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A Dynamic Semiparametric Factor Model for

Implied Volatility String Dynamics

Abstract

A primary goal in modelling the implied volatility surface (IVS) for pricing and

hedging aims at reducing complexity. For this purpose one fits the IVS each day

and applies a principal component analysis using a functional norm. This approach,

however, neglects the degenerated string structure of the implied volatility data and

may result in a modelling bias. We propose a dynamic semiparametric factor model

(DSFM), which approximates the IVS in a finite dimensional function space. The

key feature is that we only fit in the local neighborhood of the design points. Our

approach is a combination of methods from functional principal component analysis and

backfitting techniques for additive models. The model is found to have an approximate

10% better performance than a sticky moneyness model. Finally, based on the DSFM,

we devise a generalized vega-hedging strategy for exotic options that are priced in the

local volatility framework. The generalized vega-hedging extends the usual approaches

employed in the local volatility framework.

JEL classification codes: C14, G12

Keywords: smile, local volatility, generalized additive model, backfitting, functional principal

component analysis
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1 Introduction

Successful trading, hedging and risk managing of option portfolios crucially depends on the

accuracy of the underlying pricing models. Consequently, new valuation approaches are

continuously developed in departing from the foundations of option theory laid by Black

and Scholes (1973), Merton (1973) and Harrison and Kreps (1979), and existing models are

refined. However, despite these pervasive developments, the model of Black and Scholes

(1973) remains a pivot in modern financial theory and an important benchmark for more

sophisticated models, be it from a theoretical or practical point of view.

The popularity of the Black and Scholes (BS) model is likely due to its clear and easy-to-

communicate set of assumptions. Based on the geometric Brownian motion for the under-

lying asset price dynamics, and continuous trading in a complete and frictionless market,

simple closed form solutions for plain vanilla calls and puts are derived: given the current un-

derlying price at time, the option’s strike price, its expiry date the prevailing riskless interest

rate, and an estimate of the (expected) market volatility, option prices are straightforward

to compute.

The crucial parameter in option valuation by BS is the market volatility. Since it is unknown,

one studies implied volatility, which is derived by inverting the BS formula for a cross section

of options with different strikes and maturities traded at the same point in time. As is visible

in the left panel of Figure 1 for May 2, 2000 (i.e. 20000502, a notation we will use from

now on), implied volatilities display a remarkable curvature across the strike dimension, and

– albeit to a lesser degree – a term structure across time to maturity. For a given time to

maturity the phenomenon is called smile or smirk. This dependence given by the mapping

σ̂t : (κ, τ) → σ̂t(κ, τ), where κ denotes the strike dimension scaled in moneyness and τ time

to maturity, is called implied volatility surface (IVS). The index t denotes time-dependence.

Apparently, it is in contrast with the BS framework in which volatility is assumed to be a

constant across strikes, time to maturity and also time.

There is a considerable amount of literature which aims at reconciling this empirical antag-

onism with financial theory. Generally speaking, this can be achieved by including another

degree of freedom into option pricing models: well-known examples are stochastic volatility
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IVS Ticks 20000502
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Figure 1: Left panel: call and put implied volatilities observed on 2nd May, 2000. Right

panel: data design on 2nd May, 2000, ODAX. Lower left axis is moneyness κ
def
= K/Ft,

where Ft denotes the futures price, lower right axis time to maturity

models (Hull and White, 1987; Stein and Stein, 1991; Heston, 1993), models with jump

diffusions (Bates, 1996a,b), or models building on general Lévy processes, e.g. based on the

inverse Gaussian (Barndorff-Nielsen, 1997), and generalized hyperbolic distribution (Eber-

lein and Prause, 2002). These approaches capture the smile and term structure phenomena

and the complexity of its dynamics to some extent, as is documented for instance in Das

and Sundaram (1999) and Bergomi (2004).

Nevertheless, the BS model and the IVS enjoy much popularity. Partly, this is due to the

fact that the IVS is derived from a cross-section of option prices at a specific point in time.

Therefore, unlike estimates based on historical data, the IVS is a widely accepted state

variable that reflects current market sentiments, Bakshi et al. (2000). More importantly,

however, the IVS plays a decisive role in trading: market makers at plain vanilla desks con-

tinuously monitor and update the IVS they trade on; and exotic derivatives trader calibrate

their pricing engines with an estimate of the IVS. This is particularly obvious for the pricing

systems relying on the local volatility models. Initially developed by Dupire (1994) and Der-
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Model fit 20000502
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Figure 2: Nadaraya-Watson estimator and DSFM fit for 20000502. Bandwidths for both

estimates h1 = 0.03 for the moneyness and h2 = 0.04 for the time to maturity dimension.

Axes as in the left panel.

man and Kani (1994), they are in wide-spread use in form of the efficient implementations

by Andersen and Brotherton-Ratcliffe (1997) and Dempster and Richards (2000). Thus,

refined statistical model building of the IVS determines vitally the accuracy of applications

in trading and risk-management.

In modelling the IVS one faces two main challenges. First, the data have a degenerated

design: due to institutional conventions, observations of the IVS occur only for a small

number of maturities such as one, two, three, six, nine, twelve, 18, and 24 months to expiry

on the date of issue. Consequently, implied volatilities appear in a row like pearls strung on

a necklace, Figure 1, or, in short: as ‘strings’. This pattern is visible in the right panel of

Figure 1, which plots the data design as seen from top. Options belonging to the same string

have a common time to maturity. As time passes, the strings move through the maturity

axis towards expiry while changing levels and shape in a random fashion. Second, also in

the moneyness dimension, the observation grid does not cover the desired estimation grid

at any point in time. Thus, even when the data sets are huge, for a large number of cases

implied volatility observations are missing for certain sub-regions of the desired estimation
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grid. This is particularly virulent when transaction based data are used. However, despite

their appearance as strings, implied volatilities are thought as being the observed structure

of a smooth surface. This is because in practice one needs to price and hedge OTC options

whose expiry dates do not coincide with the expiry dates of the options that are traded at

the futures exchange.

For the semi- or nonparametric approximations to the IVS that have been promoted by Aı̈t-

Sahalia and Lo (1998), Rosenberg (2000), Aı̈t-Sahalia et al. (2001b), Cont and da Fonseca

(2002), Fengler et al. (2003) and Fengler and Wang (2003), this design may pose difficulties.

For illustration, consider in Figure 2 (left panel) the fit of a standard Nadaraya-Watson

estimator. Bandwidths are h1 = 0.03 for the moneyness and h2 = 0.04 for the time to

maturity dimension (measured in years). The fit appears very rough, and there are huge

holes in the surface, since the bandwidths are too small to ‘bridge’ the gaps between the

maturity strings. In order to remedy this deficiency one would need to strongly increase the

bandwidths which may induce a large bias. Moreover, since the design is time-varying, the

bandwidths would also need to be adjusted anew for each trading day, which complicates

daily applications. Parametric models, e.g. as in Shimko (1993), Ané and Geman (1999), and

Brockhaus et al. (2000, Chap. 2) among others, are less affected by these data limitations,

but appear to offer too little functional flexibility to capture the salient features of IVS

patterns. Thus, parametric estimates may as well be biased.

In this paper we provide a new principal component approach for modelling the IVS: the

complex dynamic structure of the IVS is captured by a low-dimensional dynamic semipara-

metric factor model (DSFM) with time-varying coefficients. The IVS is approximated by

unknown basis functions moving in a finite dimensional function space. The dynamics can

be understood by using vector autoregression (VAR) techniques on the time-varying co-

efficients. Contrary to earlier studies, we will use only finite dimensional fits to implied

volatilities which are obtained in the local neighborhood of strikes and maturities, for which

implied volatilities are recorded at the specific day. Surface estimation and dimension reduc-

tion is achieved in one single step. Our technology can be seen as a combination of functional

principal component analysis, nonparametric curve estimation and backfitting for additive

models.

Intuitively, the localization of our methodology can be interpreted as smoothing through
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time, i.e. for fitting, the information contained in other observations dates in the sample

is exploited, see Section 2 for the details. This is possible due to the expiry effect which

is a unique feature present IVS data. As explained, this effect insures that observations

gradually move through the entire observation space. To our knowledge there do not exist

estimation techniques that explicitly take advantage of this effect.

To introduce our model, let us denote the implied volatility by Yi,j, where the index i is

the number of the day (i = 1, . . . , I), and j = 1, . . . , Ji is an intra-day numbering of the

option traded on day i. The observations Yi,j are regressed on two-dimensional covariables

Xi,j that contain moneyness κi,j and maturity τi,j. Moneyness is defined as κi,j
def
= Ki,j/Ft,i,j,

i.e. strike Ki,j divided by the underlying futures price Ft,i,j at time ti,j. We also considered

the one-dimensional case in which Xi,j = κi,j. However, since modelling the entire surface is

more interesting, we will present results for this case only. The DSFM is given by:

m0(Xi,j) +
L∑

l=1

βi,lml(Xi,j) , (1)

where ml are smooth basis functions (l = 0, . . . , L). The IVS is approximated by a weighted

sum of smooth functions ml with weights βi,l depending on time i. The factor loading

βi
def
= (βi,1, . . . βi,L)> forms an unobserved multivariate time series. By fitting model (1),

to the implied volatility strings we obtain approximations β̂i. We argue that the VAR

estimation based on β̂i is asymptotically equivalent to estimation based on the unobserved

βi. A justification for this is given in Borak et al. (2005) where the relations to Kalman

filtering are discussed.

Lower dimensional approximations of the IVS based on principal components analysis (PCA)

have been used in Zhu and Avellaneda (1997) and Fengler et al. (2002) in an application to

the term structure of implied volatilities, and in Skiadopoulos et al. (1999) and Alexander

(2001) in studies across strikes. Fengler et al. (2003) use a common principal components

approach to study several maturity groups across the IVS simultaneously, while Cont and

da Fonseca (2002) propose a functional PCA perspective for the IVS. All these approaches

treat the IVS as a stationary process, and do not take particular care for the degenerated

string structure apparent in Figure 1.
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Our modelling approach is also different in the following respect: for instance, in Cont and

da Fonseca (2002) the IVS is fitted on a grid for each day. Afterwards a PCA using a

functional norm is applied to the surfaces. This treatment follows the usual functional PCA

approach as described in Ramsay and Silverman (1997). In our approach the IVS is fitted

each day at the observed design points Xi,j. This leads to a minimization with respect to

functional norms that depend on time i. We loose a nice feature of the usual functional PCA

though: when fitting the data for L and L∗ = L+1, the linear space spanned by m̂0, . . . , m̂L

may not be contained in the one spanned by m̂∗
0, . . . , m̂

∗
L∗ . On the other hand we only make

use of values of the implied volatilities at regions where they are observed. This avoids bias

effects caused by global daily fits used in standard functional PCAs.

The model can be employed in several respects: given the estimated functions m̂l and the

time series β̂, scenario simulations of potential IVS scenarios are straightforward. They can

help to give a more accurate assessment of market risk than previous approaches. Worst case

scenarios can be identified, which provide additional supervision tools to risk managers. For

trading, the model may be used as a tool of short range IVS prediction or as an input factor

in the local volatility models such as the one by Andersen and Brotherton-Ratcliffe (1997).

As we will demonstrate, the model also offers a unified tool to traders for vega hedging of

complex option positions in a local volatility setting.

The paper is organized as follows: in the following section, implied volatilities are described

and the DSFM is introduced. In Section 3 the model is applied to DAX option implied

volatilities for the sample period 1998 to May 2001. Section 4 discusses the hedging of

complex option positions in the local volatility setting, Section 5 concludes.

2 Time-dependent implied volatility modelling

2.1 The semiparametric factor model

Implied volatilities are derived from the BS option pricing formula for European calls and

puts, Black and Scholes (1973). European style calls and puts are contingent claims on an

asset St (paying no dividends for simplicity, here), which yield the pay-off max(St − K, 0)
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and max(K − St, 0), respectively, for a strike K at a given expiry day T . The asset price

process St in the BS model is assumed to be a geometric Brownian motion. The BS option

pricing formula for calls is given by:

CBS
t (St, K, τ, r, σ) = StΦ(d1)− e−rτKΦ(d2) , (2)

where d1
def
=

log(St/K)+(r+ 1
2
σ2)τ

σ
√

τ
and d2

def
= d1 − σ

√
τ . Φ(·) denotes the cumulative distribution

function of the standard normal distribution, τ
def
= T − t time to maturity of the option,

r the riskless interest rate over the option’s life time, and σ the diffusion coefficient of the

Brownian motion. Put prices Pt are obtained via the put-call-parity Ct − Pt = St − e−τrK.

The only unknown parameter in (2) is the volatility parameter σ. Given observed market

prices C̃t, implied volatility σ̂ is defined by:

CBS
t (St, K, τ, r, σ̂)− C̃t = 0 . (3)

Due to monotonicity of the BS price in σ, there exists a unique solution σ̂ > 0. Define the

moneyness metric κt
def
= K/Ft, where Ft denotes the futures price time t.

In the dynamic factor model, we regress Yi,j
def
= log{σ̂i,j(κ, τ)} on Xi,j = (κi,j, τi,j) via

nonparametric methods. We work with log-implied volatility data, since the data appear

less skewed and potential outliers are scaled down after taking logs. This is common practice

in the IVS literature, see e.g. Zhu and Avellaneda (1997) and Cont and da Fonseca (2002).

In order to estimate the nonparametric components ml and the state variables βi,l in (1), we

borrow ideas from fitting additive models as in Stone (1986), Hastie and Tibshirani (1990)

and Horowitz et al. (2002). Our research is related to functional coefficient models such

as Cai et al. (2000). Other semi- and nonparametric factor models include Connor and

Linton (2000), Gouriéroux and Jasiak (2001), Fan et al. (2003), and Linton et al. (2003).

Nonparametric techniques are now broadly used in option pricing, e.g. Broadie et al. (2000a),

Broadie et al. (2000b), Aı̈t-Sahalia et al. (2001a), and Aı̈t-Sahalia and Duarte (2003).

The estimates m̂l, (l = 0, . . . , L) and β̂i,l (i = 1, . . . , I; l = 1, . . . , L) are defined as minimizers

of the following least squares criterion (β̂i,0
def
= 1):

I∑
i=1

Ji∑
j=1

∫ {
Yi,j −

L∑
l=0

β̂i,lm̂l(u)

}2

Kh(u−Xi,j) du . (4)

9



Here, Kh denotes a two-dimensional product kernel, Kh(u) = kh1(u1)×kh2(u2), h = (h1, h2),

based on a one-dimensional kernel kh(v)
def
= h−1k(h−1v).

In (4) the minimization runs over all functions m̂l : R2 → R and all values β̂i,l ∈ R. For

illustration let us consider the case L = 0 : implied volatilities Yi,j are approximated by a

surface m̂0 that does not depend on time i. In this degenerated case, m̂0(u) =
∑

i,j Kh(u−
Xi,j)Yi,j/

∑
i,j Kh(u − Xi,j), which is the Nadaraya-Watson estimate based on the pooled

sample of all days.

Using (4), the implied volatility surfaces are approximated by surfaces moving in an L-

dimensional affine function space {m̂0 +
∑L

l=1 αlm̂l : α1, . . . , αL ∈ R}. The estimates m̂l are

not uniquely defined: they can be replaced by functions that span the same affine space.

In order to respond to this problem, we select m̂l such that they are orthogonal. This will

facilitate the interpretation of the functions, as shall be seen in Section 3 and 4.

Replacing in (4) m̂l by m̂l +δg with arbitrary functions g and taking derivatives with respect

to δ yields, for 0 ≤ l′ ≤ L:

I∑
i=1

Ji∑
j=1

{
Yi,j −

L∑
l=0

β̂i,lm̂l(u)

}
β̂i,l′Kh(u−Xi,j) = 0 . (5)

Furthermore, by replacing β̂i,l by β̂i,l + δ in (4) and again taking derivatives with respect

to δ, we get for 1 ≤ l′ ≤ L and 1 ≤ i ≤ I:

Ji∑
j=1

∫ {
Yi,j −

L∑
l=0

β̂i,lm̂l(u)

}
m̂l′(u)Kh(u−Xi,j) du = 0 . (6)

Introducing the following notation, for 1 ≤ i ≤ I

p̂i(u) =
1

Ji

Ji∑
j=1

Kh(u−Xi,j) , (7)

q̂i(u) =
1

Ji

Ji∑
j=1

Kh(u−Xi,j)Yi,j , (8)
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we obtain from (5)-(6), for 1 ≤ l′ ≤ L, 1 ≤ i ≤ I:

I∑
i=1

Jiβ̂i,l′ q̂i(u) =
I∑

i=1

Ji

L∑
l=0

β̂i,l′ β̂i,lp̂i(u)m̂l(u) , (9)

∫
q̂i(u)m̂l′(u) du =

L∑
l=0

β̂i,l

∫
p̂i(u)m̂l′(u)m̂l(u) du . (10)

We calculate the estimates by iterative use of (9) and (10). We start by initial values β̂
(0)
i,l for

β̂i,l. A possible choice of the initial β̂ could correspond to fits of surfaces that are piecewise

constant on time intervals I1, . . . , IL. This means, for l = 1, .., L, put β̂
(0)
i,l = 1 (for i ∈ Il),

and β̂
(0)
i,l = 0 (for i /∈ Il). Here I1, ..., IL are pairwise disjoint subsets of {1, ..., I} and

L⋃
l=1

Il

is a strict subset of {1, ..., I}. For r ≥ 0, we put β̂
(r)
i,0 = 1. Define the matrix B(r)(u) by its

elements: (
B(r)(u)

)
l,l′

def
=

I∑
i=1

Jiβ̂
(r−1)
i,l′ β̂

(r−1)
i,l p̂i(u) , 0 ≤ l, l′ ≤ L , (11)

and introduce a vector Q(r)(u) with elements

Q(r)(u)l
def
=

I∑
i=1

Jiβ̂
(r−1)
i,l q̂i(u) , 0 ≤ l ≤ L . (12)

In the r-th iteration the estimate m̂ = (m̂0, . . . , m̂L)> is given by:

m̂(r)(u) = B(r)(u)−1Q(r)(u) . (13)

This update step is motivated by (9). The values of β̂ are updated in the r-th cycle as

follows: define the matrix M (r)(i)(
M (r)(i)

)
l,l′

def
=

∫
p̂i(u)m̂

(r)
l′ (u)m̂

(r)
l (u) du , 1 ≤ l, l′ ≤ L , (14)

and define a vector S(r)(i)

S(r)(i)l
def
=

∫
q̂i(u)m̂l(u) du−

∫
p̂i(u)m̂

(r)
0 (u)m̂

(r)
l (u) du , 1 ≤ l ≤ L . (15)

Motivated by (10), put (
β̂

(r)
i,1 , ..., β̂

(r)
i,L

)>
= M (r)(i)−1S(r)(i) . (16)
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The algorithm is run until only minor changes occur. In the implementation, we choose a

grid of points and calculate m̂l at these points. In the calculation of M (r)(i) and S(r)(i),

we replace the integral by a Riemann sum approximation using the values of the integrated

functions at the grid points.

As discussed above, m̂l and β̂i,l are not uniquely defined. Therefore, we orthogonolize

m̂0, . . . , m̂L in L2(p̂), where p̂(u) = I−1
∑I

i=1 p̂i(u), such that
∑I

i=1 β̂2
i,1 is maximal, and

given β̂i,1, m̂0, m̂1,
∑I

i=1 β̂2
i,2 is maximal, and so forth. These aims can be achieved by the

following two steps: first replace

m̂0 by m̂new
0 = m̂0 − γ>Γ−1m̂ ,

m̂ by m̂new = Γ−1/2m̂ ,


β̂i,1

...

β̂i,L

 by


β̂new

i,1
...

β̂new
i,L

 = Γ1/2




β̂i,1

...

β̂i,L

+ Γ−1γ

 ,

(17)

where m̂ = (m̂1, . . . , m̂L)> and the (L × L) matrix Γ =
∫

m̂(u)m̂(u)>p̂(u) du, or for clar-

ity, Γ = (Γl,l′), with Γl,l′ =
∫

m̂l(u) m̂l′(u)p̂(u)du. Finally, we have γ = (γl), with γl =∫
m̂0(u)m̂l(u)p̂(u)du.

Note that by applying (17), m̂0 is replaced by a function that minimizes
∫

m̂2
0(u)p̂(u)du.

This is evident because m̂0 is orthogonal to the linear space spanned by m̂1, . . . m̂L. By the

second equation of (17), m̂1, . . . , m̂L are replaced by orthonormal functions in L2(p̂).

In a second step, we proceed as in PCA and define a matrix B with Bl,l′ =
∑I

i=1 β̂i,lβ̂i,l′ and

calculate the eigenvalues of B, λ1 > . . . > λL, and the corresponding eigenvectors z1, . . . zL.

Put Z = (z1, . . . , zL). Replace

m̂ by m̂new = Z>m̂ , (18)

(i.e. m̂new
l = z>l m̂), and

β̂i,1

...

β̂i,L

 by


β̂new

i,1
...

β̂new
i,L

 = Z>


β̂i,1

...

β̂i,L

 . (19)
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After application of (18) and (19) the orthonormal basis m̂1, . . . , m̂L is chosen such that∑I
i=1 β̂2

i,1 is maximal, and – given β̂i,1, m̂0, m̂1 – the quantity
∑I

i=1 β̂2
i,2 is maximal, . . ., i.e.

m̂1 is chosen such that as much as possible is explained by β̂i,1 m̂1. Next m̂2 is chosen to

achieve maximum explanation by β̂i,1 m̂1 + β̂i,2 m̂2, and so forth.

The functions m̂l are not eigenfunctions of an operator as in usual functional PCA. This is

because we use a different norm, namely
∫

f 2(u)p̂i(u)du, for each day. Through the norming

procedure the functions are chosen as eigenfunctions in an L-dimensional approximating lin-

ear space. The L-dimensional approximating spaces are not necessarily nested for increasing

L. For this reason the estimates cannot be calculated by an iterative procedure that starts

by fitting a model with one component, and that uses the old L − 1 components in the

iteration step from L− 1 to L to fit the next component. The calculation of m̂0, . . . , m̂L has

to be fully redone for different choices of L.

3 The dynamic factors of the DAX index IVS

3.1 Data description and preparation

Our data set contains tick statistics on DAX futures contracts and DAX index options

traded at the futures exchange EUREX in Frankfurt/Main in the period from January 1998

to May 2001. Both futures price and option price data are contract based data, i.e. each

single contract is registered together with its price, contract size, and time of settlement

up to a hundredth second. Interest rate data in daily frequency, i.e. one-, three-, six-, and

twelve-months FIBOR rates for the years 1998–1999 and EURIBOR rates for the period

2000–2001, were obtained from Thomson Financial Datastream. Interest rate data were

linearly interpolated to approximate the riskless interest rate for the option specific time to

maturity.

In a first step, we recover the DAX index values. To this end, we group to each option price

observation the futures price Ft of the nearest available futures contract, which was traded

within a one minute interval around the observed option. The futures price observation was

taken from the most heavily traded futures contract on the particular day, usually the three-

13



Min. Max. Mean Median Stdd. Skewn. Kurt.

All Time to maturity 0.028 2.014 0.131 0.083 0.148 3.723 23.373

Moneyness 0.325 1.856 0.985 0.993 0.098 -0.256 5.884

Implied volatility 0.041 0.799 0.279 0.256 0.090 1.542 6.000

1998 Time to maturity 0.028 2.014 0.134 0.081 0.148 3.548 22.957

Moneyness 0.386 1.856 0.984 0.992 0.108 -0.030 5.344

Implied volatility 0.041 0.799 0.335 0.306 0.114 0.970 3.471

1999 Time to maturity 0.028 1.994 0.126 0.083 0.139 4.331 32.578

Moneyness 0.371 1.516 0.979 0.992 0.099 -0.595 5.563

Implied volatility 0.047 0.798 0.273 0.259 0.076 0.942 4.075

2000 Time to maturity 0.028 1.994 0.130 0.083 0.151 3.858 23.393

Moneyness 0.325 1.611 0.985 0.992 0.092 -0.337 6.197

Implied volatility 0.041 0.798 0.254 0.242 0.060 1.463 7.313

2001 Time to maturity 0.028 0.978 0.142 0.083 0.159 2.699 10.443

Moneyness 0.583 1.811 1.001 1.001 0.085 0.519 6.762

Implied volatility 0.043 0.789 0.230 0.221 0.049 1.558 7.733

Table 1: Summary statistics on the data base from 199801 to 200105 for the IVS application

in Section 3.2, entirely and on an annual basis. 2001 is from 200101 to 200105, only.

months contract. The no-arbitrage price of the underlying index in a frictionless market

without dividends is given by St = Fte
−rTF ,t(TF−t), where St and Ft denote the index and the

futures price respectively, TF the futures contract’s maturity date, and rT,t the interest rate

with maturity T − t.

The DAX index is a capital weighted performance index, i.e. dividends less corporate tax

are reinvested into the index, Deutsche Börse (2002). Therefore, dividend payments should

have no impact on index options. However, when only the interest rate discounted futures

price is used to recover implied volatilities by inverting the BS formula, implied volatilities

of calls and puts can differ significantly. To accommodate for this fact we apply a correction

algorithm that is described in Appendix B. The entire data set is stored in the financial

database MD*base, www.mdtech.de, maintained at the Center for Applied Statistics and

Economics (CASE), Berlin.

14



Since the data are transaction based and may contain misprints or outliers, a filter is applied

before estimating the model: observations with implied volatility less than 4% and bigger

than 80% are dropped. Furthermore, we disregard all observations having a maturity less

than ten days. After this filtering, the entire number of observations is more than 4.48

million contracts, i.e. is around 5 200 observations per day.

Table 1 gives a short summary of our IVS data. Most heavy trading occurs in short term

contracts, as is seen from the difference between median and mean of the term structure

distribution of observations as well as from its skewness. Median time to maturity is 30

days (0.083 years). Across moneyness the distribution is slightly negatively skewed. Mean

implied volatility over the sample period is 27.9%.

3.2 Empirical evidence

We model log-implied volatility Yi,j on Xi,j = (κi,j, τi,j)
>. The grid covers in moneyness

κ ∈ [0.80, 1.20] and in time to maturity τ ∈ [0.05, 0.5] measured in years. We employ

L = 3 basis functions, which capture around 96.0% of the variations in the IVS. To our

understanding, this is of sufficiently high accuracy. The bandwidths are h1 = 0.03 for

moneyness and h2 = 0.04 for time to maturity. This choice is justified by Table 3.2 which

presents the estimates for the two Akaike information criteria (AIC) that are explained in

detail in Appendix A. Both criterion functions become very flat near the minimum. Criterion

ΞAIC2 assumes its global minimum in the neighborhood of h∗ = (0.03, 0.04)>, which is why

we opt for these bandwidths. In being able to choose these small bandwidths, the strength

of our modelling approach is demonstrated: indeed, the bandwidth in the time to maturity

dimension is so small that in a fit of a particular day, data belonging to contracts with two

adjacent time to maturities do not enter together p̂i(u) in (7) and q̂i(u) in (8). In fact, for a

given u′, the quantities p̂i(u
′) and q̂i(u

′) are zero most of the time, and only assume positive

values for dates i, when observations are in the local neighborhood of u′. Of course, during

the entire observation period I, it is mandatory that observations for each u for some dates

i are made. In Table 3.2, we additionally display a measure of how the factor loadings and
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Figure 3: Left panel: convergence in the IVS models. Solid line shows the L1, the dotted

line the L2 measure of convergence. Total number of iterations is 25. Right panel: average

density p̂(u) = I−1
∑I

i=1 p̂i(u). Bandwidths are h1 = 0.03 for moneyness and h2 = 0.04 for

time to maturity.

the basis functions change relative to the optimal bandwidth h∗. We compute:

Vβ̂(hk) =

√√√√ L∑
l=0

Var{|β̂i,l(hk)− β̂i,l(h∗)|} , (20)

and Vm̂(hk) =

√√√√ L∑
l=0

Var{|m̂l(u; hk)− m̂l(u; h∗)|} , (21)

where hk runs over the values given in Table 3.2, and Var(x) denotes the variance of x. It

is seen that changes in m̂ are 10 to 100 times higher in magnitude than those for β̂. This

corroborates the approximation in (32) that treats the factor loadings as known. In Figure 3

we display an L1- and an L2-convergence measure of the algorithm, see Appendix A for

definitions. Convergence is achieved quickly, and we stop the iterations after 25 cycles, when

the L2 was less than 10−5.

Figures 4 to 6 display the functions m̂1 to m̂4 together with their contour plots. We do not
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h1 h2 ΞAIC1 ΞAIC2 Vβ̂ Vm̂

0.01 0.02 0.000737 0.00151 0.015 0.938
0.01 0.04 0.000741 0.00150 0.003 0.579
0.01 0.06 0.000739 0.00152 0.005 0.416
0.01 0.08 0.000736 0.00163 0.011 0.434
0.02 0.02 0.001895 0.00237 0.104 3.098
0.02 0.04 0.000738 0.00150 0.001 0.181
0.02 0.06 0.000741 0.00151 0.004 0.196
0.02 0.08 0.000742 0.00156 0.008 0.279
0.02 0.10 0.000744 0.00162 0.011 0.339
0.03 0.02 0.002139 0.00256 0.111 3.050
0.03 0.04 0.000739 0.00149 − −
0.03 0.06 0.000743 0.00152 0.004 0.180
0.03 0.08 0.000743 0.00156 0.008 0.273
0.03 0.10 0.000744 0.00162 0.011 0.337
0.04 0.02 0.002955 0.00323 0.138 3.017
0.04 0.04 0.000743 0.00151 0.001 0.088
0.04 0.06 0.000746 0.00154 0.005 0.211
0.04 0.08 0.000745 0.00157 0.008 0.293
0.04 0.10 0.000746 0.00163 0.012 0.353
0.05 0.02 0.003117 0.00341 0.142 2.962
0.05 0.04 0.000748 0.00155 0.001 0.148
0.05 0.06 0.000749 0.00157 0.005 0.241
0.05 0.08 0.000748 0.00160 0.008 0.312
0.05 0.10 0.000749 0.00167 0.012 0.368
0.06 0.02 0.003054 0.00343 0.139 2.923
0.06 0.04 0.000755 0.00160 0.002 0.193
0.06 0.06 0.000756 0.00163 0.005 0.268
0.06 0.08 0.000754 0.00166 0.009 0.330
0.06 0.10 0.000754 0.00172 0.012 0.383

Table 2: Bandwidth selection via AIC as given in (33) and (34) for different choices of h:

h1 refers to moneyness and h2 to time to maturity measured in years; the bandwidth chosen

is highlighted in bold. In all cases L = 3. Vβ̂ and Vm̂ measure the change in β̂ and m̂ as

functions of h relative the optimal bandwidth h∗ = (0.03, 0.04)>, compare (20) and (21).
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display the invariant function m̂0, since it essentially is the zero function of the affine space

fitted by the data: both mean and median are zero up to 10−2 in magnitude. We believe

this to be estimation error. The remaining functions exhibit more interesting patterns: m̂1

in Figure 4 is positive throughout, and mildly concave. There is little variability across

the term structure. Since this function belongs to the weights with highest variance, we

interpret it as the time dependent mean of the (log)-IVS, i.e. a shift effect. Function m̂2,

depicted in Figure 5, changes sign around the at-the-money region, which implies that the

smile deformation of the IVS is exacerbated or mitigated by this eigenfunction. Hence we

consider this function as a moneyness slope effect of the IVS. Finally, m̂3 is positive for the

very short term contracts, and negative for contracts with maturity longer than 0.1 years,

Figure 6. Thus, a positive weight in β̂3 lowers short term implied volatilities and increases

long term implied volatilities: m̂3 generates the term structure dynamics of the IVS, it

provides a term structure slope effect. These observations are line with the results of earlier

studies on the IVS, Skiadopoulos et al. (1999), Cont and da Fonseca (2002), and Fengler et

al. (2003). It is important to remark that the eigenfunctions appear quite rough, which is due

the small bandwidths we use here for demonstration. Depending on the specific application,

for instance the one we consider in Section 4 it may be advisable to employ somewhat larger

bandwidths.

To appreciate the power of the DSFM, we inspect again the case of 20000502. In Figure 7,

we compare a Nadaraya-Watson estimator (left panel) with the DSFM (right panel). In the

first case, the bandwidths are increased to h = (0.06, 0.25)> in order to remove all holes and

excessive variation in the fit, while for the latter the bandwidths are kept at h = (0.03, 0.04)>.

While both fits look similar at first sight, the differences are best visible when both cases

are contrasted for each time to maturity string separately, Figures 8 to 11. Generally, the

standard Nadaraya-Watson fit exhibits a strong directional bias, especially in the wings. The

DSFM is not entirely unbiased either, but clearly the fit is superior.

Figure 12 shows the time series of β̂1 to β̂3 and their correlograms. Summary statistics

are given in Table 3 and contemporaneous correlation in the right part of Table 4. The

ADF tests at the 5% level, left part of Table 4, indicate a unit root for β̂1 and β̂2. Thus,

one may model first differences of the first two loading series together with the levels of

β̂3 in a parsimonious VAR framework. Alternatively, since the results are only marginally
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Figure 4: Factor m̂1 in the left panel (moneyness lower left axis, lower right axis time to

maturity). Right panel shows contour plots of this function (moneyness left axis, time to

maturity top). Lines are thick for positive level values, thin for negative ones. The gray

scale becomes increasingly lighter the higher the level in absolute value. Stepwidth between

contour lines is 0.028, estimated from ODAX data 199801-200105.

Min. Max. Mean Median Stdd. Skewn. Kurt.

β̂1 -1.541 -0.462 -1.221 -1.260 0.206 1.101 4.082

β̂2 -0.075 0.106 0.001 0.002 0.034 0.046 2.717

β̂3 -0.144 0.116 0.002 -0.001 0.025 0.108 5.175

Table 3: Summary statistics on (β̂1, β̂2, β̂3)
> from Section 3.2.

significant, one may estimate the levels of the loading series in a rich VAR model. We opt for

the latter choice and use a VAR(2) model, Table 5. The estimation also includes a constant

and two dummy variables, assuming the value one right at those days and one day after,

when the corresponding IV observations of the minimum time to maturity string (10 days

to expiry) were to be excluded from the estimation of the DSFM. This is to capture possible

seasonality effects introduced from the data filter.

The estimation results are displayed in Table 5. In the equations of β̂1 and β̂2 the constants
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Figure 5: Factor m̂2 in the left panel (moneyness lower left axis, lower right axis time to

maturity). Right panel shows contour plots of this function (moneyness left axis, time to

maturity top). Lines are thick for positive level values, thin for negative ones. The gray

scale becomes increasingly lighter the higher the level in absolute value. Stepwidth between

contour lines is 0.225, estimated from ODAX data 199801-200105.

and dummies are weakly significant, but not shown for the sake of clarity. As is seen

all factor loadings follow AR(2) processes. There are also a number of remarkable cross

dynamics. Exploiting these cross dynamics is vital for the model’s performance, as shall be

seen in the subsequent prediction contest.

3.3 Prediction contest

We now study the prediction performance of our model compared with a benchmark model.

Model comparisons that have been conducted, for instance by Bakshi et al. (1997), Dumas

et al. (1998), and Bates (2000), often reveal that simple trader models perform better than

more sophisticated models. These models used by professionals simply assert that today’s

implied volatility is tomorrow’s implied volatility. There are two versions: the sticky strike

assumption pretends that implied volatility is constant at fixed strikes. The sticky moneyness

version claims the same for implied volatilities observed at a fixed moneyness, Derman (1999).
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Figure 7: Nadaraya-Watson estimator with h = (0.06, 0.25)> and DSFM with h =

(0.03, 0.04)> for 20000502.
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Traditional string fit 20000502,  17 days to exp.
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Figure 8: Bias comparison of the Nadaraya-Watson estimator with h = (0.06, 0.25)> (left

panel) and the semi-parametric factor model with h = (0.03, 0.04)> (right panel) for the 17

days to expiry data (black bullets) on 20000502.

Traditional string fit 20000502,  45 days to exp.
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Individual string fit 20000502,  45 days to exp.
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Figure 9: Bias comparison of the Nadaraya-Watson estimator with h = (0.06, 0.25)> (left

panel) and the semi-parametric factor model with h = (0.03, 0.04)> (right panel) for the 45

days to expiry data (black bullets) on 20000502.

22



Traditional string fit 20000502,  80 days to exp.
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Individual string fit 20000502,  80 days to exp.
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Figure 10: Bias comparison of the Nadaraya-Watson estimator with h = (0.06, 0.25)> (left

panel) and the semi-parametric factor model with h = (0.03, 0.04)> (right panel) for the 80

days to expiry data (black bullets) on 20000502.

Traditional string fit 20000502,  136 days to exp.

0.8 0.9 1 1.1 1.2
Moneyness

-1
.6

-1
.5

-1
.4

-1
.3

-1
.2

-1
.1

 

Individual string fit 20000502,  136 days to exp.
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Figure 11: Bias comparison of the Nadaraya-Watson estimator with h = (0.06, 0.25)> (left

panel) and the semi-parametric factor model with h = (0.03, 0.04)> (right panel) for the 136

days to expiry data (black bullets) on 20000502.
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Figure 12: Upper panel: time series of weights (β̂1, β̂2, β̂3)
>. Lower panel: autocorrelation

functions.

We use the sticky moneyness model as our benchmark. There are two reasons for this choice:

first, from a methodological point of view, as has been shown by Balland (2002) and Daglish

et al. (2003), the sticky strike rule as an assumption on the stochastic process governing

implied volatilities, is not consistent with the existence of a smile. The sticky moneyness

rule, however, can be. Second, since we estimate our model in terms of moneyness, sticky

moneyness rule is most natural.

Our methodology in comparing prediction performance is as follows: as presented in Sec-

tion 3.2, the resulting times series of latent factors β̂i,l is replaced by a times series model

with fitted values β̃i,l(θ̂) based on β̂i′,l with i′ ≤ i − 1 , 1 ≤ l ≤ L, where θ̂ is a vector of

estimated coefficients seen in Table 5. As in Section 2, we employ a variant of ΞAIC1 based on

the fitted values as an asymptotically unbiased estimate of mean square prediction error. The

criterion is penalized with the dimension of the model, dim(θ) = 27 (six VAR-coefficients in
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ADF test Contemp. correlation

Coefficient Test Statistic # of lags β̂1 β̂2 β̂3

β̂1 -2.68 3 1 0.241 0.368

β̂2 -3.20 1 1 -0.003

β̂3 -6.11 2 1

Table 4: Left part: ADF tests on β̂1 to β̂3 for the full IVS model, intercept included in each

case. Third column gives the number of lags included in the ADF regression. For the choice

of lag length, we started with four lags, and subsequently deleted lag terms, until the last lag

term became significant at least at a 5% level. MacKinnon critical values for rejecting the

hypothesis of a unit root are -2.87 at 5% significance level, and -3.44 at 1% significance level.

Right part: contemporaneous correlation matrix.

three equations plus a constant and two dummy variables), see Appendix A.

This criterion, denoted by Ξ̃AIC , is compared with the squared one-day prediction error of

the sticky moneyness (StM) model:

ΞStM
def
= N−1

I∑
i

Ji∑
j

(Yi,j − Yi−1,j′)
2 . (22)

In practice, since one hardly observes Yi,j at the same moneyness as in i − 1, Yi−1,j′ is

obtained via a localized interpolation of the previous day’s smile. Time to maturity effects

are neglected, and observations, the previous values of which are lost due to expiry, are

deleted from the sample. Running the model comparison shows:

ΞStM = 0.00476 versus Ξ̃AIC = 0.00439 .

Thus, the model comparison reveals that the DSFM is approximate 10% better than the

sticky moneyness model. This is a substantial improvement given the high variance in

implied volatility and financial data in general.
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Equation

Dependent variable β̂1,i β̂2,i β̂3,i

β̂1,i−1 0.978 -0.009 0.047

[24.40] [-1.21] [ 3.70]

β̂1,i−2 0.004 0.012 -0.047

[ 0.08] [ 1.63] [-3.68]

β̂2,i−1 0.182 0.861 0.134

[ 0.92] [ 23.88] [ 2.13]

β̂2,i−2 -0.129 0.109 -0.126

[-0.65] [ 3.03] [-2.01]

β̂3,i−1 0.115 -0.019 0.614

[ 0.97] [-0.89] [ 16.16]

β̂3,i−2 -0.231 0.030 0.248

[-1.96] [ 1.40] [ 6.60]

R̄2 0.957 0.948 0.705

F -statistic 2405.273 1945.451 258.165

Table 5: Estimation results of an VAR(2) of the factor loadings β̂i. t-statistics given in

brackets, R̄2 denotes the adjusted coefficient of determination. The estimation includes an

intercept and two dummy variables (both not shown), which assume the value one right at

those days and one day after, when the corresponding IV observations of the minimum time

to maturity string (10 days to expiry) were to be excluded from the estimation of the DSFM.

4 Hedging in local volatility models using the DSFM

Local volatility models are one-factor models, i.e. it is assumed that the asset price dynamics

are governed by the stochastic differential equation

dSt

St

= µ dt + σ(St, t) dWt , (23)

where Wt is a Brownian motion, µ denotes the drift, and σ(St, t) the local volatility func-

tion which depends on the asset price and time, only. In local volatility pricers, the IVS is
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employed to calibrate the local volatility function to the market. Then, the BS partial dif-

ferential equation with generalized volatility function is solved for pricing the exotic options,

Andersen and Brotherton-Ratcliffe (1997) and Dempster and Richards (2000). Therefore,

unlike to the BS model, prices depend on the entire IVS, and not simply on the implied

volatility at a specific strike. In consequence, the notion of vega hedging needs to be gener-

alized. A usual attempt to respond to this problem, is to define a so called ‘parallel-shift-vega’

which corresponds to the sensitivity of the option price with respect to a parallel shift of

the whole IVS. It is calculated via bumping the IVS by a certain factor and computing the

difference quotient. From our empirical analysis, however, it is obvious that the IVS displays

much more sophisticated dynamics as is manifest in the moneyness slope and term structure

slope effects. While an up-and-down shift of the IVS may be the most important factor,

the parallel-shift-vega leaves the slope and term structure risks, which the exotic option is

exposed to, unhedged. Depending on the specific payoff profile of the option, these risks,

however, can be of substantial size. For instance, for down-and-out puts, the probability

of hitting the barrier is very much determined by the slope of the smile. In this case, it is

desirable to hedge the slope risks of the IVS.

The DSFM gives a decomposition of the IVS into its most important factors. For path-

dependent options, we therefore propose to define the hedge in terms of these factors. More

precisely, given the decomposition

σ̂t(κ, τ) = exp

(
L∑

l=0

β̂t,l m̂l

)
, (24)

the β1-greek, ∂
∂β1

, defines the sensitivity of the option with respect to up-and-down shifts of

the (log)-IVS. The β2-greek, ∂
∂β2

, is a slope-shift-vega of the (log)-IVS, and so on. For setting

up a hedge, one needs to define portfolios HP1, HP2, . . . consisting of plain vanilla options

that have approximately the same first order expansion in terms of these beta-greeks. Given

the hedge-ratios the residual delta risk is hedged with the underlying. The particular nature

of the hedge portfolio depends on the exotic option to be hedged, but may also depend on

general targets in risk management such as to reduce gamma risks.

To make our approach more precise, we concentrate on the two-factor case with two hedge

portfolios HP1 and HP2 and the aforementioned down-and-out put P do. First, one computes

the sensitivities of the hedge portfolios and the barrier option with respect to β1 and β2, for
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instance via a difference quotient. The hedge ratios a1 and a2 for a ‘beta-neutral’ hedge are

obtained by solving the linear system of equations: ∂HP1

∂β1

∂HP2

∂β1

∂HP1

∂β2

∂HP2

∂β2

 a1

a2

 =

 ∂P do

∂β1

∂P do

∂β2

 . (25)

Equations (25) give an immediate suggestion of how to choose the hedge portfolios. Obvi-

ously, it is desirable to define HP1 and HP2 such that they have maximum exposure to β1

and β2, respectively, since in this case, ∂HP1

∂β2
≈ 0 and ∂HP2

∂β1
≈ 0. For the down-and-out put

considered here, a natural choice is to use a portfolio of at-the-money plain vanilla options

in HP1, and in HP2 a vega-neutral risk reversal. A risk reversal is a short position in an

out-of-the-money plain vanilla call and a long position in an out-of-the-money put (or vice

versa). The value of a risk reversal primarily responds to changes in the wings of the IVS

and by selecting the appropriate strikes, it can be set up in a vega-neutral way.

We expect this ‘beta-hedging’ approach to be superior to the usual parallel-shift-vega for a

number of reasons: first, the parallel-shift-vega corresponds to a hedge in the DSFM with

only one factor. Second, it mimics the rich structure of the factor surface of m̂1 that is visible

in Figure 4, only in an insufficient way. Finally, beta-hedging allows to reduce the slope and

curvature risks. Conducting a comparative hedging exercise along the lines of Bakshi et al.

(1997) and Dumas et al. (1998) is topic of our ongoing research on the DSFM.

5 Conclusion

In this study we present a modelling approach to the implied volatility surface (IVS) that

takes care of the particular discrete string structure of implied volatility data. The technique

comes from functional PCA and backfitting in additive models. Unlike other studies, our

ansatz is tailored to the degenerated design of implied volatility data by fitting basis functions

in the local neighborhood of the design points only. We thus avoid bias effects. Using

transactions based DAX index implied volatility data from 1998 to May 2001, we recover a

number of basis functions generating the dynamics of a single implied volatility string and

surface. The functions may be intuitively interpreted as level, term structure and moneyness
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slope effects, and a term structure twist effect, known from earlier literature. We study the

time series properties of parameters weights and complete the modelling approach by fitting

vector autoregressive models. A three-dimensional VAR(2) describes IVS dynamics best. In

a prediction contest, we compare the performance of our model with a sticky moneyness

model. Finally, based on these factors, we devise a generalized vega-hedging strategy for

exotic options that are priced in the local volatility framework. The generalized vega-hedging

extends the usual parallel-shift vega approaches that are typically employed.

There are two important topics for further research. First, from a practical point of view the

DSFM must be put into a contest of competing hedging strategies for some prime examples

of exotic options, such as barriers. Second, from a theoretical point of view, the DSFM

has a natural relation with Kalman filtering. Kalman filtering is a way to recursively find

solutions to discrete-data linear filtering problems, Kalman (1960). For, writing our model

more compactly as:

Θp(B)βi = ui (26)

Yi,j = m0(Xi,j) +
L∑

l=1

βi,lml(Xi,j) + εi,j , (27)

where ui and εi,j are noise, and Θp(B)
def
= 1 − θ1B − θ2B

2 . . . − θpB
p denotes a polynomial

of order p in the backshift operator B, we receive the typical state-space representation.

Equation (27) is called the state equation depending on a parameter vector θ. It relates the

(unobservable) state i of the system to the previous step i−1. The measurement equation (27)

relates the state to the measurement, the IVS in our case. The difference to our work is

that the time series modelling of βi is done after recovering it. This integrated approach is

treated in Borak et al. (2005).
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Borak, S., Fengler, M. R., Härdle, W. and Mammen, E. (2005). Semiparametric state space

factor models, CASE Discussion Paper, Humboldt-Universität zu Berlin.

Broadie, M., Detemple, J., Ghysels, E. and Torrès, O. (2000a). American options with

stochastics dividends and volatility: A nonparametric investigation, Journal of Econo-

metrics 94: 53–92.

Broadie, M., Detemple, J., Ghysels, E. and Torrès, O. (2000b). Nonparametric estimation

of American options exercise boundaries and call prices, Journal of Economic Dynamics

and Control 24: 1829–1857.

Brockhaus, O., Farkas, M., Ferraris, A., Long, D. and Overhaus, M. (2000). Equity deriva-

tives and market risk models, Risk Books, London.

Cai, Z., Fan, J. and Yao, Q. (2000). Functional-coefficient regression models for nonlinear

time series, Journal of the American Statistical Association 95: 941–956.

Connor, G. and Linton, O. (2000). Semiparametric estimation of a characteristic-based

factor model of stock returns, Technical report, LSE, London.

Cont, R. and da Fonseca, J. (2002). The dynamics of implied volatility surfaces, Quantitative

Finance 2(1): 45–60.

Daglish, T., Hull, J. C. and Suo, W. (2003). Volatility surfaces: Theory, rules of thumb,

and empirical evidence, Working paper, J. L. Rotman School of Management, University

of Toronto.

Das, S. and Sundaram, R. (1999). Of smiles and smirks: A term-structure perspective,

Journal of Financial and Quantitative Analysis 34(2): 211–240.

31



Dempster, M. A. H. and Richards, D. G. (2000). Pricing American options fitting the smile,

Mathematical Finance 10(2): 157–177.

Derman, E. (1999). Regimes of volatility, RISK 12(4): 55–59.

Derman, E. and Kani, I. (1994). Riding on a smile, RISK 7(2): 32–39.

Deutsche Börse (2002). Leitfaden zu den Aktienindizes der Deutschen Börse, 4.3 edn,

Deutsche Börse AG, 60284 Frankfurt am Main.

Dumas, B., Fleming, J. and Whaley, R. E. (1998). Implied volatility functions: Empirical

tests, Journal of Finance 80(6): 2059–2106.

Dupire, B. (1994). Pricing with a smile, RISK 7(1): 18–20.

Eberlein, E. and Prause, K. (2002). The generalized hyperbolic model: Financial derivatives

and risk measures, in H. Geman, D. Madan, S. Pliska and T. Vorst (eds), Mathematical

Finance - Bachelier Congress 2000, Springer Verlag, Heidelberg, New York, pp. 245 – 267.

Fan, J., Yao, Q. and Cai, Z. (2003). Adaptive varying-coefficient linear models, J. Roy.

Statist. Soc. B. 65: 57–80.

Fengler, M. R. and Wang, Q. (2003). Fitting the smile revisited: A least squares kernel

estimator for the implied volatility surface, SfB 373 Discussion Paper 2003-25, Humboldt-

Universität zu Berlin.
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A Model selection

The model selection for the DSFM entails the the choice of the model size L, the bandwidth

vector h, and measuring the convergence of the backfitting algorithm. This is detailed in

this appendix.

For the model size we use the residual sum of squares for different L:

RV (L)
def
=

∑I
i

∑Ji

j

{
Yi,j −

∑L
l=0 β̂i,l m̂l(Xi,j)

}2

∑I
i

∑Ji

j (Yi,j − Ȳ )2
, (28)

where Ȳ denotes the overall mean of the observations. The quantity 1−RV (L) is the portion

of variance explained in the approximation, and L can be increased until a sufficiently high

level of fitting accuracy is achieved. This is a common selection method also in ordinary

PCA.

For a data-driven choice of bandwidths, we propose a weighted AIC. We use a weighted

criterion, since the distribution of observations is very unequal, Figure 3. This can lead

to nonconvexity in the criterion and typically results into inacceptably small bandwidths,

see Fengler et al. (2003) for a first description of this problem. It is natural to punish the

criterion in areas where the distribution is sparse. For a given weight function w, consider:

4(m0, . . . ,mL)
def
= E

1

N

∑
i,j

{Yi,j −
L∑

l=0

βi,lml(Xi,j)}2 w(Xi,j) , (29)

for functions m0, . . . ,mL. The expectation operator is denoted by E. We choose bandwidths

such that 4(m̂0, . . . , m̂L) is minimal. According to the AIC this is asymptotically equivalent

to minimizing:

ΞAIC1

def
=

1

N

∑
i,j

{Yi,j −
L∑

l=0

β̂i,lm̂l(Xi,j)}2 w(Xi,j) exp

{
2

L

N
Kh(0)

∫
w(u)du

}
. (30)

Alternatively, one may consider the computationally more easy criterion:

ΞAIC2

def
=

1

N

∑
i,j

{Yi,j −
L∑

l=0

β̂i,lm̂l(Xi,j)}2 exp

{
2

L

N
Kh(0)

∫
w(u) du∫

w(u)p(u) du

}
. (31)
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Putting w(u)
def
= 1, delivers the common AIC. This, however, does not take into account

the quality of the estimation at the boundary regions or in regions where data are sparse,

since in these regions p(u) is small. We propose to choose w(u)
def
= p−1(u), which gives equal

weight everywhere as can be seen by the following considerations:

4(m0, . . . ,mL) = E
1

N

∑
i,j

ε̂2 w(Xi,j)

+ E
1

N

∑
i,j

[
L∑

l=0

βi,l{ml(Xi,j)− m̂l(Xi,j)}

]2

w(Xi,j)

≈ σ2
ε

∫
w(u)p(u) du

+
1

N

∑
i,j

∫ [ L∑
l=0

βi,l{ml(u)− m̂l(u)}

]2

w(u)p(u) du ,

(32)

where ε denotes the residual and σ2
ε

def
= Var(ε).

The two criteria finally are:

ΞAIC1

def
=

1

N

∑
i,j

{Yi,j −
L∑

l=0

β̂i,lm̂l(Xi,j)}2 p̂(Xi,j) exp

{
2

L

N
Kh(0)

∫
1

p̂(u)
du

}
, (33)

and

ΞAIC2

def
=

1

N

∑
i,j

{Yi,j −
L∑

l=0

β̂i,lm̂l(Xi,j)}2 exp

{
2

L

N
Kh(0) µ−1

λ

∫
1

p̂(u)
du

}
, (34)

where µλ denotes the Lebesgue measure of the design set.

Under some regularity conditions, the AIC is an asymptotically unbiased estimate of the

mean averaged square error (MASE). In our setting it would be consistent if the density of

Xi,j did not depend on day i. Due to the irregular design, this is an unrealistic assumption.

For this reason, ΞAIC1 and ΞAIC2 estimate a weighted versions of MASE.

In our AIC the penalty term does not punish for the number parameters β̂i,l that are em-

ployed to model the time series. This can be neglected because we will use a finite dimensional

model for the dynamics of βi,l. The corresponding penalty term is negligible compared to the
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smoothing penalty term. For the prediction contest, however, we use a penalty term that

takes care of the specific parametric model of β̃(θ). More precisely, for the model contest,

we use criterion ΞAIC1 with w(u)
def
= 1. This results in:

Ξ̃AIC
def
= N−1

I∑
i

Ji∑
j

{
Yi,j −

L∑
l=0

β̃i,l(θ̂) m̂l(Xi,j)

}2

× exp

{
2

L

N
Kh(0) µλ +

2 dim(θ)

N

}
. (35)

Thus, we penalize for the dimension of the model.

Clearly, the choice of h and L are not independent. From this point of view, one may think

about minimizing (33) or (34) over both parameters. However, our practical experience

shows that for a given L, changes in the criteria from variation in h is small, compared to

variation in L for a given h. To reduce the computational burden, we use (28) to determine

model size L, and then (33) and (34) to optimize h for a given L.

Convergence of the iterations is measured by

Qk(r)
def
=

I∑
i=1

∫ ∣∣∣∣∣
L∑

l=0

β̂
(r)
i m̂

(r)
l (u)− β̂

(r−1)
i m̂

(r−1)
l (u)

∣∣∣∣∣
k

du . (36)

The rth cycle of the estimation is denoted by (r). Here, we approximate the integral by

simple sums over the estimation grid. Putting k = 1, 2, we have an L1- and an L2-measure

of convergence. Iterations are stopped when Qk(r) ≤ εk for some small ε > 0.
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B Dividend correction scheme

Here, we explain the dividend correction algorithm. To illustrate the aforementioned div-

idend problem consider Figure 13. There, for the calculation of implied volatilities, the

DAX spot price has been approximated by simply discounting the DAX futures price. As

is visible, implied volatilities of calls (crosses) and puts (circles) fall apart, and violate the

put-call-parity. As an explanation, Hafner and Wallmeier (2001) argue that the individual

tax scheme of the marginal investor can be different from the one actually assumed to com-

pute the DAX index. Consequently, the net dividend for this investor is higher or lower than

the one used for the index computation. This discrepancy, which the authors call ‘difference

dividend’, has the same impact as a dividend payment for an unprotected option, i.e. it

drives a wedge into the option prices and hence into implied volatilities. Denote by ∆Dt,T

the time T value of this difference dividend incurred between t and T . Consider the dividend

adjusted formula for a futures price:

Ft = erF (TF−t)St −∆Dt,TF
, (37)

and the dividend adjusted put-call parity:

Ct − Pt = St −∆Dt,TH
e−rH(TH−t) − e−rH(TH−t)K (38)

with TH denoting the call’s Ct and the put’s Pt maturity date. Inserting equation (37) into

(38) yields

Ct − Pt = e−rF (TF−t)Ft + ∆Dt,TH ,TF
− e−rH(TH−t)K , (39)

where ∆Dt,TH ,TF

def
= ∆Dt,TF

e−rF (TF−t) −∆Dt,TH
e−rH(TH−t) is the desired difference dividend.

The ‘adjusted’ index level

S̃t = e−rF (TF−t)Ft + ∆Dt,TH ,TF
(40)

is that index level, which ties put and call implied volatilities exactly to the same levels when

used in the inversion of the BS formula.

For an estimate of ∆D̂t,TH ,TF
, pairs of puts and calls of the strikes and same maturity

are identified provided they were traded within a five minutes interval. For each pair the
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Implied Volatility Surface Ticks
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Figure 13: IVS ticks on April 4, 2000, derived from futures prices that are interest rate

discounted only. Put implied volatility are circles, call implied volatility crosses.

∆Dt,TH ,TF
is derived from equation (39). To ensure robustness ∆D̂t,TH ,TF

is estimated by the

median of all ∆Dt,TH ,TF
of the pairs for a given maturity at day t. Implied volatilities are

recovered by inverting the BS formula using the corrected index value S̃t = Fte
−rF (TF−t) +

∆D̂t,TH ,TF
. Note that ∆Dt,TH ,TF

= 0, when TH = TF . Indeed, when calculated also in this

case, ∆D̂t,TH ,TF
proved to be very small (compared with the index value), which supports

the validity of this approach. The described procedure is applied on a daily basis throughout

the entire data set from 199801 to 200105.

In Figure 14, we present the data after correcting the discounted futures price with an

implied difference dividend ∆D̂t = (10.3, 5.0, 1.9)>, where the first entry refers to 16 days,

the second to 45 days and the third to 73 days to maturity. Implied volatilities of puts

and calls converge two one single string, while the concavity of the put volatility smile is

remedied, too. Note that the overall level of implied volatility string is not altered through

that procedure.
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Implied Volatility Surface Ticks
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Figure 14: IVS ticks on April 4, 2000, derived from futures prices that are interest rate

discounted and corrected with the implied difference dividend. Put implied volatility are

circles, call implied volatility crosses.
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