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Non–technical Summary

Innovation is widely considered to be a key long–term driving force for economic

growth. In 1993, the Community Innovation Surveys (CIS) were initiated in the

European countries to investigate firms’ innovation activities. However, there is

still very little empirical evidence on the dynamics in firms’ innovation behaviour.

Looking at innovation indicators at the aggregate or industry level, we can identify

a high and quite stable share of innovators in Germany over the last ten years. One

interesting question, however, cannot be answered by such macroeconomic numbers:

Is it the same group of firms that always set themselves at the cutting edge by

introducing new products and processes or is there a steady entry into and exit

from innovation activities at the firm level, with the aggregate level remaining more

or less stable over time?

This paper analyses the dynamics in firms’ innovation behaviour. In particular,

it focuses on the following two questions: First of all, is innovation persistent at the

firm–level? And secondly, if persistence is prevalent, what drives this phenomenon?

In principle, there are various potential sources for persistent behaviour: First, it

might be caused by true state dependence. This means that a causal effect exists in

the sense that the decision to innovate in one period itself enhances the probability

of innovating in the subsequent period. The theoretical literature delivers several

potential explanations for state dependent behaviour: success breeds success, dy-

namic increasing returns (learning effects) or sunk costs in R&D investments. On the

other hand, firms may possess certain characteristics which make them more likely

to innovate. To the extent that these characteristics themselves show persistence

over time, they will induce persistence in innovation behaviour. Such firm–specific

attributes can be classified into observable characteristics, like firm size, competi-

tive environment, skills or financial resources, and unobservable ones. For instance,

technological opportunities, managerial abilities or risk attitudes are important for

the firms’ decision to innovate, but are typically not observed (unobserved hetero-

geneity).

The answers to both questions are important from a theoretical as well as a pol-

icy point of view. From a theoretical point of view they are interesting because

endogenous growth models differ in their underlying assumptions about the innova-

tion frequency of firms (creative destruction versus creative accumulation). From a

policy point of view the distinction between permanent innovation activities due to

firm–inherent factors and true state dependence has some important implications. If

innovation is state dependent, innovation–stimulating policy measures such as gov-

ernment support programmes are supposed to have a more profound effect because



they do not only affect the current innovation activities but are also likely to induce

a permanent change in favour of innovation. If, on the other hand, individual het-

erogeneity induces persistent behaviour, support programmes are unlikely to have

long–lasting effects and economic policy should concentrate more on measures which

have the potential to improve innovation–relevant firm–specific factors.

The paper presents some stylised facts regarding the permanence of German

manufacturing and service firms’ innovation behaviour in the period 1994–2002. In

a second step, the sources for persistent behaviour are analysed and identified by

means of a dynamic random effects binary choice model using the estimator recently

proposed by Wooldridge (2005). This panel data approach allows to control for

individual heterogeneity, a potential source of bias which was not taken into account

in most of the previous empirical studies due to data restrictions.

A first main finding is that innovation behaviour is permanent at the firm level

to a very large extent. Year–to–year transition rates indicate that in manufacturing

nearly nine out of ten innovating firms in one period persisted in innovation activities

in the subsequent period and about 84 per cent of non–innovators remained inactive

in the following period. Yet innovation is not a once and for all phenomenon. 45

per cent of manufacturing and 55 per cent of service firms experienced at least one

change in their innovation behaviour. In general, persistence is less pronounced in

the service sector and exhibits a higher variance across time.

The econometric results confirm the hypothesis of true state dependence. De-

pending on the calculation method, about one third to one half of the difference

in the propensity to innovate between previous innovators and non–innovators in

manufacturing can be traced back to true state dependence. In the service sector,

persistence is generally less prevalent and state dependence effects are less pro-

nounced, yet still highly significant.

The results further confirm and highlight the role of unobserved heterogeneity

as well as innovative capabilities on the dynamics in firms’ innovation behaviour.

That is, in addition to past innovation experience, knowledge provided by skilled

employees was found to be important in generating innovations over time.
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1 Introduction

Innovation is widely considered to be a key long–term driving force for economic

growth. In 1993, the Community Innovation Surveys (CIS) were initiated in the

European countries to investigate firms’ innovation activities. These rich and inter-

nationally harmonised data sets have served as the starting–point for many empirical

studies which have analysed various aspects of innovation activities. However, there

is still very little evidence on the dynamics in firms’ innovation behaviour. Looking

for example at innovation performance indicators at the aggregate or industry level,

we can identify a high and quite stable share of innovators in the manufacturing as

well as in the service sector in Germany over the last ten years (see Figure 1). One

interesting question, however, cannot be answered by such macroeconomic numbers:

Is it the same group of firms that always set themselves at the cutting edge by in-

troducing new products and processes or is there a steady entry into and exit from

innovation activities at the firm level, with the aggregate level remaining more or

less stable over time?

Figure 1: Share of Innovators 1992–2003
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Business–related services include telecommunication, financial intermediation, data processing,
technical services, consultancies and other business-related services. Wholesale, retail, trans-
port/storage, post, real estate and renting are summarised as other services. All figures are ex-
panded to the target population of German firms with 5 or more employees.
Comparability of figures for other services before and after 2000 is reduced due to slight changes
in the definition of innovation.
Source: Rammer et al. (2005).
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This paper analyses the dynamics in firms’ innovation behaviour. In particular,

it focuses upon the following two research questions: First of all, is innovation

persistent at the firm–level? Persistence occurs when a firm which has innovated

in one period innovates once again in the subsequent period. And secondly, if

persistence is prevalent, what drives this phenomenon?

In principle, there are various potential sources for persistent behaviour (see Heck-

man 1981a,b): First, it might be caused by true state dependence. This means that

a causal behavioural effect exists, in the sense that the decision to innovate in one

period in itself enhances the probability to innovate in the subsequent period. The

theoretical literature delivers several potential explanations for state dependent be-

haviour. The most prominent ones relate to (i) the hypothesis of success breeds

success (Mansfield 1968), (ii) the hypothesis that innovations involve dynamic in-

creasing returns (see, e.g., Nelson and Winter 1982 and Malerba and Orsenigo 1993),

and (iii) sunk costs in R&D investments (Sutton 1991). Secondly, firms may pos-

sess certain characteristics which make them particularly ”innovation-prone”, i.e.,

more likely to innovate. To the extent that these characteristics themselves show

persistence over time, they will induce persistence in innovation behaviour. Such

firm–specific attributes can be classified into observable characteristics1, like firm

size, competitive environment or financial resources, and unobservable ones. For

instance, technological opportunities, managerial abilities or risk attitudes are im-

portant for the firms’ decision to innovate, but are typically not observed. If these

unobserved determinants are correlated over time, but are not appropriately con-

trolled for in estimation, past innovation may appear to affect future innovation

merely because it picks up the effect of the persistent unobservable characteristics.

In contrast to true state dependence this phenomenon is therefore called spurious

state dependence. And thirdly, serial correlation in exogenous shocks to the inno-

vation decision can cause permanent behaviour over time.

The answers to both research questions are important for several reasons. First,

they are interesting from a theoretical point of view. Endogenous growth models

for example differ in their underlying assumptions about the innovation frequency

of firms. While Romer (1990) assumes that innovation behaviour is persistent at

the firm level to a very large extent, the process of creative destruction leads to a

perpetual renewal of innovators in the model of Aghion and Howitt (1992). Thus,

empirical knowledge about the dynamics in firms’ innovation behaviour is a tool to

assess different endogenous growth models (Cefis 2003). Furthermore, it might help

to improve current theories of industrial dynamics, where some forms of dynamic

1 Observable characteristics means known to the econometrician.
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increasing returns play a major role in determining degrees of concentration, the evo-

lution of market shares and their stability over time (Geroski 1995). Second, from a

managerial point of view permanent innovation activities are seen as a crucial factor

for strengthening competitiveness. And last but not least, the distinction between

permanent innovation activities due to firm–inherent factors as opposed to true state

dependence has important implications for technology and innovation policy. If in-

novation performance shows true state dependence, innovation–stimulating policy

measures such as government support programmes are supposed to have a more pro-

found effect because they do not only affect the current innovation activities but are

likely to induce a permanent change in favour of innovation. If, on the contrary, indi-

vidual heterogeneity induces persistent behaviour, support programmes are unlikely

to have long–lasting effects and economic policy should concentrate more on mea-

sures which have the potential to improve innovation–relevant firm–specific factors

and circumstances.

To answer the first question, the paper presents some stylised facts of how perma-

nently German manufacturing and service firms innovated in the period 1994–2002.

While in most of the other European countries innovation surveys take place ev-

ery 4 years, the German innovation survey is conducted annually. This provides us

with rather long panel data which are appropriate to study whether the innovation

behaviour is persistent at the firm-level. In a broader sense, this part ties in with

the literature about the existence of innovation persistence effects using patents (see

Geroski et al. 1997, Malerba and Orsenigo 1999 and Cefis 2003) and R&D indicators

(see Manez Castillejo et al. 2004).

In a second step, the sources for persistent behaviour are analysed and identified

by means of a dynamic random effects binary choice model. This panel data ap-

proach allows us to control for individual heterogeneity, a potential source of bias

which was not taken into account in most of the previous empirical studies due to

data restrictions.

The paper contributes to the existing literature in that it is one of the first which

investigates firm–level persistence using innovation data (see section 3) and that

it is able to exploit data from a unique long panel, which are nonetheless inter-

nationally comparable. Furthermore, a new estimation method recently proposed

by Wooldridge (2005) is applied, and the paper is the first to provide empirical

evidence on innovation persistence in service firms. Investigating the dynamics in

the innovation behaviour of service firms is interesting not only because the service

sector has experienced a rapid development over the last two decades, but also from

a theoretical point of view. Looking at the potential theoretical explanations for
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true state dependence listed above, the third one in particular is strongly related

to R&D, which is less important and less common in the service sector. Thus, one

hypothesis that will be investigated is that innovation activities are less permanent

in this sector compared to manufacturing.

The outline of the paper is as follows. Section 2 sketches some theoretical argu-

ments in favour of and against state dependence in innovation behaviour at the firm

level. Section 3 summarises the main empirical firm–level results so far. The panel

data set underlying this study is explored in section 4 and section 5 briefly com-

ments on some measurement issues. The following section 6 depicts some stylised

facts about the entry into and exit from innovation activities at the firm level during

the period 1994–2002. Section 7 presents the econometric model and its empirical

implementation. It further explores the estimation methods used and sets forth

the econometric results. Section 8 draws some conclusions on the persistence of

firm–level innovation activities and discusses the main findings.

2 Theoretical Explanations

Economic theory provides at least three potential explanations of why innovation

behaviour might demonstrate state dependence over time.

The first one is the well–known hypothesis of ”success breeds success”. How-

ever, this view is based on different arguments in the literature. Phillips (1971),

for instance, argued that successful innovations positively affect the conditions for

subsequent innovations via an increasing permanent market power of prosperous

innovators.2 Mansfield (1968) and Stoneman (1983), however, emphasised that a

firm’s innovation success broadens its technological opportunities which make sub-

sequent innovation success more likely. Based on this idea of dynamic intra–firm

spill–overs, Flaig and Stadler (1994) developed a stochastic optimisation model in

which firms maximise their expected present value of profits over an infinite time

horizon by simultaneously choosing optimal sequences of both product and process

innovations. Both were shown to be dynamically interrelated in this model. An-

other line of reasoning is the existence of financial constraints. Usually, information

asymmetries about the risk and the failure probability of an innovation project ex-

ist between the innovator and external financial investors. This leads to adverse

2 In contrast to Schumpeter, who assumed that the increasing market power is a temporary phe-
nomenon and is eroded by the entry of imitators or innovators, Phillips argued that success favours
growing barriers to entry that eventually allow a few increasingly successful firms to permanently
dominate an industry.
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selection and moral hazard problems which usually force firms to finance innovation

projects by means of internal funds (see, e.g., Stiglitz and Weiss 1981). Successful

innovations provide firms with increased internal funding and hence can be used to

finance further innovations (Nelson and Winter 1982). Common to all these various

”success breeds success” theories is the notion that a firm can gain some kind of

locked–in advantage over other firms due to successful innovations (Simons 1995).

The second hypothesis is based on the idea that knowledge accumulates over

time as represented by the changes in an organisations repertories of operating

and dynamic routines (Nelson and Winter 1982). Evolutionary theory states that

technological capabilities are a decisive factor in explaining innovation. Firms’ in-

novative capabilities in turn are primarily determined by human capital, i.e., by

the knowledge, skills and creativity of their employees. Experience in innovation is

associated with dynamic increasing returns in the form of learning–by–doing and

learning–to–learn effects which enhance knowledge stocks and, therefore, the prob-

ability of future innovations. Since a firm’s absorptive capacity, i.e. its ability to

recognise the value of new, external information, to assimilate and apply it to com-

mercial ends, is likewise a function of the level of knowledge, learning in one period

will furthermore permit a more efficient accumulation of external knowledge in sub-

sequent periods (Cohen and Levinthal 1990). The cumulative nature of knowledge

should therefore induce state dependence in innovation behaviour (see, e.g., Nelson

and Winter 1982 and Malerba and Orsenigo 1993).3

The hypothesis of sunk costs in R&D investments is a third argument in favour

of state dependence (see Sutton 1991 or Manez Castillejo et al. 2004). It is stressed

that R&D decisions are subject to a long time horizon, and if a firm decides to

take up R&D activities, it has to incur start–up costs in building up an R&D

department or hiring and training R&D staff. These fixed outlays, once made,

are usually not recoverable and can therefore be considered as sunk costs.4 With

respect to persistence, sunk costs represent a barrier to both entry into and exit

from R&D activities. Sunk costs may prevent non–R&D performers from taking up

such activities because, unlike established R&D performers, potential entrants have

to take these costs into account in determining their prices. Conversely, sunk costs

may represent a barrier to exit for established R&D performers because they are

3 Theories which focus on how firms accumulate technological capabilities may also be considered
as ”success breeds success” theories since technological capabilities might substantiate sustained
competitive advantages (Teece and Pisano 1994). However, learning can also occur as a result of
unsuccessful innovations.

4 In contrast to most other kinds of sunk costs, firms can decide strategically upon the amount
of R&D expenditure. Costs incurred in this manner are therefore referred to as endogenous sunk
costs (Sutton 1991).
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not recovered in the case that the firm stops R&D and the firm has to incur them

again if it decides to re–enter in future periods.

However, even if firms experience sunk costs or knowledge accumulation due to

innovations, there are several theoretical explanations of why they may exit from

innovation activities in future periods with the consequence that persistence does

not emerge. The first two arguments are related to the demand–pull theory which

emphasises that innovations are stimulated by demand (see Schmookler 1966). If

there is, at least in the firm’s perception of consumer demand, no need for further

innovations due to its own previous introduction of new products or processes, the

firm will at least temporarily cease to innovate. This is particularly true if a firm only

offers one or a few products and typical product life cycles are several years. Closely

related is the second argument that states that unfavourable market conditions in

general (i.e. expected decrease in demand) might prevent firms from carrying on with

innovation, especially with respect to the timing of the market introduction of new

products. This is one argument in the literature on innovation and business cycles

and will be explored in more detail in section 6. Finally, an incumbent innovator

might fear that the introduction of further new products or processes will cannibalise

his rents from previous innovations and thus stop innovating (Schumpeter 1942).

Patent race models, for instance, predict that an incumbent invests less in R&D

than challengers because it would erode current monopoly and profits (see, e.g.,

Reinganum 1983).

3 What do we know so far? Previous Empirical

Findings

Though economic theory emphasises that innovation is an inherently dynamic pro-

cess between heterogenous firms (see Blundell et al. 1995), firm–level empirical ev-

idence on persistence in innovation activities is scarce. We can broadly classify

the existing literature into three categories according to how the authors measure

innovation: patent–based, R&D–based and innovation–based studies.

Patent–based studies have mainly focused on the question whether innovation

persistence exists, irrespective of its origin. Malerba and Orsenigo (1999) exam-

ined this question using data of manufacturing firms from six countries (France,

Germany, Italy, Japan, USA and the UK) which had requested at least one patent

at the European Patent Office (EPO) between 1978 and 1991. Their results cor-

roborated substantial entry into and exit from patent activities implying that the

population of innovators changed remarkably over time. In terms of employment,
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entrants and exiters showed nearly the same size as incumbent innovators, but, in

terms of the number of patents, both were much smaller. The high entry and exit

rates were associated with a large proportion of enterprises that innovated only once

and than ceased to innovate further. Only a small fraction of entrants were able

to persist in patent activities as time went on. However, these firms became rather

large innovators (in terms of patents) over time, resulting in the fact that persistent

innovators, although small in absolute numbers, accounted for an important part of

all patents. The same result, that patent activities among patenting firms exhibited

only a little degree of persistence, was confirmed by Geroski et al. (1997) who con-

centrated on patents as well, but used data of UK manufacturing firms which had

at least one patent granted in the US between 1969 and 1988.

Cefis (1999, 2003) used a UK sub–sample of the data set of Malerba and Orsenigo

(1999) and applied a non–parametric approach based on transition probabilities

matrices. Cefis and Orsenigo (2001) extended this kind of analysis to a firm–level

cross–country comparison over time for the original six countries. In their studies

they distinguished four states in each year: occasional (zero patents)5, small (one

patent), medium (two to five patents) and great innovators (at least 6 patents). They

corroborated previous evidence that in general only a low degree of state persistence

in patenting was prevalent in all countries which furthermore declined as time went

by. Only occasional and great innovators had a high probability of remaining in their

state while persistence was much lower in the intermediate classes for which a strong

tendency towards the non-innovator state was ascertained. Moreover, persistence

was found to differ across industries, but inter–sectoral differences were by and large

consistent across countries suggesting that persistence is at least partly technology–

specific. However, cross–country differences showed up in the relationship between

persistence and firm size. While a strictly positive impact was found in Italy, France,

USA and the UK, this was not observed in Japan and Germany.

In contrast to the other studies, Geroski et al. (1997) also examined potential

sources of persistence. To test the hypothesis of dynamic economies of scale, they

focused on patent spells, which measured the number of successive years in which

a firm produced a patent. In this setting, dynamic economies of scale would imply

that the probability of the spell ending at any particular time t + ∆t, given it has

lasted until t, decreases with the initial level of patents and with the length of time

a firm has already spent in that spell. While the first relationship was confirmed

by their data, the second one was rejected. All in all, their results suggested that

dynamic economies might have led to more persistent patent spells, but only when

5 Firms with zero patents in a given period are nevertheless referred to as occasional innovators
since they had at least one patent in the whole period under consideration.
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the threshold of initial patent activities was high enough to overcome the reversed

within–spell effects. And only a few firms ever reached this threshold.

One explanation of why patent–based studies revealed only a small degree of

persistence might be the well–known fact that patents measure only some aspects

of innovative activity, see Griliches (1990). However, in the context of persistence

analysis, patents have an additional drawback, because in this kind of winner–takes–

all contest, to be classified as permanent innovators firms have to win the patent

race continuously, see Kamien and Schwartz (1975). This means that patent data

measure the persistence of innovative leadership rather than the persistence of in-

novation, as was stressed by Duguet and Monjon (2004).

Instead of patents, another strand of literature uses R&D activities. Mairesse

et al. (1999) and Mulkay et al. (2001) for instance estimated dynamic equations for

physical as well as R&D investment rates. Based on samples of large French and

US manufacturing firms they found evidence that R&D investment rates are highly

correlated over time, even more highly correlated than physical capital investments.

This reflects the inter–temporal nature of R&D and the fact that about half of the

R&D expenditure consists of labour costs for R&D staff. Using a sample of small and

large Spanish manufacturing firms between 1990 and 2000 and a dynamic discrete

choice model, Manez Castillejo et al. (2004) asserted that past R&D experience had

significantly affected the current decision to engage in R&D and interpreted this

as an indication for sunk costs in building up R&D. Their results further indicated

a rapid depreciation of R&D experience in that there was no significant difference

between the re–entry costs of a firm that last performed R&D activities two or three

years ago and a firm that had never previously conducted R&D.

Though R&D is an important input to innovation, it does not capture all aspects

pertinent to innovation. Innovation activities close to the market, for instance, are

not captured by the concept of R&D. Such activities of small and medium–sized

manufacturing as well as service sector firms are heavily underestimated by patents

as well as R&D indicators.

Hence, another strand of literature uses the broader concept implied by innova-

tion data. So far, only a few studies have attempted to estimate the dynamics in the

innovation process at the firm–level and empirical results are inconclusive. König

et al. (1994) and Flaig and Stadler (1994, 1998) were the first to examine dynamic

effects using innovation data from a panel of manufacturing firms in West Germany

in the eighties. Applying a dynamic panel probit model, empirical evidence of state

dependence in process innovation activities was supported by the first study. This

result was corroborated for process as well as product innovations by the second
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authors. Duguet and Monjon (2004) for French firms and Rogers (2004) for Aus-

tralian firms also reported persistence effects. However, due to data limitations both

studies did not carry out a dynamic panel data analysis and thus did not control for

unobserved individual heterogeneity, which leads to biased estimates if heterogeneity

is present.6

Conversely, Geroski et al. (1997) and Raymond et al. (2005) could not ascertain

persistence effects in the occurrence of innovations for UK and Dutch manufacturing

firms. But Raymond et al. (2005) pointed out that among continuous innovators the

innovation success, measured in terms of sales due to new products, had a positive

impact on future success.

Among the other things highlighted, this review makes clear that previous studies

focused solely on manufacturing. One aim is therefore to extend this kind of analysis

to a comparison between the manufacturing and service sector.

4 Data Set

The research makes use of firm level data from the Mannheim Innovation Panel

(MIP) in the German manufacturing (NACE 10–45) and service sector (NACE 50–

52, 60–74, 90).7 The MIP is based on innovation surveys carried out by the Centre

for European Economic Research (ZEW) on behalf of the German Federal Ministry

of Education and Research. The target population covers all legally independent

firms with 5 or more employees and the surveys are drawn as stratified random

samples (stratified by firm size, branches of industries and East/West region). The

survey methodology and definitions of innovation indicators comply with the recom-

mendations manifested in the OSLO-Manual, see OECD and EUROSTAT (1997),

thereby yielding internationally comparable data on innovation activities of German

firms. In 1993 (CIS1), 1997 (CIS2) and 2001 (CIS3) the surveys were the German

contribution to the European–wide harmonised CIS.

While in most other European countries innovation surveys take place every 4

years, they are conducted annually in Germany. In manufacturing, we refer in our

analysis to the surveys 1995 to 2003, in the service sector the first usable wave was

that of 1997.8 Thus, 9 waves in manufacturing and 7 in services are available. The

6 Both studies applied a cross–sectional probit approach, including a dummy variable for
whether the firm was an innovator in the previous period as an explanatory variable.

7 For a detailed definition, see Table 14 in the appendix.
8 In manufacturing, the survey started in 1993. However, due to a major refreshment and
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data of each survey refers to the previous year, hence we focus on the period 1994–

2002 in manufacturing and 1996–2002 in the service sector. This relatively long

period ensures that we can observe firms’ innovation behaviour over different phases

of the business cycle, and the observation period is also longer than the average

product life cycle in industry.

The samples are constructed as panels and about 10,000 firms in manufacturing

and 12,000 service firms are questioned each year. Since participation is voluntary,

response rates vary between 20 to 25 %,9 and although the survey is designed as a

panel study, we have to assert that the main part of the firms participated only once

or twice.10 Furthermore, for analysing the dynamics in firms’ innovation behaviour

with econometric methods, only those firms which have answered consecutively can

be taken into account. Therefore, in the following we distinguish two panel data sets:

Panel U is an unbalanced panel comprising all firms for which at least 4 successive

observations are available and Panel B is the balanced sub–sample. The latter is

needed for estimation purposes (see section 7.2).

Table 1: Characteristics of the Unbalanced and Balanced Panel

Manufacturing Services

Panel U: Unbalanced Panel

Number of observations 13558 7901

Number of firms 2256 1528

Minimum number of consecutive obs. per firm 4 4

Average number of consecutive obs. per firm 6.0 5.2

Panel B: Balanced Panel

Number of observations 3933 1974

Number of firms 437 282

Number of consecutive obs. per firm 9 7

Time Period 1994–2002 1996–2002

Source: Own calculations.

Table 1 summarises the main characteristics of both samples. Given our interest

in analysing the persistence of innovation behaviour and the need to estimate a

enlargement of the initial sample in 1995 and the need to construct a balanced panel for estimation
purposes, I decided to discard the first two waves. In the service sector, the first survey took place
in 1995, with a break in 1996.

9 The low response rates are in line with those of comparable voluntary surveys of German
firms. In order to control for a response bias in the net sample, non-response analyses are carried
out each year, covering a similar number of firms of the net sample and collecting information on
product and process innovations by the means of telephone interviews. They come up with the
result that the share of innovators is only slightly underestimated in the net sample.

10 Table 15 in the appendix sheds some light on the individual participation behaviour of the
sampled firms.
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dynamic specification with a lagged endogenous variable, I have chosen to maximise

the time dimension of the panel. As a result, in manufacturing as well as in the

service sector this choice leads to a marked reduction in the number of observations

and the resulting panel data sets might not be representative for the total sample. To

check representativeness, Tables 16 and 17 in the appendix compare the distribution

of firms by industry, size class, region and innovation status in the total sample of

all observations, the unbalanced panel and the balanced sub–sample. It turns out

that in manufacturing large firms with 100 or more employees are slightly over–

represented in the unbalanced and balanced panel compared to the total sample,

while the opposite applies to the service sector. Moreover, the share of East German

firms is slightly higher in both panels in manufacturing as well as in the service

sector. The tables further demonstrate that the share of innovators is lower in both

panels used. But while the difference for instance between the balanced panel and

the total sample is rather small in manufacturing, it amounts to 8.5 percentage

points in the service sector. That is, the service firms in our sample are less likely

to engage in innovation activities. Based on these comparisons, we argue that by

and large the panels still reflect total–sample distributional characteristics quite

well in manufacturing and don’t give any obvious cause for selectivity concerns.

Admittedly, in the service sector selectivity might be a more severe problem in the

resulting panels since innovators are less represented.

5 Measurement Issues

One problem in studying state dependence in innovation behaviour with CIS data is

the fact that the indicator whether a firm has introduced an innovation is related to

a 3–year–reference period, that is, using this indicator for yearly waves would induce

an artificial high persistence due to overlapping time periods and double counting.11

Both studies of Duguet and Monjon (2004) or Raymond et al. (2005) suffer from

this overlapping of time periods problem in their dependent variable. However,

information on innovation expenditure is available on a yearly basis. Innovation

expenditure include outlays for intramural and extramural R&D, acquisition of ex-

ternal knowledge, machines and equipment, training, market introduction, design

and other preparations for product and/or process innovation activities in a given

year.12 Therefore, and in contrast to the previously mentioned studies, we define an

11 As an example, in the 2001 survey a firm is defined as an innovator if it has introduced an
innovation in the period 1998–2000, in the 2002 survey this indicator is related to 1999–2001.

12 R&D expenditure accounted for 50–55 % of innovation expenditure in the period under con-
sideration, see Gottschalk et al. (2002).

11



innovator as a firm which exhibits positive innovation expenditure in a given year,

i.e., which decides to engage in innovation activities. This implies that we analyse

the persistence in innovation input rather than in innovation outcome behaviour.

From a theoretical point of view it is not unambiguous whether state dependence

in innovation behaviour should be tested in terms of an input or an output measure.

The literature on sunk costs usually models the decision to invest in R&D by a ratio-

nal profit–maximising firm, so that an input measure seems advisable. In contrast,

the ”success breeds success” hypothesis is clearly outcome–oriented. By stressing

the accumulative nature of innovation and the importance of learning effects in the

innovation process, the evolutionary theory is likewise rather outcome–oriented since

the process of learning involves successful implementation rather than just dedicat-

ing some resources to innovation projects, see Blundell et al. (1993). Econometric

evidence shows that, on average, innovation output is significantly determined by

innovation input (see, e.g., Crepon et al. 1998, Lööf and Heshmati 2001, Love and

Roper 2001 or Janz et al. 2004), implying that input persistence should to a certain

degree be converted into output persistence. However, it is possible that more than

one period is needed to translate innovation effort into new products or processes

and furthermore firms can not necessarily control their innovation outcome because

serendipity might play an important role in the innovation process, see Kamien and

Schwartz (1982) or Flaig and Stadler (1998).13

6 Stylised Facts

In what follows we want to give an answer to the first research question of ”How per-

sistently do firms innovate?”. To investigate this question, transition probabilities

are an appropriate method. Tables 2 and 3 show corresponding figures for the whole

period and differentiated by years. First of all, it turns out that there are hardly

any differences between our much larger unbalanced panel and the smaller balanced

panel which has to be used for estimation purposes. Table 2 clearly indicates that

innovation behaviour is permanent at the firm-level to a very large extent. In the

period 1994–2002, nearly 89 % of innovating firms in manufacturing in one period

persisted in innovation activities in the subsequent period while 11 % stopped their

engagement. Similarly, about 84 % of non–innovators maintained this status in the

following period while 16 % entered into innovation activities. That also means that

the probability of being innovative in period t + 1 was about 72 percentage points

13 I checked the robustness of my results by applying the output-oriented 3–period innovation
indicator and taking only every third survey into account, see section 7.5.

12



higher for innovators than for non-innovators in t which can be interpreted as a mea-

sure of state dependence. Against the background of the sunk costs hypothesis, it is

interesting that using the narrower concept of R&D expenditure, Manez Castillejo

et al. (2004) found slightly higher exit rates in Spanish manufacturing for the period

1990–2000, while not surprisingly the entry into R&D activities is much less frequent

than for innovation activities.14

Table 2: Transition Probabilities, Whole Perioda)

Innovation status in t + 1

Unbalanced Panel Balanced Panel

Innovation status in t Non–Inno Inno Total Non–Inno Inno Total

Manufacturing

Non–Inno 83.6 16.4 100.0 85.3 14.7 100.0

Inno 11.2 88.8 100.0 11.2 88.8 100.0

Total 41.9 58.1 100.0 44.5 55.5 100.0

Services

Non–Inno 82.9 17.1 100.0 83.9 16.1 100.0

Inno 29.2 70.8 100.0 30.2 69.8 100.0

Total 62.6 37.4 100.0 64.0 36.0 100.0

Notes:
a) Manufacturing: 1994–2002, service sector: 1996–2002.
Source: Own calculations.

In services, persistence effects are also clearly observable, though less prevalent

than in manufacturing. Non–innovative service firms had pretty much the same

propensity to enter into innovation activities as manufacturing firms. However, in

any given year the probability of an innovative service firm remaining in innovation

activities in the subsequent year was significantly lower (70 %) than for a manu-

facturing firm. This implies that the state dependence effect in the service sector

was clearly lower with approximately 54 percentage points. Several arguments could

explain this finding, one being the fact the sunk cost hypothesis is strongly related

to R&D investments. However, R&D is less important and less common in most

of the service sectors compared to manufacturing. This result might also occur be-

cause, on average, the time needed to develop an innovation is shorter in services

and hence covers two calendar years less often. Alternatively, individual or industry

heterogeneity, for example in the technological opportunities or in the demand for

new innovations, might explain this difference.

14Manez Castillejo et al. (2004) reported only transition rates for small and large firms. Using
a weighted average, one would get an exit rate of about 17 % and an entry probability of 8 %.
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Table 3: Transition Probabilities by Year

Innovation Status Years

Year t Year t + 1 94–95 95–96 96–97 97–98 98–99 99–00 00–01 01–02

Manufacturing

Non–Inno Non–Inno 86.2 76.4 78.3 91.9 81.3 86.4 82.2 87.2

Inno 13.8 23.6 21.7 8.1 18.7 13.6 17.8 12.8

Inno Non–Inno 13.4 6.9 12.3 9.5 9.1 15.2 12.1 11.5

Inno 86.6 93.1 87.7 90.5 90.9 84.8 87.9 88.5

Services

Non–Inno Non–Inno − − 68.5 87.9 81.7 84.6 82.4 90.3

Inno − − 31.5 12.1 18.3 15.4 17.6 9.7

Inno Non–Inno − − 24.0 35.6 20.9 34.4 29.0 30.6

Inno − − 76.0 64.4 79.1 65.6 71.0 69.7

Notes:
Sample: Unbalanced Panel.
Source: Own calculations.

There is a related strand of literature investigating the interrelationship between

business cycles and innovation activity. According to the technology-push argu-

ment, science and technology are a major driver for innovation activities and con-

sequently the business cycle, see Schumpeter (1939) or Kleinknecht (1990) for an

empirical assessment. In contrast, the demand-pull hypothesis states that innova-

tion behaviour depends on demand conditions and thus on the level of economic

activity, see Schmookler (1966). Within this body of literature, arguments for both

pro- as well as counter–cyclical relationships can be found. Pro–cyclical effects

are expected to occur because cash–flow as an important source of finance innova-

tions is positively correlated with economic activity, see Himmelberg and Petersen

(1994). Furthermore, Judd (1985) argued that markets have a limited capacity for

absorbing new products and thus firms are more likely to introduce new products

in prosperous market conditions. Aghion and Saint-Paul (1998) showed that firms

tend to invest more in productivity growth (i.e. process innovations) during reces-

sions, since the opportunity cost in terms of forgone profits of investing capital in

technological improvements is lower during recessions. During the period 1994–2002

the German economy underwent different business cycles. 1993 was characterised

by a deep recession, followed by an upswing in 1994-1995 which came to a near halt

in 1996. Since 1997 economic growth steadily increased again, reaching its peak in

2000. Since 2001 the German economy has again been fighting a significant cycli-

cal slump. Table 3 shows that despite different business cycles, the propensity to

remain innovative and correspondingly the exit rates were quite stable over time in
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manufacturing, with one remarkable exception in the peak period 2000 where the

flow out of innovating sharply increased.15 At the same time, the entry rate was

more volatile across the periods in manufacturing. In the service sector, the propen-

sity to remain innovative was not only lower but also exhibited a higher variance

across time.16 However, contrasting both exit and entry rates with the annual GDP

growth rate, no clear pro– or counter–cyclical link to the level of economic activity

can be found.

Figure 2: Innovation Entry and Exit Rates and Business Cycles
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Notes:
The innovation exit rate in any given year t is defined as the share of innovators in year t−1 which
flow out of innovation activities in year t. Similarly, the innovation entry rate in t is the share of
non–innovators in year t − 1 which start innovation activities in year t. GDP growth denotes the
annual percentage change of real GDP (in constant prices of 1995). M and S denote manufacturing
and services, respectively. Sample: Unbalanced Panel.
Source: GDP growth rates: Sachverständigenrat (2004). Own calculation.

Table 4 and Figure 3 provide some information on innovation persistence by size

class and industry. As expected, innovation behaviour was more stable in larger

firms, though also relatively permanent in small firms. This result holds for manu-

15 This result coincides with the decline in the share of innovators at the aggregate level, see
Figure 1. A main cause for this somewhat astonishing development was a severe shortage in high–
qualified personnel in 2000, hampering a large number of SMEs in their innovative efforts (Janz
et al. 2002).

16 The standard deviation of exit and entry rates is 2.6 and 5.1 in manufacturing and 5.8 and
7.6 in the service sector.
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Table 4: Transition Probabilities by Size Class

Innovation Status Years

Year t Year t + 1 < 10 10–19 20–49 50–99 100–499 >=500

Manufacturing

Non–Inno Non–Inno 91.3 87.4 83.9 81.4 78.0 79.0

Inno 8.7 12.6 16.2 18.6 22.0 21.0

Inno Non–Inno 32.7 20.3 17.7 12.9 10.7 7.2

Inno 67.3 79.7 82.4 87.1 89.3 92.8

Services

Non–Inno Non–Inno 87.1 84.6 85.3 79.6 76.0 77.1

Inno 12.9 15.5 14.7 20.4 24.0 22.9

Inno Non–Inno 40.5 40.4 30.7 21.4 28.8 12.8

Inno 59.5 59.6 69.3 78.6 71.2 87.2

Notes:
Manufacturing: 1994–2002, service sector: 1996–2002. Sample: Unbalanced Panel.
Source: Own calculations.

Figure 3: Entry into and Exit from Innovation Activities by Industry
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Source: Own calculation.

facturing and, by and large, for service firms as well. The propensity to remain

innovative increased with firm size, while at the same time the propensity for non–
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innovators to take up such activities rose as well. Nevertheless, the (unconditional)

state dependence effect measured as the difference between the probabilities of be-

ing innovative in period t + 1 for innovators and for non–innovators in t was more

pronounced in large manufacturing firms (approximately 72 percentage points for

firms with more than 500 employees) than in small ones (59 percentage points for

firms with less than 10 employees). The same picture emerges in services with a

difference of 64 and 47 percentage points.

Figure 3 further demonstrates that innovation activities at the firm level are

found to be more persistent in high–technology industries, though also quite perma-

nent in some low–technology manufacturing and business–related service industries.

For instance, the lowest exit rates can be found in R&D intensive industries like

chemicals, vehicles, electrical engineering, medical instruments or machinery while

exiting innovation activities is much more likely in the wood/paper, energy/water

or construction industry or in most service industries.

Figure 4: Survival Rates of Innovator and Non–Innovator Cohorts by Years (in %)
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Finally, we look at the innovative history of firms. Figure 4 depicts the survival

rates of different innovator as well as non–innovator ”cohorts” by years and Table 5

reports the number of (re–)entry into and (re–)exit from innovation. The survival

rate for instance for the innovator cohort 1994 is the proportion of innovators in year
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t = 1994 that was still innovating in year t + s, for s = 1, 2 . . .. In manufacturing,

the 3–year survival rates were quite similar for different cohorts, amounting to 78

% on average (based on cohorts 1994 to 1999). After 5 years, on average 71 %

of the innovators were still innovating and 66 % of initially innovative firms (i.e.,

cohort 1994) were continuously engaged in innovation throughout the whole period.

In services, the survival rates are smaller and exhibit higher variances. On average

only 51 % of the innovators were still involved in innovation after three years, and

the share of incessant innovators (40 %) is also much lower (even though the period

for services is shorter). Survival rates of non–innovator cohorts in manufacturing

turned out to be lower in general than for innovators, for instance 67 % on average

after three years. About 43 % of the initial non–innovators kept out of innovation

activities throughout the whole period. In the service sector these last two figures

were very similar with 67 % and 48 %.

Table 5 further indicates that concerning those firms which experienced at least

one change in their innovation behaviour (45 % in manufacturing and 55 % in

services), we find a stronger tendency to return to the initial innovation status.

This also implies that re–entry into innovation occurs to a non–negligible extent.

Table 5: Innovation History of Firms: Number of Entries into and Exits from Inno-
vation Activities

Manufacturing Services

Number of Total Non–Inno Inno Total Non–Inno Inno

changes in t = 0 in t = 0 in t = 0 in t = 0

0 54.9 43.1 65.9 45.0 47.8 39.8

1 11.2 13.7 8.9 13.1 6.5 25.5

2 19.0 24.2 14.2 22.7 28.3 12.2

3 8.5 10.4 6.6 10.3 7.6 15.3

4 4.8 6.6 3.1 6.4 8.2 3.1

5 1.1 1.4 0.9 1.8 0.5 4.1

6 0.5 0.5 0.5 0.7 1.1 0.0

Total 100 100 100 100 100 100

Notes:
Figures are calculated as share of total firms, initial non–innovators and innovators, respectively.
Sample: Balanced Panel.
Source: Own calculations.
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7 Econometric Analysis

7.1 Econometric Model

Though interesting, transition rates only depict the degree of persistence, but don’t

offer a clue to the causes of this phenomenon since we do not control for observed

or unobserved individual characteristics. In the following we therefore investigate

whether and to which extent the observed persistence is due to underlying differences

in individual characteristics and / or due to a genuine causal effect of past on future

innovations, using a dynamic random effects probit model. The same model was

applied for studying state dependence effects in poverty state (Biewen 2004) or

export behaviour (Kaiser and Kongstedt 2004). This panel data approach allows us

to distinguish between the sources of the persistence over time observed in the data

and to control for individual heterogeneity. If individual heterogeneity is present

but not controlled for, the coefficients of the observed characteristics are likewise

biased if both are correlated.

We start on the assumption that a firm i will invest in innovation in period t if the

expected present value of profits accruing to the innovation investment y∗

it is positive.

The expected profit depends on the previous (realised) innovation experience yi,t−1,

on some observable explanatory variables summarised in the k–dimensional row

vector xit and on unobservable firm–specific attributes which are assumed to be

constant over time and captured by µi. The structural model is thus given by:

y∗

it = γ yi,t−1 + xit β + µi + εit i = 1, . . . , N, t = 1, . . . , T (1)

The effect of other time–varying unobservable determinants is summarised in the

idiosyncratic error εit. It is assumed that εit|yi0, . . . , yi,t−1, xi is i.i.d. as N(0, 1) and

that εit ⊥ (yi0, xi, µi) where xi = (xi1, . . . , xiT ). N is the number of firms and the

index t runs from 1 to 8 in manufacturing and 1 to 6 in services. If y∗

it is larger than

a constant threshold (without any loss of generality we assume zero) we observe that

firm i engages in innovation where I denotes the indicator function:

yit = I [y∗

it > 0] (2)

7.2 Estimation Method

For estimation purposes we have to solve two important theoretical and practical

problems. First, the treatment of the unobserved heterogeneity µi, and secondly the
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treatment of the initial value yi0. A random effects (RE) model rests on assumptions

about the distribution of µi given the observables, whereas a fixed effects (FE) model

assumes that µi is random but without specification of the distribution making it

in fact preferable. However, there is no general solution in the literature how to

estimate dynamic FE binary choice panel models because no general transformation

is known how to elimate unobserved effects, i.e., unlike in linear models a first differ-

ence or within transformation does not eliminate µi in non–linear models. Honoré

and Kyriazidou (2000) proposed a semiparametric estimator for the FE logit model,

but their estimator is extremely data demanding and cannot be used here. Carro

(2003) suggested a modified maximum likelihood estimator for the dynamic probit

model, but the estimator is only consistent when T goes to infinity.17 Therefore, I

decide to apply a RE model.

Concerning the second problem, there are in general three different ways of han-

dling the initial condition yi0 in parametric dynamic non–linear models. The first

one is to assume that yi0 is a non–random constant, which is usually not a realistic

assumption. The second solution is to allow for randomness of yi0 and to attempt to

find the joint density for yi0 and all outcomes yit conditional on strictly exogenous

variables xi. This approach starts on the joint distribution (yi0, . . . , yiT )|µi, xi and

it requires us to specify the distributions of yi0|µi, xi and that of µi|xi to integrate

out the unobserved effect. However, the joint distribution can only be found in very

special cases. Heckman (1981b) thus suggested a method to approximate the con-

ditional distribution. Another possibility is to assume that yi0 is likewise random

and to specify the distribution of µi conditional on yi0 and xi, which leads to the

joint density of (yi1, . . . , yiT )|yi0, xi. This was first suggested by Chamberlain (1980)

for a linear AR(1) model without covariates and Wooldridge (2005) used the same

assumption to develop an estimator for dynamic nonlinear RE models, for instance

dynamic RE probit, logit or tobit models. Following this latter estimation strategy,

I further assume that the individual heterogeneity depends on the initial condition

and the strict exogenous variables in the following way:

µi = α0 + α1 yi0 + x̄i α2 + ai, (3)

where x̄i = T−1
∑T

t=1 xit denotes the time–averages of xit. Adding the means of

the explanatory variables as a set of controls for unobserved heterogeneity is intuitive

17 But Monte Carlo studies have shown that this estimator performs quite well for 8 or more
time periods. The estimator is based on the idea of getting a reparametrisation in such a way that
the incidental parameters are information orthogonal to the other parameters which reduces the
order of the bias of the ML without increasing its asymptotic variance (see Cox and Reid 1987).
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in the sense that we are estimating the effect of changing xit but holding the time

average fixed.18 For the error term ai we assume:

ai ∼ i.i.d. N(0, σ2
a) and ai ⊥ (yi0, x̄i) (4)

and thus µi|yi0, x̄i follows a N(α0 + α1yi0 + x̄i α2, σ
2
a) distribution. Having speci-

fied the distribution of the individual heterogeneity in this way, Wooldridge (2005)

showed that the probability of being an innovator is given by:

P (yit = 1|yi0, . . . , yi,t−1, xi, x̄i, ai) = Φ (γ yi,t−1 + xit β + α0 + α1 yi0 + x̄i α2 + ai) (5)

Integrating out ai in (5) yields a likelihood function that has the same structure as

in the standard RE probit model, except that the explanatory variables are enriched

by the initial condition and the time averages of the strict exogenous variables:

zit = (1, xit, yi,t−1, yi0, x̄i) (6)

Identification of the parameters requires that the exogenous variables vary across

time and industry. If the structural model contains time–invariant regressors like

industry dummies, one can include them in the regression to increase explanatory

power. However, it is not possible to separate out the direct effect and the indirect

effect via the heterogeneity equation unless it is assumed a priori that µi is partially

uncorrelated with the industry dummies. Time dummies which are the same for all

i are excluded from x̄i.

The first advantage of the proposed estimator is that it is computationally at-

tractive. The approach further allows selection and panel attrition to depend on

the initial condition (innovation state). The third advantage is that partial effects

are identified and can be estimated. This is not possible in semiparametric ap-

proaches since they don’t specify the distribution of individual heterogeneity on

which partial effects depend. This allows us not only to determine whether true

state dependence exists by referring to the significance level of the coefficient of the

lagged dependent variable, but also on the importance of this phenomenon. One

problem in estimating partial effects is the fact that firm heterogeneity is unobserv-

able. Two alternative calculation methods have been proposed to deal with this

shortcoming. The first way is to estimate the partial effect as in the standard probit

18 Instead of x̄i the original estimator used xi = (xi1, . . . , xiT ) in equation (3), but time–averages
are allowed to reduce the number of explanatory variables (see Wooldridge 2005).
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model and to assume that the individual heterogeneity µi takes its average value

(PEA). E(µi) = α0 + α1 E(yi0) + E(x̄i) α2 and can be consistently estimated by

Ê(µi) = α̂0 + α̂1 ȳ0 + x̄ α̂2, where ȳ0 =
∑N

i=1 yi0 and x̄ =
∑N

i=1 x̄i. For the bi-

nary lagged dependent variable we can therefore calculate the marginal effect as the

discrete change in the probability as the dummy variables changes from 0 to 1:

P̂EA = Φ
[
γ̂ + xi β̂ + α̂0 + α̂1 ȳ0 + x̄ α̂2

]
− Φ

[
xi β̂ + α̂0 + α̂1 ȳ0 + x̄ α̂2

]
(7)

This estimate suffers from the fact that usually the average value only represents a

small fraction of firms. Alternatively, one can estimate partial effect after averaging

the unobserved heterogeneity across firms. The average partial effect (APE) for the

lagged dependent variable is estimated by:

ÂPE =
1

N

1

T

N∑

i=1

T∑

t=1

Φ
[
γ̂a + xo β̂a + α̂0a + α̂1a yi0 + x̄i α̂2a

]

−
1

N

1

T

N∑

i=1

T∑

t=1

Φ
[
xo β̂a + α̂0a + α̂1a yi0 + x̄i α̂2a

]
(8)

where the subscript a denotes the original parameter estimates multiplied by

(1 + σ̂2
a)

−0.5
and xo and yo are fixed values that have to be chosen (here sample

means averaged across i and t are used).19

One limitation of the estimator is that it was derived for balanced panels which

evidently reduces the number of observations included. But using the sub–sample

of balanced data still leads to consistent ML estimators under certain assumptions.

More critical is the fact that, as in alternative estimation methods for dynamic

discrete choice panel models (e.g., Heckman 1981a,b or Honoré and Kyriazidou

2000), the consistency hinges on the strict exogeneity assumption of the regressors

19 The APE of one of the explanatory variables measures the change of the expected probability
of innovating at time t due to an infinitesimal increase in that variable, where the expectation is
over the distribution of the individual heterogeneity µi. Wooldridge (2005) calculated the APE
for a specific point in time. However, since the panel data set used in this study has a rather long
time dimension, we would like to calculate an average APE over the whole period. In the case of
the lagged dependent variable, for instance, we are interested in:

APE = E
[
P (y = 1|yi,t−1 = yo

−1 = 1, xit = xo, yi0, x̄i)
]

−E
[
P (y = 1|yi,t−1 = yo

−1 = 0, xit = xo, yi0, x̄i)
]
. (9)

In that case a consistent estimator can be yielded by equation (8). I would like to thank J.
Wooldridge and F. Laisney for helpful discussions on this point. Any errors remain those of the
author.
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and the estimator leads to inconsistent results if the distributional assumptions are

not valid. Blindum (2003) and Biewen (2004) both extended the estimator to allow

for endogenous dummy variables, but not for a continuous variable that fails strict

exogeneity which seems to be more critical in our analysis. Honoré and Lewbel

(2002) and Lewbel (2005) recently proposed a semiparametric approach which does

not require the strict exogeneity assumption. However, their estimator is based on

the existence of one ”very exogenous” regressor, and there seems to be no variable

at hand that satisfies this assumption in our case.20

7.3 Empirical Model Specification

Theoretical and empirical studies have identified a whole array of innovation deter-

minants; firm size and market structure are the oldest and most prominent ones (see

Schumpeter 1942). Firm size is measured by the log number of employees in the

previous period (SIZE) and the market structure is captured by the Herschmann–

Herfindahl index (HHI) from the previous year measured on a three–digit level, see

Table 6 for more detailed variable definitions.

The modern innovation literature stresses that there are additional firm–level de-

terminants other than firm size and market structure. Cohen (1995) distinguished

between firm and industry or market characteristics. Widely–considered firm char-

acteristics explaining innovation activities are product diversification (Nelson 1959),

the degree of internationalisation, the availability of financial resources (e.g., Müller

1967, Bond et al. 1999 or Kukuk and Stadler 2001) and technological capabilities.

As the data set does not contain information on product diversification for all years,

we cannot take this hypothesis into account. The degree of international competi-

tion is measured by the export intensity (EXPORT) and the availability of financial

resources is proxied by an index of creditworthiness (RATING). While a positive

impact of EXPORT is expected, the hypothesis is that RATING negatively affects

the propensity to innovate since the index ranges from 1 (best rating) to 6 (worst

rating) and thus a higher value of RATING implies that less external funding is

20 The key assumption is that of conditional independence. This means that when the va-
lues of the other covariates xit are known, the conditional distribution of µi + εit is not altered
by additional knowledge of the ”very exogenous” continuous regressor vit, i.e., f (µi + εit|xit) =
f (µi + εit|xit, vit). In my case the idiosyncratic errors and fixed effects capture, for instance,
risk attitudes, innovation preferences, management abilities or technological opportunities. The
assumption will hold if a continuous explanatory variable exists, that is assigned to firms inde-
pendently of these unobserved attributes. However, there seems to be no variable at hand that
satisfies this assumption. In labour supply models, government benefits income might fulfill this
requirement.
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available and that it is more costly due to higher interest rates, making fewer in-

novation projects profitable. The data set does not contain a measure for internal

financial resources, like profit or cash–flow. On the other side, both enter the index

of creditworthiness, and thus RATING also reflects internal financial capabilities. In

addition to innovation experience, technological capabilities are mainly determined

by the skills of employees. Hence, I operationalise this construct by means of three

variables: the share of employees with a university degree (HIGH), a dummy variable

equaling 1 if a firm has not invested in training its employees in the previous period

(NOTRAIN) and the amount of training expenditure per employee (TRAINEXP).

One aim of government support programmes is to promote innovation activities.

To test whether public funding induces a permanent change in favour of innovation,

I further include a dummy variable equaling 1 if the enterprise has received any

public financial support for innovation activities in the previous period (PUBLIC).

Since all firms which receive financial support are innovators by definition, PUBLIC

is an interaction term and measures the additional effect of supported compared to

non–supported innovators.

The estimation also controls for ownership structure by distinguishing between

public limited companies (PLC), private limited liability companies (LTD) and pri-

vate partnerships (PRIVPART). One hypothesis stressed by the principal agency

theory is that managers prefer to carry out less risky investment and innovation

projects than owners because managers are more closely related to the company

and they will be threatened with the loss of their job if the investment fails while

owners can spread their risk by diversification strategies (Jensen and Meckling 1976).

In addition, firm–specific variables reflecting firm age (AGE), location (EAST),

whether the firm is part of an enterprise group (GROUP) and whether the group’s

headquarter is located abroad (FOREIGN) are included. On the one side, enterprises

which are part of a conglomerate may have easier access to external capital in a

world of capital market imperfections and we would therefore hypothesise a positive

relationship. But clearly, GROUP may also capture other effects of the companies’

organisational structure on innovative activities. On the other side, some authors

have stressed that foreign owned firms are less engaged in innovation activities.

One argument in favour of a negative link is that R&D plays a crucial role in the

long term strategic planning of a company and managers wish to maintain direct

control over such activities, therefore R&D activities usually take place at or in close

proximity to the companies’ headquarters (see Howell 1984 or Bishop and Wiseman

1999).21 The observed period is characterised by the catching–up process of the

21 Kleinknecht and Poot (1992) linked this argument into a product life cycle approach. They
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Eastern German economy after reunification and the share of innovators had been

found higher at the aggregate level in East than in West Germany until the end of

the ninetees (see Rammer et al. 2005). Therefore, we expect a higher propensity to

innovate for East German firms.22

As mentioned above, market or industry characteristics – alone or in combination

with firm–specific features – may be important for innovation activities. In this con-

text technological opportunities are expected to play a significant role. The concept

of technological opportunities can be summarised by the fact that the prevailing

technological dynamics (basic inventions, spillover potentials of new technologies)

in some industries spur innovation stronger than in other industries. Nelson (1988)

showed in a theoretical model that improved technological opportunities increase

the incentive to invest in R&D. Technological opportunities are measured by the

product life cycle of a firm’s main product (LCYCLE) and industry dummies.

Table 6: Variable Definition

Variable Typea) Definition

Alternative endogenous variables

INNO 0/1 1 if a firm i has positive innovation expenditure in year t.
Innovation expenditure includes expenditure for intramural
and extramural R&D, acquisition of external knowledge, ma-
chines and equipment, training, market introduction, design
and other preparations for product and/or process innova-
tions.

INNO
¯
RD 0/1 1 if a firm i has positive expenditure for intramural and ex-

tramural R&D in year t.

INNO
¯
NRD 0/1 1 if a firm i has positive innovation expenditure in year t, but

no R&D activities.

Explanatory variables:

Variables varying across individuals and time

SIZE c Number of employees of firm i in year t − 1, in logarithm.

LCYCLE c Length of product life cycle (in years) of firm’s i main product
in year t − 1, in logarithm.

Continued on next page.

argue that early stages of a cycle are associated with considerable R&D activities which are there-
fore carried out close to the headquarters, while less R&D activities are necessary in later stages
for incremental product or process modifications and can therefore be decentralised.

22 Note, that the catching–up process in East Germany was patronised by special government
support programmes.
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Table 6 – continued from previous page

Variable Typea) Definition

RATING c Credit rating index for firm i in year t − 1, originally rang-
ing between 100 (highest creditworthiness) and 600 (worst
creditworthiness), divided by 100 to get appropriately scaled
coefficients.

AGE c Age of firm i at the beginning of year t, in logarithm.

GROUP 0/1 1 if firm i belongs to a group in year t.

PUBLIC 0/1 1 if firm i received public funding for innovation projects in
year t − 1.

NOTRAIN 0/1 1 if firm i has no training expenditure in year t − 1.

TRAINEXP c Training expenditure per employee (in logarithm) of firm i in
year t − 1 if NOTRAIN=0, otherwise 0.

HIGH c Share of employees with a university or college degree in firm
i in year t − 1, divided by 100.

EXPORT c Export intensity of firm i in year t−1 defined as exports/sales.

EXPORT2 c Squared export intensity.

Variables varying across industries and time

HHI c Hirschman–Herfindahl Index in year t − 1, on the 3–digit in-
dustry NACE level, divided by 100 to get appropriately scaled
coefficients. Only available for manufacturing.

Time–constant individual–specific variables

FOREIGN 0/1 1 if firm i is a subsidiary of a foreign company.

EAST 0/1 1 if firm i is located in Eastern Germany.

PLC 0/1 1 if firm i is a public limited company (AG).

LTD 0/1 1 if firm i is a private limited liability company (GmbH, GmbH

& Co. KG).

PRIVPART 0/1 1 if firm i is a private partnership (Personengesellschaft,

OHG, KG).

IND 0/1 System of 15 and 9 dummies grouping industries and services
respectively, see Table 14.

Time–varying individual–constant variables

TIME 0/1 System of time dummies for each year.

Notes:

a) c: continuous variable.
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Table 7 reports the descriptive statistics of the variables used in the estimations.

It turned out that for almost all variables the variation across firms (between vari-

ation) is much higher compared to that within a firm over time. The variables

FOREIGN, EAST, PLC, LTD and PRIVPART can vary across i and t. However,

due to the fact that hardly any within variation showed up, we treated them as

time–constant firm–specific variables in the estimation and include them only in

equation (3).

27



Table 7: Descriptive Statisticsa)

Manufacturing Services

Unit Mean Std.dev. Min Max Mean Std.dev. Min Max

Overall Between Within Overall Between Within

INNO [0/1] 0.555 0.497 0.419 0.268 0 1 0.360 0.480 0.372 0.304 0 1

INNO
¯
RD [0/1] 0.465 0.499 0.442 0.231 0 1 0.158 0.365 0.308 0.195 0 1

INNO
¯
NRD [0/1] 0.090 0.287 0.163 0.236 0 1 0.202 0.402 0.254 0.312 0 1

SIZEb) no. empl. 2018.7 14121.3 13566.9 3964.5 1 243638 1782.0 18143.6 18107.3 1512.0 1 271078

LCYCLEb) years 15.4 21.4 21.0 4.3 0.3 200 16.2 22.6 22.0 5.2 1 100

RATING [Index: 1–6] 2.088 0.600 0.548 0.244 1 6 2.194 0.440 0.407 0.167 1 6

AGEb) years 21.8 23.0 22.5 4.9 0 142 22.3 21.0 20.9 2.4 1 141

GROUP [0/1] 0.360 0.480 0.409 0.253 0 1 0.223 0.416 0.349 0.227 0 1

PUBLIC [0/1] 0.243 0.429 0.351 0.246 0 1 0.096 0.295 0.248 0.161 0 1

NOTRAIN [0/1] 0.176 0.381 0.315 0.215 0 1 0.255 0.436 0.377 0.220 0 1

TRAINEXPb)
€ 663.2 1135.8 872.0 728.9 0 7702 1223.1 3164.0 2264.1 2213.5 0 25791

HIGH [0–1] 0.110 0.136 0.117 0.069 0 1 0.200 0.260 0.236 0.110 0 1

EXPORT [0–1] 0.196 0.246 0.232 0.083 0 1 0.025 0.096 0.084 0.046 0 1

HHI [Index: 0–100] 4.7 6.1 5.6 2.4 0.1 43.2 — — — — — —

FOREIGN [0/1] 0.059 0.236 0.196 0.131 0 1 0.018 0.134 0.118 0.064 0 1

EAST [0/1] 0.344 0.475 0.469 0.075 0 1 0.420 0.494 0.491 0.054 0 1

PLC [0/1] 0.078 0.268 0.268 0.000 0 1 0.053 0.225 0.221 0.042 0 1

LTD [0/1] 0.830 0.376 0.375 0.028 0 1 0.692 0.462 0.457 0.072 0 1

PRIVPART [0/1] 0.085 0.279 0.278 0.028 0 1 0.220 0.414 0.410 0.063 0 1

Obs 3496 1692

Notes:
a) For the period 1995–2002 (manufacturing) and 1997–2002 (services). In case of lagged explanatory variables, periods used are 1994–2001 and 1996–2001.
b) Variable values shown are not log–transformed. For estimation purposes, however, a log–transformation of these variables is used to take the skewness
of the distribution into account.
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7.4 Econometric Results

Table 8 reports the estimation results of the dynamic RE probit model, including

the Schumpeter determinants (size and market structure), product life cycle, and

industry and time dummies as exogenous variables, and compares the results with

the static pooled model and static RE model. In all tables M
¯

denotes the individual

time–average of the corresponding variable. Note that marginal effects are reported.

In the dynamic RE model they are calculated at the average value of the firm–specific

error.23 Furthermore, in the case of the static pooled model, the standard errors

have been adjusted to account for the fact that observations are not necessarily

independent within firms.

The first main result is that including the lagged dependent variable is an impor-

tant part of the model specification. That is, even after accounting for individual

unobserved heterogeneity, the variable turns out to be highly significant in both

manufacturing and services, confirming therefore the hypotheses of true state de-

pendence. The results further show that some of the variables which are significant

in the static estimation lose this property in the dynamic specification; for instance,

firm size is no longer significant in services. One interpretation of this result is that

firm size, which is likewise highly time–persistent, simply picks up the impact of the

lagged dependent variable in the static case.

As mentioned above, one problem of the dynamic RE panel probit model is the

fact that strict exogeneity of the exogenous variables is assumed. This implies that

no feedback effects from the innovation variable on future values of the explana-

tory variables are allowed, which seems to be contestable for some of the variables

usually explaining innovation behaviour, e.g. firm size, market structure or export

behaviour. To assess the impact of including variables which potentially fail the

strict exogeneity assumption on the estimated state dependence effect, I apply a

stepwise procedure. That is, I start estimating an extremely parsimonious specifi-

cation (1) including only LCYCLE and industry and time dummies as exogenous

variables. Specification (2) then adds the Schumpeter determinants (which under-

lie the comparison) and (3) incorporates some firm characteristics for which strict

exogeneity seems to be statisfied.24 Specifications (4) and (5) further include some

variables that are presumably not strictly exogenous. The estimation results are

summarised in Tables 9 and 10 for manufacturing and services, respectively.

23 However, the calculation of the marginal effect of a variable k neglects that an infinitesimal
increase in xk also changes the mean value x̄i,k.

24 I used the procedure proposed by Wooldridge (2002), i.e. I added the lead of the corresponding
variable and tested on the significance of the coefficient.

29



Table 8: Comparison: Marginal Effects in Static Pooled, Static Random Effects and
Dynamic Random Effects Probit Model

Manufacturing Services

Pooled Static Dynamic Pooled Static Dynamic
Probit RE Probit RE Probit Probit RE Probit RE Probit

INNO−1 — — 0.358∗∗∗ — — 0.127∗∗∗

(0.035) (0.044)

LCYCLE -0.055∗∗ -0.089∗∗∗ -0.052 0.017 -0.003 0.003
(0.021) (0.016) (0.044) (0.047) (0.061) (0.109)

SIZE 0.141∗∗∗ 0.216∗∗∗ 0.129∗∗ 0.086∗∗∗ 0.134∗∗∗ 0.019
(0.014) (0.016) (0.062) (0.014) (0.021) (0.064)

HERFIN 0.018 0.034 0.050 — — —
(0.041) (0.034) (0.056)

INNO0 — — 0.535∗∗∗ — — 0.457∗∗∗

(0.045) (0.063)

M
¯
LCYCLE — — 0.018 — — -0.041

(0.050) (0.099)

M
¯
SIZE — — -0.035 — — 0.042

(0.063) (0.066)

M
¯
HERFIN — — -0.038 — — —

(0.070)

σa — 1.861 0.801 — 1.367 0.928
(0.103) (0.082) (0.119) (0.107)

ρ — 0.776 0.391 — 0.651 0.463
(0.019) (0.049) (0.040) (0.058)

LRρ — 0.000 0.000 — 0.000 0.000

WTIME 0.005 0.008 0.010 0.000 0.000 0.000
WIND 0.000 0.000 0.000 0.000 0.000 0.000

ln L -1820.1 -1249.7 -1107.2 -935.2 -760.4 -722.5
ln LCons -2402.1 -1403.1 -1403.1 -1105.5 -828.9 -828.9

R2
MF 0.242 0.109 0.211 0.154 0.083 0.128

R2
MZ 0.476 — — 0.303 — —

Obs Prob 55.5 55.5 55.5 36.0 36.0 36.0
Pred Prob 57.7 71.8 64.7 34.8 26.6 28.5

Corr Pred 71.5 69.9 85.4 72.4 72.5 77.0
Corr Pred 1 77.8 80.0 86.0 42.2 43.5 59.4
Corr Pred 0 63.7 57.4 84.7 89.4 88.8 86.8

Obs 3496 3496 3496 1692 1692 1692

Notes:
∗ ∗ ∗, ∗∗ and ∗ indicate significance on a 1%, 5% and 10% level, respectively. Standard errors
in pooled probit model adjusted for clustering on firms. A constant (significant at the 1% level
in each regression) as well as time and industry dummies are included in each regression, but not
reported.
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It emerges from this exercise that the marginal effect of the lagged dependent

variable is nearly unaltered in the different estimations. That is, even after account-

ing for individual unobserved heterogeneity, past innovation has a behavioural effect:

Conditional on observed and unobserved firm characteristics, an innovator in t − 1

has a probability of innovating which is approximately 36 percentage points higher

than that of a non–innovator in manufacturing. For service companies the marginal

effect amounts to roughly 13 percentage points.

The results further show that the initial condition is also highly significant in

both samples. This implies a substantial correlation between firms’ initial innovation

status and the unobserved heterogeneity.

A third important finding is that in addition to past innovation experience, know-

ledge provided by skilled employees has a crucial influence on generating innovations

over time. In both industries the variables NOTRAIN and TRAIN, and in manu-

facturing also HIGH, turn out to be significant in the equation explaining individual

heterogeneity across firms. That is, firms which do not invest in further training

of their employees have a significantly lower propensity to innovate, while for those

firms which do invest, an increase in training expenditure per employee of 1 per cent

raises the probability of innovating by about 5.5 percentage points in both indus-

tries. All in all, these results confirm and highlight the role of innovative capabilities

in the dynamics of firms’ innovation behaviour.

Fourth, the results provide evidence that unobserved heterogeneity is a key fac-

tor for innovation persistence. The importance of the unobserved heterogeneity in

explaining the total variance can be gauged from ρ = σ2
a/(1 + σ2

a).
25 Table 8 has

already shown that introducing the lagged dependent variable leads to a distinct

reduction of the importance of the unobserved heterogeneity. Unobserved hetero-

geneity still explains between 30 and 43 % of the variation in the dependent variable

in manufacturing depending on the specification of µi. In the service sector this

effect is in a similar range with 37 to 48 %.

25 Note that εit|yi0, . . . , yi,t−1,Xi ∼ N(0, 1) and µi|yi0, X̄i ∼ N(0, σ2
a).
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Table 9: Robustness of Dynamic RE Probit Estimations in Manufacturing

Regression (1) (2) (3) (4) (5)

Structural Equation

INNO−1 0.364∗∗∗ 0.358∗∗∗ 0.359∗∗∗ 0.358∗∗∗ 0.333∗∗∗

(0.034) (0.035) (0.035) (0.035) (0.036)

LCYCLE -0.049 -0.052 -0.057 -0.043 -0.053
(0.044) (0.044) (0.045) (0.031) (0.044)

SIZE — 0.129∗∗ 0.122∗∗ 0.111∗ 0.100∗

(0.062) (0.062) (0.062) (0.061)

HERFIN — 0.050 0.051 0.048 0.055
(0.056) (0.056) (0.057) (0.056)

RATING — — -0.059 -0.066 -0.068
(0.044) (0.044) (0.044)

AGE — — -0.075∗ -0.071∗ -0.067∗

(0.038) (0.038) (0.037)

GROUP — — 0.053 0.052 0.062
(0.050) (0.050) (0.050)

NOTRAIN — — — -0.123 -0.116
(0.162) (0.160)

TRAINEXP — — — 0.014 0.014
(0.017) (0.017)

HIGH — — — -0.100 -0.103
(0.214) (0.216)

EXPORT — — — 0.459∗∗∗ 0.473∗∗∗

(0.136) (0.130)

PUBLIC — — — — 0.174∗∗∗

(0.045)

TIME yes yes yes yes yes

Individual Heterogeneity

INNO0 0.625∗∗∗ 0.535∗∗∗ 0.538∗∗∗ 0.460∗∗∗ 0.341∗∗∗

(0.042) (0.045) (0.045) (0.045) (0.047)

M
¯
LCYCLE 0.023 0.018 0.021 0.030 0.017

(0.051) (0.050) (0.050) (0.050) (0.049)

M
¯
SIZE — -0.035 -0.035 -0.047 -0.056

(0.063) (0.064) (0.064) (0.063)

M
¯
HERFIN — -0.038 -0.040 -0.038 -0.044

(0.070) (0.071) (0.069) (0.067)

M
¯
RATING — — 0.030 0.026 0.032

(0.062) (0.061) (0.059)

M
¯
AGE — — 0.119∗∗ 0.116∗∗ 0.100∗∗

(0.051) (0.050) (0.047)

M
¯
GROUP — — 0.024 -0.020 -0.026

(0.085) (0.082) (0.078)

FOREIGN — — -0.128 -0.162∗∗ -0.125
(0.084) (0.083) (0.079)

Continued on next page.
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Table 9 – continued from previous page

Regression (1) (2) (3) (4) (5)

EAST — — 0.016 0.047 -0.051
(0.051) (0.051) (0.051)

PLC — — -0.209∗ -0.201∗∗ -0.168∗

(0.110) (0.102) (0.097)

PRIVPART — — 0.025 0.038 0.025
(0.069) (0.064) (0.060)

M
¯
NOTRAIN — — — -0.638∗∗∗ -0.651∗∗∗

(0.247) (0.236)

M
¯
TRAINEXP — — — 0.053∗ 0.054∗∗

(0.029) (0.027)

M
¯
HIGH — — — 0.646∗∗ 0.157

(0.316) (0.312)

M
¯
EXPORT — — — 0.347∗ 0.289

(0.198) (0.194)

M
¯
PUBLIC — — — — 0.370∗∗∗

(0.091)

IND yes yes yes yes yes

σa 0.876 0.801 0.792 0.709 0.623
(0.083) (0.082) (0.082) (0.077) (0.077)

ρ 0.434 0.391 0.386 0.334 0.280
(0.047) (0.049) (0.049) (0.049) (0.050)

LRρ 0.000 0.000 0.000 0.000 0.000

WTIME 0.013 0.010 0.006 0.007 0.009
WIND 0.000 0.000 0.000 0.010 0.030

ln L -1132.2 -1107.3 -1099.8 -1077.5 -1047.1
ln LCons -1403.1 -1403.1 -1403.1 -1403.1 -1403.1

R2
MF 0.193 0.211 0.216 0.232 0.254

Obs Prob 55.5 55.5 55.5 55.5 55.5
Pred Prob 63.8 64.7 64.7 64.6 65.7

Corr Pred 83.6 85.4 85.6 86.1 87.4
Corr Pred 1 84.1 86.0 86.4 86.4 87.2
Corr Pred 0 83.0 84.7 84.7 85.7 87.7

Obs 3496 3496 3496 3496 3496

Notes:
∗ ∗ ∗, ∗∗ and ∗ indicate significance on a 1%, 5% and 10% level, respectively. Marginal effects
are reported, calculated at the average value of the individual–specific error. Columns (4) and
(5) report the marginal effect of EXPORT, corrected for the fact that the original regressions also
contain the quadratic term. Standard errors were calculated using the delta method. Original
coefficient estimates in (4) and (5): EXPORT: 1.604 (0.784) and 1.762 (0.770), EXPORT2: -2.659
(0.906) and -2.710 (0.882). WIND and WTIME test for the null hypothesis that the industry and
time dummies are jointly equal to zero. Estimations are based on Gauss–Hermite quadrature
approximations using 8 quadrature points. The accuracy of the results have been checked using
the STATA command quadchk. Most coefficients change by less than 0.01% and none change by
more than 1%, so that the model can be reliably fitted using the quadrature approach.
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Table 10: Robustness of Dynamic RE Probit Estimations in Services

Regression (1) (2) (3) (4) (5)

Structural Equation

INNO−1 0.126∗∗∗ 0.127∗∗∗ 0.128∗∗∗ 0.128∗∗∗ 0.103∗∗

(0.044) (0.044) (0.045) (0.045) (0.047)

LCYCLE -0.009 0.003 -0.002 -0.005 -0.039
(0.109) (0.109) (0.109) (0.109) (0.112)

SIZE — 0.019 0.016 0.011 0.006
(0.064) (0.064) (0.066) (0.069)

RATING — — -0.210∗∗ -0.209∗∗ -0.206∗∗

(0.099) (0.099) (0.103)

AGE — — 0.053 0.050 0.057
(0.060) (0.059) (0.062)

GROUP — — 0.006 0.009 0.010
(0.063) (0.063) (0.066)

NOTRAIN — — — -0.060 -0.068
(0.155) (0.161)

TRAINEXP — — — 0.003 0.007
(0.020) (0.021)

HIGH — — — -0.027 -0.016
(0.127) (0.133)

EXPORT — — — 0.109 0.084
(0.311) (0.320)

PUBLIC — — — — 0.294∗∗∗

(0.102)

TIME yes yes yes yes yes

Individual Heterogeneity

INNO0 0.532∗∗∗ 0.457∗∗∗ 0.434∗∗∗ 0.370∗∗∗ 0.335∗∗∗

(0.059) (0.063) (0.064) (0.065) (0.064)

M
¯
LCYCLE -0.047 -0.041 -0.046 -0.044 -0.021

(0.097) (0.099) (0.098) (0.099) (0.102)

M
¯
SIZE — 0.042 0.021 0.022 0.021

(0.066) (0.068) (0.070) (0.073)

M
¯
RATING — — 0.084 0.122 0.176

(0.123) (0.122) (0.125)

M
¯
AGE — — -0.149∗∗ -0.127∗ -0.118

(0.075) (0.075) (0.076)

M
¯
GROUP — — 0.071 0.070 0.057

(0.106) (0.104) (0.105)

FOREIGN — — 0.270 0.214 0.278
(0.203) (0.202) (0.193)

EAST — — 0.040 0.022 -0.025
(0.062) (0.063) (0.063)

PLC — — 0.216 0.211 0.281∗

(0.166) (0.162) (0.158)

Continued on next page.
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Table 10 – continued from previous page

Regression (1) (2) (3) (4) (5)

PRIVPART — — -0.064 -0.049 -0.015
(0.059) (0.058) (0.060)

M
¯
NOTRAIN — — — -0.594∗∗ -0.649∗∗

(0.270) (0.273)

M
¯
TRAINEXP — — — 0.055∗ 0.056∗

(0.034) (0.034)

M
¯
HIGH — — — 0.151 0.010

(0.205) (0.209)

M
¯
EXPORT — — — 0.201 0.006

(0.428) (0.460)

M
¯
PUBLIC — — — — 0.528∗∗∗

(0.159)

IND yes yes yes yes yes

σµ 0.966 0.928 0.886 0.850 0.777
(0.109) (0.107) (0.105) (0.104) (0.102)

ρ 0.482 0.463 0.440 0.420 0.376
(0.056) (0.058) (0.059) (0.060) (0.062)

LRρ 0.000 0.000 0.000 0.000 0.000

WTIME 0.000 0.000 0.000 0.000 0.000
WIND 0.000 0.000 0.000 0.145 0.138

ln L -729.7 -722.5 -712.1 -703.9 -680.4
ln LCons -828.9 -828.9 -828.9 -828.9 -828.9

R2
MF 0.120 0.128 0.141 0.150 0.179

Obs Prob 36.0 36.0 36.0 36.0 36.0
Pred Prob 28.0 28.8 28.8 28.4 30.5

Corr Pred 76.7 77.0 78.7 79.1 80.1
Corr Pred 1 63.4 59.4 62.7 63.6 63.6
Corr Pred 0 84.3 86.8 87.7 87.9 89.4

Obs 1692 1692 1692 1692 1692

Notes:
∗∗∗, ∗∗ and ∗ indicate significance on a 1%, 5% and 10% level, respectively. Marginal effects are
reported, calculated at the average value of the individual–specific error. The Wald test statistics
WIND and WTIME test for the null hypothesis that the industry and time dummies are jointly
equal to zero, respectively. As in manufacturing, the accuracy of the results have been proved
using the STATA command quadchk.

In addition to prior innovation experience, skills and unobserved heterogeneity,

some observed firm characteristics are also found to be crucial factors in explaining

innovation. These results are by and large in line with the literature and with what

we expected. Firms that are more financially constrained are less likely to engage

in innovation. This effect is highly significant in services and slightly significant in

manufacturing (p–value: 0.128 in the preferred specification (4)). Moreover, firms
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which receive public funding in the previous period exhibit a higher propensity

to innovate in the subsequent period than innovators without financial support in

both industries. In contrast, firm size is only important in manufacturing, not in

the service sector. This is likewise the case for the degree of internationalisation,

a result which is maybe not that surprising because exporting is less prevalent in

services.26 Firms which are more active on international markets have a higher

propensity to innovate in manufacturing. However, we find an inverse U–shaped

relationship for the export intensity with an estimated point of inflexion at 33 %

in specification (4). It is also only in manufacturing that ownership matters. That

is, public limited companies, in which conflicts of interests between managers and

shareholders might arise, have a significantly lower conditional probability of being

innovative. However, regarding the second Schumpeterian determinant, we do not

find any significant impact of market concentration on innovation. But admittedly,

this may be due to the fact that HHI is a bad proxy of market structure.

All in all, our model seems to fit the data quite well. The McFadden’s pseudo

R2 varies between 20 and 25 % in manufacturing and based on the preferred spec-

ification (4) the model correctly predicts the innovation behaviour for 86 % of the

observations. This number is much higher than in the static model. Correct predic-

tions in the service sector are likewise high with 79 %. However, the model clearly

performs worse in predicting the occurrence of innovation for service firms.

As mentioned above, partial effects at average value (PEA) suffer from the fact

that usually the average value only represents a small fraction of firms. To amplify

what has been said so far on the importance of state dependence effects, Table 11

contrasts the PEA with the estimated average partial effect (APE). It is quite plain

that averaging the unobserved heterogeneity across firms reduces the estimates of

the state dependence effects. Section 6 has shown that the propensity to innovate

in period t + 1 was approximately 74 percentage points higher for innovators than

for non–innovators in period t in panel B. Controlling for differences in observed

and unobserved characteristics, this differences reduces to 36 percentage points us-

ing PEA and 23 percentage points using APE. This implies that depending on the

calculation method between nearly one third (APE) to one half (PEA) of the inno-

vation persistence in manufacturing can be traced back to true state dependence,

while the rest was due to observed and unobserved characteristics. In the service

sector state dependence accounts for about 15 (APE) to 25 (PEA) % of the observed

persistence.

26 I also experimented with dummy variables for the export status or export classes, but in no
case does export exhibit a significant impact on innovation in services.
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Table 11: Importance of State Dependence Effects in Manufacturing and Services

OSD PEAa) APEb)

P̂ (1|1) P̂ (1|0) P̂EA P̂ (1|1) P̂ (1|0) ÂPE

abs. rel. abs. rel.

Manufacturing 74.1 79.3 43.5 35.8 48.3 68.9 45.9 23.0 31.0

Services 53.7 36.9 24.0 12.9 25.0 41.1 32.9 8.2 15.3

Notes:
OSD: Observed state dependence effect calculated .
a) P̂ (1|1) and P̂ (1|0) denote estimates of the probabilities P (yit = 1|yi,t−1 = 1, xi, µi) and P (yit =
1|yi,t−1 = 0, xi, µi) at the average value of µi.
b) P̂ (1|1) and P̂ (1|0) are estimates of the expected probabilities of P (yit = 1|yo

i,t−1 = 1, xo
i , µi) and

P (yit = 1|yo
i,t−1 = 0, xo

i , µi) where the expectation is over the distribution of µi.
All estimates are based on specification (4) in Tables 9 and 10.

7.5 Sensitivity Analysis

In this section, some further sensitivity analyses are carried out to check on the

robustness of the results. Firstly, using each value xi = (xi1, . . . , xiT ) in equation

(3) instead of individual time–averages as proposed by Wooldridge (2005) leaves the

results nearly unaltered. They are therefore not reported here, but are available

upon request.

Secondly, Table 12 differentiates betweeen R&D–performing and non–R&D–per-

forming innovators to examine whether persistence is mainly driven by R&D ac-

tivities and whether this can explain the difference found between manufacturing

and services. The results suggest that significant state dependence effects exist for

both kinds of innovation activities in both samples. But as expected, persistence

effects are much higher for R&D–performing than for non–R&D–performing innova-

tors. Furthermore, the marginal effect of past R&D experience is nearly three times

higher in manufacturing with 50 percentage points than in the service sector with 16

percentage points. On the other hand, in case of innovators without R&D activities

the impact of past innovation experience on the propensity to remain innovative

is very much the same in manufacturing with 7 and in services with 9 percentage

points. By and large, the main conclusions drawn in the previous section still hold

in the separate estimations.
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Table 12: Persistence of Non-R&D– and R&D–Performing Innovators

Manufacturing Services

Dep. Var. INNO
¯
NRD INNO

¯
RD INNO

¯
NRD INNO

¯
RD

Structural Equation

INNO
¯
NRD−1 0.070∗∗∗ — 0.093∗∗∗ —

(0.022) (0.034)

INNO
¯
RD−1 — 0.500∗∗∗ — 0.159∗∗

(0.037) (0.077)

LCYCLE -0.014 -0.025 -0.093 -0.062∗∗

(0.010) (0.058) (0.061) (0.031)

SIZE -0.007 0.158∗∗ 0.011 -0.011
(0.014) (0.076) (0.037) (0.016)

HERFIN -0.003 0.073 — —
(0.014) (0.063)

RATING -0.006 -0.059 -0.070 -0.010
(0.012) (0.052) (0.056) (0.028)

AGE -0.005 -0.083 0.033 -0.005
(0.008) (0.052) (0.033) (0.013)

GROUP -0.004 0.073 0.017 -0.004
(0.011) (0.060) (0.038) (0.014)

NOTRAIN 0.020 -0.090 -0.000 -0.022
(0.051) (0.192) (0.095) (0.027)

TRAINEXP 0.004 -0.005 -0.003 0.003
(0.004) (0.021) (0.012) (0.005)

HIGH -0.051 -0.036 -0.100 0.029
(0.052) (0.242) (0.079) (0.030)

EXPORT -0.017 0.637∗∗∗ -0.106 0.063
(0.027) (0.157) (0.196) (0.078)

Individual Heterogeneity

INNO
¯
NRD0 0.059∗∗ — 0.172∗∗∗ —

(0.026) (0.049)

INNO
¯
RD0 — 0.472∗∗∗ — 0.166∗∗∗

(0.061) (0.059)

M
¯
LCYCLE 0.012 -0.008 0.039 -0.050∗

(0.011) (0.066) (0.055) (0.028)

M
¯
SIZE -0.009 -0.029 -0.016 0.018

(0.015) (0.079) (0.039) (0.017)

M
¯
HERFIN -0.004 -0.054 — —

(0.017) (0.080)

M
¯
RATING 0.022 -0.004 0.062 -0.010

(0.014) (0.073) (0.067) (0.033)

M
¯
AGE 0.004 0.117∗ -0.040 -0.008

(0.010) (0.066) (0.040) (0.017)

M
¯
GROUP 0.025 -0.088 -0.009 0.003

(0.017) (0.100) (0.057) (0.023)

Continued on next page.
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Table 12 – continued from previous page

Manufacturing Services

Dep. Var. INNO
¯
NRD INNO

¯
RD INNO

¯
NRD INNO

¯
RD

FOREIGN -0.008 -0.125 0.004 0.057
(0.015) (0.084 (0.088) (0.078)

EAST -0.016∗ 0.139∗∗ 0.033 -0.013
(0.009) (0.67) (0.034) (0.013)

PLC 0.018 -0.175∗ -0.060 0.078
(0.027) (0.104) (0.045) (0.079)

PRIVPART 0.012 -0.063 0.001 -0.018∗

(0.016) (0.089) (0.032) (0.010)

M
¯
NOTRAIN -0.034∗∗ -1.088∗∗∗ -0.247∗ -0.061

(0.017) (0.345) (0.142) (0.056)

M
¯
TRAINEXP 0.010∗ 0.106∗∗∗ 0.016 0.003

(0.006) (0.037) (0.018) (0.007)

M
¯
HIGH 0.115∗ 0.899∗∗ 0.089 0.030

(0.076) (0.374) (0.116) (0.043)

M
¯
EXPORT 0.004 0.286 -0.156 0.029

(0.042) (0.229) (0.250) (0.096)

σa 0.590 0.828 0.689 0.713
(0.078) (0.105) (0.095) (0.178)

ρ 0.258 0.407 0.322 0.337
(0.049) (0.061) (0.060) (0.111)

LRρ 0.000 0.000 0.000 0.001

WTIME 0.041 0.004 0.000 0.504
WIND 0.504 0.017 0.308 0.126

ln L -858.6 -820.6 -694.5 -298.5

R2
MF 0.084 0.320 0.088 0.330

APE: INNO
¯
NRD 0.088 — 0.088 —

APE: INNO
¯
RD — 0.292 — 0.170

Obs 3496 3496 1692 1692

Notes:
∗ ∗ ∗, ∗∗ and ∗ indicate significance on a 1%, 5% and 10% level, respectively. Marginal effects
are reported, calculated at the average value of the individual–specific error. Time and industry
dummies are included in each regression. The Wald test statistics WIND and WTIME test for the
null hypothesis that the industry and time dummies are jointly equal to zero, respectively.

Moreover, as was set out in section 5, the results so far measured the persistence

in innovation input. For manufacturing, the picture can be completed by examining

the output persistence for the same set of firms. I use a dummy variable indicating

whether the firm has introduced a new product or process within a 3–year period

(INOUT) and take only every third survey into account to avoid overlapping, i.e.

I used the periods 1994–1996, 1997–1999 and 2000–2002. This strategy leads to
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a larger reduction of the number of observations. It turns out that the lagged

dependent variable is highly significant again and the partial effects are very similar

in magnitude, as can be seen from Table 13. That is, the results corroborate true

state dependence in innovation output as well. Furthermore, the other main findings

asserted for the innovation input are confirmed for the innovation output indicator.

Table 13: Innovation Input and Output Persistence in Manufacturing

Innovation Input Innovation Output

Dependent Variable INNO INOUT

PEA 35.8 34.2
APE 23.0 21.5

Obs 3496 874

Notes:
Estimates are based on the same specification as in column (4) in Table 9.

8 Conclusion

In this paper I analysed the persistence of innovation behaviour of firms based on

data for German manufacturing and services during the period 1994–2002. Using

the estimator recently proposed by Wooldridge (2005) for dynamic binary choice

panel data models, I have analysed whether innovation behaviour shows persistence

at the firm level and whether state dependence drives this phenomenon.

A first main finding is that innovation behaviour is permanent at the firm level

to a very large extent. Year–to–year transition rates indicate that in manufacturing

nearly nine out of ten innovating firms in one period persisted in innovating in the

subsequent period and about 84 per cent of non–innovators maintained their state

in the following period. Yet innovation is not a once and for all phenomenon. 45

per cent of manufacturing and 55 per cent of service firms experienced at least one

change in their innovation behaviour. In general, persistence is less pronounced

in the service sector and exhibits a higher variance across time. Less surprisingly,

persistence turns out to be higher in larger firms and in high–technology industries,

but is nevertheless relatively high in small firms.

The econometric results confirm the hypothesis of true state dependence. Partial

effects were calculated highlighting the importance of this phenomenon. Depend-

ing on the calculation method, about one third to one half of the difference in the

propensity to innovate between previous innovators and non–innovators in manufac-

turing can be traced back to true state dependence. In the service sector, persistence
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is generally less prevalent and state dependence effects are less pronounced, yet still

highly significant. The fact that innovation performance exhibits true state depen-

dence implies that innovation–stimulating policy measures such as governmental

supporting programmes have the potential of long–lasting effects because they do

not only affect the current innovation activities but are likely to induce a permanent

change in favour of innovation.

The results confirm and highlight the role of innovative capabilities on the dy-

namics in firms’ innovation behaviour. In addition to past innovation experience,

knowledge provided by skilled employees has found to be important in generating

innovations over time.

The results further emphasise the important role of unobserved heterogeneity in

explaining the persistence of innovation. Leaving out this source of persistence in

the empirical analysis can lead to highly misleading results. Some observed firm

characteristics like size or export behaviour (determinants which themselves show

high persistence) also make some firms also more innovation–prone than others.

One topic on the agenda of future research is to test for dynamic completeness,

that is, to extend the estimator to allow for more complex lag structures of the

lagged endogenous variable. So far I have assumed that dynamics are correctly

specified by a first order process.
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Appendix: Tables

Table 14: Branches of Industry Covered by the MIP

Industry Sector Service Sector

Branches of Industry NACEa) Branches of Industry NACEa)

Mining 10 − 14 Distributive services
Manufacturing Wholesale 51

Food 15 − 16 Retail/repairing 50, 52
Textile 17 − 19 Transport/storage/post 60 − 63, 64.1
Wood/paper/printing 20 − 22 Real estate/renting 70 − 71
Chemicals 23 − 24 Business related services
Plastic/rubber 25 Banks/insurances 65 − 67
Glass/ceramics 26 Computer/telecomm. 72, 64.2
Metals 27 − 28 Technical services 73, 74.2 − 74.3
Machinery 29 Consultancies 74.1, 74.4

Electrical engineering 30 − 32 Other BRSb) 74.5 − 74.8, 90,

MPOc) instruments 33 92.1 − 92.2
Vehicles 34 − 35
Furniture/recycling 36 − 37

Energy/water 40 − 41
Construction 45

Notes:
a) The industry definition is based on the classification system NACE Rev.1 (Nomenclature gnrale
des activits conomiques dans les les Communauts Europennes) as published by EUROSTAT
(1992), using 2–digit or 3–digit levels.
b) Business related services.
c) Medical, precision and optical instruments.
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Table 15: Individual Participation Pattern

Total Manufacturing Services

No. of firms obs firmsb) obs firmsa) obs

Participationa) # % # # # # #

1 5949 43.3 5949 2803 2803 3146 3146

2 2499 18.2 4998 1223 2446 1276 2552

3 1769 12.9 5307 876 2629 893 2678

4 1109 8.1 4436 575 2298 535 2138

5 803 5.8 4015 464 2320 339 1695

6 590 4.3 3540 323 1936 267 1604

7 560 4.1 3920 337 2360 223 1560

8 253 1.8 2024 253 2024 – –

9 220 1.6 1980 220 1980 – –

Total 13752 100 36169 7074 20796 6678 15373

Notes:
a) The number of utilisable observations is higher than that which would arise from the partic-
ipation pattern. This can be explained by the fact that since 1998 the survey is sent only to a
sub-sample of firms in even years due to cost reasons. However, to maintain the panel structure
with yearly waves, the most relevant variables are asked retrospectively for the preceding year in
odd years.
b) Some firms have changed their main business activity which defines their industry assignment
and have switched between manufacturing and services during the considered period. The number
of firms is the average number of firms, calculated as the number of observations divided by the
number of participation.
Source: ZEW, own calculations.
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Table 16: Distribution of the Unbalanced and Balanced Panel in Manufacturing

Distribution by: Panela) Difference Distribution by: Panela) Difference

T U B B-T B-U T U B B-T B-U

Industryb) Sizeb)

Mining 2.0 2.1 1.7 −0.3 −0.4 0-4 2.7 1.8 1.6 −1.2 −0.3

Food 6.3 6.0 5.5 −0.8 −0.5 5-9 6.9 6.5 5.5 −1.3 −1.0

Textile 5.2 4.9 4.9 −0.3 −0.0 10-19 12.1 11.6 10.2 −1.8 −1.4

Wood/printing 6.7 6.5 6.4 −0.3 −0.0 20-49 17.8 18.2 19.7 +1.9 +1.5

Chemicals 6.6 6.8 8.7 +2.1 +1.9 50-99 15.2 15.7 14.3 −0.8 −1.3

Plastic/rubber 6.8 7.7 8.4 +1.6 +0.8 100-199 13.0 13.7 13.8 +0.8 +0.2

Glass/ceramics 4.7 5.0 5.5 +0.8 +0.6 200-499 15.5 16.4 17.5 +2.0 +1.1

Metals 13.2 13.4 11.5 −1.6 −1.8 500-999 7.6 8.0 8.3 +0.7 +0.3

Machinery 14.3 14.5 13.0 −1.3 −1.5 1000+ 8.9 8.2 9.1 +0.3 +1.0

Electrical engineering 8.0 7.8 7.8 −0.2 +0.0

Medical instr. 6.5 6.8 7.8 +1.3 +1.1 Regionb)

Vehicles 4.6 4.5 4.4 −0.2 −0.1 West 68.2 66.8 65.7 −2.6 −1.1

Furniture/recycling 4.2 3.6 3.8 −0.4 +0.2 East 31.8 33.2 34.3 +2.6 +1.1

Energy/water 4.4 4.8 5.9 +1.5 +1.1

Construction 6.6 5.9 4.6 −2.0 −1.3 Innovatorsb) 59.3 57.8 55.1 −4.2 −2.7

Total Obs 27116 13558 3933 27116 13558 3933

Notes:
a) T: Unbalanced panel of all firms within the period 1994–2002. U: Unbalanced panel of firms with at least 4 consecutive observations within 1994–2002.
B: Balanced panel of firms within 1994–2002.
b) Calculated as share of total number of observations (in %).
Source: Own calculations.
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Table 17: Distribution of the Unbalanced and Balanced Panel in the Service Sector

Distribution by: Panela) Difference Distribution by: Panela) Difference

T U B B-T B-U T U B B-T B-U

Industryb) Sizeb)

Wholesale 11.4 12.0 10.7 −0.7 −1.2 0-4 7.3 7.2 9.4 +2.1 +2.1

Retail 10.4 12.8 11.9 +1.5 −0.8 5-9 13.9 15.4 14.2 +0.3 +1.1

Transport 15.4 18.8 18.8 +3.4 +0.0 10-19 17.7 19.5 19.1 +1.4 +0.4

Bank/insurance 11.1 10.0 9.2 −1.8 −0.8 20-49 19.5 22.2 20.0 +0.4 −2.2

Computer 8.3 6.8 7.1 −1.1 +0.3 50-99 11.3 12.1 12.9 +1.6 +0.8

Technical serv. 14.4 13.5 11.5 −2.9 −2.0 100-199 9.6 9.8 11.0 +1.4 +1.2

Consultancies 7.8 6.7 8.2 +0.4 +1.5 200-499 8.0 7.0 6.5 −1.5 −0.5

Other BRS 13.8 12.0 12.8 −1.0 +0.8 500-999 4.5 2.8 1.8 −2.7 −0.9

Real estate/renting 6.7 7.5 9.7 +3.0 +2.2 1000+ 7.9 4.1 5.2 −2.7 +1.1

Regionb)

West 62.5 57.4 57.9 −4.6 +0.5

East 37.5 42.6 42.1 +4.6 −0.5

Innovatorsb) 44.5 37.6 35.8 −8.6 −1.8

Total Obs 20493 7901 1974 20493 7901 1974

Notes:
a) T: Unbalanced panel of all firms within the period 1996–2002. U: Unbalanced panel of firms with at least 4 consecutive observations within 1996–2002.
B: Balanced panel of firms within 1996–2002.
b) Calculated as share of total number of observations (in %).
Source: Own calculations.
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