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Abstract

Risk management technology applied to high dimensional portfolios needs simple and fast
methods for calculation of Value-at-Risk (VaR). The multivariate normal framework pro-
vides a simple off-the-shelf methodology but lacks the heavy tailed distributional properties
that are observed in data. A principle component based method (tied closely to the elliptical
structure of the distribution) is therefore expected to be unsatisfactory. Here we propose
and analyze a technology that is based on Independent Component Analysis (ICA). We
study the proposed ICVaR methodology in an extensive simulation study and apply it to a
high dimensional portfolio situation. Our analysis yields very accurate VaRs.
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1 Introduction

The Value-at-Risk (VaR) calculation of large portfolios is a challenging task - both numer-
ically and statistically. VaR indicates the possible loss over a given time horizon at a risk
level a. From a statistical point of view, it is the a-quantile of the joint distribution of the
portfolio’s risk factors which are modeled heteroscedastically:

xt = Σ1/2
t εt, (1)

where xt ∈ IRd is the risk factor vector, e.g. the (log) returns of d individual financial
instruments. The matrix Σt denotes the corresponding time-dependent covariance and εt

is the d-dimensional standardized residual vector. The portfolio VaR calculation becomes
technically difficult for high dimensionality of the portfolio.

In order to solve this and other numerical problems, portfolio variations are typically
mapped into a conditional multivariate normal framework such as RiskMetrics launched
by J.P. Morgan. Recall that, Gaussian distributed residuals or devolatilized returns εt =
Σ−1/2

t xt are independent after devolatilization; the joint density of the residuals is the
product of d marginals. In this sense, the portfolio VaR calculation is simplified and only
covariance based. Many well developed covariance estimation methodologies in a high di-
mensional space have been easily applied in practice, for example, the Constant Conditional
Correlation (CCC) model proposed by Bollerslev (1990) and the subsequent Dynamic Con-
ditional Correlation (DCC) model proposed by Engle (2002), Engle and Sheppard (2001).
The simplicity of this kind of covariance based methodology nevertheless bears a risk of
modeling bias since, among other things, the assumed conditional Gaussian marginals are
unable to mimic the heavy tailedness of financial time series observed in markets. This is-
sue has been addressed in a variety of papers. For example, Jaschke and Jiang (2002) have
studied the conditional Gaussian distribution fits to VaR that deliver satisfactory estimates
at a moderate (e.g. 95%) confidence level but underestimate VaRs at more extreme levels
such as 99%.

The tail problems are evident from Figure 1, where we compare the marginal density
estimations of devolatilized returns of foreign exchange rates, the German Mark to the
US Dollar (DEM/USD), from 1979-12-01 to 1994-04-01. In order to mimic the empirical
distributional behavior of the real data, we assume 3 different distributional types. The
RiskMetrics (left panel) and t(15)-deGARCH (right panel) methods fit the devolatilized re-
turns, based on a GARCH(1,1) volatility process: σ̂2

t = 1.65∗10−6 +0.07x2
t−1 +0.89σ̂2

t−1, by
the normal and Student-t with degrees of freedom 15 distributions. The GHADA (middle
panel) technique assumes that the devolatilized returns follow a time stationary Generalized
Hyperbolic (GH) distributional mechanism based on locally constant volatilities, see Chen,
Härdle and Jeong (2005) and Mercurio and Spokoiny (2004) for details. The nonparametric
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kernel density estimations (solid lines) corresponding to the devolatilized return processes
are considered as benchmarks. According to the graphical comparison, the GHADA tech-
nique is superior to the other two techniques since the empirical GH density coincides to
the benchmark, especially in the tails. The t-deGARCH technique shows although a bet-
ter tail fit compared to the RiskMetrics, it still deviates from the benchmark. This small
comparison provides evidence that the normally distributional assumption is unreliable and
will lead to low accuracy of univariate and portfolio VaR calculations.

RiskMetrics

-10.00

-7.50

-2.50

0.00

-5.00 -2.50 2.50 5.00

GHADA(1,1.74,-0.02,0.78,0.01)

-10.00

-7.50

-2.50

0.00

-5.00 -2.50 2.50 5.00

t(15)-deGARCH
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-7.50

-2.50

0.00

-5.00 -2.50 2.50 5.00

Fig. 1: Graphical comparison of density estimations based on the devolatilized DEM/USD
returns from 1979-12-01 to 1994-04-01 (3719 observations). The nonparametrical
kernel density estimations are considered as benchmarks. The RiskMetrics based
density estimation is the dotted curve on the left panel whereas the t(15)-deGARCH
based estimation is displayed on the right. The corresponding GARCH(1,1) process
is: σ̂2

t = 1.65 ∗ 10−6 + 0.07x2
t−1 + 0.89σ̂2

t−1. The GHADA technique with the local
constant volatility process and the GH(1, 1.74,−0.02, 0.78, 0.01) density estimation
is displayed on the middle panel. Data source: FEDC(sfb649.wiwi.hu-berlin.de).

ICVaRdemusd.xpl

The weak performance of the normal assumption motivates us to search for a different
approach solving the technical problems of portfolio VaR calculations. An “ideal” situation
is, as mentioned before, that the residuals εt are independent. Since based on the indepen-
dence, the estimation of the joint distribution can be converted to marginals’ estimations.

In the context of sound engineering, signal detection from unknown filters and sources
is treated by a method called Independent Component Analysis (ICA). This engineering
method is designed for detection of blind folded signals and retrieves out of a high dimen-
sional time series stochastically independent source components. A tutorial on ICA can
be found in Hyvärinen and Oja (1999) and a variety of numerical techniques to uncover
Independent Components (ICs) are discussed in Hyvärinen, Karhunen and Oja (2001). Pro-
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moted by the success in engineering, ICA has been applied in different areas such as brain
imaging (Duann, Jung, Kuo, Yeh, Makeig, Hsieh and Sejnowski, 2002) and telecommuni-
cation study (Ristaniemi, Raju and Karhunen, 2002). An early implementation of ICA
in financial time series is given in Back and Weigend (1998), drawing comparisons of ICs
and principal components (PCs) applied to 28 Japanese stocks from 1986 to 1989. Few
contributions however exist for the application of ICA in risk management.

The first aim of this paper is to bring together the lines of thought of the engineering
signal processing literature and newer statistical insights on the high dimensional VaR
calculations. We coin the name ICVaR owing to the ICA technology. Given a trading
strategy bt ∈ IRd, the portfolio return Rt ∈ IR is:

Rt = b>t xt. (2)

Note that the ICVaR technique does not rely on a direct joint density estimation of the
high dimensional returns xt ∈ IRd such as xt = Σ1/2

t εt. Instead the ICVaR procedure
in a first step applies a linear transformation to xt, i.e. a nonsingular matrix W yields
(approximately) ICs yt ∈ IRd:

xt = W−1yt (3)

The matrix W is different from the Mahalanobis transformation cov(x)−1/2 - that creates
ICs in the Gaussian regime - only in the case of non-Gaussian marginals as we will see later.
The second ICVaR step concerns the fit of each IC univariately:

yt = diag(σ1t, · · · , σdt)εt = D
1/2
t εt (4)

or equivalently: yjt = σjtεjt, j = 1, · · · , d,

where the covariance Dt of the ICs is diagonal due to independence and εt are cross inde-
pendent shocks. Based on the ICA, the high-dimensional VaR problem is now converted to
simpler univariate VaR calculations. Given the discussion above on fitting VaR this opens
a wide avenue of alternative VaR determination.

The second purpose of this paper is to compare the proposed ICVaR technique with the
industry standard RiskMetrics and the most-often used t-deGARCH method. As discussed
before, the RiskMetrics often gives underestimated VaRs, an inevitable cost of the Gaussian
assumption. On the contrary, the Students-t distribution can better mimic the heavy tailed
distributional behavior of financial risk factor than the RiskMetrics, but it is hard to reflect
the leptokurtic scenario exactly, as illustrated in Figure 1. In this paper, we show how
high accuracy can be reached by the ICVaR compared to the RiskMetrics and t-deGARCH
methods in real data analysis.

The methodological contribution of the study unfolds in Section 2 where the ICA method
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is discussed. The simulation study is presented in Section 3. Further we apply the ICVaR
to exchange rate portfolios with different artificial trading strategies. The ICVaR predicts
risk levels precisely and outperforms the RiskMetrics and t-deGARCH methods. Finally we
conclude our study in Section 5. All algorithms and figures can be recalculated by following
the net linked indicator below the figures.

2 ICVaR Methodology

2.1 Basic model

The proposed ICVaR methodology consists of 2 main steps: searching for Independent
Components (ICs) based on a linear transformation and modeling the univariate volatility
and stochastic distribution.

Rt = b>t xt (5)

= b>t W−1yt (6)

= b>t W−1D
1/2
t εt. (7)

The idea of the ICA is that risk factors xt ∈ IRd can be represented by a linear combination
of d-dimensional ICs. The linear transformation matrix W is assumed to be nonsingular.
Due to the independence property of ICs, the covariance Dt must be a diagonal matrix and
the elements of the stochastic vector εt are cross independent. Furthermore, it fulfills that
E[εt|Ft−1] = 0 and Var [εt|Ft−1] = Id.

From a statistical viewpoint, this projection technique is desirable since the d-dimensional
portfolio is decomposed to univariate and independent risk factors through a simple linear
transformation. Recall that, the joint density (f) and the covariance of any linear trans-
formed ICs such as xt = W−1yt are analytically computable:

fy =
d∏

j=1

fyj ,

fx = abs(|W |)fy(Wx),

Σt,y = Dt

Σt,x = W−1DtW
−1>.

In the second step of the proposed ICVaR, the diagonal elements of Dt and each component
of εt are estimated univariately since the matrix manipulation is equivalent to:

yjt = σjtεjt, j = 1, · · · , d, (8)

where σjt is the square root of the j-th diagonal element of Dt and εjt is the univariate
stochastic term with E[εjt|Ft−1] = 0 and Var [εjt|Ft−1] = 1. There are various univariate
models that estimate the volatility and approximate the distribution of the stochastic term.
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Here we focus on the IC identification step. For the fit of the marginal IC factors we refer
to the GHADA technique as in Chen et al. (2005), where one estimates the local constant
volatility adaptively in a homogeneous interval and fits the devolatilized returns in the GH
distributional framework. An alternative approach is given by the t-deGARCH setup. It
could be used to estimate the heteroscedastic volatility process and the Student-t could be
applied to pick up the heavy-tailedness of εj .

After these two steps, we compute the quantile of portfolio risk by Monte Carlo sim-
ulation or analytical methods e.g. saddle point approximation, see Iyengary and Mazum-
dar (1998). For the ease of presentation, we concentrate in this paper on the simulation
methodology. In particular, we generate d−dimensional samples of the fitted distributions
with sample size M , from which we calculate the daily empirical a-quantile of the portfo-
lio variations. The simulation will repeat N times and the average value of the empirical
quantiles is considered as the portfolio VaR at level a:

VaRa,t =
1
N

N∑
n=1

F̂−1
a,t (R(n)

t ) =
1
N

N∑
n=1

F̂−1
a,t {b>t Ŵ−1D̂

1/2
t ε̂

(n)
t },

where F̂−1
a,t denotes the empirical quantile function of Rt.

2.2 ICA: Properties and Estimation

Since ICA is a relatively new technique in this context, we present a small pedagogical
illustration of its usage.

Example: Generate 3 independent GH random variables GH(y; 1, 2, 0, 1, 0),
GH(y; 1, 1.7, 0, 0.5, 0) and GH(y; 1, 1.5, 0, 1, 0) as sources. The first distributional parame-
ter specifies the subclass of the random variables. With the value of 1, they are hyper-
bolic (HYP) distributed. The other four parameters control the location, scale, asymme-
try and likeliness of extreme events, see Prause (1999). These source components have
mean (−0.02, 0.05,−0.00)> and standard deviation (SD) (0.83, 0.92, 0.99)> respectively.
The linear transformation matrix is the estimate based on 3 real German stocks’ returns:
ALLIANZ, BASF and BAYER from 1974-01-02 to 1996-12-30 (Data source: FEDC at
sfb649.wiwi.hu-berlin.de).

W−1 =


1.31 0.14 0.18

−0.42 −1.26 −1.25

−0.03 0.41 −0.49

 10−2 (9)
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The time series xt = W−1yt are analyzed by the ICA. The covariance of xt is

cov(x) =


13.66 6.04 6.49

6.04 15.54 11.64

6.49 11.64 16.07

 10−5, (10)

which is comparable to W−1DtW
−1>. Recall that in the Gaussian framework, the Maha-

lanobis transformation delivers independent variables:

ĉov(x)−1/2 =


0.91 −0.09 −0.12

−0.09 1.03 −0.41

−0.12 −0.41 1.04

 102 (11)

which is clearly distinct from

W =


0.79 0.10 0.03

−0.11 −0.44 1.08

−0.15 −0.38 −1.10

 102 (12)

indicated by (9). Figure 2 provides an illustration of this procedure. The top row contains
the 3 independent source signals yt. The middle row displays the time series xt = W−1yt.
One sees the scale changes and different random patterns display. The last row of Figure 2
shows the ICs estimated by the ICA method. The time series on the top and the bottom
look familiar but the sign and the ordering may change as displayed in the figure; The first
estimated IC displays the similar movement as the third generated IC. Furthermore, the
third estimated IC has a mirror pattern of the second true IC.

Scale identification
In fact, the scales of yt and W are not identifiable. Given a matrix C = diag(c1, · · · , cd)
with cj 6= 0, the new ICs (Cyt) with the transformation (W−1C−1) also fulfill (3). In
order to avoid the identification problem, it is suggested to prewhiten xt and assume yt

to be standardized. The Mahalanobis transformation ĉov(x)−1/2 does the prewhitening
job. It is not hard to see that W becomes then an orthogonal matrix. Denote by x̃t - the
prewhitened xt and yt = W̃ x̃t the corresponding ICs. W = W̃ ĉov(x)−1/2 is then the linear
transformation for the original observations. For notational convenience, we assume from
now on that xt has been prewhitened.

Order identification
Furthermore, the order of the ICs is ambiguous. Given a permutation matrix P , the ICs
(Pyt) fulfill (3) with a new transformation (W−1P−1) as well.
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IC is necessarily non-Gaussian
Given a d-dimensional standardized Gaussian vector xt and an orthogonal matrix W , the
joint pdfs of xt and yt are in fact identical and unrelated with W :

fx = |2πId|−
1
2 exp

(
−x>x

2

)
= fx(W−1y)|det W−1|

= |2πId|−
1
2 exp

(
−y>y

2

)
= fy.

The third condition is although strict, it is naturally fulfilled in financial applications, where
financial time series, even after devolatilization, display heavy tailed behavior.

How can we estimate the linear transformation matrix W after we have prewhitened
the non-Gaussian variables? Independence of the components of a random vector y ∈ IRd

can be measured by the mutual information:

I(W, y) = I(W, fy) =
d∑

j=1

H(yj)−H(y)

=
d∑

j=1

H(yj)−H(x)− log |det(W )| (13)

where H(y) = H(fy) = −
∫

fy(u) log fy(u)du is the entropy of the vector y with a joint
pdf fy. If the components of y are independent, then the mutual information will reach
its minimum with a value of 0. Therefore, the IC searching is identical to minimizing (13)
w.r.t. W . Since H(x) is fixed given the data, and further the matrix W is orthogonal after
prewhitening, this problem is equivalent to minimizing the term

∑d
j=1 H(yj). Now we use:

min
d∑

j=1

H(yj) = min
d∑

j=1

H(wjx) ≥
d∑

j=1

minH(yj) (14)

argminH(yj) = argmaxJ(wj , yj) (15)

to estimate wj , the j-th row of W . J(wj , yj) = H{N(0, 1)} − H(yj) is the negentropy of
the IC yj for j = 1, · · · , d. By replacing the original optimization problem with changes of
the objective function in (14), it leads to some loss in the W estimation but extensively
speeds up the estimation procedure. The negentropy is always nonnegative, since given the
same variance, the Gaussian random variable has the largest entropy, Cover and Thomas
(1991). Therefore, the negentropy is considered as a non-Gaussian measure and widely used
in Projection Pursuit (PP), see Jones and Sibson (1987). Furthermore, the PP methods
of searching non-Gaussian direction can be applied in the IC identification as well. Nev-
ertheless, compared to the cumulant based PP method, the entropy or negentropy is less
sensitive to outliers and therefore preferable.
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A question however raises at this stage, i.e. the marginal pdfs of the ICs in the entropy
or the negentropy are unknown. A distributional free approximation of the univariate
negentropy has been proposed by Hyvärinen (1998):

J(wj , yj) ≈ C {E{G(yj)} − E[G{N(0, 1)}]}2

where C is a constant and G is an even function, e.g. G(yj) = 1
κ log cosh(κyj), 1 ≤ κ ≤ 2.

The estimation of the linear transformation matrix in the ICA is estimated by:

ŵj = argmax {E{G(wjX)} − E[G{N(0, 1)}]}2 (16)

s.t. W>W = Id (17)

Based on the Kuhn-Tucker condition and the Newton’s method, Hyvärinen and Oja (1999)
have proposed the FastICA algorithm. Hyvärinen (1999) has shown that the estimates
based on the FastICA algorithm are consistent.

FastICA algorithm: set j = 1

1. Choose an initial vector wj of unit norm, W = (w1, · · · , wd)>.

2. Let w
(n)
j = E{g(w(n−1)

j x)x} − E{g′(w(n−1)
j x)}w(n−1)

j , where g denotes the first deriv-
ative of G(yj) and g′ the second derivative. In practice, the sample mean is applied
for E[·].

3. Orthogonalization: w
(n)
j = w

(n)
j −

∑
k 6=j(w

(n)>
j wk)wk.

4. Normalization: w
(n)
j = w

(n)
j /||w(n)

j ||, || · || denotes the norm.

5. If not converged, i.e. ||w(n)
j − w

(n−1)
j || 6= 0, go back to 2.

6. Set j = j + 1. For j ≤ d, go back to step 1.

3 Simulation Study

The reliability of the proposed ICVaR depends on the linear transformation matrix estima-
tion and the univariate modeling on the ICs estimated. In order to fit the local distributions
of ICs, we apply the GHADA technique due to its good performance in the simulation and
empirical studies in Chen et al. (2005). The target of the simulation study here is to search
for ICs and compare the marginal densities of the estimated and generated ICs.

In particular, we pursue an experiment to check the validation of the FastICA approach
with Normal Inverse Gaussian (NIG) distributed ICs, where the NIG distribution is a
subclass of the GH distribution with the fixed parameter λ = −0.5, see Barndorff-Nielsen
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and Blæsild (1981). We generate d = 50 NIG samples with T = 1000 observations, i.e.
yj ∼ NIG(αj , βj , δj , µj) for j = 1, · · · , 50. Without loss of generality, we set µj = 0 and
δj = 1. The parameter αj is uniformly distributed in [1, 2] and β fulfills the condition:

Var [yj ] =
1√

α2
j − β2

j

α2
j

α2
j − β2

j

= 1,

such that the generated ICs have unit variances. Furthermore, the sign of β is chosen
arbitrarily. Table 1 shows the distributional parameters of the generated ICs. The linear
transformation matrix W−1 is obtained via the Jordan decomposition of a square matrix,
whose elements are standard normally distributed. The mixed time series xt = W−1yt are
analyzed by the ICA.

We apply the FastICA algorithm to the transformed time series xt and estimate the NIG
parameters of each estimated IC. We order the 50 estimated independent series to minimize
the mean absolute error (MAE) of the marginal pdfs between the estimated and generated
ICs. Overlapping is avoided in the ordering:

MAEj =
1
T

T=1000∑
t=1

|f(ŷjt)− f(yjt)|.

The largest two MAEs are 0.09 (ICest 20) and 0.04 (ICest 17), indicating the worst cases
of IC searching. In this case, it is expected to get accurate VaR estimations based on these
fits.

4 Empirical Study

In this section, we analyze foreign exchange rate portfolios with artificial and time-invariant
trading strategies. Since the position of these individual risk factors are constant in time,
one can simply use the historical simulation approach where the portfolio returns are con-
sidered as the single risk factor. It speeds up VaR computations without losing the port-
folio’s dependence information. However in practice, it may slow down the calculation as
the trading strategies changes, see Jorion (2001). Three VaR models are evaluated: the
proposed ICVaR approach based on the multivariate risk factors, the RiskMetrics and t-
deGARCH methodologies based on the univariate portfolio returns. In the RiskMetrics
and t-deGARCH frameworks, we apply the GARCH(1,1) setup to estimate the dependence
structure of real data and assume that the devolatilized returns are Gaussian or Student-t
distributed. The degrees of freedom (df) of the Student-t distribution are selected by the
maximum likelihood method.

The foreign exchange market, or ”Forex” market, is by far the largest financial market in

10



ICest α̂ β̂ IC α β MAE ICest α̂ β̂ IC α β MAE
1 1.89 0.63 23 1.39 0.61 0.63 26 1.84 0.60 2 1.92 1.14 2.56
2 1.76 0.60 25 1.97 1.19 1.57 27 1.82 -0.18 16 1.57 -0.80 2.56
3 1.45 -0.51 30 1.06 -0.21 0.32 28 1.30 -0.37 8 1.17 -0.37 0.32
4 1.64 0.42 36 1.22 0.43 0.52 29 1.34 0.13 17 1.06 0.21 0.68
5 2.11 -0.67 13 1.31 -0.53 0.70 30 2.02 -0.39 44 1.54 0.77 2.73
6 2.05 -0.62 28 1.39 -0.61 0.93 31 3.05 0.80 35 1.78 1.00 3.27
7 1.73 -0.41 50 1.60 -0.83 0.76 32 1.79 -0.45 32 1.34 -0.57 0.77
8 1.62 0.45 7 1.15 0.35 0.45 33 1.58 0.08 4 1.24 0.46 0.88
9 1.27 0.16 6 1.96 1.17 1.58 34 1.59 0.35 47 1.45 0.67 0.74

10 1.51 0.43 27 1.51 -0.74 2.33 35 2.00 -0.33 34 1.43 -0.66 1.18
11 2.44 1.33 38 1.27 0.49 0.98 36 1.63 -0.06 31 1.85 1.07 1.37
12 1.65 -0.25 26 1.35 -0.57 0.79 37 1.81 0.29 29 1.93 1.15 1.29
13 2.58 -1.35 10 1.89 -1.11 1.69 38 1.49 -0.01 22 1.66 -0.89 2.97
14 1.60 0.15 24 1.54 0.77 0.98 39 2.39 -0.30 42 1.53 -0.76 1.27
15 1.52 -0.03 20 1.04 0.18 0.67 40 1.52 -0.22 21 1.39 0.62 1.48
16 2.14 -1.00 1 1.72 -0.94 3.09 41 2.32 -0.001 41 1.70 0.93 3.37
17 2.20 0.64 3 1.75 0.97 4.07 42 2.87 0.30 9 1.50 0.73 1.37
18 1.44 0.48 15 1.40 0.63 2.28 43 2.27 0.24 14 1.28 0.50 1.13
19 1.44 -0.40 33 1.70 0.93 3.22 44 2.44 0.46 43 1.87 1.09 1.39
20 1.90 -0.54 39 1.72 0.95 9.73 45 1.88 -0.07 18 1.44 -0.67 1.23
21 1.57 0.39 11 1.63 0.86 0.72 46 2.22 0.13 37 1.39 0.62 1.24
22 1.80 -0.56 12 1.78 -1.00 0.84 47 1.79 0.26 49 1.45 -0.68 1.41
23 1.69 0.20 46 1.69 0.92 1.09 48 3.03 0.75 40 1.95 1.17 2.37
24 1.76 -0.27 5 1.39 0.62 1.53 49 3.31 -0.18 48 1.50 -0.73 1.49
25 1.50 0.26 19 1.69 -0.92 1.38 50 3.77 0.29 45 1.53 0.76 1.52

Tab. 1: ML estimators α̂j and β̂j of the estimated ICs, the parameters of the true ICs and
the MAE (unit: 10−2).

ICVaRsimpdfcomp.xpl ICVaRsimgechoice.xpl
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Time Series Mean SD Skewness Kurtosis ρ1 ρ2

DEM/USD 0.00 0.71∗10−2 -0.13 4.94 0.02 0.01
GBP/USD 0.00 0.69∗10−2 -0.01 5.64 0.08 0.01

IC1 -0.02 1.00 -0.62 8.71 0.07 0.02
IC2 0.01 1.00 -0.08 5.19 0.05 0.01

Tab. 2: Descriptive statistics of the log returns and the two estimated indpendent processes
of the DEM/USD and GBP/USD rates.

ICVaRfxdescriptive.xpl

the world with trading volumes surpassing USD 1.5 trillion on some days. The very active
buying and selling of traders make it further the most liquid financial market. Here we
consider portfolios including two exchange rates: DEM/USD and the British Pound to the
US Dollar (GBP/USD) from 1979-12-01 to 1994-04-01. We forecast VaRs one-day-ahead
w.r.t. four artificial trading strategies, i.e. b1 = (1, 1)>, b2 = (1, 2)>, b3 = (−1, 2)> and
b4 = (−2, 1)>. For example, b1 means holding one unit DEM/USD and one unit GBP/USD
forward contracts.

The data is available at FEDC (sfb649.wiwi.hu-berlin.de). Each time series consists of
3721 observations. Table 2 summarizes the statistical properties of the original data and the
estimated ICs based on the linear transformation. These four time series are all centered
around 0, approximately symmetric but distinctly non-Gaussian indicated by their large
kurtoses. The temporal correlations are very small; The ACF plots show that the serial
correlations decay at the very beginning lags, indicating a weak stationarity of the four
series, see Figure 3. On the other hand, the cross correlation of the two exchange returns
is over 0.77, referring a strongly linear dependence between them. Applying the FastICA
algorithm, we estimate the linear transformation matrix and its inverse:

Ŵ =

 207.93 −213.63

77.72 73.29

 , Ŵ−1 =

 2.30 6.71

−2.44 6.53

 10−3 (18)

We then implement the GHADA approach to fit the distributional feature of each estimated
IC. Figure 4 shows the adaptive volatility series based on the two ICs. The well-known
volatility clustering is reflected and volatility jumps appear. These jumps happen in most
cases at different time and have individual influences on the return processes. The estimated
HYP and NIG parameters of the devolatilized ICs are reported in Table 3. In the Monte
Carlo simulation to find the empirical quantiles of the portfolios, we generate d = 2 samples
with M = 10, 000 observations. The daily empirical quantiles at 3 risk levels a = 5%, 1%
and 0.5% are the average values of N = 100 repetitions. We redo the simulation for the last
T = 1000 days. The daily means and standard deviations of the 3 empirical quantiles given
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Fig. 3: ACF plots of the log returns of the DEM/USD (left) and the GBP/USD (right) are
displays on the top. Below are the ACF plots of the estimated IC series: IC1 (left)
and IC2 (right).

ICVaRfxdescriptive.xpl

different trading strategies and two GH subclasses (HYP and NIG) are reported in Table 4
to Table 7. The largest standard deviation of daily empirical quantiles is underlined in each
category. The values are small due to the large sample size, indicating efficient estimation
of the daily quantiles.

The backtesting results based on the ICVaR, the RiskMetrics and t-deGARCH method-
ologies are reported in Table 8. The dfs of the Student-t fits are 16, 16, 13 and 14 w.r.t.
different trading strategies. Based on two likelihood ratio tests: LR1 for risk level and LR2
for exceedances clustering (Jorion, 2001), the proposed ICVaR model is superior to the other
two candidates. In the risk level test (LR1), the NIG fit performs even better than the HYP
fit. In the RiskMetrics framework, the exceedances happen minimal 2.6 times and maximal
23 times more than the expected risk level, e.g. for the trading strategy b = (1, 1)>. In
some cases, the underestimation is even over 25 times. Compared to the RiskMetrics, the
t-deGARCH method improves the VaR forecasting as the extreme risk levels such as 0.5%
are considered. However both models are rejected everywhere in the two tests at 99% level,
meaning unreliable predictions. Exemplary graphical illustrations of the VaR time plot are
displayed in Figure 5 to Figure 6.

13

http://appel.rz.hu-berlin.de/Zope/ise_stat/wiwi/ise/stat/personen/yc/ICVaR/ICVaR.rar


FX Adaptive Vola of IC1
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Fig. 4: Adaptive volatility processes of the FX ICs.
ICVaRfxdescriptive.xpl

VaR plot (hyp-alpha = 0.0050)
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Fig. 5: VaR time plots of the exchange rate portfolio with trading strategy b4 = (−2, 1)>

and risk level a = 0.5% . The one-day-ahead predicted VaRs are based on the HYP
distribution. The dots are the real portfolio returns, the RiskMetrics (red) and the
t-deGARCH (green) forecasts are displayed as solid line and circles while the ICVaR
is displayed as a straight line. The exceendances w.r.t. the risk management models
are displayed as cross on the bottom (from the top are the exceedances w.r.t. the
ICVaR, the t-deGARCH and the RiskMetrics).

ICVaRfxVaRplot.xpl
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VaR plot (nig-alpha = 0.0050)
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Fig. 6: VaR time plots of the exchange rate portfolio with trading strategy b4 = (−2, 1)>

and risk level a = 0.5% . The one-day-ahead predicted VaRs are based on the NIG
distribution. The dots are the real portfolio returns, the RiskMetrics (red) and the
t-deGARCH (green) forecasts are displayed as solid line and circles while the ICVaR
is displayed as a straight line. The exceendances w.r.t. the risk management models
are displayed as cross on the bottom (from the top are the exceedances w.r.t. the
ICVaR, the t-deGARCH and the RiskMetrics).

ICVaRfxVaRplot.xpl
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GH Type Time Series α̂ β̂ δ̂ µ̂

HYP IC1 1.71 -0.17 0.55 0.12
HYP IC2 1.77 0.02 0.71 -0.01

NIG IC1 1.22 -0.18 1.10 0.13
NIG IC2 1.37 0.03 1.28 -0.02

Tab. 3: GH parameters of the ICs.
ICVaRfxdescriptive.xpl

5 Conclusion

In this paper, we proposed an easy and fast multivariate risk management model. The study
is mainly based on the ICA. Instead of estimating the joint density and covariance of high
dimensional returns, the searching of ICs transfers the calculation to unidimensional studies.
In the empirical study, the proposed ICVaR is superior to the RiskMetrics and t-deGARCH
methods, above all in the risk level controlling. In addition, in the ICVaR methodology, the
joint distribution of portfolio does not rely on trading strategy and therefore can be further
applied to calculate VaRs as the investing positions change. Moreover, the ICVaR approach
can be easily applied to calculate and forecast other risk measures such as expected shortfall.
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