
Tesfaselassie, Mewael F.

Working Paper

Central bank learning and monetary policy

Kiel Working Paper, No. 1444

Provided in Cooperation with:
Kiel Institute for the World Economy – Leibniz Center for Research on Global Economic
Challenges

Suggested Citation: Tesfaselassie, Mewael F. (2008) : Central bank learning and monetary
policy, Kiel Working Paper, No. 1444, Kiel Institute for the World Economy (IfW), Kiel

This Version is available at:
https://hdl.handle.net/10419/24839

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/24839
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

Central Bank Learning and 
Monetary Policy 
by  

Mewael F. Tesfaselassie           

No.  1444| August 2008 

 



 

Kiel Institute for the World Economy, Düsternbrooker Weg 120, 24105 Kiel, Germany 

Kiel Working Paper No. 1444| August 2008 

Central Bank Learning and Monetary Policy 

Mewael F. Tesfaselassie 

Abstract:  
We analyze optimal monetary policy when a central bank has to learn about an unknown coefficient 
that determines the effect of surprise inflation on aggregate demand. 
We derive the optimal policy under active learning and compare it to two limiting cases---certainty 
equivalence policy and cautionary policy, in which learning takes place passively. Our novel result is 
that the two passive learning policies represent an upper and lower bound for the active learning 
policy, irrespective of the state of the economy.  

Keywords: parameter uncertainty; learning; monetary policy  

JEL classification: C02, E52 
 
Mewael F. Tesfaselassie 
Kiel Institute for the World Economy 
24100 Kiel, Germany 
Telephone: +49 431 8814 273 
E-mail: mewael.tesfaselassie@ifw-kiel.de 

 

 
 

 
 
____________________________________ 
The responsibility for the contents of the working papers rests with the author, not the Institute. Since working papers are of 
a preliminary nature, it may be useful to contact the author of a particular working paper about results or caveats before 
referring to, or quoting, a paper. Any comments on working papers should be sent directly to the author. 
Coverphoto: uni_com on photocase.com 
 



Central Bank Learning and Monetary Policy

Mewael F. Tesfaselassie∗

This Version August 2008

Abstract

We analyze optimal monetary policy when a central bank has to learn
about an unknown coefficient that determines the effect of surprise inflation
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Keywords: parameter uncertainty; learning; monetary policy

JEL Codes: C02, E52

∗Kiel Institute for the World Economy, Duesternbrooker Weg 120, 24105 Kiel, Germany. E-mail:
mewael.tesfaselassie@ifw-kiel.de, Tel: +49 431 8814 273.

1



1 Introduction

A number of studies have analyzed the interaction of learning and control in optimal
monetary policy (see e.g., Bertocchi and Spagat (1993), Balvers and Cosimano
(1994), Wieland (2000a), Ellison and Valla (2001), Yetman (2003), Ellison (2006),
Svensson and Williams (2007), and Tesfaselassie et al. (2006)). The linear process
subject to control is typically assumed to be of the form1

xt = γ1 + γ2πt + ut (1)

where πt is the control variable and ut is an unobserved iid shock. Of particular
importance for optimal policy is the case where γ2 is unknown to the decision maker.
In that case, the choice of πt not only affects yt but also the sample estimate of γ2.

In this paper we study the role of learning in a simple macro model

xt = γ1 + γ2(πt − πe
t ) + ut

πe
t+1 = πe

t + γ0(πt − πe
t ) (2)

where xt is the output gap, πt is the rate of inflation, πe
t is the private sector’s

expectation of inflation, and 0 < γ0 < 1. Variants of this model can be found
in papers dealing with optimal monetary policy (see e.g., Cogley and Colacito
and Sargent (2005), Schaling (2003) and Tesfaselassie and Schaling (2008)). The
particular form for inflation expectations may be motivated based on credibility
(e.g., King (1996), Bomfim and Rudebusch (2000) and Yetman (2003))) or constant
gain learning by the private sector (e.g. Orphanides and Williams (2004), Evans
and Honkapohja (2001)). Unlike (1), what matters in (2) is the effect on xt of the
deviation of the control variable πt from the state variable πe

t .

Following the literature, we derive the active learning policy (ALP) when γ2 is
unknown to the central bank. We then compare the solution to two limiting cases—
certainty equivalence policy (CEP) and cautionary policy (CP), which represent
passive learning.

In our case, the ALP differs from the passive learning policies only when α > 0.
Similar results are commonly found in the literature (equation (1)). The new result
in our paper is that the CEP and CP represent, respectively, an upper and a lower
bound for the ALP. For any given state of the economy, the ALP never leaves the
two bounds. By contrast, under equation (1), the ALP leaves the upper bound,

1Tesfaselassie et al. (2006) study a monetary model of the form yt = γ1yt−1 + γ2πt + ut and
analyzed the case where γ1 is unknown to the central bank.
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implying a more aggressive response than the CEP, when the economy is near the
steady state. This is because the decision maker needs to generate data in order to
sharpen future inferences about γ2. In our case, the dependence of πe

t on the control
πt prevents the central bank from freely changing πt.

Section 2 presents the policy problem and solves for optimal policy under active
and passive policies. Section 3 discusses sensitivity of optimal policy to different
parameter configurations. Finally, Section 4 gives concluding remarks.

2 The Policy Problem

The central bank’s goal is to minimize, subject to (2),

Et

∞∑

τ=t

δτ−tL(xτ , πτ ) (3)

where

L(πt, xt) =
1

2
x2

t +
α

2
π2

t (4)

Et denotes expectations conditional on the central bank’s information, α is the rel-
ative weight on inflation stabilization and δ is the discount factor.

Parameter Uncertainty and Belief Updating

The central bank’s belief about γ2, before setting πt, can be characterized by a prior
mean ct = E(γ2|Ωt) and prior variance pt = E(γ2− ct)

2 where Ωt = {..., xt−2, xt−1}.2
After πt is chosen and ut realizes, determining xt, the central bank updates its belief
to (ct+1,pt+1). Belief updating follows a standard recursive form (see e.g., Beck and
Wieland (2002))

ct+1 = ct + ptF
−1
t (πt − πe

t )(xt − ct(πt − πe
t )) (5)

pt+1 = pt − p2
t (πt − πe

t )
2F−1

t (6)

where Ft ≡ pt(πt − πe
t )

2 + σ2
u is the conditional variance of xt. The filtering process

maps the sequence of output gap prediction errors into a sequence of revisions of

2This bounded rationality assumption follows, among others, Evans and Honkapohja (2001) in
that the central bank acts like an econometrician.
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beliefs.

Optimal Policy with Active Learning

The full-fledged model has three state variables—πe
t , ct and pt. The dynamic control

problem is

min
{πτ}∞τ=t

E
[ ∞∑

τ=t

δτ−tL(zτ , πτ )|(πe
t , ct, pt)

]
(7)

subject to the linear Phillips curve (2) and the non-linear updating equations (5)
and (6). The Bellman equation associated with the dynamic programming problem
(7) is

V (ct, pt, π
e
t ) = min

πt

{
L(zt, πt) + δEtV (ct+1, pt+1, π

e
t+1)

}

= min
πt

{
1

2
Etx

2
t +

α

2
π2

t

+ δ
∫

V (ct+1, pt+1, π
e
t+1)f(xt|ct, pt, π

e
t , πt)dxt

}
(8)

where Etx
2
t = (c2

t + pt)(πt − πe
t )

2 + σ2
u. The right hand side of (8) shows a tradeoff

between current control and future estimation. The larger is the deviation of πt from
πe

t , the larger is the current expected loss due to variability in xt, but the smaller
are future expected losses due to better information about γ (smaller pt+1). Given
pt > 0, πt − πe

t 6= 0 implies pt+1 < pt. Therefore, by internalizing the effect of πt

on pt+1, active learning implies a more aggressive response of πt to πe
t (thus, larger

disinflation) than than the CP.

As the updating equations are non-linear, the optimal policy under active learning
can be solved only numerically. Easley and Kiefer (1988) and Kiefer and Nyarko
(1989) have shown that a stationary optimal feedback rule exists, and that the value
function is continuous and satisfies the Bellman equation. Thus, policy and value
functions can be obtained numerically using an iterative algorithm on the Bellman
equation (see e.g., Wieland (2000a)).

Below we compare the ALP with the CP and CEP. The CP is derived by setting
ct+1 = ct and pt+1 = pt, while the CEP is a limiting case where ct+1 = ct and
pt+1 = pt = 0.

First we show the results for a set of baseline parameters (α = 0.5, σ2
u = 1, δ = 0.95

and γ0 = 0.02).
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Figure 1: CEP, CP, and ALP (α = 0.5, γ0 = 0.01, σ2 = 1).

Figure 1 plots our first result—the three policy rules as functions of πe
t , for alternative

initial beliefs (ct, pt) about the γ2. As is shown in the figure, irrespective of the
level of πe

t , the ALP is less aggressive than the CEP but more aggressive than the
CP. Note also that when πe

t is close to zero (the inflation target), the ALP and
the CP are almost identical. For larger values of πe

t , the ALP deviates from the
CP, implying a role for experimentation. Importantly, we see that the ALP stays
between the CP and the CEP. This result is in contrast to other studies that model
parameter uncertainty based on equation (1). In those studies, the ALP may be
more aggressive than the CEP when the economy is close to the steady state (see
e.g., Beck and Wieland (2002)).
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3 Sensitivity Analysis

Policy leverage over expected inflation

In the model, the parameter γ0 captures the degree of leverage of monetary policy
over inflation expectations. For instance, the larger γ0 is, the larger the effect of
actual inflation on expected inflation, thus implying a higher degree of leverage of
monetary policy over the economy.

Note that, the three types of policies are all functions of γ0. For example, a larger
value of γ0 induces all policies to respond less aggressively to expected inflation, so
as to compensate the increase in policy leverage over the economy. What matters
is, therefore, how the difference between the ALP and the CP (i.e., the degree of
experimentation) behaves when γ0 changes (see Figure 2).

It turns out that the degree of experimentation is inversely related to the size of γ0;
i.e., the larger γ0 is the smaller the degree of experimentation, and vice versa. This
shows that the ALP is more sensitive to changes in γ0 than the CP.

Variance of shocks

The second important parameter in the model is the variance of the shock to output
gap σ2. Since the CEP and the CP are independent of σ2, in Figure 3 we only
plot the ALP for two alternative values of σ2. We see that the relation between σ2

and the ALP is not independent of the state variable πe
t . In particular, for small to

moderate values of πe
t , the ALP becomes (marginally) more aggressive for σ2 = 0.25

than for σ2 = 1. On the other hand, for large values of πe
t , the ALP becomes less

aggressive. This effect is more visible for larger values of pt.

To get an intuition for this result, note that the output gap xt is less volatile under
σ2 = 0.25 than under σ2 = 1. Given πe

t , the updating equation for ct+1 implies
that the forecast error xt − ct(πt − πe

t ) becomes more informative the smaller the
variance of xt due to σ2 (alternatively, the larger the variance of xt due to estimation
errors). Thus, in general the more stable is the system, the smaller is the incentive
for experimentation. However, when πe

t is closer to the steady state of zero, there
is more incentive for experimentation, the more so the smaller is σ2 (i.e., when
economy is inherently more stable).

6



0 1 2 3
0

0.125

0.25

b 
=

 0
.2

   
   

 π
t

0 1 2 3
0

0.125

0.25

0 1 2 3
0

0.125

0.25

b 
=

 0
.4

   
   

 π
t

πe
t

 

 
γ
0
=0.01

γ
0
=0.05

0 1 2 3
0

0.125

0.25

πe
t

Figure 2: ALP relative to CP(γ0 = 0.01 vs. γ0 = 0.05).

4 Concluding Remarks

The paper derives optimal monetary policy under parameter uncertainty for a linear
process that differs from previous literature. In particular, the central bank has to
learn about an unknown coefficient that determines the effect of surprise inflation
on aggregate demand.

We derive the optimal policy under active learning and compare it to two limiting
cases—CEP and CP, in which learning takes place passively. It turns out that the
two passive learning policies represent an upper and lower bound for the ALP. In
particular, the ALP implies a less (more) aggressive degree of disinflation (measured
by the difference between actual inflation and expected inflation) compared to the
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Figure 3: ALP (σ2 = 1 vs σ2 = 0.25).

certainty equivalence (cautionary) policy. The novelty is that the above result holds
irrespective of the state of the economy.

One possible extension of the analysis is to let γ2 be time-dependent, for example a
random walk γ2,t = γ2,t−1 + ηt as in Beck and Wieland (2002) or an autoregressive
process γ2,t = ργ2,t−1 + ηt, 0 < ρ < 1 as in Balvers and Cosimano (1994). It is easy
to conjecture that in this case, learning is perpetual, as the underlying parameter is
time-varying. This reduces the incentive for experimentation.
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