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Abstract

The implied volatility of a European option as a function of strike price and time to

maturity forms a volatility surface. Traders price according to the dynamics of this

high dimensional surface. Recent developments that employ semiparametric models

approximate the implied volatility surface (IVS) in a finite dimensional function space,

allowing for a low dimensional factor representation of these dynamics. This paper

presents an investigation into the stochastic properties of the factor loading times series

using the vector autoregressive (VAR) framework and analyzes associated movements

of these factors with movements in some macroeconomic variables of the Euro -

economy.
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1 Introduction

The valuation of options has become increasingly important with the arrival of new

financial products. Financial instruments with optional features such as standard options,

derivatives like weather options or exotic types like Down-and-out Puts are increasingly

being traded on the markets. A substantial part of this option trading focuses on market

volatility (Chaput and Ederington, 2002). Since volatility is unknown, one studies the

implied volatility (IV) which is derived from the Black-Scholes formula (e.g. Black and

Scholes, 1973 and Franke, Härdle and Hafner, 2004) for a cross section of options with

different strike and maturities traded at the same point in time. The implied volatility

depends on the strike and maturity and is therefore better described as an implied volatility

surface (IVS). The movement of this surface may be summarized by a dynamic

semiparametric factor model (DSFM) as developed by Fengler et al. (2005). Their model is

based on the following additive structure for the log-implied volatility, Yt,j:

Yt,j =
K∑

k=0

ztkmk(Xt,j) + εt,j (1.1)

where zt0 = 1, j = 1, . . . , Jt represents the number of IV observations on day t and K is

the number of basis functions. The Xt,j is a two-dimensional variable containing

moneyness and maturity. The ztk are time dependent weights of the smooth basis function

mk, for (k = 0, . . . , K). Models similar to (1.1) have been considered by Skiadopoulos,

Hodges and Clewlow (1999) in studies exploring the volatility smile in different maturity

buckets and Alexander (2001) in analyzing fixed strike deviations.

The IVS is assumed to be a weighted sum of the functional factors and the dynamics is

explained by the stochastic behavior of the loadings. The estimates ẑtk and m̂k are obtained

by minimizing the following least squares criterion (zt0 = 1):

I∑
t=1

Jt∑
j=1

∫ {
Yt,j −

K∑
k=0

ztkmk(u)

}2

Kh(u−Xt,j) du, (1.2)

where Kh denotes a two-dimension kernel function, chosen as a product of one-dimensional

kernels Kh(u) = kh1(u1)× kh2(u2), where h = (h1, h2)
> are bandwidths and

kh(v) = k(h−1v)/h is a one-dimensional kernel function.
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The minimization procedure searches through all functions m̂k : R2 −→ R (k = 0, ..., K)

and time series ẑtk ∈ R (t = 1, ..., I; k = 1, ..., K). Borak et al. (2005) presented a DSFM

for DAX option data for a period from January 4, 1999 to February 25, 2003. Their data

consists of Jt ≈ 5000 observations per day and the model captures the complex dynamic

structure with a low dimensional representation of the IVS, i.e. the IVS is approximated by

a small number of basis functions in a finite dimensional space. A typical shape of an IVS

surface, considered as a function of time to maturity and moneyness (e.g. Borak et al., 2005)

is presented in Figure 1. This figure shows the IVS for the DAX trade on May 2, 2000 using

a semiparametric factor model fit. As time changes the IVS moves in space and time.

Recent research has been geared towards analyzing the behavior of the IVS as an

important element of prediction. Skiadopoulos, Hodges and Clewlow (1999) have analyzed

the IVS of S&P 500 options for the years 1992-1995 and reported that at least two and at

most six factors are necessary to capture the dynamics of S&P 500 implied volatility. Cont

and Fonseca (2002) worked on the dynamics of the S&P 500 implied volatility and reported

that the first three principal components account for 95% of the daily variance. Based on

the closing prices of DAX options during the year 1999, Fengler, Härdle and Villa (2003)

concluded that three factors are sufficient to capture 95% of the variation in implied DAX

volatilities. In the DSFM, the movement of the IVS can be described (see Borak et al.,2005)

by the loading series zt = (zt1, . . . , ztK)>, which are obtained after fitting a model like in

(1.1). Their model is obtained by setting K = 3 such that three basis functions are used to

model implied volatility. In this paper we examine the stochastic properties of the

corresponding factor loading times series from Borak et al., 2005 by using vector

autoregressive (VAR) modeling techniques.

This modeling framework is fairly general in describing the dynamics and interrelations

between the variables of interest. The factor loadings describe the movements of the

implied volatility surface such that z1 may be interpreted as representing the overall shift

volatility (or trend), z2 represents changes in the maturity slope while z3 represents changes

in the smile curvature (moneyness slope) of the IVS.
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Therefore, understanding the dynamics of zt may provide insights in the behavior of the

IVS, which in turn helps to give an accurate assessment of market risk. In addition,

understanding the IVS dynamics is also important for developing useful strategies to hedge

against these risks. To provide further insight into factors that influence the IVS behavior,

we extend our investigation by associating movements of these risk factors with movements

in some macroeconomic conditions. The paper is organized as follows. We briefly describe

the data used in our study and analyze the order of integration of the factor loading series

using a number of unit root tests in Section 2. Section 3 presents results from the VAR

modeling and describes the dynamic interaction between the factor loading series. In

section 4 we relate these risk factors to macroeconomic indicators such as interest rates,

exchange rates and oil prices. We conclude with an interpretation of results in Section 5.

2 The Data and Unit Root Tests

We analyze time series data on factor loading series that have been obtained from a DSFM

model specified by Borak et al. (2005). The DSFM summarizes the IVS dynamics by

K = 3 basis functions. Accordingly, we analyze three loading series zt = (zt1, zt2, zt3)
> for

a period from January 4, 1999 to February 25, 2003. Excluding days with no option trades

we have T = 1052 observations on zt in our sample. Corresponding time series plots are

given in the left column of Figure 2, while plots for the first differences, ∆zt = zt − zt−1,

are given in the right column of the Figure.

The level series show volatility characteristics as they are often found for financial market

data. We observe strong day-to-day variation, especially in the first loading series and a

number of volatility clusters. Furthermore, there are indications of structural breaks in the

series. To be precise, we observe a sudden downward movement in zt1 in September 2001,

zt2 exhibits a clear outlier in November 2001, which is also seen in the first differences and

the third loading series zt3 shows much stronger volatility in the first part of the sample than

in the second one. In addition, the graphs of zt3 and its first differences also point towards a

number of possible outliers.
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As a first step in analyzing the statistical properties, we test whether the series are integrated

of order zero (I(0)) or of order one (I(1)). The order of integration is important for the

further modeling strategy. In case of stationarity (I(0)) we proceed with analyzing a VAR

model for the level series. By contrast, if the series are I(1), a VAR model in first

differences would be a more appropriate choice. In the following we apply the ADF and

ERS unit root tests. The ADF test refers to the regression equation

∆zt,k = φzt−1,k +

p∑
i=1

αi∆zt−i,k + ut,k, (2.1)

where p is the number of lags of ∆zt,k by which the regression equation (2.1) is augmented

in order to get residuals free of autocorrelation.

Under the null hypothesis of a unit root the parameter φ should be zero. Hence, the

t-statistic of the OLS estimator of φ is used as the ADF test statistic. Note that the limiting

distribution of the test statistic is nonstandard. Hence, critical or p-values have to be derived

by the help of simulation methods.

The lag order p is determined by applying the AIC, HQ, and SC information criteria.1 Since

the test decisions may depend on the suggested order we will present our results for AIC

and HQ. The SC criterion tends to propose orders which are too low to capture the

autocorrelation contained in the factor loading series.

Since the ADF test suffers from low power and therefore may fail to detect a stationary time

series we also consider the point-optimal unit root test (ERS test) suggested by Elliot,

Rothenberg and Stock (1996). The small sample simulation results of Elliot et al. (1996)

indicate that this test is superior to the ADF procedure also in case of processes affected by

conditional heteroscedasticity. The test is based on quasi-differences of zt,k which are

defined by

d(zt,k|a) =


1 if t = 1

zt,k − azt−1,k if t > 1,

where a represents the point alternative against which the null of a unit root is tested. We

follow the suggestion of Elliot et al. (1996) and use a = ā = 1 − 7/T since only a constant

term is considered.

1The criteria are described in Lütkepohl (1991).
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Let êt be the residuals from a regression of the time series on a quasi-differenced constant

and let S(ā) and S(1) be the sums of squared residuals for the cases a = ā and a = 1

respectively. Then the test is defined by

ERS = {S(a)− aS(1)} /ω̂b, (2.2)

where ω̂b is the spectral density estimator of êt at frequency zero. We apply the

autoregressive spectral density estimator as proposed by Elliot et al. (1996).

In order to determine the lag length b of the corresponding estimation regressions the AIC

and HQ criteria are used. The limiting distribution of the test statistic is nonstandard and

critical values are stated in Elliot et al. (1996).

Although the tests’ results do not agree in all cases, they suggest that the three loading

series can be regarded as stationary. In other words, the null hypothesis of a unit root is

usually rejected for the level series. However, the series exhibit possible structural breaks.

As mentioned above, the series zt2 contains a large outlier in November 2001 and the

fluctuations of zt3 seem to be much weaker in the second half of the sample than in the first

one. Hence, size distortions may occur. To account for possible structural breaks we have

also performed a unit root analysis for the two subsamples January 4, 1999-July 31, 2001

(655 observations) and August 1, 2001- February 25, 2003 (397 observations). The results

for the subsamples confirm our findings for the whole data period regarding zt2 and zt3. By

contrast, the tests for the subperiods seem to indicate nonstationarity of zt1.

Summarizing, the unit root analysis suggests stationarity of loading series. However, some

disagreements have occurred. Therefore, we proceed to work with a VAR model for the

levels of the series in order to avoid possible overdifferencing and check the robustness of

our results by also analyzing a VAR model in first differences.
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3 VAR Models for Factor Loading Dynamics

VAR models are often used to investigate the dynamic relationship between the variables of

interests. In our case, we use the VAR modeling framework to investigate the relationship

between the factor loading times series described earlier.

As the results of the unit root analysis are not clear cut, we use both a VAR in levels and a

VAR in first differences to model the interdependencies between the factor loadings. As

before zt = (z1t, z2t, z3t)
> denotes the vector containing the observations of the K = 3

factor loadings z1t, z2t and z3t at time t. Then, we model the dynamics underlying these

factor loading by a VAR process of order p, VAR(p),

zt = ν + A1zt−1 + · · ·+ Apzt−p + ut, (3.1)

where ν is a K × 1 vector of intercept parameters, Ai, i = 1, . . . , p are K ×K parameter

matrices and ut = (u1t, . . . , uKt)
>, is an unobservable error term with mean zero and

time-invariant, non-singular covariance matrix Σu, i.e. E[utu
>
t ] = Σu.

Given the integration properties of the underlying time series discussed in Section 2 an

alternative way of modeling the factor loadings zt is to specify a VAR model in first

differences, i.e. a model for ∆zt = zt − zt−1 is considered. The corresponding VAR is of

the form

∆zt = ν + A1∆zt−1 + · · ·+ ∆Apzt−p + ut. (3.2)

We start our empirical analysis by considering data for the whole sample period from

January 4, 1999 until February 25, 2003. Moreover, we focus first on a model for the levels

of our variables, i.e. on the model for zt given in (3.1). To select the lag length p, we have

applied standard information criteria as in Lütkepohl (1991, Chapter 4) to VAR models with

a maximum lag order of pmax = 12 and give the results in Table 2. The three considered

information criteria suggest different lag lengths for the sample under consideration. As we

want to model the dynamic relations between the factor loading series by impulse response

functions we start out by a fairly general model with p = 7 lags as suggested by the Akaike

information criterion (AIC).
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Choosing the lag length by AIC may be advantageous for our purpose given the results in

Brüggemann (2004), as a fairly large model allows to capture the underlying dynamics in a

more flexible way. We check the adequacy of the model by applying a number of standard

diagnostic tests whose results are reported in Table 3. While the estimated residuals do not

show signs of autocorrelation, normality and conditional homoscedasticity are clearly

rejected. Both, non-normality and ARCH effects are often observed in empirical models for

financial variables. In fact, given the time series plots in Figure 2, these results are not

surprising. In what follows, we ignore these short-coming of our model2 and regard the

VAR model as a rough approximation of the underlying DGP.

The dynamic relations between the factors is captured by the impulse response function,

Lütkepohl (1991, Chapter 3) which we discuss next. Figure 3 shows the impulse responses

together with ±2 asymptotic standard error bands from the estimated model for zt, where

the shocks have been orthogonalized by a Cholesky decomposition.

In the first column of the figure, we give the responses to a positive innovation in the first

loading series. This innovation has a permanent negative effect on the second factor loading

zt2 and a small but positive effect on zt3, which becomes insignificant after about 6 periods.

In contrast, an innovation in the second loading factor (column 2 of Figure 3) has only a

permanent positive effect on zt2, while the effects on the other variables are not significantly

different from zero. A similar result is obtained for a shock in the third loading series.

While it has a permanent positive effect on itself, no significant responses on the other

variables are observed. Clearly, the results of the impulse response analysis may depend to

some extent on the ordering of the variables in the system. In fact, the estimated residual

correlation matrix for our benchmark model is

P̂u =


1 −0.49 −0.23

−0.49 1 −0.10

−0.23 −0.10 1

 . (3.3)

Given the sample size of T = 1052 observations, the off-diagonal elements of P̂u are fairly

large and changing the ordering of the variables may indeed change the results from the

impulse-response analysis.

2A more detailed analysis of the ARCH structure is beyond the scope of this paper.
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We have tried all possible variable orderings when computing the impulse responses and the

only notable change is related to the response of zt1 to an innovation in zt2. For instance,

when the ordering zt = (zt2, zt1, zt3)
> is considered, we find a permanent, significant

negative response of zt1. Independent of the orderings, we present in Figure 4 the

generalized impulse responses that account for the residual correlation (Pesaran and Shin,

1998). In comparison, the main dynamics in Figure 3 and Figure 4 are similar. According

to our analysis there is quite a bit of interaction between zt1 and zt2. The only change is

related to the long-run significance of the response in z1t to a shock in z2t and vice versa.

The full sample period includes days with events that led to turbulence on stock markets.

The most obvious is the terrorism attack of September 11, 2001. The events may be viewed

as structural breaks that possibly affect the parameter of our model. Therefore, we check

the robustness of our results by considering a sub-sample that uses data until July 31, 2001

only. For this sub-sample the AIC suggest a lag length of p = 3 (see Table 2) but checking

the diagnostic tests (see Table 3) reveals that this lag specification is not sufficient to render

the residuals free of autocorrelation. However, increasing the lag length for the sub-sample

to p = 8 leads to residuals that do not show signs of autocorrelation. As in the model for the

full sample, there is evidence for non-normality and ARCH in the residuals. Another

robustness check is related to the model specification of the VAR model. In addition to the

results based on a model for zt we have also obtained results for a model for the first

differences of zt, i.e. we consider the model for ∆zt given in (3.2). The relevant statistics

are given in Table 2 and 3. For the full sample, we use a VAR(6) and for comparison with

the levels model, we analyze the accumulated impulse responses from a model for ∆zt. In

comparison to Figure 3 the results are virtually identical to the results from the model for

zt.3

3A comparison of the sub-sample model leads to the same conclusions. Therefore, the results are not

reported here to conserve space.
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To further investigate the relationship between the variables we have also conducted

Granger causality tests as well as tests for instantaneous causality (see e.g. Granger, 1969

and Lütkepohl, 1991, Chapter 2). The results of the tests are given in Table 4.4 Granger

non-causality of z1 for z2 and z3 and of z2 for z1 and z3 is rejected at least at the 10%

significance level (see top panel in Table 4). Investigating the causal relationships more

closely reveals that z3 is neither Granger-caused by z1 nor z2. Moreover, Granger

non-causality from z1 to z3 and from z2 to z3 cannot be rejected. In other words, including

z3 does not help predicting z1 and z2 and predictions of z3 are not improved by including z1

and z2. This result is in line with the impulse response pattern discussed earlier. A possible

conclusion is that z3 may as well be excluded from the VAR system. In fact, using any of

the sequential model reduction algorithms discussed in Brüggemann (2004, Chapter 2)

leads to a model where lags of z3 are excluded from the equations for z1 and z2 and

moreover, z3 only depends on its own lags. This result confirms the finding of the Granger

causality tests. 5 Contemporaneous non-causality is rejected for all variables in the system,

which is inline with the relative large residual correlations given in equation (3.3).

To sum up, the VAR model analysis has revealed that there is a quit bit of interaction

between the first and second loading. A positive shock in the first loading has a permanent

negative impact on the second and vice versa. Note that movements in z1 may be

interpreted as overall shifts (up or down) of the IVS whereas z2 represents changes in the

maturity slope of the IVS. Thus, an overall increase in financial market risk is associated

with an upward tilt of the maturity slope. In other words, the risk of longer maturities

increases relative to shorter maturities. Accordingly, a decrease in the relative risk of

long-term options induces a general risk reduction (lower overall implied volatility).

Moreover, we find that z1 and z2 Granger-cause each other. By contrast, the third loading

series is not importantly related to z1 and z2. Hence, changes in the moneyness slope of the

IVS are not directly linked to up- or downward shifts of the IVS or to adjustments in the

relative risk of long- and short-term options.

4Testing Granger causality involves testing zero restrictions of some VAR coefficients, which may have a

non-standard asymptotic distribution when I(1) variables are in the system. To overcome this problem, Toda

and Yamamoto (1995) and Dolado and Lütkepohl (1996) suggest to overfit the VAR model by one lag to remove

the singularity of the coefficient covariance matrix. Applying this procedure leads to identical conclusions.
5We have repeated the impulse response analysis for a system including only z1 and z2 and found impulse-

responses virtually identical to the upper left 2 × 2 block of Figure 4.
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Moreover, we find that neither the first nor the second factor have a strong influence on the

third. In other words, a VAR model for the first two factors only would capture the

important dynamics between the factor loadings. This result has also been confirmed by

using Granger causality tests and model reduction procedures. As robustness check we have

also considered models in first differences and models for subsamples and find similar

results for all model specifications.

4 Loadings and macroeconomic indicators

In this section we extend our benchmark specification VAR model to include some

macroeconomic time series namely, the log of US dollar per Euro (LEX), the log of oil

prices (LPOIL) and the 12-months German money market interest rate (R12M) from

1.04.1999 − 2.25.2003, (see Figure 5). A VAR(8) is analyzed to be the best choice for the

system zt = (z1t, z2t, z3t,LEX,LPOIL,R12M)>. The dynamic characteristics of the system

is exploited through the generalized impulse response technique (Pesaran and Shin, 1998)

and the results are presented in Figures 6 and 7. There are a number of significant impulse

responses. In Figure 6, the 12-month interest rate responds significantly to shocks in all

three loading series in a permanent way. A positive shock in z1t represents a general

increase in volatility, i.e. a higher overall risk. A rise in z2t means that the maturity slope of

the implied vola surface is tilted downwards. Thus, the risk of longer maturities decreases

relative to shorter maturities. Moreover, a shock to z3t affects the moneyness slope and

smile curvature (Borak et al., 2005). Thus, the responses of R12M to shocks in the loading

series may be regarded as changes in risk compensation. Accordingly, higher overall risk

induces an interest rate rise, whereas lower relative risk of longer maturities requires

reduced risk compensation in terms of the 12-month interest rate. Note that we consider

maturities of up to six months. Finally, a positive shock to z3t enhances the smile curvature

and raises the relative risk of options with low moneyness value. This creates a permanent

positive response in R12M or, in other words, induces a need for higher risk compensation

at the 12-month horizon.

10



Interestingly, we also observe in Figure 7 that z1t and z2t significantly respond to a shock in

R12M. If we regard rising interest rates as an indicator for higher inflation and worsening

economic prospects then it is likely that higher interest rates are accompanied by increasing

uncertainty in the financial markets. This pushes the first loading upward meaning higher

overall volatility or risk in the financial markets. Furthermore, the relative risk of options

with longer maturities goes up. This is shown by the negative response of z2t. Since the

third loading does not respond significantly to changes in the interest rate (macro)economic

affects seem to feed into financial market risks via the maturity channel rather than via the

moneyness dimension. With respect to the other two economic variables only the exchange

rate has some relevance in the way it is significantly related to the first loading. A positive

shock to LEX leads to a negative response in z1t and vice versa and the responses are

significant for up to 20 days. Given our empirical results a rise in LEX, i.e. an appreciation

of the Euro, reduces the volatility of the DAX-Options. Hence, a stronger Euro translates to

a lower risk in the German stock market. Similarly, higher financial market risk (positive

shock in z1t) induces an depreciation of the Euro with respect to the US dollar.

5 Conclusions

In this paper, we have analyzed and modeled the stochastic properties of factors of

Volatility Strings derived from a dynamic semiparametric model for implied volatility. The

VAR modeling framework applied provides a fairly good description of the dynamics and

interrelations between the factor loadings that determine the movements of the IVS. The

relationship of the loadings to movements in macroeconomic variables (interest rates,

exchange rates, oil prices) of the Euro-economy was also investigated. Our results reveal

that only the 12-month interest rate is importantly related to the factor loading series. Since

interest rates at the one-year horizon reflect expectations about future economic

developments, these links seem to be very important for our understanding of the

relationship between financial market and macroeconomic risk. A closer inspection of

interest rates for other horizons may be very promising.

11



In contrast, oil prices are not very important for the loadings driving the implied volatility

surface. However, the Dollar-Euro exchange is significantly linked to the overall risk in the

German stock market. This study may be seen as a first step in associating movements in

some risk factors with movements in macroeconomic conditions, an ingredient necessary to

give an accurate assessment of market risks. Therefore, an important outlook is then to

develop useful strategies for hedging against these risk factors.
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Figure 1: Implied volatility surface from DSFM fit for the DAX-Option on 2 May 2000, with

moneyness between 0.8 and 1.12 and time to maturity between 0 and 0.5 years.
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Figure 3: Impulse-Responses from a VAR(7) for zt = (z1t, z2t, z3t)
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Figure 4: Generalized Impulse-Responses from a VAR(7) for zt = (z1t, z2t, z3t)
>. Sample:

1999/4/1-2003/2/25.
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Figure 6: Responses of log of the US dollar per Euro exchange rate (LEX), log of

oil prices (LPOIL) and the 12-month money market interest rate (R12M) to shocks in

the factor loadings series: Generalized One S.D. ± 2 S.E from a VAR(8) for zt =

(z1t, z2t, z3t,LEX,LPOIL,R12M)>. Sample: 1999/4/1-2003/2/25.
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Figure 7: Responses in the factor loadings series to shocks in the log of the US dol-

lar per Euro exchange rate (LEX), log of oil prices (LPOIL) and the 12-months money

market interest rates (R12M): A Generalized One S.D. ± 2 S.E from a VAR(8) for zt =

(z1t, z2t, z3t,LEX,LPOIL,R12M)>. Sample: 1999/4/1-2003/2/25.
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Table 1: Unit Root Test Statistics

Series ADF-AIC p̂ ADF-HQ p̂ ERS-AIC b̂ ERS-HQ b̂

zt1 −1.982 6 −2.241 2 3.787∗ 6 2.953∗∗ 6

[0.295] [0.192]

∆zt1 −15.199∗∗∗ 5 −23.582∗∗∗ 1 0.007∗∗∗ 5 0.075∗∗∗ 2

[0.000] [0.000]

zt2 −3.361∗∗ 8 −4.219∗∗∗ 4 5.295 8 3.338∗ 4

[0.013] [0.001]

∆zt2 −15.646∗∗∗ 7 −15.646∗∗∗ 7 0.663∗∗∗ 7 0.663∗∗∗ 7

[0.000] [0.000]

zt3 −2.874∗∗ 7 −2.874∗∗ 7 1.446∗∗∗ 7 1.446∗∗∗ 7

[0.049] [0.049]

∆zt3 −13.855∗∗∗ 6 −13.855∗∗∗ 6 0.005∗∗∗ 6 0.005∗∗∗ 6

[0.000] [0.000]

ADF − AIC and ADF − HQ refer to the ADF tests using the AIC and HQ criteria to estimate the lag

length p respectively. In case of ERS-AIC and ERS-SC the criteria used refer to the lag length b chosen for the

estimation regression of the autoregressive spectral density estimator. The critical values used for the ADF test

are −2.57 (10%), −2.86 (5%), and −3.44 (1%) (Mackinnon, 1991). Elliot et al. (1996) state 4.48 (10%), 3.26

(5%) and 1.99 (1%) as critical values for the ERS test. ∗∗∗ and ∗∗ denote significance at the 1%, 5%, and 10%

level respectively. The p-values for the ADF tests are given in brackets below the test statistics.
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Table 2: Lag length suggested by information criteria

1999/4/1-2003/2/25 1999-2001/7/31

Model AIC HQ SC AIC HQ SC

zt 7 3 2 3 2 2

∆zt 6 3 2 8 1 1

Table entries give the optimal number of lags determined using

standard information criteria with a maximum lag order of pmax =

12.
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Table 3: p-values of diagnostic tests

Model Sample p Q(20) LMF(4) LMF(8) LBJDH LBJL ARCH(1)

zt full 7 0.22 0.09 0.38 0.00 0.00 0.00

zt sub 3 0.01 0.13 0.00 0.00 0.00 0.00

zt sub 8 0.16 0.18 0.27 0.00 0.00 0.00

∆zt full 6 0.22 0.13 0.16 0.00 0.00 0.00

∆zt sub 8 0.18 0.53 0.49 0.00 0.00 0.00

Diagnostic tests: full sample 1999/4/1-2003/2/25, sub-sample 1999-2001/7/31. Q(20) denotes an adjusted

portmanteau test involving 20 autocorrelation matrices, LMF(4) and LMF(8) are LM tests for autocorrelation

of order 4 and 8. Two versions of multivariate Lomnicki-Jarque-Bera tests for nonnormality as described by

Doornik and Hansen (1994) (LJBDH ) and Lütkepohl(1991) (LJBL) and multivariate first order ARCH test are

considered. All the tests are described in more detail in Lütkepohl(2004). Computations are performed with

JMulTi, Version 5 (Lütkepohl and Krätzig, 2005).
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Table 4: Causality tests

H0 Test result

z1 9 z2, z3 F(14,3072) = 4.53 [0.00]

z2 9 z1, z3 F(14,3072) = 1.66 [0.06]

z3 9 z1, z2 F(14,3072) = 0.86 [0.60]

z3 9 z1 χ2(7) = 5.04 [0.65]

z3 9 z2 χ2(7) = 6.84 [0.45]

z1 9 z3 χ2(7) = 8.02 [0.33]

z2 9 z3 χ2(7) = 6.44 [0.49]

z1, z2 9 z3 χ2(14) = 12.41 [0.57]

z1
inst.9 z2, z3 χ2(2) = 224.5 [0.00]

z2
inst.9 z1, z3 χ2(2) = 202.5 [0.00]

z3
inst.9 z2, z1 χ2(2) = 57.7 [0.00]

Results are based on a model for zt using p = 7 and data for the full sample period 1999/4/1-2003/2/25. 9

denotes ‘does not Granger cause’. inst.9 denotes ‘does not contemporaneously cause’. p-values are given in

square brackets. All the tests are described in more detail in Lütkepohl(2004). Computations are performed

with JMulTi, Version 5 (Lütkepohl and Krätzig, 2005).
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