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1 Introduction

Scarcity of resources, such as fossil fuels has been for a long time considered as the

major obstacle to sustainability. Meanwhile policy makers seem to realize that the

external cost of CO2 emissions is the true limiting factor of using fossil fuels. Reg-

ulatory instruments, such as the EU emission trading system and carbon taxes aim

at internalizing these external costs. However, in order to design a carbon tax policy

makers need information about its optimal level and the shape of its long run path.

Obtaining this information has been a major goal in the theoretical literature on op-

timal resource extraction. Obviously, the problem at hand is much too complex since

one cannot simply include all relevant components of the global carbon cycle within a

theoretical modeling framework.

One major component which has been neglected traditionally is the role of the

deep ocean in absorbing anthropogenic carbon. The ocean itself is by far the largest

reservoir of carbon and possesses a large uptake capacity. However, on long time

scales the CO2 uptake capacity becomes exhausted with rising CO2 concentrations

because each unit of carbon emitted will remain in the carbon cycle. Thus, in order

to reduce the carbon concentration in the atmosphere significantly, we must sooner

or later replace the conventional energy resources by ecologically friendly renewables.

But, drastic reduction are not viable yet because the use of renewables on a large scale

is both, economically and technologically not feasible.

Nevertheless, the rising demand for energy and the ecological urgency character

of the problem call for alternatives that allow us to use the fossil fuels much more

efficiently and at the same time, reducing its impact on the environment. These

alternatives must come into action as soon as possible if we want to guarantee a

smooth transition towards the on-scale usage of renewables in the long run.

Carbon capture and storage (CCS) is considered to be such an alternative. As

for the capture part one usually assumes capturing carbon directly from the power

plants. This however, requires building of new, CCS-ready power plants or retrofitting
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old ones. Air capture on the other hand, is a completely independent technology.

It does not require any adjustment of energy generation processes. Regarding the

storage of carbon, the most prominent kind of storage is underground storage, e.g.

in oil and (depleted) gas fields, coal beds or saline aquifers. Applying these kinds

of CCS technologies, one effectively removes carbon from the carbon cycle, provided

leakage rates are low. Ocean sequestration via deep see injection is different. It has

the unique characteristic that carbon removed from the atmosphere remains in the

carbon cycle. Ocean sequestration alters the relative distribution of carbon between

its reservoirs (e.g. ocean and atmosphere) because the natural transfer of carbon from

the atmosphere to the ocean is accelerated.

The purpose of this paper is (i) to study the properties of the optimal carbon tax by

explicitly including the ocean as an additional carbon reservoir and (ii) to investigate

the role of air capture and ocean sequestration as an additional control in managing

the global carbon cycle.

For the global carbon cycle we introduce two reservoirs: an upper reservoir con-

taining the atmosphere and the upper ocean layer and a lower reservoir containing

the deep ocean. We show that starting at the pre-industrial levels of both reservoirs,

the optimal extraction rates are initially high and decreasing. As a consequence, the

upper reservoir overshoots its long run equilibrium level while the carbon content in

the lower reservoir is monotonically increasing.

Because of its delayed damage effect, ocean sequestration proves to be an effective

instrument to dampen the overshooting of the upper reservoir. Comparing steady

states, the usage of ocean sequestration will result in lower atmospheric carbon con-

centrations and, at the same time, higher total resource extraction. But it also reduces

the natural uptake ability of the deep ocean. Furthermore, we show that the optimal

path of the carbon tax can be decreasing, increasing, u-shaped or inverted u-shaped.

Its shape depends on the initial values of the stock variables and the speed of the

flux between the carbon reservoirs. Its level is heavily linked to the ability of the

deep ocean to absorb additional atmospheric carbon. Since we observe a decreasing
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potential of the deep ocean to serve as a carbon sink, we conclude that the level of the

carbon tax should be adjusted for this effect.

There are two externalities in our model. First, the negative external effect of

high carbon concentration levels on welfare and second, the positive externality which

results from removing carbon from the atmosphere via CCS. The latter in fact consti-

tutes an abatement option which is only temporary since the carbon which is removed

from the atmosphere and injected into the deep see will eventually be transferred back

to the atmosphere as the carbon reservoirs keep on mixing. Studying the decentralized

economy we find that the revenues of a carbon tax should be used to subsidize the

CCS technology.

So far, the idea of additional carbon stocks has been theoretically applied in the

literature on nonconstant pollution decay. In contrast to the standard resource extrac-

tion problem in which carbon simply vanishes from the carbon cycle, this strand of

literature takes account of the fact that the uptake potential of anthropogenic carbon

by other reservoirs is limited. Among the most prominent studies are Forster [1975],

Tahvonen and Withagen [1996], and Toman and Withagen [2000]. In addition, the

mostly numerical literature on Integrated Assessment Models (IAM), e.g. Nordhaus

[1994] and Nordhaus and Boyer [2000] has been dealing with several stocks of carbon.

However CCS has not been included into these models.

CCS has so far mainly been analyzed using complex integrated assessment models

(e.g., Akimoto et al. [2004], McFarland et al. [2003], McFarland and Herzog [2006] or

Edmonds et al. [2004]). Ocean sequestration via deep see injection has been suggested

by [IPCC, 2005] and is analyzed by Herzog et al. [2003]. However, Herzog et al.

[2003] do not put ocean sequestration into an optimization framework. Besides deep-

see injection there are other ways of applying CCS, e.g. injection into geological

formations, such as alkaline mineral strata or into natural off-shore storage facilities

like oil and gas fields such as in the North Sea. [Lackner, 2003] provides an excellent

survey of sequestration from an economic, ecological as well as technological point of

view.
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The air capture technology has been developed by Klaus S. Lackner from Columbia

University and Global Research Technologies. It requires the installation of specific

devices. These artificial trees (c.f. Lackner) have sorbents which can capture carbon

dioxide from the air (see Zeman and Lackner [2004], Keith and Minh [2003] and Keith

et al. [2005]. Air capture has been applied successfully on a very low scale so far.

Its major advantage over other carbon capture technologies is that the an air capture

device can be installed in any location, preferably ones very close to sequestration

sites.

Ulph and Ulph [1994] show that the optimal carbon tax is increasing if the stock

of CO2 is below its steady state. We can show that including the deep ocean as an

additional carbon reservoir the carbon tax could also be increasing in that case if e.g.

carbon is absorbed very quickly by the deep ocean. To our best knowledge Farzin and

Tahvonen [1996] is the only study in which four different paths of the carbon tax can

occur (monotonically increasing, decreasing, U-shaped, or inversely U-shaped). The

resulting path depends on the initial conditions of their two atmosphere stocks and

the factors that determine the allocation of total emissions between these two stocks.

If in addition, no resource constraint is included, steady states with positive pollution

and decay rates can emerge. We are able to obtain this result even with a resource

constraint because we assume that the total carbon content of the global carbon cycle

may not fall at any time.

The next section describes our simplified version of the global carbon cycle. In

section 3 we present the modeling framework and analyze the system dynamics, first

in closed form and then using specific functional forms. In Section 4 we parameterize

the model and discuss the model results focusing strongly on the optimal carbon tax.

Section 5 concludes.
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2 The Simplified Global Carbon Cycle

71% of the earth surface is ocean. The ocean is also by far the earth’s largest reservoir

of heat and carbon. The net transfer of carbon between atmosphere and the ocean is

caused by differences in the partial pressure of CO2 across the air-sea interface. If the

partial pressure in the atmosphere is larger than that in the ocean, we will observe a

net transfer into the ocean, and vice versa.

In our model, we assume that both, the upper and the lower reservoir are ho-

mogenous systems, meaning that their carbon contents are distributed uniformly and

that the uptake capacity of the surface ocean is homogenous. In reality, this is not

true since alkalinity and temperature varies across the ocean surface, i.e. the oceans

capacity to take up additional CO2 varies with location. High capacity to absorb CO2

is generally found at low latitudes in warm tropical and subtropical waters, whereas

low uptake capacity is found in the cold waters at high latitudes.

Two processes are responsible for the transport of carbon from the surface ocean

into the deep ocean: the physical circulation (i.e. the solubility pump), and the bi-

ological pump in which dead organic matter is remineralized at depth. We assume

that the biological pump is constant, i.e. does not change with anthropogenic forc-

ing, whereas we add some constrains to the effectiveness of the physical pump. The

solubility pump is driven by, among other factors, the thermohaline circulation which

transports high-latitude surface waters into the deep sea. The deep waters of the world

ocean are ventilated on the time-scales of a few thousand years, which is the time it

would take to equilibrate the lower reservoir with the upper reservoir in our model.

We focus on the fact that the CO2 uptake capacity becomes exhausted with rising

CO2 concentrations [Lackner, 2003]. It is estimated that the oceans will eventually

absorb about 80 percent of the carbon in the atmospheric reservoir and transfer it

to the deep ocean. But ocean uptake is also not constant over time. The study

by Canadell et al. [2007] indicates that the decrease in efficiency of ocean sinks has

contributed substantially to the increasing growth rate of atmospheric CO2 for the
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period 2000-2006. It is exactly these natural forces which we want to implement in

our simplified version of the global carbon cycle.

3 An Economic Model of the Global Carbon Cycle

In our formulation of the global carbon cycle we incorporate both, a natural exchange

of carbon between the two reservoirs and an anthropogenic influence on the reservoirs’

size via burning fossil fuels and sequestering. The stocks of the upper reservoir S and

the lower reservoir W are driven by the following dynamics:

Ṡ = q − a− γ(σS − ωW ) (1)

Ẇ = a + γ(σS − ωW ) (2)

At each point in time q ≥ 0 is the amount of carbon emissions that is added to the

carbon system. It is obtained by extracting the same amount of a fossil resource.

Furthermore, a ≥ 0 denotes the amount of carbon which is captured from the air and

injected into the deep ocean (i.e. removed from the upper reservoir). We interpret

both, q and a as anthropogenic components of the global carbon cycle. On the contrary,

the term γ(σS−ωW ) represents the natural component. It describes the natural force

of the carbon system to equilibrate and to neutralize the difference in partial pressure

of its components. Whereas the term σS − ωW describes the nominal difference of

the carbon content in the two reservoirs the parameter1 γ is an indicator for the pace

of the net flux between the two reservoirs. The cut-off line between the two reservoirs

is located at an ocean depth of around 100 meters. The reason for such a division is

that whereas it takes several centuries for the deep ocean to mix with the atmosphere,

the exchange between the atmosphere and the upper ocean layer (upper 100 meters)

takes place at a much lower time scale. It takes about one year for the upper reservoir

1Alternatively, one could think of treating γ as a variable, e.g. γ(S) with γS < 0 and γSS > 0.
This specification would explicitly take into account the weakening of the ocean’s uptake capability
due to increasing carbon concentrations in the atmosphere.
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to mix. Therefore, we assume instant equilibration between the surface ocean and the

atmosphere which is justified in this context.

In addition to the two carbon reservoirs S and W we introduce R, the stock of a

non-renewable resource stock with carbon content. It is extracted at the rate q.

Ṙ = −q (3)

Figure (1) illustrates the functioning of our model economy. Notice that a, the CCS

activity is completely independent of q, the extraction of the non-renewable resource

stock.

Atmosphere

Upper Ocean

Deep Ocean

Resource Stock

Extraction Costs

q

a
Utility

CCS Costs

Damage

g(s - w )S W

S

W

Figure 1: CCS & the Global Carbon Cycle

With this formulation negative emission can occur because carbon can be extracted

from the air and sequestered into the deep see even if the resource stock is economi-

cally/physically depleted.

3.1 The Carbon System Diagram

Before we turn to the formulation of the dynamic problem we introduce the carbon

system diagram which should simplify the understanding of the climate module within

our model.

We observe that equations (1)-(3) imply a balanced carbon content system from which

carbon cannot vanish. Each unit of carbon extracted from the stock of the non-

renewable resource must flow either to the upper reservoir or (partly) to the lower

reservoir. This feature stands in contrast to that part of the literature which assumes
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a constant decay rate. In the latter case carbon may simply vanish from the carbon

cycle. This feature is at the core of our model and can be illustrated in in a diagram.

Figure (2) shows the carbon balance diagram which illustrates the dynamics of the

III
II

B

A

C
Rc

Rb

Sc SbSa

c S

b  S

Wc

Wa

Wb

Figure 2: The Carbon System Diagram

simplified carbon cycle. S, the upper reservoir’s carbon content is displayed along the

horizontal axis, and W , the carbon content of the lower reservoir is displayed along

the vertical axis. Let A denote an initial steady state (e.g. the preindustrial state)

of the system (1)-(3) which is characterized by a = q = 0, R = R0 and Wa = σ
ω
Sa.

Recall that, since the dotted line passing through points A and B (AB) has the slope

σ
ω
, we observe no carbon transfer via the natural component of the carbon cycle at

A. In the following, we want to demonstrate how air capture and ocean sequestration

affect the global carbon cycle. We investigate three possible paths of the carbon cycle,

each being subject to a different constraint on the anthropogenic disturbance of the

carbon system. These constraints are: (I) sequestration not possible. In this scenario

the only control option is the extraction of the non-renewable resource stock. (II)

sequestration possible with (0 ≤ a ≤ q). The second scenario does not allow for

negative emissions. It mimics the effects of CCS on the global carbon cycle when a

carbon capture technology is installed directly at a power plant. Scenario (III) on the

other hand assumes that sequestration is possible with a ≥ 0.
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Path I, sequestration not possible

Since sequestration is not possible, the only control is the extraction of the non-

renewable resource. Along the initial part of Path I anthropogenic release of carbon

into the upper reservoir is much higher then natural transfer to the lower reservoir. As

a consequence, the upper carbon stocks overshoots. Beyond its maximum, S decreases

for two reasons. First, the extraction of the carbon stock is reduced constantly and

second, the natural transfer is very high because we observe a large difference in par-

tial pressure. The new steady state is at B with q = 0 and equalization of the partial

pressure, i.e. Wb = σ
ω
Sb.

Definition 1. Consider the {S, W} space of the system (1)-(3) and its steady state

(S∗, W ∗). An carbon isocontent line passing through (S∗,W ∗) depicts all combinations

of S and W with the same total carbon content.

By Definition 1, Rb is the carbon isocontent line corresponding to the steady state at

point B2.

Path II, sequestration possible and 0 ≤ a ≤ q

Now we assume the possibility of ocean sequestration but limit its volume to be lower

than the volume of carbon obtained from processing the extracted resource. Notice,

that we are now no longer considering air capture, but rather any other end of pipe

carbon capture technology. Recall, that the unique characteristic of deep see injec-

tion of carbon is, that it accelerates the natural, but slow mixing of the two carbon

reservoirs. As a consequence the overshooting of the upper reservoir is significantly

reduced. Just like path I, path II ends at B, implying that the total amount of carbon

which has been extracted from the non-renewable resource is the same (same carbon

isocontent line). Notice also, that since at B extraction q is zero, ocean sequestration

does no longer take place, because we impose the constraint 0 ≤ a ≤ q 3

2Notice that all paths starting at A and ending at B may never leave the area bounded by Sa
from the left, Wa from below and Rb from above. This is due to the fact that carbon cannot vanish
from the carbon cycle since we assume a balanced carbon content

3see Rickels and Lontzek [2008] for a extensive discussion of this case
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Path III, sequestration possible and a ≥ 0

For path III we consider again air capture since we now allow carbon capture and

sequestration to be positive even in the absence of extraction. This automatically

implies that in a new steady state the natural component of the carbon cycle does not

need to be in equilibrium. This is reflected in Figure 3 by point C which is not on the

line passing through AB with a slope = σ
ω
. Since C is above AB the lower reservoir is

supersaturated and hence, a net source of carbon release. As a consequence, the steady

state level of carbon in the upper reservoir has been reduced (Sc < Sb) even though

more of the non-renewable resource has been extracted. The latter fact is indicated

by the higher carbon isocontent line Rc corresponding to C.

This section’s purpose was to emphasize some qualitative dynamic behavior of our

simplified version of the global carbon cycle. Before we turn to the dynamic optimality

analysis, we focus in the next section on equations’ (1)-(3) major property of a balanced

carbon system.

3.2 The carbon balance equation

Equations (1)-(3) reveal one fundamental characteristic about the carbon cycle used

in this model.: The total carbon content of all reservoirs (the upper reservoir, the

lower reservoir and the resource stock) must be constant at each point in time. This

constant is determined by the initial contents of the carbon stocks.

Rt + Wt + St = constant = R0 + W0 + S0 ∀t (4)

Dropping the time index for convenience we can use the carbon balance equation to

reduce the dimension of the dynamic system, as implied by (1)-(3). We solve (4) for
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W to obtain4 :

W = R0 + W0 + S0 −R− S (5)

Inserting (5) in (1) we can reformulate the dynamic equation for the upper reservoir.

Ṡ = q − a− γ(σS − ω(R0 + W0 + S0 −R− S))

3.3 The optimal control problem

Usage of the fossil fuel generates utility U(q) with

Uq(q) > 0, Uqq(q) < 0, Uq(0) = u1.

The assumption Uq(0) = u1 implies a choke price for the non-renewable resource.

Extraction of the resource stock is costly and is stock dependent.

c(q, R) = qC(R) (6)

with CR < 0, CRR ≥ 0. A(a) are the costs of sequestration with Aa > 0 and Aaa > 0

5. D(S) is the social damage that is caused by the stock of carbon in the atmosphere.

We assume DS > 0 and DSS > 0. Taking into account equations (1)-(3) a social planer

solves the following dynamic optimization problem:

max
q,a

∫ ∞

0

e−ρt (U(q)− A(a)− qC(R)−D(S)) dt (7)

4Notice, that due to the carbon balance equation the upper and lower reservoir have an implicit
upper bound which is given respectively by S = ω

σ+ω (R0 + S0 + W0) and W = σ
σ+ω (R0 + S0 + W0).

5For the rest of this paper we use term sequestration to describe air capture and ocean sequestration
for convenience.
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subject to

Ṡ = q − a− γ(σS − ω(R0 + W0 + S0 −Rt − St)) (8)

Ṙ = −q (9)

and

S(0) = S0 > 0, R(0) = R0 > 0, W (0) = W0 > 0

We formulate the current value Hamiltonian6 as:

H = U(q)− A(a)− qC(R)−D(S)) (10)

− λS(q − a− γ(S − ω(R0 + W0 + S0 −Rt − St)))

+ λR · (−q)

The shadow value λR can be interpreted as the resource rent, λS as a carbon tax.

Applying the maximum principle yields the following F.O.C.

Uq = C + λR + λS (11)

Aa = λS (12)

λ̇S − ρλS = λSγ(1 + ω)−DS (13)

λ̇R − ρλR = qCR − γωλS (14)

In order to calculate the optimal converging paths, we need the initial conditions and

the transversality conditions:

lim
t→∞

λS · e−ρt ≥ 0, lim
t→∞

R · λR · e−ρt ≥ 0 (15)

6Note, that we have changed the sign of λS to facilitate their economic interpretation as taxes.
We have also normalized σ = 1
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The static efficiency condition (11) relates marginal utility from extracting and con-

suming q units of the resource to the marginal costs of extraction, the resource rent

and the carbon tax. From (12) we deduct that it is optimal to sequester the extracted

carbon up to the amount where the marginal sequestration costs are equal to the

shadow price of the upper carbon reservoir. Since we interpret λS as a carbon tax,

equation (12) states that the optimal sequestration path will follow the path of the

carbon tax. Equation (14) is the dynamic efficiency condition for the carbon rent. It

has the standard form, as implied by the literature assuming resource based extraction

costs, except for the term −γωλS which results from the carbon balance equation. It

reflects the fact that reducing the resource stock automatically implies that part of

the amount extracted is transferred to the lower reservoir via the natural component

of the carbon cycle. Thus, ceteris paribus the ocean’s uptake capability is reduced

and we obtain a higher carbon content in the atmosphere. We analyze the dynamic

properties of the carbon tax as given by (13) in section 3.5.

3.4 Dynamic properties and the MHDS

In a next step we study the dynamic properties of the model at hand in closed form. For

that purpose we establish the modified hamiltonian dynamic system (MHDS). From

equation (11) we can formulate q as q(R, λS, λR), with qR > 0, qλS
< 0 and qλR

< 0.

Similarily equation (12) defines a = a(λS) with aλS
> 0. Using these specifications

together with (8), (9), (13) and (14) we obtain the MHDS:

Ṡ = q(R, λS, λR)− γ(σS − ω(R0 + S0 + W0 −R− S))− a(λS) (16)

Ṙ = −q(R, λS, λR) (17)

λ̇S = λS(γ(1 + ω) + ρ)−DS (18)

λ̇R = ρλR − γωλS + q(R, λS, λR)CR (19)
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In a steady state we require the co-state and state variables to be constant. Applying

Ṡ = Ṙ = λ̇S = λ̇R = 0 to (16)-(20) we obtain.

a(λS) = −γ(σS − ω(R0 + S0 + W0 −R− S)) (20)

q(R, λS, λR) = 0 (21)

λS =
DS

γ(1 + ω) + ρ
(22)

λR =
γωλS

ρ
(23)

According to equation (21) extraction is zero in the steady state and hence, no ad-

ditional carbon flows into the carbon cycle. The reason is that the marginal social

benefit of extracting an additional unit of R is less then its costs of extraction and

the long run damage resulting from a higher carbon content. Since q = 0 the LHS

of equation (20) can be interpreted as the net anthropogenic transfer of carbon from

the upper reservoir to the lower reservoir. According to (20) this net anthropogenic

transfer must be equal to the net natural transfer of carbon from the lower reservoir

to the upper reservoir. Thus, the steady state corresponds qualitatively to point C in

figure 2. Equation (22) states that in the steady state the carbon tax must be equal to

the marginal damage weighted by the discount rate and the parameters describing the

lagged adjustment effect of the natural component of the carbon cycle. Since S > 0

in a steady state, DS > 0 and the carbon tax must be positive. Finally equation

(23) implies a steady state resource rent being linearly proportional to the carbon tax.

Hence, the resource rent must be strictly positive as well. In a next step we derive

saddle point properties of the MHDS.

Proposition 1. The steady state of the MHDS system (18)-(21) is saddle point stable
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Proof. The Jacobian of the MHDS evaluated at the steady state is given by:

J =




−γ(1 + ω) −γω + qR −aλS
+ qλS

qλR

0 −qR −qλS
−qλR

−DSS 0 γ + ρ + γω 0

0 CRqR −γωCRqλS
ρ + CRqλR




(24)

For this system of four linear first-order differential equations the four characteristic

roots can be obtained by using [Dockner, 1985], Theorem 1, p.10:

p1,2,3,4 =
ρ

2
± [(

ρ

2
)2 − 1

2
Ω± 1

2
(Ω2 − 4 ∗∆)0.5]0.5, (25)

where ∆ is the determinant of the Jacobian of (24) being:

∆ = −γωDSS(γωqλR
+ ρqλS

) + ρ (γ(1 + ω)(γ + ρ + γω) + aλS
DSS) qR > 0

and

Ω = −γ(1 + ω)(γ + ρ + γω) + DSS(qλS
− aλS

)− ρqR < 0 (26)

Given that ∆ > 0 and Ω < 0 the system has saddle point properties. In addition, by

showing that Ω2 − 4∆ > 0 we show that the roots are real.

Ω2 − 4∆ = −4 (−γ(1 + ω)(γ + ρ + γω) + DSS(qλS
− aλS

)− ρqR)︸ ︷︷ ︸
>0

(27)

+ (γωDSS(γωqλR
+ ρqλS

)− ρ(γ(1 + ω)(ω + ρ + γω) + aλS
DSS)qR)2

︸ ︷︷ ︸
>0
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3.5 Carbon Tax

From the dynamic efficiency condition (18) we can extract some information about

the optimal paths of the carbon tax. We restate (18) as:

λ̇S = λS · θ −DS (28)

with θ = ρ + γ(1 + ω). Consequently λS increases with its own level weighted by θ

and decreases with higher levels of the marginal damage. Notice that we can express

the isocline of λS by

λS(S)|λ̇S=0 =
DS(S)

θ
= z(S) (29)

where zS > 0. Using equation (29) we want to illustrate the possible shapes of the

optimal carbon tax paths. These are: increasing, decreasing, u-shaped and inversely

u-shaped. Figure 3 illustrates the implications of equation (28).

S

III

IV

*

S*

I

II

DC

AB

Figure 3: non-monotonic carbon tax paths

Proposition 2. Consider Figure 3. Consider the isocline λS = z(S) with zS > 0 and

the steady state (λ∗S, S∗). Define the set B as {B}={λ > λ∗S} ∪ {λ > z(S)}. All paths

crossing {B} at any t ∈ [0,∞] imply an inverse U-shaped carbon tax over the entire

interval [0,∞].
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Proof. We argue that the carbon tax can be initially increasing and decreasing af-

terwards. Consider an optimal path originating at (λS0 , S0) ∈ {B}. Equation (28)

implies λ̇S > 0 and we observe an increasing carbon tax. Because in {B} λS > λ∗S,

there exists one point in time TB ∈ [0,∞] for which λ̇S < 0. According to (29), TB

occurs at λ = z(S). ∀t ∈ [TB,∞] λS is decreasing.

Notice, that at the maximum of an inversely u-shaped carbon tax, the upper reservoir

must be increasing. This can be seen by differentiating (28) w.r.t. time.

λ̈S = θλ̇S −DSSṠ (30)

Since λ̇S = 0 at a maximum and DSS > 0 it follows that λ̈S < 0 if Ṡ > 0. In a next

step we show the possibility of a U-shaped carbon tax.

Proposition 3. Consider Figure 3. Consider the isocline λS = z(S) with zS > 0 and

the steady state (λ∗S, S∗). Define the set D as {D}={λ < λ∗S} ∪ {λ < z(S)}. All paths

crossing {D} at any t ∈ [0,∞] imply an U-shaped carbon tax over the entire interval

[0,∞].

Proof. This proof is similar to Proposition 2. We argue that the carbon tax can be

initially increasing and decreasing afterwards. Consider an optimal path originating

at (λS0 , S0) ∈ {D}. Equation (28) implies λ̇S < 0 and we observe a decreasing carbon

tax. Because in {D} λS < λ∗S, there exists one point in time TD ∈ [0,∞] for which

λ̇S > 0. According to (29), TD occurs at λ = z(S). ∀t ∈ [TD,∞] λS is increasing.

Proposition 3 implies that at a minimum of the carbon tax, the upper reservoir must

be decreasing, since now λ̈S > 0 if Ṡ < 0.

While paths originating in area B and D must be non-monotonic, the converse is

not necessarily true. In Figure 2 we have not explicitly considered the dynamics of the

upper reservoir. The natural transfer rate γ plays an important role. Consider e.g. a

situation in which the carbon stock in the upper reservoir at t = 0 is extremely high.

Whether λS is high or low (i.e. paths originating in {A} or {D} at t = 0 depends
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among other model parameters, on the natural transfer rate. If the transfer rate is very

hight as well, this implies that the flux from the upper reservoir to the lower reservoir

is very high (lower λS initially) and the possibility of undershooting the steady state

carbon content in S is more likely. As a consequence we obtain a u-shaped carbon

tax (Path III). On the other hand, a low transfer rate implies a weaker flux from

the upper reservoir to the lower reservoir (higher λS initially). Hence, a monotonically

falling carbon content in S is more likely. As a consequence we obtain a monotonically

decreasing carbon tax (Path IV ).

By similar reasoning we cannot rule out paths originating in C to be non-

monotonic. For low initial levels of S and a high transfer rate there need not be

an overshooting of the upper reservoir, implying a monotonically increasing carbon

tax (e.g. Path II). However, a low natural transfer rate of carbon combined with

high emission levels can result in an overshooting of the upper reservoir which in turn

relates to a inversely u-shaped carbon tax (Path I). The dynamic properties of the

system variables, in particular the carbon tax are analyzed in section 4 in more detail.

4 System Dynamics in explicit form

We impose the following functional forms with a1, u1, u2, v1, c1, c2, s1 > 0

U(q) = u1q − u2q
2 (31)

A(a) = a1a
2 (32)

C(R) = c1 − c2R (33)

D(S) = v1(s1S − s2)
2 (34)

Since S is the stock of carbon in the upper box containing the atmosphere and the

upper ocean layer, we introduce the parameter s1, the percentage of the carbon stock

in the upper box which is situated in the atmosphere. Using the FOC’s (11) and (12)

19



we can solve for q and a:

q =
−c1 + c2R + u1 − λR − λS

2u2

(35)

a =
λS

2a1

(36)

Using the specific functional forms and the two previous equations we can rewrite the

MHDS in canonical form:




Ṡ

Ṙ

λ̇S

λ̇R




=




−γ(1 + ω) −γω + c2
2u2

−a1−u2

2u2a2

−1
2u2

0 −c2
2u2

1
2u2

1
2u2

−s2
1v1 0 γω + γ + ρ 0

0 −c2
2u2

−γω + c2
2u2

ρ + c2
2u2



·




S

R

λS

λR




+




k1

k2

k3

k4




with

k1 = ωγ(R0 + S0 + W0)− c1 − u1

2u2

k2 =
c1 − u1

2u2

k3 = 2s1v1s2

k4 =
c2(c1 − u1)

2u2

We can solve for the steady state values of λS, λR, S and R which are obtained by

setting λ̇S = λ̇S = ˙λW = λ̇R = Ṡ = Ẇ = Ṙ = 0 The steady state values for the
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canonical system when t →∞ are:

S̃ =
1

k5

· [− a2(c1 − c2k6)γρω(γ + ρ + γω) (37)

+ s2s1v1(c2ρ + 2a2γω(ρ + γω)) + a2γρω(γ + ρ + γω)u1

]

R̃ =
1

k5

· [2a2s1v1γ(ρ + γω)(s1k6ω − s2(1 + ω)) (38)

+ c1ρ(s2v + a2γ(1 + ω)(γ + ρ + γω))

− ρ(s2v + a2γ(1 + ω)(γ + ρ + γω))u1

]

λ̃S =
1

k5

· [2a2s1v1γρ(s1(−c1 + c2k6)ω − s2c2(1 + ω) + sωu1)
]

(39)

λ̃R =
1

k5

· [2a2s1v1γ
2ω(s1(−c1 + c2k6)ω − s2c2(1 + ω) + sωu1)

]
(40)

with

k5 = 2a2s
2
1vγω(ρ + γω) + c2ρ(s2

1v1 + a2γ(1 + ω)(γ + ρ + γω))

k6 = R0 + S0 + W0

4.1 Optimal Paths

In order to analyze the optimal paths of the model variables in detail we parameterize

the model. Concerning the parameter space, there are some nature-given parameters

which we have obtained from current estimates. The remaining (economic) parameters

were chosen such as to calibrate the model. We assume that the pre-industrial ocean

Nature-given Value Economic Value
Parameter Parameter

γ .005 ρ .01
σ 1 a2 2
ω .1 u1 50

W0 20,000 u2 .5
R0 10,000 c1 50
S0 2,000 c2 .004
s2 600 s1 .3

v1 .001

Table 1: Parameter Values: Base run
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was in steady-state, i.e. there was a balance between carbon sources and sinks in the

ocean. Since the onset of the industrial revolution (mid 19th century), this balance has

been upset by release of CO2 into the atmosphere, of which concentration of CO2 has

increased dramatically. About 36, 100 Pg-C7 are currently stored in the deep ocean,

compared to 910 Pg-C in the surface ocean and 820 Pg-C ( about 385 ppm) in the

atmosphere8. For the preindustrial levels of the reservoirs we have chosen: 20, 000

Pg-C for the deep see reservoir W0
9, 600 Pg-C for the atmosphere and 1, 200 Pg-C for

the upper ocean layer. The values for γ, the dynamic adjustment parameter and ω, the

factor of proportionality of the two reservoirs have been chosen such as to represent

observed fluxes 10.

According to the German Federal Office for Geoscience and Natural Resources

(BGR) current non-renewable reserves are estimated to be at an order of 1, 350 Pg-

C equivalent [BGR, 2006]. Non-renewable carbon resources on the other hand are

estimated between 5,000 Pg-C [Lackner, 2003] and 12, 000 Pg-C [BGR, 2006]. We

have chosen R0, i.e. the pre-industrial stock of R0 to be at 10, 000 Pg-C. Since we

include resource based extraction costs in our model, we can parameterize our model

such that the resource stock will not be used entirely in finite time.

In order to obtain an expression for the optimal paths, we consider the Jacobian

7We measure these stocks in mass-units of carbon (i.e. Pg-C), as it appears in different chemical
forms within the reservoirs.

8We have calculated these numbers by assuming that the average deep dissolved inorganic carbon
(DIC) concentration is about 2.290 · 106 mol

km3 and the volume of the deep ocean reservoir is about
1.3138 ·109km3. For the upper ocean (down to about 100m we assume an average DIC concentration
of 2.100 · 106 mol

km3 and a volume of 36.1 · 106km3

9The pre-industrial level of W , the deep-sea reservoir is difficult to calculate, with estimates
ranging from 20, 000 - 40, 000 Pg-C

10Assuming S0 = 2, 000 and approximately today’s S2008 of 2, 200, using γ = .005, ω = .1 total
inactivity, i.e. no extraction, no sequestration would result in a half-life of t = 126 to the new system
equilibrium of S = 2, 018.18 and W = 20, 181.81
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of the MHDS applying the functional forms (31)-(34).

J =




γ + ρ + γω 0 −2s2
1v 0

−γω + c2
2u2

ρ + c2
2u2

0 − c22
2u2

−a2+u2

2a2u2
− 1

2u2
−γ(1 + ω) −γω + c2

2u2

1
2u2

1
2u2

0 − c2
2u2




(41)

Using the parameter values above we can then calculate the eigenvalues associated with

this Jacobian. They are: r1 = 0.012, r2 = −0.002, r3 = 0.024, r4 = −0.014. Thus, the

system has two negative eigenvalues, as we have shown in Proposition 1. Therefore,

the steady state is saddlepoint stable. The steady state values are: S̃ = 2503.66,

R̃ = 1535.34, λ̃S = 5.85, λ̃R = .29 and additionally, ã = 1.46, q̃ = 0. Furthermore,

from the carbon balance equation we obtain W̃ = 27961.01. Given the information

above, we can formulate the optimal paths for S(t), R(t), λS(t) and λR(t) (where we

denote optimal paths by an asterisk).

X∗
t = X̃ + er1t ·Θ1 ·Υr1,X + er2t ·Θ2 ·Υr2,X for X = S, R, λS, λR (42)

where r1 and r2 are the negative eigenvalues of the Jacobian above, Υri,X is the eigen-

vector of X related to the eigenvalue i and Θ1 and Θ2 are constants which are obtained

by solving

X∗
0 = X0 for X = S, R (43)

The optimal paths of W , q and a are obtained using equations (5), (35) and (36)

respectively.

4.2 The base-run

Figure 4 depicts the results of the base run simulation. The abscissae denote time t.

Recall that S0 = 2, 000 R0 = 10, 000 and W0 = 20, 000. Extraction is high in the begin-
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Figure 4: The base run scenario

ning and decreases monotonically to zero. The resource stock R is only economically

depleted and not fully used. Extraction and emission of the non-renewable resource

has an instant damage effect. Sequestration of carbon into the deep ocean has a de-

layed damage effect. Thus, it is optimal to extract the resource rapidly and sequester

a lot in the beginning. As a consequence of higher extraction rates, the carbon concen-

tration in the upper reservoir and in turn, the carbon tax rises. The upper reservoir

overshoots its steady state level. This is because the natural transfer of carbon to the

deep ocean is not fast enough to absorb the carbon added to the upper reservoir. The

lower reservoir is a net sink of carbon and its content increases monotonically. The

resource scarcity rent is monotonically declining. In the new steady state the natural

transfer of carbon to the lower reservoir is negative and the net anthropogenic transfer

of carbon to the lower reservoir is positive. This implies for the new steady state that
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lower reservoir is supersaturated and we obtain an emitting ocean.

4.3 Sequestration vs. no sequestration

Using the base-run scenario we have analyzed the effect of not allowing for ocean se-

questration. The upper plot in figure 5 depicts the carbon content diagram. The solid

line represents the base run simulation while the dashed line depicts the situation with-

out the option to sequester. Notice that without sequestration, the new steady state

is characterized by equal partial pressure in both reservoirs since now sequestration

and extraction are both zero. Without sequestration the overshooting of the upper
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Figure 5: Sequestration vs. no sequestration

reservoir is much stronger and the steady state carbon content in the atmosphere is

much larger when compared to the base run simulation. Most surprisingly, less of the

resource stock has been extracted as can bee seen by the lower iso carbon content line

R1. This is because sequestering carbon at a constant rate in the steady state allows

for a larger equilibrium share of carbon in the lower reservoir. The lower graph in

figure 5 shows the carbon tax. Without sequestration, the carbon tax path is shifted
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upwards, thus at any point in time the carbon tax is higher. The reason for this is the

larger overshooting of the upper carbon reservoir which results in a higher damage.

4.4 Discounting

In a next step we investigate how the optimal solution changes if we decrease the

discount rate. The solid lines in figure 6 depict the base run case again where the

discount rate is 1%. There is an ongoing debate about the proper discount rate in

presence of global warming. The Stern report stern postulate suggests a discount rate

close to zero. The dotted line in figure 6 represents the optimal solution where we

have lowered the discount rate to 0.1%. Since a high discount rate means that we
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Figure 6: 1% vs. 0.1% discounting

value the future less, ocean sequestration will be used more intensively because of its

lagged damage effect. On the other hand, placing more weight on the future damages

leads to fewer total extraction as implied by the lower carbon isocontent line in Figure

6. In that case, future and current damages are perceived more equally. Thus, ocean

sequestration as a tool in determining when the damages will occur becomes less
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powerful.

4.5 Carbon Taxes

In our base run scenario with the most reasonable parameter space the carbon tax is

hump-shaped. This is because the path of S is hump-shaped. In general, the carbon

tax will have a similar shape to the upper reservoir. It is therefore possible to obtain

different shapes of the carbon tax. Figure 7 displays four possible paths of the carbon

tax within our modeling framework. These plots differ from each other w.r.t. the

initial carbon stock size and the natural transfer speed of carbon between the two

reservoirs. The base run simulation scenario (low γ, low S0) is depicted in the upper
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Figure 7: Possible paths of the carbon tax

left plot. It shows the same inverted u-shaped pattern as seen earlier. The upper right

plot on the contrary shows the optimal carbon tax resulting from increasing the initial

stock of carbon in the upper reservoir (low γ, high S0). As a result, the carbon tax is

monotonically decreasing to the same steady state as in the upper left scenario. The

decrease occurs for two reasons. (1) A high initial S0 induces much higher rates of

sequestration (equation 12) and (2), since the carbon balance equation must hold at

any point in time, increasing S0 automatically implies a lower W0. As a consequence,
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there is a very high difference in the partial pressure between the two reservoirs and

the natural transfer is very strong.

The first thing to notice about the 2 lower plots is the time scale. In both cases we

have significantly increased γ, the natural transfer speed. Consequently, carbon moves

much faster between the two reservoirs and a steady state is reached sooner. In the

lower right plot in particular (low γ, high S0), the optimal carbon tax is monotonically

increasing. The only difference to the base run scenario is a higher transfer speed of

carbon. As a consequence the overshooting of the upper reservoir does no longer occur

since now carbon is absorbed by the deep ocean much faster. This absorption effect

is at its highest in the lower left plot. Here, the scenario (low γ, low S0) implies that

because (1) the transfer speed is very high and (2) the difference in the partial pressure

of the two reservoirs is very high as well, we obtain an undershooting of the upper

carbon reservoir and consequently, a u-shaped carbon tax.

As a general remark, notice that the level of the carbon tax is much higher in

the upper plots. The natural transfer speed is the major determinant of the carbon

tax level. Because it determines for ”how long” the emitted carbon will remain in

the atmosphere and hence, contribute to the damage resulting from higher carbon

concentration levels in the atmosphere. Figure 8 is analogous to figure 2. We depict

the four possible carbon tax paths in the S−λS space. Notice that the supplots differ

w.r.t the initial level of S while within the supplots only γ has been changed. In the

upper plot we observe the base run case where we start with a carbon tax above its

steady state level, but the carbon tax must increase first before it can monotonically

fall towards its steady state.

In the lower plot we observe that the carbon tax may be monotonically increasing

even if resource extraction goes to zero.11 This is contrary to what most of the lit-

erature suggests. The reason is that the emission of carbon is not ”forgotten”, as it

would be with a constant decay rate. The way we model the carbon cycle accounts

11This can be due to either economic or physical depletion
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for the fact that each unit of carbon is persistent and has a instant or lagged damage

effect, with the latter being due to sequestration.

4.6 The decentralized case

There are two externalities in our model, (i) the negative external effect of high car-

bon concentration levels on welfare and (ii), the positive externality which results

from removing carbon from the atmosphere via CCS. In this section we consider very

briefly the decentralized economy and study how the externalities should be internal-

ized. Consider a representative firm that extracts the resource stock and possesses the

technology to capture carbon and sequester it into the deep ocean. Because the firm’s

profits are solely determined by selling the extracted resource, we introduce a subsidy

on sequestration which we denote by θ. At the same time we impose a tax τ on the

29



price of carbon. The firm’s profit maximization problem reads:

max
q,a

∫ ∞

0

e−ρt (pq − τq + θa− A(a)− qC(R)) dt (44)

subject to

Ṙ = −q (45)

R(0) = R0 > 0 (46)

From the first order condition of the current value Hamiltonian we obtain conditions

for the optimal controls a and q.

0 = p− τ − C(R) (47)

0 = θ − Aa (48)

Assuming Uq = p we can compare (11)-(12) to (47)-(48) we obtain the optimal de-

centralized policy τ = λS = θ. This implies that the revenues from the carbon tax

should be distributed as a subsidy on sequestering carbon. The reason for this is that

ocean sequestration has a temporary abatement potential because of its lagged damage

effect.

5 Conclusion

In order to assess the problem of the appropriate path and level of the carbon tax

one has to take into account the lagged and persistent effect of emitting carbon on

the ocean’s capacity to absorb carbon from the atmosphere. However, the role of

the oceans has not received much attention in theoretical models of optimal resource

extraction. Especially, when analyzing global warming, not only the stock of carbon

in the atmosphere is important, but also the functioning of the deep ocean as a carbon
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sink.

We take account of the latter effect by assuming two carbon reservoirs: The upper

reservoir and the lower reservoir. The upper reservoir consists of the stock of carbon in

the atmosphere and the upper ocean layer. The lower reservoir comprises the carbon

stock in the deep ocean. The natural flux of carbon is driven by the relative size

of the carbon reservoirs. The relatively ”carbon-abundant” reservoir will therefore

be a natural source of carbon outflow. This is the natural component of the global

carbon cycle. We have added an anthropogenic component to this by introducing an

exhaustible resource with carbon content.

The economic extraction of the fossil resource releases carbon that is pumped into

the global carbon cycle. Without CCS, the whole amount of carbon released will be

captured by the atmosphere and only slowly transferred into the deep ocean. In order

to accelerate the slow natural mix of the deep ocean with the atmosphere and upper

ocean layer we focus on the possibility of carbon capture and storage via deep see

injection.

From our simulation results we conclude that CCS is an important tool for stabi-

lizing the global carbon system because it accelerates the free, but slow natural flux

within the carbon cycle. CCS may help achieving stricter stabilization targets in the

coming decades without relying to much on the expensive and subsidy intensive re-

newables. Policy makers are well advised to consider investments into modern and

efficient coal fired power plants while at the same time to support R&D of CCS tech-

nologies which have a huge potential to ensure a smooth transition towards the usage

of renewables in the long run.

For the optimal carbon tax our findings suggest that it is inverted u-shaped and

its level should be adjusted with the uptake capacity of other carbon sinks, such as

the oceans.
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