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On the appropriateness
of inappropriate VaR models

By Wolfgang Härdle, Zdeněk Hlávka and Gerhard Stahl∗

Zusammenfassung Die Berechnung des VaR führt zur Reduktion der Dimension des
Raumes der Risikofaktoren. Die vorzunehmenden Vereinfachungen resultieren aus un-
terschiedlichen Beweggründen, z.B. technische Effizienz, Sachlogik der Ergebnisse und
statistische Adäquanz des Modells. Im Kapitel 2 stellen wir drei gängige Mappingver-
fahren vor: das Marktindexmodell, das Hauptkomponentenmodell und das Modell mit
gleichkorrelierten Risikofaktoren. Impulse für Methoden zum Vergleich dieser Modelle
im Kapitel 3 kamen vor allem aus der Literatur zur Praxis der Beurteilung von Wet-
terprognosen (Murphy and Winkler 1992, Murphy 1997). Umfangreiche Überlegungen
zu einer quantitativen Analyse werden im vierten Kapitel dieser Arbeit vorgestellt. Die
empirische Analyse der DAX Daten wird abschließend mit XploRe durchgeführt.

Summary The Value-at-Risk calculation reduces the dimensionality of the risk factor
space. The main reasons for such simplifications are, e.g., technical efficiency, the logic and
statistical appropriateness of the model. In Chapter 2 we present three simple mappings:
the mapping on the market index, the principal components model and the model with
equally correlated risk factors. The comparison of these models in Chapter 3 is based
on the literatere on the verification of weather forecasts (Murphy and Winkler 1992,
Murphy 1997). Some considerations on the quantitative analysis are presented in the
fourth chapter. In the last chapter, we present empirical analysis of the DAX data using
XploRe.

Keywords: Value-at-Risk, market index model, principal components, random effects
model, probability forecast. JEL C51, C52, G20.

1. Introduction

The well-known G.E.P. Box’s remark All models are wrong, but some are
useful describes one of the main problems arising in each application of
Value-at-Risk models: the “useful model” should be as simple as possible.
This requires appropriate selection of variables in order to minimize the bias
and the variance of the model simultaneously.

Value-at-Risk (VaR), as a standard measure of market risk, predicts the
possible loss of a certain portfolio at a specified level α. Mathematically, VaR
is the quantile at level α of the random future portfolio value changes. The
task of calculating VaR for high dimensional portfolios requires simple and
fast algorithms. In the following, we will present some very simple common
methods for VaR calculation and we will investigate their appropriateness.

Our desire to choose a simple model leads to dimension reduction tech-
niques applied either in the space of risk-factors or the distributions of
the corresponding random variables. In practice, the—from RiskMetrics
originating—term mapping is used in both cases. The importance of map-
ping procedures is overwhelming. Many VaR papers focus on one-dimen-
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sional identically distributed random variables with an insufficient perspec-
tive towards the practically more relevant multivariate situation. The ques-
tion of the interplay between dimensionality- and model reduction and VaR
precision is not asked and, consequently, not answered satisfactorily.

Corresponding to the complicated character of the VaR models, the com-
monly applied simplifications have various motivations. The most important
ones are: the technical efficiency, the interpretability of the results, and the
statistical appropriateness of the model.

Most often, the superior technical performance of the implemented model
is in the focus of the implementation. A lower dimensional model allowing
simple and precise handling of the numerical calculations and, at the same
time, describing the important dynamic factors, can serve this purpose very
well. Futhermore, the choice of the risk-factors depends also on availability
of the up-to-date quality approved input parameters such as, for example,
market data. Many institutes use the data matrix provided by the RiskMet-
rics group and containing about 400 risk-factors.

Although the, by mapping simplified, system cannot overcome the in-
herent rank defficiencies, it can still, at least in a statistical sense, reflect
the covariance structure. A carefully parametrized model reduces rank def-
ficiency in the estimated covariance matrix (Davé and Stahl 1998). This
is the case especially for the multicollinearity, i.e., the situation often en-
countered in practice with a very large number of variables observed during
a small time window. The dimension reduction techniques remove the in-
significant correlations and can be used for clear and concise summarizing
reports, Reimers and Zerbs (1998).

The VaR models are applied not only as a measure of risk but also as
a means of fulfilling the regulatory office requirements. Special care must
be exhibited in the case of capital reserves for open positions since their
size depends strongly on the model, Huschens (1998). In the case of Max-
imum Loss risk measures, Studer (1997) has shown that the dimension is
nonlinearly related to the calculated risk.

The following example considers portfolios consisting of long- or short
positions. The market value νs at time s of the portfolio Πt is given as

νs(Λt) = Λ>t Ps,

where the vector Λt ∈ Rn denotes the nominal volumes at time t and Ps

denotes the corresponding vector of prices. A portfolio such as {VW,DC}
with Λt = (100, 200)> and ps = (40, 60)> would lead to the value νs = 16000
for s = 16.6.2005. The stochastic models for the risk of the value changes
for given price Pt = pt at time t,

νt+h(Λt)− νt(Λt) = Λ>t (Pt+h − pt) = (Λtpt)>
(Pt+h − pt)

pt
(1)

= w>t Rt+h, (2)

are not based on the price process, but instead on the vector Rt of the
(discrete) returns. Note that both the multiplication and division by the
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vector pt on the right hand side of (1) are componentwise. The exposure
vector, wt = (w1t, . . . , wnt)>, is defined as a componentwise product of Λt

and pt. In the above example, the exposure is wt = (4000, 12000)>.
The conditional loss distribution

L(Lt+h | Ht) (3)

of the possible losses of the portfolio Lt+h = −w>t Rt+h in a time horizon h,
is the object of our interest. In the following, we will set h = 1 (one trading
day). The conditioning information Ht, mostly defined by a moving window
of fixed length N , consists in the simplest cases only from the observed
market prices.

Assuming that the distribution of Rt+h is known, we could assess the
distribution of losses (3) via Monte Carlo simulations since the changes of
the portfolio value are a known function of the vector

Lt+h = Ψt(Rt+h). (4)

In some situations, one can derive explicit solutions that lead to evaluation
of an integral involving the loss distribution.

A portfolio is called linear if the function Ψt in (4) is linear. For linear
portfolios, the returns Rt are often parametrized by elliptical distributions
with

E(Rt) = 0

(RiskMetrics 1996, Litterman and Winkelmann 1998). For definiton of el-
liptical distribution refer to Härdle and Simar (2003). In this situation, the
predictive distributions (3) for linear portfolios can be evaluated analyti-
cally. The dynamics is mostly analyzed using (I)GARCH- or White Noise
models, Gouriéroux (1997).

In a Gaussian model, e.g., a White Noise model withN(0, σ2
it) distributed

innovations, the VaR of the i-th asset at level α is given by

V aRi(α, h, t) = witqασith,

where σ2
ith = E(R2

i,t+h) and qα denotes the α−quantile of the standard
Normal distribution. Denoting by

VaR = (V aR1, · · · , V aRn)>

the VaR-vector (at level α and horizon h), the VaR of a portfolio Πt can be
expressed as:

VaR(Πt) = VaR(Πt, α, h) =
√

VaR> Ct VaR (5)

where Ct is the correlation matrix of Rt+h corrected by the signs of our po-
sitions, i.e., cijt = ρijt sign(wit) sign(wjt). The vector VaR provides insight
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into possible concentrations into single risk factors. Hence, the expression (5)
is to be preferred over the similar expression

V aR(Πt) =
√
w>t Σtwt.

In the next section, we present three common mappings. The third sec-
tion is devoted to the diagnostics. In the fourth section, we will present our
considerations related to the quantitative analysis. The empirical analysis
in the last section has been performed with XploRe.

2. Mappings

The mappings that are used in the practice, are mostly based in the space of
the portfolio variables and depend on projections (principal components) or
regression methods. A prominent example is the mapping of a portfolio onto
the market index. Applications based on the simplification of the parameter
space are in practice not very common. RiskMetrics (1996) provides an
important example: the sparse modelling of IGARCH models using only
one smoothing parameter for all risk factors.

A VaR model of a linear portfolio based on (5) would require estimation
of altogether n(n+ 1)/2 parameter of the covariance matrix. The amount,
n, of the portfolio variables is mostly too large to consider every variable
as a risk factor in the VaR model of the general market risk. Considering
the fact that realistic values of n are usually much larger than 5000 and, in
certain cases, reach values as high as 500000, one tries to keep the number
of risk factors as small as possible, i.e.,

dim(R̃) = d� n.

In the case of the RiskMetrics data matrix, the number of risk factors, d, is
approximately 400. Models with d > 5000 are rarely used in practice.

In order to apply a mapping, we have to select a vector of risk factors:

R̃ = (R̃1, · · · , R̃d)>. (6)

The choice is usually done empirically. Formally, the mapping can be de-
scribed using a function M as follows:

M : R −→M(R) = R̃.

For a given R̃ we have to derive a function ψ such that the distribution of
the variable L̃t = ψ(R̃) approximates the distribution of the portfolio losses
Lt = Ψ(R) as good as possible. The function ψ maps the exposures wt

implicitly on the risk factors. In the ideal situation, with similarly defined
H̃t, we would have:

L(Lt+h | Ht) = L(L̃t+h | H̃t)
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or
V aR(Πt) = V aR(Π̃t).

In the simplest case, M is an inclusion mapping or the risk factors R̃i are
functions of R. For example, R̃ could contain a subset of the elements of R
or a linear combination of R.

The common mapping procedures are mostly based on one meta portfolio
characterized by the set of all available instruments, without taking into
account the characteristics of the specific portfolio, e.g., by using the wt in
the construction of the mapping. In the following, we explore the, by Risk-
Metrics (1996) publicized, index model, the mapping on synthetic indices
(principal components), and we suggest a new method based on a simplified
correlation matrix.

2.1. Regression approach: index model. Among all mappings, the
market index model is most commonly applied in the practice, Jorion (1997).
Cuthbertson (1996) provides an overview of the common variants of the
CAPM model as well as the factor models, and he gives a critical assess-
ment of the corresponding model assumptions. The use of the beta factors
is based on the assumed relation between the returns of an asset and the
returns of a corresponding index, e.g., the DAX. The risk of having an open
position in a certain asset is explained using the risk of the index by mapping
the position on the index.

Let Rit denote the return of the i-th asset and Rmt the return of the
index. The index model is then specified by the following equations:

Rit = βiRmt + εit, (7)

where E(εit) = 0, E(ε2it) = σ2
ε,it, E(εitRmt) = 0, and E(εitεjt) = 0.

These equations are valid for times t = 1, . . . , T and εit is called the
residual (or idiosyncratic) variable. The above model specification defines
seemingly unrelated regression equations. The consequence is that, in this
case, the parameters do not have to be estimated jointly.

The variance of Rit can be decomposed as

σ2
it = β2

i σ
2
mt + σ2

ε,it (8)

and for the covariance we have

σ2
ijt = βiβjσ

2
mt. (9)

Under the assumptions of the model (7) and using (8) and (9) we have for
the variance of (3) that

w>t Σtwt =
n∑

j,i=1

σitσjtρijtwitwjt

=
n∑

j,i=1

βiβjσ
2
mtwitwjt +

n∑
i=1

σ2
ε,itw

2
it

= σ2
mtw

>
t ββ

>wt + w>t Dεt
wt, (10)
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where β = (β1, · · · , βn)> denotes the vector of betas. The diagonal ma-
trix Dεt = diag(σ2

ε,1, · · · , σ2
ε,n) denotes the covariance matrix of the vector

ε. Equation (10) motivates the following approximations of the covariance
matrix Σt:

ΣD = σ2
mββ

> +Dε (11)
Σβ = σ2

mββ
>. (12)

The quality of the approximation strongly depends on the validity of (7).
The first term in the sum in (10) allows us to interpret the approxima-
tion (12) as a mapping. In this case of a mapping on an index, equation (7)
becomes:

M(wt) = β>wt and M(R) = {Rm},

σ2
mtw

>
t ββ

>wt + w>t Dεtwt = σ2
mtM2(wt) + w>t Dεtwt.

The advantages of this mapping are obvious: on one hand, we have to esti-
mate only n+ 1, respectively 2n+ 1 parameters (dim(β) = n, dim(ε) = n,
and σ2

m) of the matrix Σβ or, respectively ΣD (instead of n(n+1)/2 param-
eters of Σt) and, on the other hand, the use of the risk factor Rm leads to
a substantial dimension reduction of the VaR model. These mappings use
approximations of V aR(Πt) that follow from equations (11) and (12).

V aRD{M(Πt)} = qα

√
w>t ΣDwt

=
√

VaR>
M (1(n×n) +B−1Dεt

B−1) VaRM (13)

V aRβ{M(Πt)} = qα

√
w>t Σβwt =

√
VaR>

M 1(n×n) VaRM (14)

where the i-th element of VaRM denotes the VaR of the i-th asset mapped
on the index Rm:

VaRM = V aRmβ,

B denotes the diagonal matrix diag(| β1 |, · · · , | βn |) and 1(n×n) is an
(n × n) matrix of ones. The relations (13) and (14) show clearly how the
mappings (11) and (12) simplify the VaR calculation:

1. In (13), C in (5) is replaced by 1(n×n) +B−1Dεt
B−1.

2. In (14), C in (5) is replaced by 1(n×n).
3. In (13) and (14), VaR in (5) is replaced by VaRM.

Obviously, the effects of the above simplifications vary and their conse-
quences cannot be, in general, predicted. The square V aR of a linear port-
folio is a quadratic form of wt and Σt:

V aR2 = w>t Σtwt = VaR>CtVaR.

Obviously,

VaR>
M Ct VaRM ≤ VaR> Ct VaR ≤ VaR> 1(n×n) VaR.
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The effect of a mapping cannot be, in general, fully determined even for
portfolios consisting only from long positions. For portfolios, consisting from
both long and short positions, is it completely impossible. The substitution
of Ct by 1(n×n) in (5) is conservative, whereas the substitution of VaR
by VaRM tends to underestimate the actual risk. The elimination of long
and short positions mapped on an index (quasi a stochastic netting) leads to
problems that might arise when singular covariance matrices are used (Davé
and Stahl 1998). So, rank(1(n×n)) = 1 implies that there exists portfolio
with exposure w̃ such that

w̃> 1(n×n) w̃ = 0.

Thus the VaRs corresponding to w̃ are equal to zero. Hence, the empirical
analyses assessing the validity of the beta factor models are not accessible.

2.2. Mapping on principal components. The application of principal
components is a well known procedure (Jolliffe 1986, Christensen 1991,
Härdle and Simar 2003). The orthogonalization of the variance matrix Σ of
the vector R leads

Σ = ΓΛΓ>

where Λ = diag(λ1, · · · , λn) is the diagonal matrix of the eigenvalues and
Γ is the matrix consisting of eigenvectors of Σ. Under the usual regularity
assumptions (λi > 0), R can be expressed as

R = ΓY.

The elements (Y1, · · · , Yn) of the vectors Y are uncorrelated and are called
the principal components of R. The total variability of R is equal to the
trace of Σ:

trace(Σ) = trace(ΓΛΓ>) =
n∑

i=1

λi.

Thus, the principal components with the largest variances (eigenvalues) ex-
plain most of the total variability of R and, in this sense, can be considered
as the most important influence factors. Ordering the eigenvalues so that
λ1 ≥ λ2 ≥ · · · ≥ λn and denoting by Γ(i) the i-th column of the correspond-
ing Γ , the approximation

R ≈
k∑

i=1

Γ(i)Yi (15)

with k < n explains

ξk =
∑k

i=1 λi∑n
i=1 λi

(16)

of the total variability of R. Here, the risk factors R̃ = M(R) are the
principal components Y1, . . . , Yk. Typically, the dimension k is chosen as
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the minimal number of the principal components that guarantees that ξk >
1 − ξ∗ where 0 < ξ∗ < 1. In a linear, normally distributed case, we have
immediately for the Value-at-Risk of the mapped portfolio at level α that

V aR = Φ−1(α)
√
w>t [Γ(1) · · ·Γ(k)]Λ[Γ(1) · · ·Γ(k)]>wt. (17)

2.3. Mapping of the parameter space: Equally correlated risk
factors. The mappings presented in this section simplify the structure of
the parameter space of the stochastic model of the risk factors

Σt = diag(σ1, . . . , σn)Ct diag(σ1, . . . , σn)

by the following restriction:

Ct = (ρijt)i,j=1,··· ,n with constant ρijt = ρ ∈ [−1, 1]. (18)

Such models are currently applied in the area of credit risk, but similar
ideas are also well-known in the portfolio theory, Elton and Gruber (1995).

The estimation of the restricted correlation matrix can be based on the
following random effects model:

Rit/σi = αt + εit,

where Eαt = Eεit = ERit = 0, ER2
it = σ2

i , Eα2
t = σ2

α, Eε2it = σ2
ε , Eαsεit =

0. For the variance and covariance of the returns, we have the following:

V ar(Rit) = σ2
i (σ2

α + σ2
ε) = σ2

i

Cov(Rit, Rjt) = σiσjσ
2
α.

We define R∗it = Rit/σi. A suitable estimator of σ2
i is, for example, the

empirical variance of the returns Rit, t = 1, . . . , T . Next, we define R̄∗t =∑n
i=1R

∗
it and ε̄t =

∑n
i=1 εit. Obviously,

R∗it − R̄∗t = εit − ε̄t

and we apply the following estimator:

σ̂2
ε =

∑n
i=1

∑T
t=1(R

∗
it − R̄∗t )

2

n(T − 1)
,

σ̂2
α = 1− σ̂2

ε .

The standard deviation in the demonimator of R∗it is estimated by the em-
pirical standard deviation.

The correlation matrix of the returns is then approximated by

Σ̂ = diag(σ1, . . . , σn)


1 σ2

α . . . σ2
α

σ2
α 1 . . . σ2

α

...

σ2
α . . . σ2

α 1

 diag(σ1, . . . , σn).
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Comparing the advantages and disadvantages of the mappings presented
in the section, it can be seen, that each of the mappings tries to reach,
from its own perspective, a compromise between the precision of the VaR
estimation, the simplicity of interpretation, the complexity with concern
on the application of the procedure in practice, and the simplicity of its
technical implementation.

3. Diagnostics

Value-at-Risk models are a special case of statistical prediction models,
since the estimated distributions of the risk factors R̃t+h, describing our
uncertainty about the future of the market, allow to access the conditional
loss distribution

L(Lt+h | Ht)

in a horizon h. The empirical basis for judgements on the quality of the
predictions of a VaR model is a series of pairs,

{Pt, νt}N
t=1, (19)

consisting of the prediction, Pt, and the corresponding realization, νt, see
Diebold, Gunther, and Tay (1998).

The shorthand notation Pt denotes either the complete estimated predic-
tive distribution or some derived parameter (e.g., VaR, tail-VaR, standard
deviation), the letter P stands for “prediction”. The use of the symbol P̂t

in some situation stresses the fact that the distribution we work with is
estimated.

The symbol νt denotes the corresponding change of the value of the
portfolio Πt in a fixed time horizon, here fixed as one day, h = 1. We
assume that the observations νt are realizations of random variables Nt. We
distinguish between lt and νt: the variable Lt refers to the space of the risk
factors, i.e.,M(R), whereas Nt refers to the space of the portfolio variables.

3.1. Tools. The area of the probability forecasts is one of the less explored
areas of the mathematical statistics. Substantial part of the theoretical foun-
dations stem from Dawid—his summary papers (Dawid 1986, Dawid 1997)
provide extensive overview of the topic. The motivations came from the
literature on the evaluation of the weather forecasts. The first publication
comes from 1884 (Gilbert 1884, Peirce 1884), the relevant literature be-
gins with Brier’s papers in fifties and advances steadily since sixties mainly
through Murphy and Winkler (1992) and Murphy (1997).

The above mentioned applied papers focus on discrete random variables.
The probability scale [0, 1] is cut into k categories, further l denotes the
number of the events, e.g., for weather forecasts l = 2 for E = {rain,
no rain}. Let us assume that we have N probability forecasts {Pti}N

t=1 as
well as the corresponding events {νt}N

t=1. Denoting by Pti, i = 1, · · · , l the
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probabilities predicted for t and by Eti a zero-one variable which is equal to
1 if at time t we observe event from the category i (νt = i) and 0 otherwise.
Using this notation, the Brier score of a forecast system is defined as:

BS =
1
N

l∑
i=1

N∑
t=1

(Pti − Eti)2. (20)

In order to assess the quality of a forecast system in more detail, Mur-
phy and Winkler (1992) start, in the context of discrete random variables,
from equation (19), ignoring the information of the time dependency, by
considering the joint relative frequencies

h(pi, ej) =
Nij

N
, (21)

where Nij denotes the number of times when the event ej , j = 1, . . . , l was
predicted with the probability pi, i = 1, . . . , k.

The factorization of (21)

h(p, e) = h(e | p) h(p) (22)
= h(p | e) h(e) (23)

into conditional and marginal frequency distributions is the basis for defi-
nitions of additional indices and plots.

Important indices and plots. The Brier Score can be interpreted as a
Mean Squared Error (MSE) because of its following representation:

BS =
k∑

i=1

l∑
j=1

(pi − ej)2h(pi, ej), (24)

= (µp − µe)2 + σ2
p + σ2

e − 2σpσeρpe. (25)

The Skill Score is defined as a coefficient of determination of the predictive
probabilities seen as a fitted value in the regression model for the events.
It can be calculated as a square of the correlation coefficient between the
predictions Pti and the zero-one variables Eti.

Another evaluation of the quality of the forecasts results from the com-
parison of

pi and
1
l

l∑
j=1

Nij . (26)

In a perfect forecast system, the probabilities pi would correspond to the
observed relative frequencies. If this is the case, we say that the forecasts
are calibrated. In the calibration plot, where 1

N

∑k
j=1Nij is plotted against

pi, the points should ideally lie on the diagonal of the unit square.
The forecast method can discriminate between the events if the con-

ditional distributions h(p|e = 0) and h(p|e = 1) are significantly different.
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Typically, the distribution of h(p|e = 0) should be concentrated close to zero
and the distribution of h(p|e = 1) should lie close to 1. The more different
the two distributions are, the better the forecast can discriminate between
the two possible values of event e. Some common measures include difference
in means or variances of the two distributions. However, most informative
are discrimination plots that display the two distributions graphically.

The joint distribution h(p, e) leads to many other measures of calibra-
tion, discrimination, refinement, resolution, bias or skill of the forecast pro-
cedures. From the many choices we have decided to use the Brier Score and
the Skill Score, that can be interpreted as the MSE and the coefficient of
determination, respectively (Murphy and Winkler 1992).

For appropriate VaR forecasts, the realizations of the variables FLt
(Nt)

should not be distinguishable from independent draws from Uniform [0, 1]
distributions, where FLt(x) denotes the distribution function of Pt. The P-P
plot of the transformed observations

{F̂Lt(νt)}N
t=1 (27)

is called the (absolute) empirical calibration curve.
The weather and VaR forecasts usually differ only in one detail: in VaR

models we focus on varying events (quantiles or forecast intervals) with
fixed probabilities, by contrast in weather forecasts we obtain probability
forecasts of fixed events.

The following indices and plots are motivated by their focus on the events,
more precisely on the intervals (−∞, V aR]. To this end, (19) has to be
accordingly modified. For an interval forecast based on (5), the model is
calibrated if the series: {

sα
t =

νt

σt

}N

t=1

(28)

cannot be distinguished from a Gaussian White Noise process. Here, σt

denotes an estimate of the scale of νt. The Quantile-Quantile plots (Q-Q
plots) is a convenient graphical device. An important numerical parameter
is here

κ = σ̂Sα (29)

that attempts to quantify the amount of under- and overestimation of the
risk forecasted by the model. It is easy to see that in the ideal case, when
σt reflects perfectly the standard deviation of the process νt, the parameter
κ would be close to one. Small values of the parameter κ indicate that
the model overestimates and large values of the parameter suggest that the
model underestimates the true risk.

The empirical calibration curve, i.e., the P-P plot of the time series (27),
is a diagnostic plot for checking whether the uniform U [0, 1] distribution is
fitting the marginal distributions of the process {FLt

(Nt)}N
t=1.

For the calibrated model, the points in the plot should concentrate close
to the diagonal of the unit square. Furthermore, the symmetry properties
of the plotted distributions can be easily evaluated. In the context of the
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VaR models, the main disadvantage of this plot is its focus on the centre of
the distribution (Wilk and Gnanadesikan 1968).

The application of a Q-Q plot as a diagnostics tool for calibration is more
subjective since, in this situation, we do not have any fixed reference points
(such as the diagonal of the unit square for the P-P plots). We can assess the
symmetry and distribution of the process, but the calibration itself cannot
be assessed without further specification of the model such as, e.g., (35).
The advantage of Q-Q plots lies in its focus on the deviations in the tails of
the distribution (Wilk and Gnanadesikan 1968).

The absolute and relative empirical calibration curves investigate only
the appropriateness of the marginal distribution of the process Lt. They
allow to verify the appropriateness of the choice of the risk factors, but do
not allow to draw any conclusion on the temporal dependency structures.
The heterogeneity- and independence properties are investigated by the
means of time plots. The time series of the indicator function of the VaR
exceedances at level α

{I{νt > V aRt−1(α)}}N
t=1 (30)

allows to discover clusters that indicate time dependency of the realizations
sα. Plotting the time series

{P̂t, νt}N
t=1, (31)

the inhomogeneity can be discovered visually. χ2 statistics allow to identify
periods in which the forecasts were not independent.

4. Considerations on the quantitative analysis

The following empirical analysis compares the presented models on simu-
lated portfolios by the means of the diagnostic tools, evaluating the forecast
quality and presented in the previous section. We start with the description
of the data set and the design of the simulations.

4.1. Design of the study.

The data set. The empirical basis of the following study is provided by
the daily discrete returns

rt =
pt+1 − pt

pt
(32)

obtained from the following 18 German assets and the German market in-
dex DAX: Allianz, BASF, Bayer, BMW, Commerzbank, DAX, Deutsche
Bank, Degussa-Huels, Dresdner Bank, Hoechst, Hypovereinsbank, Karstadt,
Lufthansa, Linde, MAN, Mannesmann, Münchner Rück, Preussag, RWE.
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Financial time series typically contain holes corresponding to the national
holidays. It is common practice of the data providers to replace the missing
values by the values from the previous day. This procedure results, according
to the definition in (32), in zero returns. This happens to approximately
5% of the data. Thus, the data set could be described as a mix of two
distributions, for example,

0.95 N(0, Σ) + 0.05 δ0,

where δ0 is the distribution degenerated in zero. In order to get rid of the
possible influence of this kind of model misspecification on the evaluation
of the quality of forecasts, these values were removed from the time series.

The time series begins on the January 1-st, 1997 and ends on June 18-th,
1999.

Simulation of the portfolio. In order to simulate the exposures, wt,
as realistically as possible, we have set limits—similarly to the capacity load
of VaR limits—controlling the behaviour of the simulations:

w>t+1 =
w>t
σΠt

{600 diag(1/6 + U1, · · · , 1/6 + Un)}

where Un is a n-dimensional Uniform distribution and σΠt
is the volatility

of the portfolio. This way of simulating of the portfolio weights guaran-
tees random changes and, at the same time, incorporates natural bounds
on the volatility of the portfolio. Notice, that if the portfolio volatility in-
creases, the values of wt decreases in order to keep the VaR under a specified
bound. Simple calculation shows that, if the volatility of the returns does
not change, the volatility of this simulated portfolio with varying weights
should lie close to 400.

The reasoning behind this approach is based on the fact that the VaR
models are, aside to the risk measurement, applied also for risk control. The
practical implementations are usually based on some limits on the VaR. It
has been observed in practice that these limits exhibit constant capacity
over the time within certain borders; this is the motivation and justification
for the above assumption.

Due to the simulated portfolio weights that keep automatically the port-
folio losses under control, we further assume that the value of the portfolio
stays within the fixed interval:

Nt ∈ [−50000, 50000].

This interval is split into disjoint sets Ai:

[−50000, 50000] = ∪5
i=1Ai.

In our study, the intervals:

A1 = [−50000,−500), A2 = [−500,−320), A3 = [−320, 320),
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A4 = [320, 500) and A5 = [500, 50000]

are used for the evaluation the probability forecasts, i.e., the probabilities
of the portfolio changes falling into these intervals are compared with the
true events. The intervals A1–A5 were selected with respect to the simu-
lated volatility so that the forecasted probabilities span the interval (0, 1)
as regularly as possible. This property is important for the methods for
the verification of probability forecasts described in Section 5.2. The rela-
tive frequencies of the forecasting probabilities resulting from this choice of
intervals A1–A5 are plotted in Figure 7.

The models. As shown in Sections 1 and 2, the predictive portfolio loss
distribution

L(Lt+h | Ht)

using one class of models, here based on the variance-covariance structure,
can lead to different results depending on the used mapping. The following
empirical analysis evaluates and compares the forecasting quality of models
M1–M6, defined as follows:

1. The model M1 uses all 18 risk variables:

L(Rt+1 | Ht) = N18(0, Σt). (33)

The VaR calculation is based on (5).
2. The model M2 is based on the classical beta factor mapping according

to (12). The VaR calculation is based on formula (14).
3. The extended beta factor model, M3, uses (11). The VaR calculation is

based on (13).
4. The model M4 is based on the principal components (15), the parameter
ξk, in (16) was fixed at 80%. The VaR calculation is based on (17).

5. The model M5 is a modification of M4 such that the weighted returns
(w1tR1t, · · · , wntRnt) instead of Rt are used for the principal components
analysis.

6. The model M6 uses the simple parametrization, as described in (18). All
off-diagonal elements of the correlation matrix are identical, ρij = ρ for
all i 6= j.

The evaluation of the risk is, for all considered models, based on the em-
pirical covariance matrix calculated from the observed returns. After the
simplifications provided by the respective models, the risk is evaluated for
the simulated portfolios.

5. Empirical analysis

The main focus of our investigation is the evaluation of the quality of the
forecasts provided by models M1–M6. The VaR forecasts of these models
are based on the assumption of a multivariate Gaussian White Noise pro-
cess as a stochastic model for the returns Rt of the risk factors. It is known
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Figure 1. Q-Q plot of the squared Mahalanobis radii for the observed returns rt

of the risk factors. The straight line displays the expected values under normality.

that this process is not able to capture adequately some common charac-
teristics of financial time series such as, e.g., fat tails, leptokurtosis, changes
in volatility. Since the national (see, for example, section “Law/Gesetze” at
www.bafin.de) as well as international regulatory norms (Basel Committee
on Banking Supervision 2005) practically forbid the applications of expo-
nantially weighted observations which enter in the applications of GARCH
or IGARCH models, we did not consider these models in this study (Härdle
and Stahl 2000). Hence, we do not present any analysis on how well does
such stochastic model capture the dynamics of the process.

The verification of whether the observations {rt}T
t=1 stem from the p-

dimensional Normal Np(0, Σ) distribution, is carried out by means of a
Q-Q plot. Assuming that the data are N(0, Σ) distributed, we have:

r>t Σ
−1rt ∼ χ2(p).

The sorted observed Mahalanobis radii r>t Σ
−1rt are then compared with the

quantiles of the χ2(p) distribution in a Quantile-Quantile plot. The Q-Q plot
displayed in Figure 1 deviates largely from the reference line. We conclude
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M1

M2

M3

M4

M5

M6

Figure 2. Time series of the changes of the value of the portfolio and the VaR
forecasts for 249 trading days. The VaR forecasts at level 99% and 1% are plotted
as lines. The value changes of the portfolio are plotted as dot if they lie between
the two lines, the values of the portfolio falling outside the predicted VaR region
are denoted by squares. The plots corresponding to models M1–M6 are displayed
from top to bottom.

that the data hardly come from a multivariate Normal distribution. It is
now of crucial importance whether this fact influences the quality of the
forecasts or not.

Figure 2 shows the time series

{Pt, νt}T
t=1

of the VaR forecasts at level α = 99% and α = 1% and the value changes of
the portfolio for T = 249 trading days for models M1–M6. Here, Pt denotes
the VaR predictions and νt denotes the observed changes of the portfolio
value. The exceedances, i.e., the value changes falling outside the predicted
VaR bounds, are marked by squares. With the probability of exceedance set
to 2%, we should on average observe 4.98 exceedances.

The forecasting quality of the model M2 with more than 50 exceedances
is obviously insufficient. The VaR bounds for models M1, M3, M4, and M5
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are very similar and the number of exceedances varies between 3 and 6,
reasonably close to the expected value 4.98. In our simulation, model M6

seems to overestimate the risk, leading to only 1 exceedance.
The daily practice of VaR modelling has shown that exploratory diag-

nostic tools for assessing the quality of the forecasts of the VaR models are
sufficient both for sub and full portfolios. Hence, in the following, we will
omit the formal statistical inference presented in Davé and Stahl (1998). We
will explore the qualities of the models by means of graphical and descriptive
statistical tools.

M1 M2 M3 M4 M5 M6

κ 1.07 2.32 1.06 1.13 1.07 1.07

Brier score 0.15 0.21 0.15 0.16 0.15 0.16

Skill score 0.35 0.15 0.35 0.34 0.35 0.35

Table 1. Parameter κ, Brier score and Skill score for the evaluation of the quality
of models M1–M6. A good model should exhibit κ close to 1, small value of Brier
score, and large value of the Skill score.

The graphical analysis of the forecast quality of the VaR models can be
based, apart of the timeplot in Figure 2, on various plots of the empirical
calibration curves (Dawid 1984). One approach is based on the standard-
ization of the value, Lt, of the portfolio at time t. Since the random variable

Sα
t =

Lt

V aRt−1
(34)

has a normal distribution, we obtain that asymptotically

L(Lt/V̂ aRt−1) ≈ N(0, 2.33−2), (35)

since V̂ aRt−1 is in the Gaussian model defined as 2.33 σ̂t−1. Note also that
the inequality Sα

t < −1 characterizes the exceedances of the VaR forecast
that can be easily identified in the corresponding timeplots. The validity
of the VaR model can be verified by checking whether {FLt

(Nt)}T
t=1 and

{Sα
t }T

t=1 are White Noise processes.
In Figures 3–5, we plot the histograms, the P-P plots and the Q-Q plots

for the variables sα
t defined in (28). Note, that in the above Gaussian con-

text, 2.33 sα
t is equal to the above defined Sα

t . All histograms in Figure 3,
apart of model M2, look similar to the standard Normal distribution. The
histograms for the remaining models, M1 and M3–M6 look almost identi-
cal and we can say that all mappings give comparable results. The same
conclusion can be derived from the P-P and Q-Q plots in Figures 4 and 5.
Again, model M2 gives much worse results than the remaining models who
look again very similar and seem to satisfy our assumptions.

The parameter κ, defined in (29), is tabulated for the six models in
Table 1. All models tend to underestimate the risk. Again, the model M2
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Figure 3. Histograms of the variable sα
t , defined in (28), for models M1–M6.

gives unacceptable results. The level of the risk underestimation for the
remaining models is much lower and close to 1.

5.1. Exceedances. The time series of the indicator function of the VaR
exceedances (30) at level α = 80% is plotted in Figure 6. Theoretically,
the number of exceedances should lie close to 20%. Visual inspection of
such time plots should point out potential time inhomogeneities. Figure 6
is complemented by Table 2 that lists the percentages of the exceedances
for each model and for each quarter of the year separately. Most of the
time, the percentages are moving rather close (±6%)to the expected 20%.
The two exceptions are model M2 and 1-st quarter of 1999. The bad results
for model M2 are consistent with the results of the previous analyses. The
bad behaviour of all models in the beginning of 1999 indicates some model
heterogeneities or volatility changes in this period.

5.2. Verification of probability forecasts. The probability fore-
casts, analyzed in this section, relate to the probabilities of the portfolios
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Figure 4. P-P plots for the variable sα
t , defined in (28), for models M1–M6.
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Figure 5. Q-Q plots for the variable sα
t , defined in (28), for models M1–M6.
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Figure 6. The time series of the VaR exceedances at level α = 0.8 for models
M1–M6.

changes falling into intervals A1–A5, described in Section 4.1. From the
simulation, we have both the predicted probability that the change of the
portfolio falls into one of these intervals and we also know the true realiza-
tion.

The Brier score and Skill score for the models M1–M6 are given in the
second and third rows of Table 1. From this point of view, we can say that
the best model are the full model M1 and models M3 and M5. Models M4

and M6 are just a bit worse. Model M2 shows, once again, worst behaviour.
The relative frequencies of the forecasting probabilities are plotted in the

first and in the third row of plots in Figure 7. The intervals A1–A5 were
selected so that, in this simulations, the forecasting probabilities cover the
interval (0, 1) as uniformly as possible. We observe that only model M2

behaves differently. In comparison to other models, its forecasting probabil-
ities are much larger. Clearly, this is caused by its underestimation of the
risk, observed already in the previous analyses, see Figure 2.

The second and the fourth row of plots in Figure 7 show calibration plots
for all six models, i.e., each plots displays the forecasting probabilities on
the x-axis and the corresponding relative frequencies of the success on the
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M1 M2 M3 M4 M5 M6

Q1 1998 0.14 0.22 0.14 0.14 0.14 0.14

(1.01) (0.40) (1.01) (1.01) (1.01) (1.01)

Q2 1998 0.17 0.37 0.17 0.17 0.17 0.17

(0.52) (2.97) (0.52) (0.52) (0.52) (0.52)

Q3 1998 0.26 0.52 0.24 0.26 0.26 0.26

(1.05) (5.73) (0.78) (1.05) (1.05) (1.05)

Q4 1998 0.14 0.44 0.14 0.14 0.14 0.14

(1.01) (4.34) (1.01) (1.01) (1.01) (1.01)

Q1 1999 0.39 0.70 0.39 0.39 0.39 0.39

(3.21) (8.85) (3.21) (3.21) (3.21) (3.21)

Q2 1999 0.17 0.63 0.17 0.17 0.17 0.17

(0.43) (7.00) (0.40) (0.43) (0.43) (0.43)

χ2 13.9 188.0 13.4 13.9 13.9 13.9

p-value 0.020 0.000 0.026 0.020 0.020 0.020

Table 2. Relative frequencies of the exceedances of the VaR at level α = 80%
for each quart in our data set for models M1–M6. The contributions to the χ2

statistic are given in the parentheses. The last row gives the p-values for the test
of the hypothesis H0 : p = 0.2 against the alternative H1 : p 6= 0.2.

y-axis. Clearly, a perfectly calibrated model should lie very close to the di-
agonal of the unit square. In this case, all models (apart of M2) provide well
calibrated forecasts. Model M2 underestimates the forecasting probabilities.

In Figure 8, we show the discrimination plots. One curve in each plot
is the relative frequency of the forecasting probabilities conditioned on a
success, while the other one conditiones on a failure. For good forecasts,
one would like to predict success with high probability if it really occures
and with low probability if it does not occur. Hence, for a good model, the
two curves should be very far from each other. Again, we observe that the
behaviour of model M2 is worse than the behaviour of the other models.

5.3. Conclusion. The results of the empirical analyses suggest that all
mappings, apart of M2, lead to results comparable with the full model M1.
The model M5 using the weighted principal component analysis gives, as
expected, slightly better results that model M4 that uses principal compo-
nents method without taking the weights into consideration. Surprisingly,
the model M6 seems to give slightly better results than both models based
on the principal components.

Our conclusion is that model M2 should not be used in practice. The
remaining models give comparable results. The comparison of the models
was based on the indices given in Tables 1 and 2 whereas the graphical
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Figure 7. The relative frequencies of the forecast probabilities and the discrete
calibration curves for models M1–M6.

methods (Figures 1–8) help to understand why one method is better than
the other one.
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