The Papers on Entrepreneurship, Growth and Public Policy are edited by the Group Entrepreneurship, Growth and Public Policy, MPI Jena. For editorial correspondence, please contact: egppapers@econ.mpg.de

Max Planck Institute of Economics Group Entrepreneurship, Growth and Public Policy
Kahlaische Str. 10
07745 Jena, Germany
Fax: ++49-3641-686710

Transitional Dynamics in a
 Growth Model with Distributive Politics*

Chetan Ghate
Indian Statistical Institute, New Delhi

June 24, 2006

[^0]
Abstract

This paper constructs a dynamic analysis of the growth and distribution models of Das and Ghate (2004) and Alesina and Rodrik (1994) when leisure is valued by agents. When leisure enters the utility function, we show that the tax rate on capital income chosen in a political equilibrium is lower than the growth maximizing tax rate. This slows growth down, but for a very different reason than in Alesina and Rodrik (1994). Here, unanimity holds, and slower growth comes together with valued leisure, while in AR, slower growth comes from conflicting choices over the tax rate, with a capital poor median voter prevailing. Our results generalize the work of Alesina and Rodrik (1994) and Das and Ghate (2004) in two ways. First, we assess the impact of redistributive politics on growth by looking at the effect of income inequality on the tax rate and labor supply. Second, using the set up of Das and Ghate (2004), we provide a dynamic analysis of Alesina and Rodrik (1994) where majority voting determines the extent of distribution, and thus, a relationship between inequality and growth. The general insight gained from the analysis is that characterizing the transitional dynamics in a model of redistributive politics and growth with endogenous leisure is not intractable.

Keywords: Distributive Conflict, Endogenous Distribution, Median Voter Theorem, Endogenous Growth, Positive Political Economy

Journal of Economic Literature Classification Number: P16: Political Economy of Capitalism; E62: Fiscal Policy; O40 Economic Growth.

1 Introduction

This paper constructs a dynamic analysis of the endogenous distribution and growth model of Das and Ghate (2004) when leisure is valued by agents. Following the seminal work of Alesina and Rodrik (1994) - henceforth AR - a large body of theoretical work has addressed the impact of income distribution on economic growth via the implied pressure for redistribution. ${ }^{1}$ However, in summarizing the recent literature on income distribution and growth, Drazen (2000, p. 473), observes that several growth and distribution models (where inequality is defined in terms of the functional distribution of income), "lack transitional dynamics", a feature "dictated ... by the difficulty in solving for a simultaneous political and economic equilibrium." Das and Ghate (2004) - henceforth DG - to the best of our knowledge, are the first authors to add transitional dynamics to the growth and (exogenous) distribution framework of AR. ${ }^{2}$

Using the framework of Das and Ghate (2004), we construct a model of redistributive politics and growth with transitional dynamics and endogenous leisure. The

[^1]emphasis is on income inequality and transitional dynamics. Majority voting determines the extent of redistribution and thus a relationship between inequality and growth in a simple way. Households live only for one period, enjoy utility from leisure, and care about the future level of the capital stock. Households inherit bequests and pay taxes on their inherited income. This simple setup allows us to study the simultaneous evolution of growth and distribution when leisure is valued by agents.

When labor-leisure is exogenous (or households have no choice at all), the factor holding ratios of agents converge to a mass point that is independent of the initial distribution of capital, as in Stiglitz (1969). There is perfect convergence of interest across individuals about the tax rate, or unanimity. There is no distributive conflict in the long run. These results are consistent with DG. When we endogenize leisure, we show that there is still perfect convergence in the factor holdings of agents, i.e., the median and average household's factor holdings coincide in the steady state. As in the case where leisure does not enter the utility function, there is unanimity, and no distributive conflict. However, because households value leisure, their preferred tax rate is lower than the growth maximizing tax rate as households work less and choose to tax themselves less. This leads to lower growth. Importantly, lower growth obtains for a different reason than in AR. Here unanimity holds and slower growth comes together with valued leisure, while in AR, slower growth comes from conflicting choices over the tax rate, with a capital-poor median voter prevailing.

While the basic framework constructed here is similar to DG and AR, there are
three differences. First, we allow households to value leisure. This makes the growth rate, the distribution of wealth, labor supply, and the tax rate simultaneously endogenous. ${ }^{3}$ When leisure enters the utility function, we show that the tax rate chosen in a political equilibrium is less than the growth maximizing tax rate. This is in direct contrast to DG, where both tax rates are the same, while the inequality is reversed in AR: i.e., the tax rate chosen in a political equilibrium is greater than the growth maximizing tax rate. In this model however perfect equality holds in capital holdings and hours worked across agents in the steady state, whereas in DG, perfect equality holds in terms of factor holding (capital-skill) ratios in the steady state. This is the main difference in the unanimity results in DG and the current framework. In both of these models, initial inequality is not preserved. In contrast, in AR, factor holdings are constant and initial inequality is preserved in the steady state.

Second, we consider a more empirically plausible specification of the government budget constraint in which public infrastructure - the source of labor augmentation in the model - is financed by a tax on capital income as opposed to a tax on the capital stock. Like DG, the equilibrium tax rate is determined by majority voting. However, the setup used in our model contrasts with some other papers in the endogenous growth literature, such as Yamarik (2001), who studies the effect of non-linear taxation in an AK growth model. Yamarik (2001) shows that an inclusion of a non-linear

[^2]tax structure (i.e., progressivity) into an AK growth model introduces the convergence behavior of the neo-classical growth model while retaining the steady state growth properties of the AK model. There are several differences. First, unlike Yamarik (2001), the interest here is on the redistributive effects of taxation, not on the distortionary effects. Further, Yamarik (2001) adopts a representative agent framework to focus attention on the agent's decisions when future tax rates are connected to current decisions. This contrasts with the current setup wherein agents have finite lifetimes. However, like Yamarik (2001), we show that the inclusion of the above tax structure introduces transitional dynamics while preserving the steady state properties of the AK model.

Finally, in DG agents are heterogenous with respect to skill. In the current setup agents are differentiated on the basis of their capital holdings. This permits complete equality in capital holdings across agents in the steady state. This difference in modeling strategy does not alter any of the results and simplifies the characterization of the transitional dynamics considerably.

In sum, the contribution that this paper makes is to provide a dynamic analysis of DG and AR where the distribution of income evolves endogenously and leisure enters the utility function of households. The emphasis of the model is on income inequality and transitional dynamics. The advantage of the framework is that it offers a simple way to study the simultaneous evolution of growth and distribution in which the transitional dynamics can be characterized in a tractable way.

The paper is structured as follows. Section 2 outlines the model. Section 3 characterizes the optimal tax rate of households under endogenous and exogenous leisure. Section 4 discusses the implication for optimal tax rates on growth and inequality in the long run. Section 5 concludes.

2 The Model

We first solve the household's problem with labor supplied endogenously. The population, or number of households, N, is given. Each household is differentiated on the basis of its capital holdings, K_{h}, whose distribution is assumed to be continuous on a finite support, R_{+}. We assume that the distribution of K_{h} is skewed to the right, which implies that the median household's capital holdings is less than the mean household's. ${ }^{4}$ The aggregate stock of capital is given by $K=\sum_{1}^{N} K_{h}$. Capital is the only accumulable factor in the model.

A single good is produced in the economy according to a Cobb-Douglas production technology, given by

$$
\begin{equation*}
Y_{t}=K_{t}^{a}\left(G_{t} H_{t}\right)^{1-a} \tag{1}
\end{equation*}
$$

where Y_{t} is aggregate output at time period t, K_{t} denotes the aggregate capital stock in the economy, H_{t} is the aggregate labor supply in each period, and G_{t} is a public infrastructure input which is the source of labor augmentation. Following

[^3]the endogenous growth literature, we interpret K as both physical as well as human capital. Hence $a \in[0,1]$ is the private return to physical capital as well as human capital. We require the regularity condition, $a>\frac{1}{2}$, to ensure that the return to capital is positive in equilibrium. ${ }^{5}$

We assume that the public infrastructure input, G, is financed by a specific tax, $\tau \in[0,1]$, on capital income in each period. This specification is more empirically plausible, and departs from both AR and DG, who assume that infrastructure is financed by a tax on the capital stock, or wealth. The government budget constraint is balanced in each period, and given by

$$
\begin{equation*}
G_{t}=\tau_{t} r_{t} K_{t} \tag{2}
\end{equation*}
$$

where r_{t} is the competitive rate of return to capital. Given (1), the rental rate to capital, r_{t}, and the wage rate, w_{t}, are given by,

$$
\begin{equation*}
r_{t}=\phi\left(\tau_{t}\right) H_{t}^{\frac{1-a}{a}}, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{t}=\xi\left(\tau_{t}\right) H_{t}^{\frac{1-2 a}{a}} K_{t} \tag{4}
\end{equation*}
$$

respectively, where, $\phi\left(\tau_{t}\right)=a^{\frac{1}{a}} \tau_{t}^{\frac{1-a}{a}}$, and $\xi\left(\tau_{t}\right)=(1-a) a^{\frac{1-a}{a}} \tau_{t}^{\frac{1-a}{a}} .^{6}$ This allows us to

[^4]write the after tax rental - wage ratio as
\[

$$
\begin{equation*}
\frac{r_{t}}{w_{t}}=\frac{a H_{t}}{(1-a) K_{t}} \tag{5}
\end{equation*}
$$

\]

Without any loss of generality, we assume that capital depreciates fully in each period.
Following Aghion and Bolton (1997), agents are assumed to live for a single period. In each period, household's are endowed with a single unit of time which they allocate optimally between labor and leisure. At the end of the period, a replica of each agent is born, for which agents leave a bequest, and then die. Hence, at time t, the $h^{t h}$ household derives utility over consumption, $C_{h t}$, a bequest $K_{h t+1}$, and leisure, $1-H_{h t}$, where $H_{h t}$ is the amount of labor supplied by the $h^{t h}$ household in time period t. The utility function $U: \mathbb{R}_{+}^{3} \rightarrow R_{+}$satisfies the standard properties, and is assumed to be Cobb-Douglas. ${ }^{7}$

The timing of events is as follows. Production occurs at the beginning of each period. Once production occurs, households make their consumption, bequest, and labor supply decisions, and then die. We assume that the tax rate is known before positive effect of infrastructure on factor rewards. While the wage rate is linear in capital, the marginal product of capital is independent of the capital stock, as in an AK setup. This is because in contrast to the standard setup where the interest rate is determined from the marginal productivity of capital $\left(r=f\left(M P_{K}(K, \cdot)\right)\right)$ - here, because of the dependence of the marginal productivity of capital on public infrastructure, and via taxation on the capital stock, the interest rate is determined from the relation $r=f\left(M P_{K}(r)\right)$. Output depends on the aggregate capital stock in linear fashion, which leads to AK growth in the steady state
${ }^{7}$ We choose this setup to keep the inter-temporal wealth distribution tractable. Alternatively, we could allow agents to care about the utility of their children, as opposed to the level of capital that they bequeath. The results would be qualitatively similar to the current setup, and so we retain the current framework for analytical tractability.
households make their consumption, bequest, and labor supply decisions.
The household's problem is to maximize

$$
\begin{equation*}
\operatorname{Max}_{C_{h t}, K_{h t+1}, H_{h t}} C_{h t}^{\alpha} K_{h t+1}^{\beta}\left(1-H_{h t}\right)^{1-\alpha-\beta} \tag{6}
\end{equation*}
$$

subject to

$$
\begin{equation*}
C_{h t}+K_{h t+1} \leq w_{t} H_{h t}+r_{t}\left(1-\tau_{t}\right) K_{h t}, \tag{7}
\end{equation*}
$$

where $\alpha \in(0,1), \beta \in(0,1)$, and $\alpha+\beta \leq 1$. The optimization exercise implies the following household decision rules,

$$
\begin{gather*}
C_{h t}=\frac{\alpha}{\beta} K_{h t+1}, \tag{8}\\
K_{h t+1}=\frac{\beta}{\alpha+\beta}\left\{w_{t} H_{h t}+r_{t}\left(1-\tau_{t}\right) K_{h t}\right\}, \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
H_{h t}=(\alpha+\beta)-(1-\alpha-\beta)\left[\frac{r_{t}\left(1-\tau_{t}\right)}{w_{t}}\right] K_{h t} \tag{10}
\end{equation*}
$$

Equations (8), (9), and (10), summarize the individual household equations in the model. Equation (8) governs optimal consumption. Equation (9) is the household capital accumulation equation: it says that next period's capital is proportional to current disposable income (i.e., wage income plus after-tax capital income). Equation (10) is the household labor supply equation and is increasing in the tax rate on capital income: i.e., $\frac{\partial H_{h t}}{\partial \tau_{t}}>0$.

To obtain the aggregate labor supply and capital accumulation equations, we aggregate across households. Noting that $\sum_{1}^{N} H_{h t}=H_{t}$, using (5), and re-arranging
equation (10) leads to an expression for aggregate labor supply determined endogenously as a function of the tax rate,

$$
\begin{equation*}
H_{t}=H\left(\tau_{t}\right)=\frac{N(\alpha+\beta)(1-a)}{(1-a)+a(1-\alpha-\beta)\left(1-\tau_{t}\right)} . \tag{11}
\end{equation*}
$$

Let $\delta\left(\tau_{t}\right)=(1-a)+a(1-\alpha-\beta)\left(1-\tau_{t}\right) .{ }^{8}$ Intuitively, a rise in the tax rate reduces a household's return to capital, and therefore its capital income. This leads households to supply more labor. When $\alpha+\beta=1$, households do not value leisure, and supply their entire time endowment as labor exogenously. This implies that $H_{t}=N$, or that the aggregate labor supply is simply the household per-period time endowment (1) multiplied by the number of households (N). Having determined H, equation (9) implies

$$
\begin{equation*}
K_{t+1}=\frac{\beta}{\alpha+\beta}\left\{\xi\left(\tau_{t}\right) H_{t}^{\frac{1-a}{a}}+\phi\left(\tau_{t}\right)\left(1-\tau_{t}\right) H_{t}^{\frac{1-a}{a}}\right\} K_{t} . \tag{12}
\end{equation*}
$$

Equations (11) and (12) denote the aggregate decision rules for labor and capital, respectively.

We now obtain the growth maximizing tax rate. Define the economy growth rate as $g_{t+1}=\frac{K_{t+1}}{K_{t}} .{ }^{9}$ To obtain an expression for g_{t+1}, we begin with the household capital accumulation equation, (9). Substituting out the expression for $H_{h t}$ (using (10) in (9)), aggregating across households, and simplifying implies

$$
\begin{equation*}
K_{t+1}=\beta\left\{N w_{t}+r_{t}\left(1-\tau_{t}\right) K_{t}\right\} . \tag{13}
\end{equation*}
$$

${ }^{8}$ When $\tau=1, H=N(\alpha+\beta)$, and when $\tau=0, H=\frac{N(\alpha+\beta)(1-a)}{(1-a)+(1-\alpha-\beta)}<N(\alpha+\beta)$. It is easy to verify that $H^{\prime}(\tau)>0 \quad \forall \tau \in[0,1]$.
${ }^{9}$ More accurately, g_{t+1}, refers to the growth factor or gross growth rate. We use these terms interchangeably.

From equation (5), the wage rate can be expressed as

$$
\begin{equation*}
w_{t}=\frac{(1-a) K_{t} r_{t}}{a H_{t}} \tag{14}
\end{equation*}
$$

Using this expression for w_{t}, the expression for the rental rate in (3), and substituting the expression for H_{t} from (11) into equation (13) implies that

$$
\begin{equation*}
g_{t+1}=\text { constant } \cdot\left\{(1-a)+a\left(1-\tau_{t}\right)\right\}\left(\tau_{t} H_{t}\right)^{\frac{1-a}{a}} \tag{15}
\end{equation*}
$$

where the constant term is given by the expression, $\frac{(\alpha+\beta)}{\beta} a^{\frac{1-a}{a}}$. Equation (15) in conjunction with equation (11) determines the long run endogenous growth rate of the economy. Note that the growth-tax curve takes the inverse U-shape form, as in Barro (1990) which leads to a unique growth maximizing tax rate. This is because the tax rate enters both positively (both directly as well as through aggregate labor supply) as well as negatively in expression (15). The positive effect of a higher tax rate comes from the growth enhancing effect of more infrastructure (G), as well as the positive effect of higher labor supply from (11). However, when the tax rate on capital income becomes sufficiently high, this reduces the net return to capital, which reduces investment and growth. Hence, there exists a unique growth maximizing tax rate, which we denote as τ_{e}^{g}.

2.1 Exogenous Labor-Leisure

We now solve the problem when agents supply their entire time endowment inelastically in each period, i.e., $\alpha+\beta=1$. When labor is exogenous, the wage rate is given
by $w_{t}=\xi\left(\tau_{t}\right) K_{t}$, where $\xi\left(\tau_{t}\right)=(1-a) a^{\frac{1-a}{a}} \tau_{t}^{\frac{1-a}{a}}$, while the return to capital is given by, $r_{t}=\phi\left(\tau_{t}\right)=\left\{a \tau_{t}^{1-a}\right\}^{\frac{1}{a}}$, where we have normalized $N=1$. Deriving the household decision rules like before, and aggregating the household capital accumulation equations leads to the aggregate capital accumulation equation,

$$
\begin{equation*}
K_{t+1}=\frac{\beta}{\alpha+\beta}\left[w_{t}+r_{t}\left(1-\tau_{t}\right) K_{t}\right]=\frac{\beta}{\alpha+\beta}\left[\left(\tau_{t} r_{t}\right)^{1-a}-\tau_{t} r_{t}\right] K_{t} \tag{16}
\end{equation*}
$$

Define the growth factor as, $g_{t+1}=\frac{K_{t+1}}{K_{t}}$. It is straightforward to verify from (16) that the growth maximizing tax rate is ${ }^{10}$

$$
\begin{equation*}
\tau_{x}^{g}=\frac{1-a}{a} \tag{17}
\end{equation*}
$$

where τ_{x}^{g} denotes the growth maximizing tax rate when $\alpha+\beta=1$.
We now provide a sufficient condition for the existence of a unique growth maximizing tax rate under endogenous labor-leisure $(\alpha+\beta<1)$ and compare it with the growth maximizing tax rate under exogenous labor-leisure $(\alpha+\beta=1)$.

Proposition 1 Suppose $\alpha+\beta=1$. Then, the unique growth maximizing tax rate is given by

$$
\begin{equation*}
\tau_{x}^{g}=\frac{1-a}{a} \tag{18}
\end{equation*}
$$

Suppose $\alpha+\beta<1$. If $2 a-1>a(1-\alpha-\beta)(1-a)$, then there exists a unique growth maximizing tax rate under endogenous labor leisure which exceeds the growth

[^5]maximizing rate under exogenous labor leisure,i.e.,
\[

$$
\begin{equation*}
\tau_{e}^{g}>\tau_{x}^{g}=\frac{1-a}{a} \tag{19}
\end{equation*}
$$

\]

Proof. See Appendix.

As shown in the appendix, the growth maximizing tax rate is obtained from differentiating the expression for the growth rate with respect to τ_{t} in (15). After manipulation of the first order equation, this leads to the expression,

$$
\begin{equation*}
\underbrace{\frac{a \delta\left(\tau_{t}\right)}{\left(1-a \tau_{t}\right)}}_{M C}=\underbrace{\frac{(1-a)[(1-a)+a(1-\alpha-\beta]}{a \tau_{t}}}_{M B} \tag{20}
\end{equation*}
$$

Note when $\alpha+\beta=1$, or labor is supplied exogenously by households, then the above expression becomes,

$$
\begin{equation*}
\underbrace{\frac{a}{\left(1-a \tau_{t}\right)}}_{M C}=\underbrace{\frac{(1-a)}{a \tau_{t}}}_{M B}, \tag{21}
\end{equation*}
$$

which leads to the growth maximizing tax rate when $\alpha+\beta=1: \tau_{x}^{g}=\frac{1-a}{a}$.
Substituting the expression for $\delta\left(\tau_{t}\right)$ in (20), it is more convenient to re-write equation (20) as ${ }^{11}$

$$
\begin{equation*}
\underbrace{(1-a)\left\{a \tau_{t}-(1-a)\right\}}_{M C}=\underbrace{(1-\alpha-\beta) a[(1-a)(1-a \tau)-a(1-\tau) a \tau]}_{M B} . \tag{22}
\end{equation*}
$$

Equation (22) can be used to plot the marginal cost and benefit schedules corresponding to the growth maximizing tax rate under $\alpha+\beta<1$ and $\alpha+\beta=1$. This

[^6]is illustrated in Figure (1). The growth maximizing tax rate is obtained when the marginal benefit of an increase in the tax rate on capital income is exactly equal to the marginal cost of higher taxes. However, as (22) shows, changes in $\alpha+\beta$ only affect the marginal benefit schedule, and not the marginal cost schedule. In particular, as $\alpha+\beta \rightarrow 1$, the marginal benefit of higher taxes falls for each value of the tax rate. This leads to a reduction in the growth maximizing tax rate. When $\alpha+\beta=1$, the marginal benefit schedule intersects the marginal cost schedule at $\tau_{x}^{g}=\frac{1-a}{a}$: in this case, the marginal benefit is a horizontal line and equal to zero for all feasible values of the tax rate. Intuitively, when labor is endogenous, the tax rate maximizes the net return to capital as well as aggregate labor supply. Under exogenous labor supply, aggregate labor is invariant with respect to the tax rate. Hence, the growth maximizing tax rate is greater when labor-leisure is endogenous. ${ }^{12}$

3 Transitional Dynamics when $\alpha+\beta<1$.

We would like to verify whether the equilibrium tax rate under majority voting yields the growth maximizing tax rate when $\alpha+\beta<1$, and $\alpha+\beta=1$, as derived in Proposition (1). We first consider the case where $\alpha+\beta<1$, and derive the transitional dynamics governing the law of motion of household capital holdings. We then

[^7]Figure 1: The Growth Maximizing Tax Rate under Exogenous and Endogenous Labor-Leisure
characterize the optimal tax rate.
Like DG, for any household, h, let $\eta_{h t}=\frac{K_{h t}}{K_{t}}, \eta_{h} \in[0,1]$, denote the relative capital holdings of the $h^{\text {th }}$ household relative to the aggregate capital stock. ${ }^{13}$ The dynamic law of motion of household specific capital holdings is given by ${ }^{14}$

$$
\begin{equation*}
\eta_{h t+1}=\eta_{h t}\left\{1+\frac{\xi\left(\tau_{t}\right)\left[\frac{H_{h t}}{H_{t h}}-1\right]}{\xi\left(\tau_{t}\right)+\phi\left(\tau_{t}\right)\left(1-\tau_{t}\right)}\right\} . \tag{23}
\end{equation*}
$$

Equation (23) is the index of inequality in the model and governs the transitional dynamics of relative capital holdings of the $h^{\text {th }}$ household. ${ }^{15}$ It is easy to verify from equation (23) that the transition to the steady state is monotone and there is a unique stable steady state.

[^8]Proposition 2 In the steady state, the factor holding ratios of agents converge to a mass point that is independent of the initial distribution of capital, i.e.,

$$
\begin{equation*}
\frac{H_{h}}{H}=\eta_{h}=\frac{1}{N} \forall h \tag{24}
\end{equation*}
$$

This holds for all feasible values of the tax rate.

Proof. See Appendix

Proposition (2) shows that irrespective of the initial distribution of capital, all agents become identical in the steady state. In the long run, every agent is a 'representative' agent, and identical with respect to their relative capital holdings. This implies complete equality as in the steady state every household will be endowed with the same share of the capital stock, $\frac{1}{N}$, and labor hours as the average household. ${ }^{16}$ This is also true for the median household.

To derive an expression for the equilibrium tax rate under median voting, we first obtain the indirect utility function of households. We first manipulate the utility function to write it as

$$
\begin{equation*}
\log U_{h t}=V_{h t}=\mathrm{constant}+\log \left[\frac{K_{h t+1}}{w_{t}}\right]+(\alpha+\beta) \log \left(w_{t}\right) \tag{25}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\frac{K_{h t+1}}{w_{t}}=H_{h t}+\frac{r_{t}\left(1-\tau_{t}\right)}{w_{t}} K_{h t} \tag{26}
\end{equation*}
$$

[^9]and
\[

$$
\begin{equation*}
H_{h t}+\frac{a}{1-a} \frac{H_{t}}{K_{t}} K_{h t}\left(1-\tau_{t}\right)=(\alpha+\beta)\left[1+\frac{a}{1-a} \frac{H_{t}}{K_{t}} K_{h t}\left(1-\tau_{t}\right)\right] \tag{27}
\end{equation*}
$$

\]

Substituting these into the $V_{h t}=\log \left(U_{h t}\right)$ yields,

$$
\begin{equation*}
V_{h t}=\mathrm{constant}+\log \left\{1+\frac{a}{1-a} \frac{H_{t}}{K_{t}} K_{h t}\left(1-\tau_{t}\right)\right\}+(\alpha+\beta) \log \left(w_{t}\right) \tag{28}
\end{equation*}
$$

Substituting for H_{t} in (11) into the above expression and simplifying yields

$$
\begin{equation*}
V_{h t}=\mathrm{constant}+\log \left\{1+a N(\alpha+\beta) \frac{\left(1-\tau_{t}\right)}{\delta\left(\tau_{t}\right)} \eta_{h t}\right\}+(\alpha+\beta) \log \left(w_{t}\right) \tag{29}
\end{equation*}
$$

We assume that individual's care not only about how their optimal choices affect individual labor supply, but aggregate H as well. It is sufficient to note that for any given values of K_{t} and $K_{h t}$ the indirect utility function of single peaked with respect to τ_{t}. By the median voter theorem, this implies that the median household's preferred tax rate is the equilibrium tax rate in the economy. ${ }^{17}$ This corresponds to the political tax determined under majority voting.

Taking $\eta_{h t}$ as given, the optimal tax rate of household's is obtained from the household's first order condition with respect to (29). The next proposition summarizes the optimal tax rate of households.

Proposition 3 The optimal tax rate for the $h^{\text {th }}$ household, $\tau_{h t}$, is determined by the first order condition,

$$
\begin{equation*}
\frac{\delta\left(\tau_{h t}\right)(1-a)}{a \tau_{h t}}=\frac{a N(1-a) \eta_{h t}}{\left\{(1-a)+a\left[(1-\alpha-\beta)+(\alpha+\beta) N \eta_{h t}\right]\left(1-\tau_{h t}\right)\right\}}+(2 a-1)(1-\alpha-\beta)=g\left(\eta_{h t}\right) \tag{30}
\end{equation*}
$$

[^10]Growth and Distributive Politics

The optimal tax rate is decreasing in the relative capital holdings of the $h^{\text {th }}$ household.

Proof. See Appendix.

It will be easier to characterize the optimal tax of households relative to the growth maximizing tax rate if we substitute $\delta\left(\tau_{t}\right)$ into (30) and re-write it as,

$$
\begin{equation*}
\underbrace{\frac{(1-a)[(1-a)+a(1-\alpha-\beta)]}{a \tau_{h t}}}_{M B}=\underbrace{\frac{a N(1-a) \eta_{h t}}{\left\{(1-a)+a\left[(1-\alpha-\beta)+(\alpha+\beta) N \eta_{h t}\right]\left(1-\tau_{h t}\right)\right\}}+a(1-\alpha-\beta)}_{M C} . \tag{31}
\end{equation*}
$$

Equation (31) characterizes the optimal tax rate of households. First, from (31) it is easily verified that as η_{h} increases the optimal tax rate of households falls. Intuitively, the right hand side of equation (30) corresponds to the marginal cost schedule of a rise in the tax rate facing households. The first term on the right hand side of equation (30) in increasing in η_{h}. Hence, a higher η_{h} pushes the marginal cost up for each tax rate. This reduces the household's preferred tax rate. ${ }^{18}$ This is intuitive: the more capital rich households are, the more they care about their net capital income, and the less their preferred tax on capital.

Second, equation (31) allows us to rank households in terms of their capital holdings and preferred tax rates. For capital-rich households (relative to the mean), $\eta_{h}>\frac{1}{N}$. This implies their preferred tax on capital will be less than a capital poor

[^11]household whose capital holdings are less than the average, $\eta_{h}<\frac{1}{N}$. This is because the marginal cost for an increase in the tax rate is higher for the capital rich households. Hence, their preferred tax on capital is less compared to a capital poor household.

From Proposition 2 however, the households' factor holding ratios converge to the steady state where $\eta_{h}=\frac{1}{N}$. Hence, the median household's preferred tax rate is identical to the mean households preferred tax rate in the steady state. Substituting $\eta_{h}=\frac{1}{N}$ into (30), the preferred tax rate of all households in the steady state is given by

$$
\begin{equation*}
\underbrace{\frac{(1-a)[(1-a)+a(1-\alpha-\beta)]}{a \tau_{h}}}_{M B}=\underbrace{\frac{a(1-a)}{\left(1-a \tau_{h}\right)}+a(1-\alpha-\beta)}_{M C}, \quad h=\frac{1}{N} . \tag{32}
\end{equation*}
$$

This is also the median household's preferred tax rate since all households are identical in the steady state. Setting $h=m$ in (32) yields the political tax rate, i.e., the optimal tax rate of the median voter in the steady state. Note that the median voter's preferred tax rate under majority voting in the steady state is determined by (32), while the growth maximizing tax rate is determined by equation (15). We re-write (15) as

$$
\begin{equation*}
\underbrace{\frac{(1-a)[(1-a)+a(1-\alpha-\beta)]}{a \tau_{t}}}_{M B}=\underbrace{\frac{a(1-a)}{1-a \tau_{t}}+\frac{a^{2}(1-\alpha-\beta)(1-\tau)}{1-a \tau_{t}}}_{M C} \tag{33}
\end{equation*}
$$

The left hand side of both (33) and (32) denote the marginal benefit schedule from higher taxes. Note that the marginal benefit schedule for changes in the tax rate in
the steady state for households is identical to the marginal benefit schedule from the growth maximizing tax rate. The difference lies in the marginal cost schedules of the growth maximizing tax rates and the marginal cost schedule for households in the steady state. In particular, since $\frac{a(1-\tau)}{(1-a \tau)}<1$, for all $\tau \in[0,1]$, the marginal cost a rise in the tax rate is higher for households in the steady state for each level of the tax rate, with the difference between the two marginal cost functions an increasing function of the tax rate. Thus, for higher values of the tax rate, the optimal tax of households in the steady state - as well as the median household's preferred tax rate - is less than the growth maximizing tax rate.

Proposition 4 Let $\alpha+\beta<1$. In the steady state, the preferred tax rates of all households - including the median - converges to the 'average' household's preferred tax rate. However, this tax rate is strictly less than the growth maximizing tax rate, τ_{e}^{g}.

Figure (2) illustrates the dynamics behind Proposition (4). Intuitively, since households value leisure, they work less. Hence, they chose to tax themselves less. We start with the marginal cost schedule of a household who owns very little but positive amounts of capital. ${ }^{19}$ As households become more capital rich, the marginal cost of higher taxes rise, and so the preferred tax on capital falls until it equals the growth maximizing tax rate. This is where the marginal cost schedules of both the growth

[^12]Figure 2: The Steady State Tax Rate versus the Growth Maximizing Tax Rate
maximizing tax rate and the $h^{t h}$ household's tax rate coincide. However in the steady state because households value leisure they work less. Their preferred tax on capital is less than the growth maximizing tax rate which reflects the household's preference for leisure. However, there is no distributional conflict as the factor holdings of agents converge in the steady state. There is unanimity over a tax rate that is lower than the growth maximizing tax rate.

3.1 Transitional Dynamics when $\alpha+\beta=1$.

Following the same steps as before, the relative capital holdings of households evolves according to

$$
\begin{equation*}
\eta_{h t+1}=\eta_{h t}\left\{1+\frac{\xi\left(\tau_{t}\right)\left[\frac{1}{\eta_{h t}}-1\right]}{\xi\left(\tau_{t}\right)+\phi\left(\tau_{t}\right)\left(1-\tau_{t}\right)}\right\} \tag{34}
\end{equation*}
$$

This implies that $\eta_{h t}=1, \forall h$ in the steady state. There is complete equality in the steady state. To determine the optimal tax rate of households, we obtain the first order conditions of households with respect to their preferred tax rates. The indirect utility function of households is given by,

$$
\begin{equation*}
V_{h t}=\mathrm{constant}+\log \left\{1+\frac{a}{1-a}\left(1-\tau_{t}\right) H_{t} \eta_{h t}\right\}+(\alpha+\beta) \log \left(w_{t}\right) \tag{35}
\end{equation*}
$$

Since agents take H as given, the first order condition is given by

$$
\begin{equation*}
\frac{\frac{a}{1-a} \eta_{h t} H_{t}}{1+\frac{a}{1-a} \eta_{h t} H_{t}\left(1-\tau_{t}\right)}=(\alpha+\beta) \frac{1-a}{a} \tau_{t} . \tag{36}
\end{equation*}
$$

Setting $\alpha+\beta=1$ implies that the optimal tax of the $h^{\text {th }}$ household is given by,

$$
\begin{equation*}
\tau_{h t}=(1-a)\left\{1+\frac{1-a}{a \eta_{h t}}\right\}=\underbrace{f\left(\eta_{h t}\right)}_{-}, \tag{37}
\end{equation*}
$$

which shows that the optimal tax rate is decreasing in the relative capital holdings of the $h^{t h}$ household. Setting $h=m$ and $\eta_{m t}=1$ into this expression implies that $\tau_{x}^{m}=\frac{1-a}{a}$, which is the median household's preferred tax rate. Note that this is identical to the growth maximizing tax rate, (18), in the steady state .

Proposition 5 When $\alpha+\beta=1$, the growth maximizing tax rate is identical to the equilibrium tax rate under majority voting in the steady state. There is no distributive conflict in the long run.

Proposition (5) suggests that distributive conflict vanishes in the long run when $\alpha+\beta=1$, which is consistent with DG. Interestingly, both the growth maximizing tax
rate as well as the optimal tax rate for households in the steady state are independent of β when $\alpha+\beta=1$. This is not the case when household value leisure: as can be seen from (32), the optimal tax of households depends on β.

4 Discussion

The above results allow us to characterize the impact of inequality on growth. We have shown that when the median voter is capital poor relative to the average household, his preferred tax rate on capital will exceed the growth maximizing tax rate. Hence, more inequality leads to lower growth. However, because redistribution through the tax rate equalizes the factor holdings of agents, during the transition to the steady state the median agent becomes more capital rich, his preferred tax rate on capital falls, and growth rises. In the long run, the factor holdings of all agents converge to a mass point with all agents holding the same amount of capital. Since all agents are identical, their preferred tax rates are identical. As in the exogenous labor leisure case, there is no distributive conflict. When leisure enters the utility function of households, households chooses to work less and, hence, choose a lower tax in the steady state. While there is no distributive conflict under this scenario as well, incorporating leisure into the utility function lowers the tax rate under majority voting relative to the growth maximizing tax rate. We also show that the inclusion of a tax on capital income to fund public infrastructure introduces transitional dynamics while preserving the steady state properties of the AK model.

Note that the model also relies on two critical results. First, equation (11) implies that labor supply is increasing in the tax rate. The second result is that labor supply is lower when labor is endogenous. Agents work less because they value leisure. This leads to a higher growth maximizing tax rate, as in Proposition (1). Future work could generalize the government budget constraint in equation (2) to include both labor income as well as capital income taxes since many countries rely on large labor income taxes as well as capital income taxes to fund infrastructure spending. Extending the current framework to two periods with both labor and capital income taxes would lead to the same qualitative results outlined in Section 2. This is because a higher tax on capital income (or bequests) would lead to higher labor supply in the first period.

The paper's main contribution is to show that when leisure enters the utility function, the tax rate is lower than the growth maximizing tax rate. However, this slows growth down but for a very different reason than AR. Here unanimity holds and slower growth comes together with valued leisure, while in AR, slower growth comes from conflicting choices over the tax rate, with a capital-poor median voter prevailing. However, a social planner would not want to raise taxes to achieve the growth maximizing tax rate since raising taxes would not be optimal for households.

5 Conclusion

This paper constructs a general model of distributive conflict and economic growth along the lines of AR and DG . The novel feature of this paper is that the growth rate, the tax rate, labor supply, and distribution, are all endogenous. The paper provides a dynamic analysis of Alesina and Rodrik (1994) and the endogenous distribution and growth model of Das and Ghate (2004) when leisure is valued by agents. Several interesting results emerge. First, unanimity, or the convergence of household specific factor holding ratios continues to hold. This implies greater political consensus over policy choices in the long run. However, the equilibrium tax rate is less than the growth maximizing tax rates when agents value leisure which leads to distributive conflict in the steady state. Thus, the paper's main contribution is to show that when leisure enters the utility function, the tax rate is lower than the growth maximizing tax rate. This slows growth down but for a very different reason than AR. We also use a more plausible specification of the government budget constraint where we tax capital income instead of wealth (the capital stock). The model suggests that if the median voter is sufficiently poor, higher inequality will lead to lower growth. However, because distribution is endogenous, in the steady state the political tax rate preferred by households falls over time. This leads to more equality but lower growth in the steady state. Our results show that characterizing the transitional dynamics in a model of growth and endogenous distribution is not intractable .

A Proofs

Proof. Proposition (1). Log-differentiating (15) with respect to τ_{t}, and re-arranging, yields the following first order condition for the unique growth maximizing tax rate,

$$
\begin{equation*}
\frac{a}{(1-a)+a\left(1-\tau_{t}\right)}=\frac{1-a}{a \tau_{t}}+\frac{(1-a)(1-\alpha-\beta)}{\delta\left(\tau_{t}\right)} \tag{38}
\end{equation*}
$$

Multiplying through both terms in (38) by $\delta\left(\tau_{t}\right)$ and simplifying implies

$$
\begin{equation*}
\underbrace{\frac{a \delta\left(\tau_{t}\right)}{\left(1-a \tau_{t}\right)}}_{M C}=\underbrace{\frac{(1-a)[(1-a)+a(1-\alpha-\beta)]}{a \tau_{t}}}_{M B} . \tag{39}
\end{equation*}
$$

Substituting for $\delta\left(\tau_{t}\right)=(1-a)+a(1-\alpha-\beta)\left(1-\tau_{t}\right)$ above, equation (20) can be simplified to

$$
\begin{equation*}
\underbrace{(1-a)\left\{a \tau_{t}-(1-a)\right\}}_{M C}=\underbrace{(1-\alpha-\beta) a[(1-a)(1-a \tau)-a(1-\tau) a \tau]}_{M B} . \tag{40}
\end{equation*}
$$

Notice that changes in α and β only lead to changes in the marginal benefit schedule.
Let $\alpha+\beta<1$. To obtain Figure (1), , evaluating the left hand side of (40) when $\tau=\{0,1\}$ implies $\operatorname{LHS}(0)=-(1-a)^{2}$ and $\operatorname{LHS}(1)=(2 a-1)(1-a)$, with the marginal cost schedule increasing linearly in τ and intersecting the x -axis at $\tau=\frac{1-a}{a}$. Evaluating the right hand side of (40) when $\tau=\{0,1\}$ implies $\operatorname{RHS}(0)=(1-\alpha-$ $\beta) a(1-a)$ and $R H S(1)=(1-\alpha-\beta) a(1-a)^{2}$, with the marginal benefit schedule decreasing in $\tau, \forall \tau \in[0,1]$. The existence of a growth maximizing tax rate occurs when, $\operatorname{LHS}(1)>\operatorname{RHS}(1)$, or $2 a-1>(1-\alpha-\beta) a(1-a)$. Notice that when $\tau=\frac{1-a}{a}$, the marginal benefit term is positive. Hence, $\tau=\frac{1-a}{a}$ cannot be the growth
maximizing tax rate. Since, the marginal benefit is falling, when $\alpha+\beta<1$, the growth maximizing tax under endogenous labor leisure exceeds the growth maximizing tax rate when labor-leisure is exogenous.

Proof. Proposition (2). Setting $\eta_{h t+1}=\eta_{h t}=\eta_{h}$ in (23) implies that

$$
\begin{equation*}
\frac{H_{h t}}{H_{t}}=\eta_{h} \quad \forall h \tag{41}
\end{equation*}
$$

Dividing equation (10) by the expression for H_{t} in (11) and simplifying yields,

$$
\begin{equation*}
\frac{H_{h t}}{H_{t}}=\frac{\delta\left(\tau_{t}\right)}{N(1-a)}-\frac{a(1-\alpha-\beta)}{(1-a)} \frac{K_{h t}}{K_{t}}\left(1-\tau_{t}\right) \tag{42}
\end{equation*}
$$

Since equation (23) implies that

$$
\begin{equation*}
\frac{\frac{H_{h t}}{H_{t}}}{\eta_{h t}}=1 \tag{43}
\end{equation*}
$$

in the steady state, dividing both sides of (42) by $\frac{K_{h t}}{K_{t}}$, setting $\frac{\frac{H_{h t}}{H_{t}}}{\eta_{h t}}=1$, and simplifying yields the result.

Proof. Proposition (3). The $h^{t h}$ agent's indirect utility function is given by,

$$
\begin{equation*}
V_{h t}=\text { constant }+\underbrace{\log \left\{1+a N(\alpha+\beta) \frac{\left(1-\tau_{h t}\right)}{\delta\left(\tau_{t}\right)} \eta_{h t}\right\}}_{\text {TermI }}+\underbrace{(\alpha+\beta) \log \left(w_{t}\right)}_{\text {TermII }} . \tag{44}
\end{equation*}
$$

Evaluating the first term (I) and simplifying yields

$$
\begin{equation*}
\frac{\partial \text { TermI }}{\partial \tau_{h t}}=\frac{-a N(\alpha+\beta)(1-a) \eta_{h t}}{\left\{a\left[(1-\alpha-\beta)+(\alpha+\beta) N \eta_{h t}\right]\left(1-\tau_{h t}\right)\right\}} \frac{1}{\delta\left(\tau_{h t}\right)} . \tag{45}
\end{equation*}
$$

Evaluating the first term (II) and simplifying yields

$$
\begin{equation*}
\frac{\partial T e r m I I}{\partial \tau_{h t}}=\frac{\xi^{\prime}\left(\tau_{h t}\right)}{\xi\left(\tau_{h t}\right)}+\frac{(1-2 a)}{a} \frac{H^{\prime}\left(\tau_{h t}\right)}{H\left(\tau_{h t}\right)} . \tag{46}
\end{equation*}
$$

Note that $\frac{\xi^{\prime}\left(\tau_{h t}\right)}{\xi\left(\tau_{h t}\right)}=\frac{(1-a)}{a \tau_{h t}}$, while $\frac{H^{\prime}\left(\tau_{h t}\right)}{H\left(\tau_{h t}\right)}=\frac{a(1-\alpha-\beta)}{\delta\left(\tau_{h t}\right)}$. Substituting these expressions back into (46), noting (45), and re-arranging terms yields (30).

B References

Aghion, Phillip and Bolton, P., 1997. A Theory of Trickle-Down Growth and Development, Review of Economic Studies, 64: 151-172.

Aghion, Philippe, Caroli, Eve, and Garcia-Penalosa, Cecilia, 1999, Inequality and Economic Growth: The Perspective of the New Growth Theories, Journal of Economic Literature, 37(4), ppm. 1615-60

Alesina, Alberto and D. Rodrik, 1994. Distributive Conflict and Economic Growth, Quarterly Journal of Economics, 109: 465-490.

Barro, Robert J., 1990, Government Spending in a Simple Model of Endogenous Growth, Journal of Political Economy, 98:103-25.

Barro, Robert J. and Xavier Sala-i-Martin, 1995, Economic Growth, Cambridge, Mass: MIT Press.

Das, Satya, and C. Ghate, 2004, Endogenous Distribution, Politics, and the Growth-Equity Tradeoff. Contribution to Macroeconomics, Berkeley Electronic Press, Vol. 4(1), Article 6.

Drazen, Allan, 2000, Political Economy in Macroeconomics, Princeton, New Jersey: Princeton University Press.

Saint-Paul, Gilles and T. Verdier, 1993, Education, Democracy, and Growth, Journal of Development Economics, 42: 399-407.

Stiglitz, Joseph, 1969, Distribution of Income and Wealth Among Individuals, Econometrica, 37: 382-397.

Yamarik, Steven, 2001, Nonlinear Tax Structures and Endogenous Growth, Manchester School, 69(1), 16-30.

FIGURE 1

FIGURE 2

[^0]: *This paper has benefitted from comments at the theory workshop at UNSW, Sydney, November 2005, and the 5 th Journées d^{\prime} économique publique Louis - André Gérard - Varet, June 2006. I thank Debajyoti Chakrabarty, Reinaldo Garcia, Lutz Hendricks, Patrick Pintus and Claudia Trentini for many helpful comments.
 Correspondence to: Chetan Ghate, Assistant Professor, Planning Unit, Indian Statistical Institute - Delhi Center, 7 S.J.S Sansanwal Marg, New Delhi - 110016, India. Tel: 91-11-4149-3938. Fax: 91-11-4149-3981. E-mail: cghate@isid.ac.in

[^1]: ${ }^{1}$ See Aghion, Caroli, and Garcia-Penalosa (1999) for an extensive review.
 ${ }^{2}$ See Das and Ghate (2004) for a more detailed discussion on the important differences in the models of DG and AR. In DG, households have finite lifetimes. In AR, agents have an infinite horizon. DG show that the steady state factor holding ratios across agents converges to a mass point that is independent of the initial distribution of capital. Because there is convergence in factor holding ratios in DG, every household's preferred tax rate is the same, and equal to the growth maximizing tax rate in the long run. There is no distributive conflict. This contrasts with AR, in which the steady state factor holding ratios of agents is pinned down by the initial distribution of capital across agents. This perpetuates distributive conflict.

[^2]: ${ }^{3}$ This contrasts with both AR and DG. In AR, the growth rate and the tax rate are endogenous, while distribution is exogenous. In DG, the growth rate, the tax rate, and distribution are endogenous, but labor is exogenous.

[^3]: ${ }^{4}$ As will be seen later, this construct permits us to use the capital-labor holding of the median voter relative to the mean voter as an index of wealth inequality in the model.

[^4]: ${ }^{5}$ With a narrower interpretation of K as physical capital, it would be empirically implausible to assume that $a>\frac{1}{2}$, but it is not so when capital is interpreted more broadly as we do here. Further, according to Barro and Sala-i-Martin (1995, p. 38), even a value of $\alpha=.75$ is quite reasonable. The assumed restriction on the parameter, a, also ensures that the tax rate under endogenous labor is strictly less than 1 .
 ${ }^{6}$ Both the return to capital and the wage rate are in increasing in the tax rate because of the

[^5]: ${ }^{10}$ To obtain an expression for the growth maximizing tax rate, note that by Euler's theorem, $Y_{t}=\frac{\partial Y}{\partial K} K_{t}+\frac{\partial Y}{\partial H} H_{t}=r_{t} K_{t}+w_{t}$ where we normalize H to 1 . This implies $w_{t}+r_{t}\left(1-\tau_{t}\right) K_{t}=$ $w_{t}+r_{t} K_{t}-\tau_{t} r_{t} K_{t}=Y_{t}-r_{t} K_{t}$. Substituting out for Y_{t} and differentiating with respect to the tax rate yields the desired result.

[^6]: ${ }^{11}$ See the appendix for details.

[^7]: ${ }^{12}$ However, by endogenizing leisure, the growth tax curves are no longer identical. To see this, from (11), when $\alpha+\beta=1, H=N$. When $\alpha+\beta<1, H_{t}=\frac{N(1-a)(1-\alpha-\beta)}{\delta\left(\tau_{t}\right)}<N, \forall \tau \in[0,1]$ as $\frac{(1-a)(1-\alpha-\beta)}{\delta\left(\tau_{t}\right)}<1$. This implies that the growth-tax curve under endogenous leisure lies everywhere below the growth-tax curve under exogenous leisure.

[^8]: ${ }^{13}$ When $\eta_{h}=1$, then the $h^{t h}$ household owns the entire capital stock.
 ${ }^{14}$ We divide (9) by (12) and simplify to get (23).
 ${ }^{15}$ Alternatively, equation (23) can be interpreted as the law of evolution of the index of inequality.

[^9]: ${ }^{16}$ These results are similar to the results of Saint-Paul and Verdier (1993) who also obtain complete equality in the steady state. In their model - like here - income distribution evolves endogenously. As income distribution becomes more equal, tax rates decline. Further, increased inequality may be good for growth, provided that this implies more support for public education.

[^10]: ${ }^{17} \mathrm{As}$ is well known, this is a sufficient condition for the median voter theorem to hold.

[^11]: ${ }^{18}$ Hence, $\tau_{h t}=\underbrace{g\left(\eta_{h t}\right)}_{-}$, where $g_{h t}$ is defined in (30).

[^12]: ${ }^{19}$ When the $h^{t h}$ owns no capital, i.e., $\eta_{h}=0$, his marginal cost curve is flat. In this case, his preferred tax on capital approaches 1.

