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Non-technical Summary  

 

Evaluating the Impacts of Subsidies on Innovation Activities in Germany 

 

by Reinhard Hujer and Dubravko Radi  

  

 

Innovations are crucial, not only from an individual firm perspective but also from an 

economy wide viewpoint. However, more than any other economic activity, decisions about 

innovations and R&D expenditures are plagued by failures of the market mechanism. 

Innovations represent new knowledge which could be imitated or even stolen by competitors. 

Furthermore, research as well as the development of new products is a risky and uncertain 

undertaking and thus must be financed out of own financial resources or venture capital which 

are both scarce, especially in Germany. As a result of these spillover effects, financial 

constraints, uncertainties and risk aversion, the level of private innovation activities will be 

below the social optimum. 

 

All OECD countries are aware of these problems as well as of the importance of technological 

change and innovations for the future growth. As a response, public instruments have been 

implemented to overcome this dilemma and to stimulate private innovation activities. One of 

the oldest are patents which were already implemented in Germany in 1877. Besides, there 

are various other instruments. Some of them, like competition policy or technology transfer, 

act more indirectly while others, e.g. tax incentive schemes and subsidies, operate in a more 

direct way to induce innovation activities.  

 

This study estimates the microeconomic effects of policy measures on innovation activities of 

German establishments. We will focus on financial measures, like e.g. subsidies, tax 

incentives and public credits. Despite the considerable amount of money spent and tight 

public budgets empirical evidence, especially for Germany, is rather limited. This paper thus 

contributes to the ongoing political debate about the effectiveness of public R&D measures. 

An representative dataset for Germany, the IAB Establishment Panel, is used and various 

microeconometric methods to overcome the inherent sample selection problem applied. 

 

Estimating nonparametrical matching models which accounts for sample selection due to 

observable characteristics points to the view that public subsidies have a positive impact on 

innovations with differences for West and East Germany and different size classes. However, 

we also show that especially with establishment data one has to take sample selection due to 

unobservables into account as well. Estimating a simultaneous probit and a conditional 

difference-in-differences model changed the results dramatically: We only find positive 

effects for East German establishments whereas in all other cases the results are at most 

insignificant. Obviously, public R&D programs subsidize to a large part innovation projects 

which would have been undertaken successfully also in the absence of such subsidies. 
 

  
 

 

. 
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Abstract

Innovations are a key factor to ensure the competitiveness of establishments as
well as to enhance the growth and wealth of nations. But more than any other eco-
nomic activity, decisions about innovations are plagued by failures of the market
mechanism. As a response, public instruments have been implemented to stimu-
late private innovation activities. The effectiveness of these measures, however, is
ambiguous and calls for an empirical evaluation. In this paper we make use of the
IAB Establishment Panel and apply various microeconometric methods to estimate
the effect of public measures on innovation activities of German establishments. We
find that neglecting sample selection due to observable as well as to unobservable
characteristics leads to an overestimation of the treatment effect and that there are
considerable differences with regard to size class and between West and East German
establishments.
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1 Introduction

Innovations are crucial, not only from an individual firm perspective but also from an econ-

omy wide viewpoint. However, more than any other economic activity, decisions about

innovations and R&D expenditures are plagued by failures of the market mechanism. In-

novations represent new knowledge which could be imitated or even stolen by competitors.

Furthermore, research as well as the development of new products is a risky and uncertain

undertaking and thus must be financed out of own financial resources or venture capital

which are both scarce, especially in Germany. As a result of these spillover effects, finan-

cial constraints, uncertainties and risk aversion, the level of private innovation activities

will be below the social optimum.

All OECD countries are aware of these problems as well as of the importance of tech-

nological change and innovations for the future growth. As a response, public instruments

have been implemented to overcome this dilemma and to stimulate private innovation

activities. One of the oldest are patents which were already implemented in Germany in

1877. Besides, there are various other instruments. Some of them, like competition policy

or technology transfer, act more indirectly while others, e.g. tax incentive schemes and

subsidies, operate in a more direct way to induce innovation activities.

In 2000, total R&D spending in Germany amounted to e 49.8 billions. A considerable

fraction was financed by the government. The total public R&D expenditures amounted

to e 15.9 billions with e 2.6 billions paid directly to establishments in form of R&D

subsidies.1 The rationale for such measures is to increase the innovation incentives of

establishments by lowering marginal costs of R&D and to decrease uncertainties regarding

planning reliability. In addition to these direct effects at the establishment level, positive

indirect impacts are expected to arise due to spillover effects, e.g. when new technologies

and products diffuse and are adopted by other establishments.

However, counteracting effects have to be taken into account as well: At the individual

level it could be the case e.g. that establishments would have undertaken innovation

activities also in the absence of subsidies or that public R&D expenditures only crowd

out private ones. On a more aggregated level subsidized establishments could rule out
1These figures were taken from the Federal Ministry of Education and Research, BMBF (2001). For

an overview of public R&D instruments in Germany we refer to Czarnitzki et. al. (2003) or Fier and
Harhoff (2001).
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non-subsidized ones. The net effect of public R&D policy on innovation activities is thus

not clear cut and calls for an empirical evaluation.

This study estimates the microeconomic effect of policy measures on the innovation

activity of German establishments. We will focus on financial measures, like e.g. subsidies,

tax incentives and public credits. Despite the considerable amount of money spent and

tight public budgets empirical evidence, especially for Germany, is rather limited. Table

1 contains a synopsis of studies known to us which all point to the view that public R&D

subsidies have a positive impact on private R&D and innovation activities.2 These studies

differ with regard to the empirical strategy and outcome variable but all make use of the

same dataset, namely the Mannheim Innovation Panel.

Table 1: Microeconometric evaluation studies of public R&D subsidies

Study Sample Outcome-variable Method Result

Czarnitzki (2001) East German establishments, Innovation intensity Selection models Positive
manufacturing industry

Almus & Czarnitzki East German establishments, R&D intensity Matching models Positive
(2002) manufacturing industry

Czarnitzki & Fier German establishments, Innovation intensity Matching models Positive
(2002) service sector

Licht & Stadler German establishments, R&D expenditures Selection models Positive
(2003) manufacturing industry Matching models

This paper adds a new piece of evidence to the ongoing political debate about the

effectiveness of public R&D measures. An alternative representative dataset, namely the

IAB Establishment Panel is used and special attention paid to the problem of sample

selection. In the next section we will present the dataset as well as some first descrip-

tive results. Section three addresses the problem of sample selection due to observable

characteristics by estimating matching and probit models. Section four additionally takes

unobservable characteristics into account by employing a simultaneous probit model and

conducting a conditional difference in differences estimator. Section five concludes.
2For an overview of international studies see Klette, Møen, and Griliches (2000) or David, Hall,

and Toole (2000) who surveyed 19 (14) studies on an establishment (sectoral) level from which 10 (12)
revealed a complementary relation between public and private R&D expenditures. Irwin and Klenow
(1996) analyzed the SEMATECH consortium in the American semiconductor industry while Branstetter
and Sakakibara (1998) focused on Japanese research consortia. Lerner (1998) examined the Small Business
Innovation Research Program in the United States while the studies of Griliches and Regev (1999) and
Klette and Møen (1999) analyze the situation in Israel and Norway, respectively.
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2 Data, variables and first results

The IAB Establishment Panel conducted by the German Federal Employment Office

started as a reaction to a situation of lacking information about the demand side of the

labor market, at least on the microeconomic level.3 Its population are all firms employing

at least one employee subject to the compulsory social security scheme. The unit of interest

is the establishment, i.e. the unit where economic activities take place. All establishments

reporting to the German Federal Employment Office are collected in the establishment

file from which a stratified representative sample is drawn. The IAB Panel started in 1993

with 4,365 establishments and an average response rate of 71%. After the first wave most

of these establishments were re-examined. Additionally, the dataset was complemented

by first time or repeated registered firms. In 1996, East German establishments were also

included in the panel which in 2001 contained about 17,650 establishments.

The panel is organized in a modular form. There are topics covered annually like

changes in the level and structure of employment, questions about employment policy,

business volume and investment. Other topics are only covered irregularly, e.g. information

about innovations which are latest available for 1999/2000. Additionally, there is also a

special questionnaire about current topics included into the panel every year.

For our analysis we assume a dependency structure according to figure 1: We focus

on innovation activities of establishments in 1999 and 2000 and analyze whether they

were influenced by public subsidies granted during the years 1997 and 1998.4 In terms

of the evaluation literature, the innovation decision is the outcome and granted subsidies

the treatment variable. In addition to the treatment variable we also consider a set of

covariates from 1997 and 1998 which might have an impact on the outcome variable. The

treatment variable itself, i.e. the decision whether or not an establishment has received a

subsidy, is assumed to be determined by exogenous variables in 1996.

Keeping this time structure in mind, the sample used for the estimation was con-

structed as follows: In a first step we maintained those establishments which participated
3For more details see e.g. Bellmann (1997).
4The time lag allowed between treatment and outcome seems quite short and rules out long term

effects. Unfortunately, information about innovations are latest available for the years 1999/2000 and
questions regarding subsidies granted before 1997 are not comparable with subsidies granted 1997 and
later. As an additional justification we refer to Hall, Griliches, and Hausman (1986) who estimated a
dynamic ’knowledge function’ and found that the relationship between patents and R&D is mainly a
contemporaneous one.
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Figure 1: Time and dependency structure

continuously in the panel from 1997 until 2001 yielding a sample size of 5,569 observa-

tions.5 In order to isolate the impact of subsidies granted in 1997/1998, we excluded those

establishments which received a subsidy in 1999/2000 thereby reducing our sample size

to 3,164 establishments.6 Finally, we excluded establishments from the agricultural and

public sector which leaves us with 2,714 observations.

Let us now turn to the precise definition of the treatment variable, i.e. answer the

question which public measures are considered in this study. Our dataset contains infor-

mation whether establishments received one of the following measures during the years

1997 or 1998:7

– Programs financed by the federal government and federal states to enhance the

regional economic structure (”Gemeinschaftsaufgabe Verbesserung der regionalen

Wirtschaftsstruktur”) → 35 subsidized establishments

– Programs financed solely by the federal government, e.g. wage subsidies for R&D

personnel → 77 subsidized establishments

– Programs financed by federal states to increase the competitiveness of small and

medium sized enterprises → 102 subsidized establishments

– Programs financed by the European Union → 55 subsidized establishments

– Tax incentives, e.g. investment subsidies or special depreciation → 291 subsidized

establishments
5Notice that a questionnaire in year t contains information for year t− 1.
6We were not able to consider public subsidies granted in 1996 because the questionnaire changed

between 1997 and 1998.
7Unfortunately, our dataset contains no information about the amount of R&D subsidies received, i.e.

the treatment intensity.
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– Other programs, e.g. favorable credits from the German Bank for Reconstruction

(”KfW”) or the European Investment Bank (”EIB”) → 90 subsidized establishments.

Establishments which received at least one of these measures are regarded as treated

establishments. Although an obvious shortcoming of such an aggregation is that we are

not able to disentangle the effects of different measures, several reasons argue for such a

proceeding. An obvious one is the necessity to increase the number of observations, e.g.

the number of establishments which received federal funds amounts to 77 thus making

a reliable estimation of the treatment effect difficult.8 Another reason concerns the fact

that a considerable number of establishments received more than one type of measure so

that for these cases an identification of the treatment effect of one single measure is not

possible.9 And finally, since the various measures granted by different institutions follow

the same objectives, namely to increase the competitiveness and innovation capacity of

establishments, it makes sense to focus on the total effect of all public subsidies instead

on separate measures.10 Thus, instead of evaluating different policy schemes, which might

be of special interest for policy makers, what we actually evaluate is the microeconomic

effect of the German system of R&D subsidies as a whole.

Table 2 contains some basic information about treated and non-treated establishments

in the sample. 2,222 (81.87%) of the 2,714 establishments constitute the control group, i.e.

establishments which have not received a public subsidy in the years 1997-2000, whereas

492 (18.13%) make up the group of treated establishments. 243 of them (8.95%) received

a subsidy only in 1997, 119 (4.38%) only in 1998 and 130 (4.79%) both in 1997 and 1998.

In order to increase the total number of observations we pooled treated establishments in

separate years into one group. Looking at table 2 one can see that the participation rate is

higher among East German (47.52%) than West German establishments (8.22%). Another

feature is the obvious correlation between establishment size and participation rate, e.g.

the participation rate for small and medium sized establishments (SME) with 10-250

employees amounts to 24.36% and rises to 32.79% for the group of large establishments
8This argument becomes more convincing if one considers that we also included industrial and regional

dummies in the estimation which additionally reduces degrees of freedom.
9In our dataset these were 121 (25%) of 492 establishments: 91 received two different measures, 24

received three, 5 received four and 1 establishment even five different types of R&D subsidies.
10For an overview of the programs see BMBF & BMWi (2001). A minor point concerns comparability

with the other studies mentioned in table 1 which also aggregated separate measures into one single
treatment variable.
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with more than 250 employees.11 Since most of the programs place a special emphasis on

SME and East German establishments, all of the following estimates will be conducted

separately for these two groups.

Table 2: Basic information about the sample

Treated Controls Participation rate

West German establishments 118 1,435 8.22%
East German establishments 374 787 47.52%

Micro establishments (employees < 10) 143 916 15.61%
SME (10 ≤ employees < 250) 229 940 24.36%
Large establishments (250 ≤ employees) 120 366 32.79%

All establishments 492 2,222 22.14%

Having defined the treatment variable we now turn to the outcome variable. An often

used indicator for innovation activities and therefore the most obvious candidate are ex-

penditures for R&D or R&D personnel. Due to data limitations and several conceptual

considerations, however, we decided to use an alternative concept. As a monetary input

variable, R&D expenditures exhibit a close relation to the innovation process especially in

knowledge intensive sectors. A disadvantage is the fact that especially smaller establish-

ments do not feature a separate R&D department and thus no explicit R&D expenditures

incur. In the case of smaller establishments, innovations are rather generated through

practical experience and as a result R&D expenditures would underestimate innovation

activities. Another issue concerns the input character of R&D expenditures which do not

necessarily reflect the success of R&D efforts.12

Since especially new products and services determine the future success and compet-

itiveness of a single firm as well as the economy as a whole, it is more reasonable to

focus on an output based measure of the innovation process. In addition, most of the

R&D subsidies considered in this paper aim explicitly at encouraging the introduction of

new products and processes.13 Output oriented innovation indicators thus closely reflect
11Regarding the definition of small and medium sized establishment we follow the recommendations of

the Commission of the European Union from 1996.
12For more on this discussion see e.g. Patel and Pavitt (1995).
13For an overview of German programmes see e.g. BMBF & BMWi (2001). In the U.S. the Small Busi-

ness Innovation Research Program e.g. aims to increase private sector commercialization of innovations.
Cf. Wallsten (2000). Unfortunately, again due to data limitations we are not able to follow up process
innovations.
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the intended goals of R&D subsidies in Germany and therefore lend themselves as an

appropriate evaluation criterion.

In particular, we consider an outcome variable which indicates whether establishments

have introduced a new product/service during 1999/2000 (→ narrow innovation concept)

and a broader concept which also contains improvements of existing products/services

(→ broad innovation concept). The rationale for this second concept is that not only

new products/services but also improved old ones are valued by customers and therefore

might increase competitiveness. Further on, a series of incremental innovations may en-

able radical innovations due to learning effects. And finally, in slow growing economies

like Germany, continuous improvement may be a more promising strategy than radical

changes.

A first and tempting proceeding to assess the impact of public subsidies is to compare

the share of innovative establishments in the group of treated and non treated establish-

ments, respectively. Table 3 contains in the first two rows the appropriate figures. The

share of establishments which improved an already existing product/service or even intro-

duced a new one is 42.30% among subsidized but only 36.19% among non-subsidized es-

tablishments. The corresponding figures for the narrow innovation concept which excludes

improvements are 27.90% for subsidized and 18.33% for non-subsidized establishments.

In both cases the differences are statistically significant which points to the view that

subsidies seem to have an innovation enhancing impact.

A simple mean comparison by treatment status, however, will surely not yield an

unbiased estimate of the ”true” treatment effect. To see why look at the remaining figures

in table 3 which reveal that there are a couple of factors which simultaneously drive

the innovation and the subsidy decision. Examples include the qualification structure

of employees, R&D department, R&D cooperations and newer equipment. Not taking

this positive sample selection into account will lead to an upward biased estimate of the

treatment effect. In the following section we will present appropriate estimation strategies

which explicitly account for this sample selection mechanism due to observable covariates.
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Table 3: Mean comparison by treatment and innovation statusa

Variable Treated Controls p-valueb

Broad innovation concept (improvement and new products) 0.42 0.36 0.01
Narrow innovation concept (only new products) 0.28 0.18 0.00

Number of employees 305.68 253.81 0.40
Share of high qualified employeesc 0.67 0.59 0.00
State of technology (1: Up-to-date, . . ., 5: Out-of-date) 2.03 2.12 0.02
R&D department existing 0.22 0.12 0.00
Number of R&D cooperations 0.56 0.29 0.00
Capital company 0.04 0.07 0.00
Competition intensity (1: None, . . ., 4: High) 3.48 3.42 0.20
Market concentrationd 0.80 0.82 0.00
East German establishments 0.76 0.35 0.00

Variable Innovatorse Non innovatorse p-valueb

Number of employees 506.39 112.20 0.00
Share of high qualified employeesc 0.64 0.58 0.00
State of technology (1: Up-to-date, . . ., 5: Out-of-date) 2.02 2.16 0.00
R&D department existing 0.28 0.05 0.00
Number of R&D cooperations 0.72 0.11 0.00
Capital company 0.11 0.04 0.00
Competition intensity (1: None, . . ., 4: High) 3.56 3.36 0.00
Market concentrationd 0.81 0.82 0.02
East German establishments 0.35 0.48 0.00

a All control variables referring to 1996.
b t-test for continuous and test of equality of proportion for dummy variables.
c Blue and white collar employees for qualified tasks.
d Gini concentration of business volume for 41 different industry sectors.
e Referring to the broad innovation concept.

3 Sample selection on observable covariates

A simple mean comparison by treatment status, which we conducted previously will only

yield an unbiased estimate of the treatment effect if assignment into treatment, D, and

potential outcome, Y , are independent, i.e. Y⊥D.14 This independence assumption is

unlikely to hold outside a non-experimental setting but is more likely to be fulfilled in our

application if we additionally take a set of covariates, X, into account:

(1) Y⊥D|X.

Under this conditional independence assumption, i.e. if sample selection is solely due

to observable covariates, the average treatment effect can be estimated using either para-
14See Rubin (1979).
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metrical or non-parametrical approaches.

The most simple estimation strategy in our application consists in estimating the

following probit model:

(2) Yi =





1 if Y ∗
i = β′Xi + ∆Di + εi > 0

0 otherwise,

with Yi indicating the innovation decision of the i-th establishment and Di whether it

received a public subsidy or not.

The interested reader can find in the appendix a list of covariates contained in X and

some reasons for their inclusion. We will not present all estimation results but only focus

on the impact of subsidies, i.e. on the parameter estimates for ∆, and some diagnostics

for the models (see table 7 in the appendix).15 To quantify the impact of public subsidies

on innovations, we first of all report the marginal effect of D for a reference establishment

according to:

(3)
∂Yi

∂Di

= Φ(β̂′Xi + ∆̂)− Φ(β̂′Xi).

Additionally, we also calculate the average treatment effect on the treated given by:

(4) ATEProbit =
1

N

{
N∑

i=1

Φ(β̂′Xi + ∆̂)− Φ(β̂′Xi)

}
,

i.e. the average difference between the probability that establishments would have intro-

duced innovations if they had received a subsidy and the probability that establishments

would have been innovative under no subsidy.16 The standard error of the marginal effect

as well as the average treatment effect were calculated using the delta method.

For the narrow innovation concept, we find positive and significant effects for the

pooled estimation as well as for SME and East German establishments. The average

treatment effects range from 6% to 9%. After including also improvements of already

existing products/services into the outcome variable, only the parameter for East German
15Detailed results are available from the authors.
16We adopted the following reference establishment: All continuous variables are assumed to take on

their mean values. Additionally we assume that the representative establishment does not possess a R&D
department, is a private limited company, operates in the transportion/telecommunication sector and
is located in Baden-Wuerttemberg and accordingly in Thuringia for the sub-sample of East German
establishments.
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establishments still remains significant (6%). Hence, accounting for observable covariates,

public subsidies seem to increase the probability to introduce new products for SME and

East German establishments.

An alternative estimation strategy to this parametrical approach is the matching

model. Intuitively, a matching estimator tries to find in a large group of non-participants

those ”twin” establishments which are similar to the participating ones in all aspects ex-

cept for the fact that they have not received a public subsidy. That being done and if we

can assume that the selection process is only due to observable covariates, the difference

in the outcome variables between participating and matched not-participating establish-

ments is solely attributable to the program. In that sense matching estimators simulate

an experimental setting.

A practical obstacle of such a proceeding lies in the so called dimensionality problem.

If our vector of covariates X e.g. contains K binary variables, the number of combinations

amounts to 2K . If there are also continuous variables like it is the case in our dataset, it

becomes even more likely that for some combinations of the covariates a mean comparison

cannot be conducted.

As an alternative, Rosenbaum and Rubin (1983) proposed the concept of propensity

score matching. Defining the propensity score as the conditional probability to participate,

i.e. p(X) = p(D = 1|X), Rosenbaum and Rubin showed that Y⊥D|X ⇒ Y⊥D|p(X) and

hence one needs not condition on all covariates contained in X but only on the propensity

score p(X). Given this implication, we conducted the following steps in order to estimate

the average treatment effect on the treated:17

1. We estimated the propensity score using a logit model. Additionally to the vari-

ables contained in table 3, we included the squared number of employees, industrial

and regional dummies.18 In order to improve the matching quality we imposed the

so called common support restriction, i.e. we dropped those controls which have a

propensity score lower than the minimum or higher than the maximum propensity

score of the treated establishments and vice versa.
17For more details see e.g. Heckman, Ichimura, and Todd (1998).
18We use regional dummies for every federal state. Due to an insufficient number of observations we

only considered 7 industry sectors. Since this model has no behavioral interpretation but only serves to
balance the distribution of the observable covariates, we will not present the estimation results in this
paper. They are, however, available from the authors by request.
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2. Using the propensity score we matched treated with non-treated establishments ac-

cording to two different protocols: In a first step, we conducted nearest neighbor

matching where those non-treated establishments are matched to treated ones with

most similar score. Additionally, we also conducted kernel matching where more than

one non-treated establishment is used as matching partners. Thereby establishments

which are less similar regarding their propensity score are downweighted using the

Gaussian kernel as a weighting function. In order to improve the matching quality

further, in a second step we conditioned on the propensity score and on the industrial

sector.19

3. Finally, we calculated the means of the outcome variables for treated and matched

control establishments. The difference in the means may serve as an estimator of the

average treatment effect on the treated. The reliability of the matching was checked

by reporting the absolute standardized percentage bias of the covariates before and

after the matching.20

The matching estimator has become the working horse in the evaluation literature, al-

though Angrist (1998) notes that ”the differences between regression and matching strate-

gies for the estimation of treatment effects are partly cosmetic,” since the approximation

of any functional form imposed by a parametrical model like the probit model and the

conditioning on the propensity score in the matching model become more and more similar

the more interaction terms are included in the estimation.

The appendix contains the detailed estimation results for the matching models as

well as some diagnostics (see tables 8-11). At this point, it is sufficient to note that the

previous results are largely confirmed. Indeed, matching yields even larger effects than

the probit model. The estimates are sensitive to the chosen matching algorithm with

larger treatment effects for kernel matching. Note however, that even after the matching

the groups of treated and non-treated West German establishments are still considerably

heterogenous.
19Due to an insufficient number of observations conditioning on the industrial sector was not possible

for different size groups.
20The absolute standardized bias was proposed by Rosenbaum and Rubin (1985) and is defined for a

single covariate x as follows: |(x(1) − x(0))/(
√

[var(x(1)) + var(x(0))]/2| where x(1) (var(x(1))) is the
mean (variance) of the covariate in the group of treated and x(0) (var(x(0))) the mean (variance) in the
group of non-treated establishments. The figures in table 8 were obtained by taking the average over the
covariates. Thus the smaller the bias, the better the match quality.
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4 Sample selection on unobservable covariates

In the previous section we have introduced various econometric methods which can be

used to estimate the effect of a treatment on an outcome variable in the presence of

sample selection due to observable covariates. But what if, even after we have balanced

the observable covariates, there are still differences between these two groups? Or stated

differently, what if the conditional independence assumption, which is the cornerstone

of the matching as well as the probit estimation, does not hold and hence the sample

selection mechanism is not only due to observable but also to unobservable covariates?

In our application it could be the case e.g. that management ability or corporate culture

play an important role in both determining the innovation behavior and the decision

whether the establishment will successfully apply for a public subsidy or not. In this case

the estimates would still be plagued by a ”hidden” bias, upward we suspect, which could

not be remedied by observable covariates, since both management ability and corporate

culture are hardly quantifiable.

In the following we will apply estimation strategies which can be used under these

circumstances. In order to control for a possible endogeneity of D, we will explicitly

model the treatment decision in a simultaneous equation framework:

Y ∗ = β′1X
′
1 + ∆D + ε1(5)

D∗ = β′2X
′
2 + ε2(6)

where the latent variables Y ∗ and D∗ are connected with their observable counterparts

via a threshold model, i.e. Y = I(Y ∗ > 0) and D = I(D∗ > 0), respectively.

Note, that equation (6) was estimated to obtain the propensity score for the matching

while equation (5) was estimated as its nonparametrical counterpart. But now we allow

these two equations to be connected with each other via the disturbances, ε1 and ε2, for

which we assume that

(7)


ε1

ε2


 ∼ i.i.d.N(0, Σ) and Σ =


1 ρ

ρ 1


 .21

Equations (5) and (6) constitute a simultaneous equation model. Since both of the

dependent variables are binomial, such models are also called mixed simultaneous equation
21Note the necessary normalization of the two probit equations. We have skipped the individual index

for convenience.
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models (MSEM) and since the observable counterpart of the latent endogenous dummy

variable D∗ enters equation (5), the model is of type II.22 Type II MSEM exhibit not only

the usual identification problem, which is ensured in our example if one looks at the list

of variables included in X1 (table 6 in the appendix) and X2 (table 3), but additionally

also the so called coherency problem which makes some additional parameter restrictions

necessary. The coherency problem arises since due to the inclusion of dummy endogenous

variables as additional regressors, no explicit reduced form exists. Without going into

detail how to derive these consistency restrictions, it is sufficient to notice that a two

equation type II probit model in order to be coherent must feature a recursive structure

between the endogenous variables.23 In our model this restriction is ensured by assuming

that subsidies in 1997/1998 might have an impact on innovations in 1999/2000 but not

vice versa.

The model in (5) and (6) has been estimated simultaneously by maximum likelihood as

described in Maddala (1983).24 Due to space limitations we will not present all estimation

results in the paper. Table 12 in the appendix contains the same figures as for the previous

separate probit estimation. Recall once again that the probit as well as the matching

estimator yielded mostly positive results. However, if we additionally account for sample

selection due to unobservables, the results change dramatically. For the pooled estimation

e.g. using the probit model we found a significant average treatment effect on the treated

of 6% for the narrow innovation concept. Now, this effect becomes negative and amounts

to -17%. And the reason for this reversing sign is a positive and significant correlation

between the treatment and innovation equation (ρ = 0.64). It thus seems that there

are unobservable covariates which have a positive impact on both the subsidy and the

innovation decision and which, if we do not account for them, will lead to an overestimation

of the true treatment effect.

This result can be generalized to the other sub-samples as well. We find evidence

that in all cases there is a substantial correlation between the two equations and hence

the previous positive average treatment effects turn out to be overestimated. For small

and medium sized establishments e.g. we now get negative results. The only remarkable
22For a more thorough discussion of mixed simultaneous equation models see Blundell and Smith (1993,

1994). For an application see Hujer, Caliendo, and Radić (2002).
23For details see e.g. Schmidt (1990).
24The estimation was done using STATA. Codes and detailed estimation results are available from the

authors.
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exception are East German establishments. Conditioning only on observable covariates

as we did in the previous section yielded an average treatment effect on the treated of

6% for the broad and 7% for the narrow innovation concept. However, assuming that

public subsidies are still endogenous, we now find a negative self selection process due to

unobservables (ρ = -0.61/-0.45) and hence the estimated effects even increase to 39% for

the broad and 31% for the narrow innovation concept.

An obvious question at this point concerns the reliability of these results. Having

found convincing evidence for the endogeneity of the treatment decision, the more crucial

question is whether our simultaneous probit model is able to mitigate this endogeneity.

To this aim note that the model contained in equations (5) and (6) may be interpreted as

an instrumental variable approach where the instruments used to model the endogenous

dummy variable D are contained in X2. If one looks at the variables contained in X1 and

X2 which can be found in the tables 6 and 3, one can see that these are by and large

the same exogenous variables. However, the variables contained in (5) refer to the year

1998 while the instruments refer to the year 1996. Our model is thus identified, but to be

optimal and valid instruments, the exogenous variables in X2 must satisfy the following

two conditions: First, they must be significant in the participation equation and second,

they must be insignificant in the outcome equation.

In the following we conducted an informative test to check the validity of the instru-

ments. In order to check whether X2 is informative for D, we estimated a simple probit

with D as the dependent and X2 as the independent variables and conducted a LR-test

for the overall significance of X2. In a second step we tested whether X2 has any explana-

tory power for the outcome equation by estimating a probit with Y as the dependent

and X1 and X2 as the independent variables. Again we conducted a LR-test for the joint

significance of X2.25

Table 4 contains the results of these LR-tests and although this is just an intuitive

test, we find convincing support for the validity of our instruments. Only for micro estab-

lishments using the broad innovation concept as the outcome variable, the instruments

have also explanatory power in the outcome equation and thus may still be correlated with

the error term. In all other cases, however, they are highly significant in the participation
25For a similar approach see Evans and Schwab (1995). This test is only an informal test because in

the presence of endogenous regressors we would have to apply again a simultaneous estimator.
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but insignificant in the outcome equation.

Table 4: Validity test for the instruments

Broad innovation concept Narrow innovation concept

Equation χ2-value p-value χ2-value p-value

All establishments Participation 31.64 0.00 31.64 0.00
Outcome 4.34 0.63 7.07 0.31

West Germany Participation 10.42 0.11 10.42 0.11
Outcome 2.47 0.87 8.47 0.21

East Germany Participation 29.42 0.00 29.42 0.00
Outcome 5.44 0.49 8.59 0.20

Micro establishments Participation 14.64 0.02 14.64 0.02
Outcome 11.63 0.07 6.95 0.33

SME Participation 18.93 0.00 18.93 0.00
Outcome 2.67 0.85 6.83 0.34

Nonparametrical crosscheck

Our access to longitudinal data is limited. In particular we do not have regular informa-

tion on the outcome decision. The foregoing time period for which such information is

available refers to 1996/1997 and hence overlaps with the treatment period. The following

considerations must therefore be treated with caution. An often used empirical strategy in

the presence of individual specific but unobservable effects is the difference-in-differences

estimator.26 This estimator takes the difference of the change in the outcome variable

after, i.e. 1999/2000, and before the treatment period, i.e. 1996/1997, between treated

and non-treated establishments and thus cancels out any individual specific unobservable

effects:

(8) ∆DID = E
[(

Y T
after − Y T

before

)− (
Y C
after − Y C

before

)]

where Y T (Y C) stands for the outcome variable of treated (non-treated) establishments

and the subscript denotes the time period.

An extension which also takes sample selection due to observables into account is the

conditional difference-in-difference estimator which replaces the expression for the non-
26For more details see Meyer (1995).
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treated establishments
(
Y C
after − Y C

before

)
by its matched counterpart.27 The following table

5 contains the corresponding estimation results. The estimation was conducted conditional

on the same propensity score as previously and by using an one-to-one and Gaussian kernel

matching approach, respectively.

Table 5: Conditional difference-in-differences estimator (in %)

Broad innovation concept Narrow innovation concept

One-to-one Kernel One-to-one Kernel

All establishments -2.27 (4.65) 0.87 (3.59) 4.44 (4.81) 4.56 (3.91)
West Germany 2.06 (8.80) 2.58 (5.83) 1.01 (11.54) 8.75 (6.74)
East Germany -2.84 (5.99) 1.55 (3.90) -3.78 (5.71) 2.94 (3.53)
Micro establishments -2.98 (7.65) -1.77 (5.91) -5.25 (7.30) 1.42 (4.74)
SME 9.84 (7.05) 4.98 (5.28) 9.33 (6.27) 8.58 (5.74)

Note: Standard errors in parentheses.

The results reveal that in most of the cases, except for small and medium sized estab-

lishments where we found a weak significant and positive impact, the average treatment

effect on the treated is insignificant. We once again repeat that these results have to be

treated with caution since due to data limitations the treatment period overlaps with the

pre-treatment outcome period, but we also find support for our previous empirical find-

ings, where the estimated treatment effects turned out to be insignificant or even negative

if we additionally condition on unobservable factors.

5 Conclusions

The objective of this paper was to add another piece of evidence to the ongoing political

’evergreen’ debate about the necessity to reduce public deficits by decreasing public sub-

sidies. Although there is broad consensus about this point, the dispute which programs

should be cut down is much more controversial. An often raised objection in this context

is that public R&D subsidies should be excluded from this reduction since they are help-

ful to stimulate technological change and innovations. Despite the considerable amount

spent in this area, the number of evaluation studies which try to assess the impact of such

programs is rather limited.
27See Heckman, Ichimura, Smith and Todd (1998) and for an application Hujer, Caliendo and Radić

(2001).
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In this paper we applied various microeconometric methods to overcome the inherent

sample selection problem in estimating the effect of public subsidies on the innovation

capacity of German establishments. In contrast to other studies which analyze the rela-

tion between private and public R&D activities, we used an output oriented innovation

concept, namely new products and services. Such a concept closely resembles the intended

goals of most of the R&D programs in Germany. We started with a simple mean compar-

ison which yielded significant positive impacts. We then accounted for sample selection

due to observable characteristics by employing a parametrical multivariate probit and a

nonparametrical matching estimator. The result was a reduction in the effects which, how-

ever, still pointed to the view that public subsidies have a positive impact on innovations

with differences for West and East Germany and different size classes.

Finally, we were able to show that especially with establishment data one has to take

sample selection due to unobservables into account as well. Estimating a simultaneous

probit and a conditional difference-in-differences model changed the results dramatically:

We only find positive effects for East German establishments whereas in all other cases

the results are at most insignificant. Obviously, public R&D programs subsidize to a

large part innovation projects which would have been undertaken successfully also in the

absence of such subsidies. Another upshot of all the estimation is the following: The more

observable and unobservable factors one takes into account in order to make treated and

control establishments more comparable, i.e. the better our understanding of the sample

selection process, the smaller the estimated treatment effect of subsidies on innovations

becomes.

Of course we are aware that there are several limitations and drawbacks of our study

which have to be taken into account. In this paper we have only considered one kind of

heterogeneity, namely with regard to West and East Germany and regarding different size

classes. However, it could be the case that different measures have a different treatment

effect and hence a multiple treatment framework would be more appropriate.28 Another

point concerns the assumed time structure. In this study we were forced to abstract from

the possibility that there might be more variable lag structures. Additionally, it might also

be the case that different ”dosing schemes”, i.e. the fact whether establishments received a
28See e.g. Lechner (2002). Note, however, that limitations in the number of observations hindered us

to conduct such an analysis.
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subsidy only once or more times, might have a different impact on the outcome variable.

One also has to keep in mind that a microeconometric evaluation like this one is only a

first step to evaluate the total net effect of public subsidies on innovation activities. Only

in the absence of spillover effects, these microeconomic results can be generalized to the

whole economy. Despite all these caveats, we think that it is justified to close with the

following quote of Lichtenberg (1984) who also found, after accounting for unobservable

heterogeneity, unsatisfactory impacts of public R&D subsidies for the United States and

claims that: ”These findings thus make heavier the burden of proof on those who would

claim that federal contract R&D makes a positive contribution to aggregate technical

progress.”
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A Variables used for the outcome equation

There is a vast literature about the determinants of innovations.29 A useful classification

is a differentiation between market and firm specific factors. Market factors include e.g.

the competition intensity, market concentration, exposure to international trade but also

demand factors, like profitability and expected development of the business volume which

are all expected to have an innovation enhancing impact (see also table 6).

Firm specific factors on their part can be further split into internal and external tech-

nological capabilities. The idea behind this classification is the following: Industry sectors

are characterized by differing technological opportunities which have also an impact on

the innovation behavior of individual establishments. Additionally, innovations can be

boosted if establishments co-operate with other institutions. However, in order to benefit

from such external co-operations, there must be some technological expertise within the

establishment. External technological capabilities may be captured by variables indicating

R&D cooperations with other institutions like universities. Internal technological capabil-

ities include e.g. the state of technology, the existence of a R&D department, the share

of high qualified employees and employees devoted to R&D. Other firm specific factors

which were also included in the estimation are the size of establishments measured by the

number and squared number of employees, industrial and regional dummies.

Table 6: Variables used for the estimation of the outcome equation

Variable Mean SE

Competition intensity in 1998 (1 = No pressure, ..., 4 = High pressure) 3.43 0.83
Gini concentration of business volume in 1998 0.82 0.06
Export share in 1998 6.05 16.85
State of technology used in 1998 (1 = Up-to-date, ..., 5 = Out-of-date) 2.12 0.79
R&D department existing 0.14 0.35
Share of high qualified employees in 1998 0.62 0.42
Number of R&D co-operations 0.34 0.99
Number of employees in 1998 252 1,174
Share of one man businesses 0.33 0.47
Share of establishments organized as a business partnership 0.10 0.29
Share of private limited companies 0.39 0.49
Share of capital companies 0.07 0.25
Business development in 1998 (1 = Very good, ..., 5 = Insufficient) 1.98 0.72

29For an overview see e.g. Cohen (1998).
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Table 8: Some matching diagnostics

Dropped establishments Absolute standardized bias of
due to common support (%) observable covariates (%)

Treated Controls Before After matchinga

All establishments 0.19 0.17 0.19 0.05 0.15
West Germany 0.24 0.15 0.28 0.12 0.11
East Germany 0.20 0.17 0.21 0.07 0.16
Micro establishments 0.08 0.21 0.17 0.08 n.a.b
SME 0.18 0.31 0.18 0.07 n.a.b
Large establishments 0.44 0.43 0.21 0.20 n.a.b

a One-to-one matching with replacement conditional on the propensity score
and additionally on the industry sector (second column).
b Conditioning on the industrial sector not possible due to an insufficient
number of observations.

Table 9: Matching estimator of the average treatment effect of the treated

All establishments

Broad innovation concept Narrow innovation concept

ATE SE t-value ATE SE t-value

One-to-one matching 0.05 0.04 1.16 0.11 0.04 2.97
Conditional one-to-one 0.07 0.04 1.66 0.12 0.04 3.12

Kernel matching 0.06 0.03 1.92 0.11 0.02 5.38
Conditional kernel 0.08 0.03 2.70 0.12 0.03 4.29
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Table 10: Matching estimator of the average treatment effect of the treated

West German establishments

Broad innovation concept Narrow innovation concept

ATE SE t-value ATE SE t-value

One-to-one matching 0.00 0.08 -0.01 0.10 0.08 1.25
Conditional one-to-one 0.18 0.09 2.04 0.21 0.08 2.67

Kernel matching 0.09 0.05 1.72 0.17 0.06 2.71
Conditional kernel 0.15 0.07 2.29 0.17 0.07 2.26

East German establishments

Broad innovation concept Narrow innovation concept

ATE SE t-value ATE SE t-value

One-to-one matching 0.02 0.05 0.35 0.06 0.04 1.29
Conditional one-to-one 0.11 0.05 2.29 0.12 0.04 2.82

Kernel matching 0.09 0.03 3.33 0.11 0.03 3.67
Conditional kernel 0.11 0.04 2.89 0.12 0.03 3.99

Table 11: Matching estimator of the average treatment effect of the treated

Micro establishments

Broad innovation concept Narrow innovation concept

ATE SE t-value ATE SE t-value

One-to-one matching 0.05 0.07 0.83 0.04 0.06 0.74
Kernel matching 0.09 0.05 1.97 0.10 0.05 2.13

Small and medium establishments

Broad innovation concept Narrow innovation concept

ATE SE t-value ATE SE t-value

One-to-one matching 0.16 0.06 2.70 0.17 0.05 3.40
Kernel matching 0.07 0.04 1.94 0.14 0.04 3.19

Large establishments

Broad innovation concept Narrow innovation concept

ATE SE t-value ATE SE t-value

One-to-one matching -0.18 0.12 -1.58 0.01 0.11 0.12
Kernel matching -0.08 0.08 -1.10 0.07 0.08 0.88
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