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1 Predicting bankruptcy with

Support Vector Machines
Wolfgang Härdle, Rouslan Moro, Dorothea Schäfer

The purpose of this work is to introduce one of the most promising among re-
cently developed statistical techniques – the support vector machine (SVM) –
to corporate bankruptcy analysis. An SVM is implemented for analysing such
predictors as financial ratios. A method of adapting it to default probability
estimation is proposed. A survey of practically applied methods is given. This
work shows that support vector machines are capable of extracting useful infor-
mation from financial data, although extensive data sets are required in order
to fully utilize their classification power.

The support vector machine is a classification method that is based on sta-
tistical learning theory. It has already been successfully applied to optical
character recognition, early medical diagnostics, and text classification. One
application where SVMs outperformed other methods is electric load prediction
(EUNITE, 2001), another one is optical character recognition (Vapnik, 1995).
SVMs produce better classification results than parametric methods and such
a popular and widely used nonparametric technique as neural networks, which
is deemed to be one of the most accurate. In contrast to the latter they have
very attractive properties. They give a single solution characterized by the
global minimum of the optimized functional and not multiple solutions associ-
ated with the local minima as in the case of neural networks. Moreover, SVMs
do not rely so heavily on heuristics, i.e. an arbitrary choice of the model and
have a more flexible structure.

1.1 Bankruptcy analysis methodology

Although the early works in bankruptcy analysis were published already in the
19th century (Dev, 1974), statistical techniques were not introduced to it until
the publications of Beaver (1966) and Altman (1968). Demand from finan-
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cial institutions for investment risk estimation stimulated subsequent research.
However, despite substantial interest, the accuracy of corporate default predic-
tions was much lower than in the private loan sector, largely due to a small
number of corporate bankruptcies.

Meanwhile, the situation in bankruptcy analysis has changed dramatically.
Larger data sets with the median number of failing companies exceeding 1000
have become available. 20 years ago the median was around 40 companies
and statistically significant inferences could not often be reached. The spread
of computer technologies and advances in statistical learning techniques have
allowed the identification of more complex data structures. Basic methods are
no longer adequate for analysing expanded data sets. A demand for advanced
methods of controlling and measuring default risks has rapidly increased in
anticipation of the New Basel Capital Accord adoption (BCBS, 2003). The
Accord emphasises the importance of risk management and encourages im-
provements in financial institutions’ risk assessment capabilities.

In order to estimate investment risks one needs to evaluate the default prob-
ability (PD) for a company. Each company is described by a set of variables
(predictors) x, such as financial ratios, and its class y that can be either y = −1
(‘successful’) or y = 1 (‘bankrupt’). Initially, an unknown classifier function
f : x → y is estimated on a training set of companies (xi, yi), i = 1, ..., n. The
training set represents the data for companies which are known to have sur-
vived or gone bankrupt. Finally, f is applied to computing default probabilities
(PD) that can be uniquely translated into a company rating.

The importance of financial ratios for company analysis has been known for
more than a century. Among the first researchers applying financial ratios for
bankruptcy prediction were Ramser (1931), Fitzpatrick (1932) and Winakor
and Smith (1935). However, it was not until the publications of Beaver (1966)
and Altman (1968) and the introduction of univariate and multivariate discrim-
inant analysis that the systematic application of statistics to bankruptcy analy-
sis began. Altman’s linear Z-score model became the standard for a decade to
come and is still widely used today due to its simplicity. However, its assump-
tion of equal normal distributions for both failing and successful companies
with the same covariance matrix has been justly criticized. This approach was
further developed by Deakin (1972) and Altman et al. (1977).

Later on, the center of research shifted towards the logit and probit models. The
original works of Martin (1977) and Ohlson (1980) were followed by (Wiginton,
1980), (Zavgren, 1983) and (Zmijewski, 1984). Among other statistical methods
applied to bankruptcy analysis there are the gambler’s ruin model (Wilcox,
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1.1 Bankruptcy analysis methodology

1971), option pricing theory (Merton, 1974), recursive partitioning (Frydman
et al., 1985), neural networks (Tam and Kiang, 1992) and rough sets (Dimitras
et al., 1999) to name a few.

There are three main types of models used in bankruptcy analysis. The first
one is structural or parametric models, e.g. the option pricing model, logit and
probit regressions, discriminant analysis. They assume that the relationship
between the input and output parameters can be described a priori. Besides
their fixed structure these models are fully determined by a set of parameters.
The solution requires the estimation of these parameters on a training set.

Although structural models provide a very clear interpretation of modelled
processes, they have a rigid structure and are not flexible enough to capture
information from the data. The non-structural or nonparametric models (e.g.
neural networks or genetic algorithms) are more flexible in describing data.
They do not impose very strict limitations on the classifier function but usually
do not provide a clear interpretation either.

Between the structural and non-structural models lies the class of semipara-
metric models. These models, like the RiskCalc private company rating model
developed by Moody’s, are based on an underlying structural model but all or
some predictors enter this structural model after a nonparametric transforma-
tion. In recent years the area of research has shifted towards non-structural
and semi-parametric models since they are more flexible and better suited for
practical purposes than purely structural ones.

Statistical models for corporate default prediction are of practical importance.
For example, corporate bond ratings published regularly by rating agencies
such as Moody’s or S&P strictly correspond to company default probabilities
estimated to a great extent statistically. Moody’s RiskCalc model is basically a
probit regression estimation of the cumulative default probability over a number
of years using a linear combination of non-parametrically transformed predic-
tors (Falkenstein, 2000). These non-linear transformations f1, f2, ..., fd are
estimated on univariate models. As a result, the original probit model:

E[yi,t|xi,t] = Φ (β1xi1,t + β2xi2,t + ... + βdxid,t) , (1.1)

is converted into:

E[yi,t|xi,t] = Φ{β1f1(xi1,t) + β2f2(xi2,t) + ... + βdfd(xid,t)}, (1.2)

where yi,t is the cumulative default probability within the prediction horizon for
company i at time t. Although modifications of traditional methods like probit
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analysis extend their applicability, it is more desirable to base our methodology
on general ideas of statistical learning theory without making many restrictive
assumptions.

The ideal classification machine applying a classifying function f from the
available set of functions F is based on the so called expected risk minimization
principle. The expected risk

R (f) =

∫

1

2
|f(x) − y|dP (x, y), (1.3)

is estimated under the distribution P (x, y), which is assumed to be known. This
is, however, never true in practical applications and the distribution should also
be estimated from the training set (xi, yi), i = 1, 2, ..., n, leading to an ill-posed
problem (Tikhonov and Arsenin, 1977).

In most methods applied today in statistical packages this problem is solved
by implementing another principle, namely the principle of the empirical risk
minimization, i.e. risk minimization over the training set of companies, even
when the training set is not representative. The empirical risk defined as:

R̂ (f) =
1

n

n
∑

i=1

1

2
|f(xi) − yi| , (1.4)

is nothing else but an average value of loss over the training set, while the
expected risk is the expected value of loss under the true probability measure.
The loss for i.i.d. observations is given by:

1

2
|f(x) − y| =

{

0, if classification is correct,

1, if classification is wrong.

The solutions to the problems of expected and empirical risk minimization:

fopt = argmin
f∈F

R (f) , (1.5)

f̂n = argmin
f∈F

R̂ (f) , (1.6)

generally do not coincide (Figure 1.1), although converge as n → ∞ if F is not
too large.

We can not minimize expected risk directly since the distribution P (x, y) is
unknown. However, according to statistical learning theory (Vapnik, 1995), it
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Function class

Risk

f fopt

R

R (f)

fn
ˆ

R (f)
ˆ

Rˆ

Figure 1.1: The minima fopt and f̂n of the expected (R) and empirical (R̂)
risk functions generally do not coincide.

is possible to estimate the Vapnik-Chervonenkis (VC) bound that holds with
a certain probability 1 − η:

R (f) ≤ R̂ (f) + φ

(

h

n
,
ln(η)

n

)

. (1.7)

For a linear indicator function g(x) = sign(x⊤w + b):

φ

(

h

n
,
ln(η)

n

)

=

√

h
(

ln 2n
h

)

− ln η
4

n
, (1.8)

where h is the VC dimension.

The VC dimension of the function set F in a d-dimensional space is h if some
function f ∈ F can shatter h objects

{

xi ∈ R
d, i = 1, ..., h

}

, in all 2h possi-

ble configurations and no set
{

xj ∈ R
d, j = 1, ..., q

}

, exists where q > h that
satisfies this property. For example, three points on a plane (d = 2) can be
shattered by linear indicator functions in 2h = 23 = 8 ways, whereas 4 points
can not be shattered in 2q = 24 = 16 ways. Thus, the VC dimension of the set
of linear indicator functions in a two-dimensional space is three, see Figure 1.2.

The expression for the VC bound (1.7) is a regularized functional where the VC
dimension h is a parameter controlling complexity of the classifier function. The
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1 Predicting Bankruptcy with Support Vector Machines

Figure 1.2: Eight possible ways of shattering 3 points on the plane with a
linear indicator function.

term φ
(

h
n , ln(η)

n

)

introduces a penalty for the excessive complexity of a classifier

function. There is a trade-off between the number of classification errors on
the training set and the complexity of the classifier function. If the complexity
were not controlled, it would be possible to find such a classifier function that
would make no classification errors on the training set notwithstanding how
low its generalization ability would be.

1.2 Importance of risk classification in practice

In most countries only a small percentage of firms has been rated to date. The
lack of rated firms is mainly due to two factors. Firstly, an external rating
is an extremely costly procedure. Secondly, until the recent past most banks
decided on their loans to small and medium sized firms (SME) without asking
for the client’s rating figure or applying an own rating procedure to estimate
the client’s default risk. At best, banks based their decision on rough scoring
models. At worst, the credit decision was completely left to the loan officer.

Since learning to know its own risk is costly and, until recently, the lending
procedure of banks failed to set the right incentives, small and medium sized
firms shied away from rating. However, the regulations are about to change the
environment for borrowing and lending decisions. With the implementation of
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1.2 Importance of risk classification in practice

Rating Class (S&P) One year PD (%) Risk Premia (%)
AAA 0.01 0.75
AA 0.02 – 0.04 1.00
A+ 0.05 1.50
A 0.08 1.80
A- 0.11 2.00

BBB 0.15 – 0.40 2.25
BB 0.65 – 1.95 3.50
B+ 3.20 4.75
B 7.00 6.50
B- 13.00 8.00

CCC > 13 10.00
CC 11.50
C 12.70
D 14.00

Table 1.1: Rating grades and risk premia. Source: (Damodaran, 2002) and
(Füser, 2002)

the New Basel Capital Accord (Basel II) scheduled for the end of 2006 not
only firms that issue debt securities on the market are in need of rating but
also any ordinary firm that applies for a bank loan. If no external rating is
available, banks have to employ an internal rating system and deduce each
client’s specific risk class. Moreover, Basel II puts pressure on firms and banks
from two sides.

First, banks have to demand risk premia in accordance to the specific borrower’s
default probability. Table 1.1 presents an example of how individual risk classes
map into risk premiums (Damodaran, 2002) and (Füser, 2002). For small US-
firms a one-year default probability of 0.11% results in a spread of 2%. Of
course, the mapping used by lenders will be different if the firm type or the
country in which the bank is located changes. However, in any case future loan
pricing has to follow the basic rule. The higher the firm’s default risk is the
more risk premium the bank has to charge.

Second, Basel II requires banks to hold client-specific equity buffers. The mag-
nitudes of these buffers are determined by a risk weight function defined by
the Basel Committee and a solvability coefficient (8%). The function maps
default probabilities into risk weights. Table 1.2 illustrates the change in the
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Rating Class One-year Capital Capital
(S&P) PD (%) Requirements Requirements

(%) (Basel I) (%) (Basel II)
AAA 0.01 8.00 0.63
AA 0.02 – 0.04 8.00 0.93 – 1.40
A+ 0.05 8.00 1.60
A 0.08 8.00 2.12
A- 0.11 8.00 2.55

BBB 0.15 – 0.40 8.00 3.05 – 5.17
BB 0.65 – 1.95 8.00 6.50 – 9.97
B+ 3.20 8.00 11.90
B 7.00 8.00 16.70
B- 13.00 8.00 22.89

CCC > 13 8.00 > 22.89
CC 8.00
C 8.00
D 8.00

Table 1.2: Rating grades and capital requirements. Source: (Damodaran,
2002) and (Füser, 2002). The figures in the last column were es-
timated by the authors for a loan to an SME with a turnover of 5
million euros with a maturity of 2.5 years using the data from col-
umn 2 and the recommendations of the Basel Committee on Banking
Supervision (BCBS, 2003).

capital requirements per unit of a loan induced by switching from Basel I to
Basel II. Apart from basic risk determinants such as default probability (PD),
maturity and loss given default (LGD) the risk weights depend also on the
type of the loan (retail loan, loan to an SME, mortgages, etc.) and the annual
turnover. Table 1.2 refers to an SME loan and assumes that the borrower’s
annual turnover is 5 million EUR (BCBS, 2003). Since the lock-in of the bank’s
equity affects the provision costs of the loan, it is likely that these costs will be
handed over directly to an individual borrower.

Basel II will affect any firm that is in need for external finance. As both
the risk premium and the credit costs are determined by the default risk, the
firms’ rating will have a deeper economic impact on banks as well as on firms
themselves than ever before. Thus in the wake of Basel II the choice of the right
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1.3 Lagrangian formulation of the SVM

rating method is of crucial importance. To avoid friction of a large magnitude
the employed method must meet certain conditions. On the one hand, the
rating procedure must keep the amount of misclassifications as low as possible.
On the other, it must be as simple as possible and, if employed by the borrower,
also provide some guidance to him on how to improve his own rating.

SVMs have the potential to satisfy both demands. First, the procedure is
easy to implement so that any firm could generate its own rating information.
Second, the method is suitable for estimating a unique default probability for
each firm. Third, the rating estimation done by an SVM is transparent and
does not depend on heuristics or expert judgements. This property implies
objectivity and a high degree of robustness against user changes. Moreover, an
appropriately trained SVM enables the firm to detect the specific impact of all
rating determinants on the overall classification. This property would enable
the firm to find out prior to negotiations what drawbacks it has and how to
overcome its problems. Overall, SVMs employed in the internal rating systems
of banks will improve the transparency and accuracy of the system. Both
improvements may help firms and banks to adapt to the Basel II framework
more easily.

1.3 Lagrangian formulation of the SVM

Having introduced some elements of statistical learning and demonstrated the
potential of SVMs for company rating we can now give a Lagrangian formula-
tion of an SVM for the linear classification problem and generalize this approach
to a nonlinear case.

In the linear case the following inequalities hold for all n points of the training
set:

x⊤
i w + b ≥ 1 − ξi for yi = 1,

x⊤
i w + b ≤ −1 + ξi for yi = −1,

ξi ≥ 0,

which can be combined into two constraints:

yi(x
⊤
i w + b) ≥ 1 − ξi (1.9)

ξi ≥ 0. (1.10)

The basic idea of the SVM classification is to find such a separating hyperplane
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1 Predicting Bankruptcy with Support Vector Machines

Figure 1.3: The separating hyperplane x⊤w + b = 0 and the margin in a non-
separable case.

that corresponds to the largest possible margin between the points of different
classes, see Figure 1.3. Some penalty for misclassification must also be intro-
duced. The classification error ξi is related to the distance from a misclassified
point xi to the canonical hyperplane bounding its class. If ξi > 0, an error
in separating the two sets occurs. The objective function corresponding to
penalized margin maximization is formulated as:

1

2
‖w‖

2
+ C

(

n
∑

i=1

ξi

)υ

, (1.11)

where the parameter C characterizes the generalization ability of the machine
and υ ≥ 1 is a positive integer controlling the sensitivity of the machine to out-
liers. The conditional minimization of the objective function with constraint
(1.9) and (1.10) provides the highest possible margin in the case when classi-
fication errors are inevitable due to the linearity of the separating hyperplane.
Under such a formulation the problem is convex. One can show that margin
maximization reduces the VC dimension.
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1.3 Lagrangian formulation of the SVM

The Lagrange functional for the primal problem for υ = 1 is:

LP =
1

2
‖w‖

2
+ C

n
∑

i=1

ξi −

n
∑

i=1

αi{yi

(

x⊤
i w + b

)

− 1 + ξi} −

n
∑

i=1

µiξi, (1.12)

where αi ≥ 0 and µi ≥ 0 are Lagrange multipliers. The primal problem is
formulated as:

min
wk,b,ξi

max
αi

LP .

After substituting the Karush-Kuhn-Tucker conditions (Gale et al., 1951) into
the primal Lagrangian, we derive the dual Lagrangian as:

LD =

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjx
⊤
i xj , (1.13)

and the dual problem is posed as:

max
αi

LD,

subject to:

0 ≤ αi ≤ C,
n
∑

i=1

αiyi = 0.

Those points i for which the equation yi(x
⊤
i w + b) ≤ 1 holds are called support

vectors. After training the support vector machine and deriving Lagrange
multipliers (they are equal to 0 for non-support vectors) one can classify a
company described by the vector of parameters x using the classification rule:

g(x) = sign
(

x⊤w + b
)

, (1.14)

where w =
∑n

i=1 αiyixi and b = 1
2 (x+1 + x−1)w. x+1 and x−1 are two support

vectors belonging to different classes for which y(x⊤w + b) = 1. The value of
the classification function (the score of a company) can be computed as

f(x) = x⊤w + b. (1.15)

Each value of f(x) uniquely corresponds to a default probability (PD).
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The SVMs can also be easily generalized to the nonlinear case. It is worth
noting that all the training vectors appear in the dual Lagrangian formulation
only as scalar products. This means that we can apply kernels to transform all
the data into a high dimensional Hilbert feature space and use linear algorithms
there:

Ψ : R
d 7→ H. (1.16)

If a kernel function K exists such that K(xi, xj) = Ψ(xi)
⊤Ψ(xj), then it can

be used without knowing the transformation Ψ explicitly. A necessary and
sufficient condition for a symmetric function K(xi, xj) to be a kernel is given
by Mercer’s (1909) theorem. It requires positive definiteness, i.e. for any data
set x1, ..., xn and any real numbers λ1, ..., λn the function K must satisfy

n
∑

i=1

n
∑

j=1

λiλjK(xi, xj) ≥ 0. (1.17)

Some examples of kernel functions are:

• K(xi, xj) = e−‖xi−xj‖/2σ2

– the isotropic Gaussian kernel;

• K(xi, xj) = e−(xi−xj)
⊤r−2Σ−1(xi−xj)/2 – the stationary Gaussian kernel

with an anisotropic radial basis; we will apply this kernel in our study
taking Σ equal to the variance matrix of the training set; r is a constant;

• K(xi, xj) = (x⊤
i xj + 1)P – the polynomial kernel;

• K(xi, xj) = tanh(kx⊤
i xj − δ) – the hyperbolic tangent kernel.

1.4 Description of data

For our study we selected the largest bankrupt companies with the capitaliza-
tion of no less than $1 billion that filed for protection against creditors under
Chapter 11 of the US Bankruptcy Code in 2001–2002 after the stock marked
crash of 2000. We excluded a few companies due to incomplete data, leaving
us with 42 companies. They were matched with 42 surviving companies with
the closest capitalizations and the same US industry classification codes avail-
able through the Division of Corporate Finance of the Securities and Exchange
Commission (SEC, 2004).

14



1.5 Computational results

From the selected 84 companies 28 belonged to various manufacturing indus-
tries, 20 to telecom and IT industries, 8 to energy industries, 4 to retail indus-
tries, 6 to air transportation industries, 6 to miscellaneous service industries,
6 to food production and processing industries and 6 to construction and con-
struction material industries. For each company the following information was
collected from the annual reports for 1998–1999, i.e. 3 years prior to defaults of
bankrupt companies (SEC, 2004): (i) S – sales; (ii) COGS – cost of goods sold;
(iii) EBIT – earnings before interest and taxes, in most cases equal to the oper-
ating income; (iv) Int – interest payments; (v) NI – net income (loss); (vi) Cash
– cash and cash equivalents; (vii) Inv – inventories; (viii) CA – current assets;
(ix) TA – total assets; (x) CL – current liabilities; (xi) STD – current maturities
of the long-term debt; (xii) TD – total debt; (xiii) TL – total liabilities; (xiv)
Bankr – bankruptcy (1 if a company went bankrupt, −1 otherwise).

The information about the industry was summarized in the following dummy
variables: (i) Indprod – manufacturing industries; (ii) Indtelc – telecom and
IT industries; (iii) Indenerg – energy industries; (iv) Indret – retail industries;
(v) Indair – air transportation industries; (vi) Indserv – miscellaneous service
industries; (vii) Indfood – food production and processing industries; (viii)
Indconst – construction and construction material industries.

Based on these financial indicators the following four groups of financial ratios
were constructed and used in our study: (i) profit measures: EBIT/TA, NI/TA,
EBIT/S; (ii) leverage ratios: EBIT/Int, TD/TA, TL/TA; (iii) liquidity ratios:
QA/CL, Cash/TA, WC/TA, CA/CL and STD/TD, where QA is quick assets
and WC is working capital; (iv) activity or turnover ratios: S/TA, Inv/COGS.

1.5 Computational results

The most significant predictors suggested by the discriminant analysis belong
to profit and leverage ratios. To demonstrate the ability of an SVM to extract
information from the data, we will chose two ratios from these groups: NI/TA
from the profitability ratios and TL/TA from the leverage ratios. The SVMs,
besides their Lagrangian formulation, can differ in two aspects: (i) their capac-
ity that is controlled by the coefficient C in (1.12) and (ii) the complexity of
classifier functions controlled in our case by the anisotropic radial basis in the
Gaussian kernel transformation.

Triangles and squares in Figures 1.4–1.7 represent successful and failing com-
panies from the training set, respectively. The intensity of the gray background

15
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Variable Min Max Mean Std. Dev.
TA 0.367 91.072 8.122 13.602
CA 0.051 10.324 1.657 1.887
CL 0.000 17.209 1.599 2.562
TL 0.115 36.437 4.880 6.537

CASH 0.000 1.714 0.192 0.333
INVENT 0.000 7.101 0.533 1.114

LTD 0.000 13.128 1.826 2.516
STD 0.000 5.015 0.198 0.641

SALES 0.036 37.120 5.016 7.141
COGS 0.028 26.381 3.486 4.771
EBIT -2.214 29.128 0.822 3.346
INT -0.137 0.966 0.144 0.185
NI -2.022 4.013 0.161 0.628

EBIT/TA -0.493 1.157 0.072 0.002
NI/TA -0.599 0.186 -0.003 0.110
EBIT/S -2.464 36.186 0.435 3.978

EBIT/INT -16.897 486.945 15.094 68.968
TD/TA 0.000 1.123 0.338 0.236
TL/TA 0.270 1.463 0.706 0.214
SIZE 12.813 18.327 15.070 1.257

QA/CL -4.003 259.814 4.209 28.433
CASH/TA 0.000 0.203 0.034 0.041
WC/TA -0.258 0.540 0.093 0.132
CA/CL 0.041 2001.963 25.729 219.568

STD/TD 0.000 0.874 0.082 0.129
S/TA 0.002 5.559 1.008 0.914

INV/COGS 0.000 252.687 3.253 27.555

Table 1.3: Descriptive statistics for the companies. All data except SIZE =
log (TA) and ratios are given in billions of dollars.

corresponds to different score values f . The darker the area, the higher the
score and the greater is the probability of default. Most successful companies
lying in the bright area have positive profitability and a reasonable leverage
TL/TA of around 0.4, which makes economic sense.

Figure 1.4 presents the classification results for an SVM using locally near linear
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Figure 1.4: Ratings of companies in two dimensions. The case of a low com-
plexity of classifier functions, the radial basis is 100Σ1/2, the capac-
ity is fixed at C = 1.
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classifier functions (the anisotropic radial basis is 100Σ1/2) with the capacity
fixed at C = 1. The discriminating rule in this case can be approximated by a
linear combination of predictors and is similar to that suggested by discriminant
analysis, although the coefficients of the predictors may be different.

If the complexity of classifying functions increases (the radial basis goes down
to 2Σ1/2) as illustrated in Figure 1.5, we get a more detailed picture. Now the
areas of successful and failing companies become localized. If the radial basis
is decreased further down to 0.5Σ1/2 (Figure 1.6), the SVM will try to track
each observation. The complexity in this case is too high for the given data
set.

Figure 1.7 demonstrates the effects of high capacities (C = 300) on the classi-
fication results. As capacity is growing, the SVM localizes only one cluster of
successful companies. The area outside this cluster is associated with approxi-
mately equally high score values.
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Figure 1.5: Ratings of companies in two dimensions. The case of an aver-
age complexity of classifier functions, the radial basis is 2Σ1/2, the
capacity is fixed at C = 1.
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Thus, besides estimating the scores for companies the SVM also managed to
learn that there always exists a cluster of successful companies, while the cluster
for bankrupt companies vanishes when the capacity is high, i.e. a company must
possess certain characteristics in order to be successful and failing companies
can be located elsewhere. This result was obtained without using any additional
knowledge besides that contained in the training set.

The calibration of the model or estimation of the mapping f → PD can be
illustrated by the following example (the SVM with the radial basis 2Σ1/2

and capacity C = 1 will be applied). We can set three rating grades: safe,
neutral and risky which correspond to the values of the score f < −0.0115,
−0.0115 < f < 0.0115 and f > 0.0115, respectively, and calculate the to-
tal number of companies and the number of failing companies in each of the
three groups. If the training set were representative of the whole population
of companies, the ratio of failing to all companies in a group would give the
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Figure 1.6: Ratings of companies in two dimensions. The case of an excessively
high complexity of classifier functions, the radial basis is 0.5Σ1/2,
the capacity is fixed at C = 1.
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estimated probability of default. Figure 1.8 shows the power (Lorenz) curve
(Lorenz, 1905) – the cumulative default rate as a function of the percentile
of companies sorted according to their score – for the training set of compa-
nies. For the abovementioned three rating grades we derive PDsafe = 0.24,
PDneutral = 0.50 and PDrisky = 0.76.

If a sufficient number of observations is available, the model can also be cali-
brated for finer rating grades such as AAA or BB by adjusting the score values
separating the groups of companies so that the estimated default probabilities
within each group equal to those of the corresponding rating grades. Note,
that we are calibrating the model on the grid determined by grad(f) = 0 or

grad ˆ(PD) = 0 and not on the orthogonal grid as in the Moody’s RiskCalc
model. In other words, we do not make a restrictive assumption of an indepen-
dent influence of predictors as in the latter model. This can be important since,
for example, the same decrease in profitability will have different consequences
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Figure 1.7: Ratings of companies in two dimensions, the case of a high capacity
(C = 300). The radial basis is fixed at 2Σ1/2.
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for high and low leveraged firms.

For multidimensional classification the results can not be easily visualized. In
this case we will use the cross-validation technique to compute the percentage
of correct classifications and compare it with that for the discriminant analysis
(DA). Note that both most widely used methods – the discriminant analysis
and logit regression – choose only one significant at the 5% level predictor
(NI/TA) when forward selection is used. Cross-validation has the following
stages. One company is taken out of the sample and the SVM is trained on
the remaining companies. Then the class of the out-of-the-sample company is
evaluated by the SVM. This procedure is repeated for all the companies and
the percentage of correct classifications is calculated.

The best percentage of correctly cross-validated companies (all available ratios
were used as predictors) is higher for the SVM than for the discriminant analysis
(62% vs. 60%). However, the difference is not significant at the 5% level. This
indicates that the linear function might be considered as an optimal classifier
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Figure 1.8: Power (Lorenz) curve (Lorenz, 1905) – the cumulative default rate
as a function of the percentile of companies sorted according to
their score – for the training set of companies. An SVM is applied
with the radial basis 2Σ1/2 and capacity C = 1.
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for the number of observations in the data set we have. As for the direction
vector of the separating hyperplane, it can be estimated differently by the SVM
and DA without affecting much the accuracy since the correlation of underlying
predictors is high.

Cluster center locations, as they were estimated using cluster analysis, are
presented in Table 1.4. The results of the cluster analysis indicate that two
clusters are likely to correspond to successful and failing companies. Note the
substantial differences in the interest coverage ratios, NI/TA, EBIT/TA and
TL/TA between the clusters.
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Cluster {-1} {1}
EBIT/TA 0.263 0.015

NI/TA 0.078 -0.027
EBIT/S 0.313 -0.040

EBIT/INT 13.223 1.012
TD/TA 0.200 0.379
TL/TA 0.549 0.752
SIZE 15.104 15.059

QA/CL 1.108 1.361
CASH/TA 0.047 0.030
WC/TA 0.126 0.083
CA/CL 1.879 1.813

STD/TD 0.144 0.061
S/TA 1.178 0.959

INV/COGS 0.173 0.155

Table 1.4: Cluster centre locations. There are 19 members in class {-1} – suc-
cessful companies, and 65 members in class {1} – failing companies.

1.6 Conclusions

As we have shown, SVMs are capable of extracting information from real life
economic data. Moreover, they give an opportunity to obtain the results not
very obvious at first glance. They are easily adjusted with only few parame-
ters. This makes them particularly well suited as an underlying technique for
company rating and investment risk assessment methods applied by financial
institutions.

SVMs are also based on very few restrictive assumptions and can reveal effects
overlooked by many other methods. They have been able to produce accurate
classification results in other areas and can become an option of choice for
company rating. However, in order to create a practically valuable methodology
one needs to combine an SVM with an extensive data set of companies and
turn to alternative formulations of SVMs better suited for processing large
data sets. Overall, we have a valuable tool for company rating that can answer
the requirements of the new capital regulations.
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