Para-
meters

According to the utility maximization nested logit (UMNL) RU2 specifica-
tion, the scale parameters λA and λB are set to 1. When simulating data for
models C and D (Figure 2), the scale parameters µA and µB are imposed by
an equality constraint.
The coefficients of the exogenous variables generated with SAS c© are esti-
mated with SAS c© and STATA c©. Table 9 gives an overview over the simu-
lated data sets for the models C and D. The data sets 2.1 to 2.4 share the

Table 9: Overview data sets for models C and D

µA = µB = 1.8 µA = µB = 1.6

input-parameter data set data set
set #3 2.1 2.3
input-parameter data set data set
set #4 2.2 2.4

fact that the NNNL model estimated with the procedure PROC MDC in
SAS c© results in the same coefficients as the NNNL model estimated with
the command nlogit in STATA c©. The RU2 UMNL model estimated with
the command nlogitrum in STATA c© results in different coefficients. The

log-likelihood values and the IV-parameters
(

λ
µ

)
of the two non-normalized

nested logit (NNNL) models and of the RU2 UMNL model are identical.
The non-normalized nested logit (NNNL) model estimated with PROC MDC
in SAS c© estimates the same coefficients as the non-normalized nested logit
(NNNL) model estimated with nlogit in STATA c©. The RU2 UMNL model
estimated with nlogitrum in STATA c© results in different coefficients. But
the coefficients of the two NNNL models and the RU2 UMNL model can
be transferred according to Equation (23). The coefficients estimated with
STATA c© nlogitrum equal a multiple of the coefficients estimated with SAS c©

PROC MDC or STATA c© nlogit respectively. The coefficients estimated in
the NNNL models do not have any meaning before their re-scaling, i. e.
their multiplication with the estimated IV-parameter, and can therefore not
be interpreted in the sense of random utility theory. Possible discrepancies
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of the coefficients are caused by rounding.
In the data sets 2.1 to 2.4, both SAS c© and STATA c© estimate the same IV-
parameter and have the same log-likelihood value. The coefficients estimated
with nlogitrum in STATA c© do not always equal the input-parameters which
were used for generating the data. In the data sets 2.1 and 2.3, a reliable
reproduction can be recognized. The reasons for a suboptimal parameter
reproduction in the data sets 2.2 and 2.4 must be investigated in further
research.
The commonly estimated IV-parameter 0.77 in data set 2.1 equals a scale
parameter of µ = 1

0.77
= 1.30. Analogously, the scale parameters µ = 1.28

for data set 2.2, µ = 1.35 for data set 2.3, and µ = 1.37 for data set 2.4
result. The scale parameters µ = 1.80 assumed for the simulation of the
data sets 2.1 and 2.2, and µ = 1.60 assumed for the simulation of the data
sets 2.3 and 2.4, could not be reproduced. But the reproduction of the input-
parameters can also be improved by an enlargement of the sample size.
These results show that even with NNNL software a model consistent with
random utility theory can be estimated. But the restriction of equal scale
parameters and thus equal variances must be accepted.
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Table 10: Model estimation with data set 2.1 (RU2 with restriction)

SAS c© STATA c© STATA c©

input- PROC MDC nlogit nlogitrum
parameter parameter NNNL NNNL RU2 UMNL

set #3 (C) (C) (D)

φdc|A -0.50 -0.65∗∗∗ -0.65∗∗∗ -0.50∗∗∗

φcc|B 0.50 0.60∗∗∗ 0.60∗∗∗ 0.46∗∗∗

φdc|B 0.50 0.60∗∗∗ 0.60∗∗∗ 0.46∗∗∗

τdc|A 1.50 1.87∗∗∗ 1.87∗∗∗ 1.44∗∗∗

τcc|B -1.00 -1.21∗∗∗ -1.21∗∗∗ -0.93∗∗∗

τdc|B -0.50 -0.63∗∗∗ -0.63∗∗∗ -0.49∗∗∗

βpro 2.00 2.49∗∗∗ 2.49∗∗∗ 1.91∗∗∗

βpri -1.50 -1.86∗∗∗ -1.86∗∗∗ -1.43∗∗∗

IV 0.56 0.77∗∗∗ 0.77∗∗∗ 0.77∗∗∗

LL -9,724 -9,724 -9,724

n = 10, 400; ∗∗∗ α = 0.01
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Table 11: Model estimation with data set 2.2 (RU2 with restriction)

SAS c© STATA c© STATA c©

input- PROC MDC nlogit nlogitrum
parameter parameter NNNL NNNL RU2 UMNL

set #4 (C) (C) (D)

φdc|A -1.00 -1.22∗∗∗ -1.22∗∗∗ -0.95∗∗∗

φcc|B 0.50 0.56∗∗∗ 0.56∗∗∗ 0.43∗∗∗

φdc|B 0.50 0.57∗∗∗ 0.57∗∗∗ 0.45∗∗∗

τdc|A 3.00 3.62∗∗∗ 3.62∗∗∗ 2.83∗∗∗

τcc|B -2.00 -2.28∗∗∗ -2.28∗∗∗ -1.78∗∗∗

τdc|B -2.50 -2.95∗∗∗ -2.94∗∗∗ -2.30∗∗∗

βpro 3.00 3.57∗∗∗ 3.57∗∗∗ 2.79∗∗∗

βpri -3.00 -3.38∗∗∗ -3.38∗∗∗ -2.64∗∗∗

IV 0.56 0.78∗∗∗ 0.78∗∗∗ 0.78∗∗∗

LL -7,636 -7,636 -7,636

n = 10, 400; ∗∗∗ α = 0.01
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Table 12: Model estimation with data set 2.3 (RU2 with restriction)

SAS c© STATA c© STATA c©

input- PROC MDC nlogit nlogitrum
parameter parameter NNNL NNNL RU2 UMNL

set #3 (C) (C) (D)

φdc|A -0.50 -0.64∗∗∗ -0.64∗∗∗ -0.47∗∗∗

φcc|B 0.50 0.58∗∗∗ 0.58∗∗∗ 0.43∗∗∗

φdc|B 0.50 0.58∗∗∗ 0.58∗∗∗ 0.43∗∗∗

τdc|A 1.50 1.85∗∗∗ 1.85∗∗∗ 1.36∗∗∗

τcc|B -1.00 -1.18∗∗∗ -1.18∗∗∗ -0.87∗∗∗

τdc|B -0.50 -0.61∗∗∗ -0.61∗∗∗ -0.45∗∗∗

βpro 2.00 2.44∗∗∗ 2.44∗∗∗ 1.80∗∗∗

βpri -1.50 -1.82∗∗∗ -1.82∗∗∗ -1.35∗∗∗

IV 0.63 0.74∗∗∗ 0.74∗∗∗ 0.74∗∗∗

LL -9,940 -9,940 -9,940

n = 10, 400; ∗∗∗ α = 0.01
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Table 13: Model estimation with data set 2.4 (RU2 with restriction)

SAS c© STATA c© STATA c©

input- PROC MDC nlogit nlogitrum
parameter parameter NNNL NNNL RU2 UMNL

set #4 (C) (C) (D)

φdc|A -1.00 -1.21∗∗∗ -1.21∗∗∗ -0.89∗∗∗

φcc|B 0.50 0.55∗∗∗ 0.55∗∗∗ 0.41∗∗∗

φdc|B 0.50 0.57∗∗∗ 0.57∗∗∗ 0.42∗∗∗

τdc|A 3.00 3.58∗∗∗ 3.58∗∗∗ 2.63∗∗∗

τcc|B -2.00 -2.26∗∗∗ -2.26∗∗∗ -1.66∗∗∗

τdc|B -2.50 -2.92∗∗∗ -2.92∗∗∗ -2.14∗∗∗

βpro 3.00 3.55∗∗∗ 3.55∗∗∗ 2.60∗∗∗

βpri -3.00 -3.39∗∗∗ -3.39∗∗∗ -2.48∗∗∗

IV 0.63 0.73∗∗∗ 0.73∗∗∗ 0.73∗∗∗

LL -7,840 -7,840 -7,840

n = 10, 400; ∗∗∗ α = 0.01
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6 Summary

Although the nested logit model has, because of its ability to account for
similarities between alternatives via partial correlation of the error terms,
received increasing attention, the various specifications of the nested logit
model have barely been focused on. But this differentiation gets its special
relevance from the fact that generally only the RU2 UMNL specification is
consistent with random utility theory.
Both estimations with real data and simulation studies require investigating
the software’s underlying nested logit specification. Whereas in estimations
with utility maximization nested logit (UMNL) software no particularities
are to be considered, estimation with non-normalized nested logit (NNNL)
software proves to be more difficult. Only by imposing restrictions on the
IV-parameters or by introducing dummy nests can estimation results consis-
tent with random utility theory be reached.
This article also deals with the generation of simulated stochastic utility
components. While assumptions on the distribution of the error terms νi|m
on Level 1 can be directly seen from the extreme-value distribution of the
error terms and the nested logit model specification, the assumptions on the
distribution of the error terms νm on Level 2 requires extensive derivations.
This procedure was explained in detail in this article (see 3.4).
It was demonstrated that when using NNNL software without imposing re-
strictions, a model consistent with random utility theory can not be es-
timated. Three cases are to be distinguished: (1) model without generic
coefficients, (2) model with generic coefficients and with equality constraint
on the scale parameters, and (3) model with generic coefficients and with-
out equality constraint on the scale parameters. In case (1) the coefficients
estimated with NNNL software (e. g. PROC MDC in SAS c©) can be trans-
ferred to the coefficients estimated with UMNL software (e. g. nlogitrum in
STATA c©) by multiplying them with the estimated IV-parameter. The thus
re-scaled coefficients are the ”true” model coefficients. And this is also valid
for the coefficients in case (2). A model estimated with NNNL software in
case (3) is useless. This becomes especially relevant if the software user is
not aware of the described issue of different nested logit model specifications.
The danger of a wrong model estimation is then very high.
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de Dios Ortúzar J (2001) On the development of the nested logit model.
Transportation Research Part B 35(2):213–216

Guadagni PM, Little JDC (1983) A Logit Model of Brand Choice Calibrated
on Scanner Data. Marketing Science 2(3):203–238

Guadagni PM, Little JDC (1998) When and What to Buy: A Nested Logit
Model of Coffee Purchase. Journal of Forecasting 17(3/4):303–326

Heiss F (2002) Structural choice analysis with nested logit models. The Stata
Journal 2(3):227–252

Hensher DA, Greene WH (2001) The Mixed Logit Model: The State of Prac-
tice and Warnings for the Unwary. Tech. rep., The University of Sydney

Hensher DA, Greene WH (2002) Specification and estimation of the nested
logit model: alternative normalisations. Transportation Research Part B
36(1):1–17

Hensher DA, Rose JM, Greene WH (2005) Applied Choice Analysis. Cam-
bridge University Press

Hunt GL (2000) Alternative Nested Logit Model Structures and the Special
Case of Partial Degeneracy. Journal of Regional Science 40(1):89–113

Kamakura WA, Kim BD, Lee J (1996) Modeling Preference and Structural
Heterogeneity in Consumer Choice. Marketing Science 15(2):152–172

Kannan PK, Wright GP (1991) Modeling and Testing Structured Markets:
A Nested Logit Approach. Marketing Science 10(1):58–82

Knapp TA, White NE, Clark DE (2001) A Nested Logit Approach to House-
hold Mobility. Journal of Regional Science 41(1):1–22

Koppelman FS, Wen CH (1998a) Alternative Nested Logit Models: Struc-
ture, Properties and Estimation. Transportation Research B 32(5):289–298

Koppelman FS, Wen CH (1998b) Nested Logit Models: Which Are You
Using? Transportation Research Record 1645:1–7

32



McFadden D (1978) Modelling the choice of residential location. In: Karlqvist
A, Lundqvist L, Snickars F, Weibull JW (eds) Spatial Interaction Theory
and Planning Models, North-Holland Publishing Company, Amsterdam
New York Oxford, pp 75–96

McFadden D (1981) Econometric Models of Probabilistic Choice. In: Manski
CF, McFadden D (eds) Structural Analysis of Discrete Data with Econo-
metric Applications, The MIT Press, Cambridge, pp 198–272

Munizaga MA, Alvarez-Daziano R (2001) Mixed Logit vs. Nested Logit and
Probit Models. Tech. rep., Universidad de Chile

SAS (2004) SAS/ETS 9.1 User’s Guide. SAS Institute Inc., Cary/NC, USA
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