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Non–technical Summary

Quantile regression is gradually evolving into a comprehensive approach to the statistical

analysis of linear and nonlinear response models for conditional quantile functions. Just as classical

linear regression methods based on minimizing sums of squared residuals allow one to estimate

a general class of models for conditional mean functions, quantile regression methods offer a

mechanism for estimating models for the conditional median function and the full range of other

conditional quantile functions.

The Box-Cox function is a nonlinear monotonic transformation including the log-linear and

the linear function as special cases. The Box-Cox quantile regression model therefore provides an

attractive extension of linear quantile regression techniques. Chamberlain (1994) and Buchinsky

(1995) introduce a computationally convenient two stage method. However, a major numerical

problem exists when implementing this method which has not been addressed so far in the litera-

ture. We suggest a simple solution modifying the estimator slightly. This modification is easy to

implement. We derive the asymptotic distribution of the modified estimator and show that it has

still standard statistical properties. Simulation studies confirm that the modified estimator works

well in finite samples.
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1 Introduction

This note considers a general difficulty with the two step estimation approach to Box-Cox quantile

regressions as introduced by Chamberlain (1994) and Buchinsky (1995).1 In the second step,

the objective function is not defined in some situations and this problem arises in typical data

situations. We suggest a simple modification of the objective function in order to ensure that it is

well defined. Simulations show that the modification works well in finite samples. Furthermore,

consistency and asymptotic normality of the estimator are not affected by the modification.

2 Model

Let us denote Quantθ(y|x) as the θ’s conditional quantile of y given x and g is a monotone

transformation function. We consider

Quantθ(y|x) = g(x′βθ + εθ), (1)

where y > 0, the observable regressors x ∈ IRK, the unknown parameters β ∈ B ⊂ IRK, the

quantile θ ∈ (0, 1) and the error εθ s.t. Fεθ
(0|x) = θ. We consider the strictly positively monotonic

transformation of the dependent variable introduced by Box and Cox (1964) :

yλ =


(yλ − 1)/λ if λ �= 0

log(y) if λ = 0,

as the inverse mapping to g(.) where λ ∈ R and without loss of generality R = [λ, λ] is a finite

closed interval. This transformation is quite attractive since it preserves the ordering of the

observations because of the equivariance property of quantiles. Thus, we obtain a linear model

for

Quantθ(yλ|x) = x′βθ

and equation (1) becomes

Quantθ(y|x) = (λx′βθ + 1)1/λ .

The possibility to estimate λ allows for some flexibility in estimating the model in (1). Powell

(1991), Chamberlain (1994), Buchinsky (1995), and Machado and Mata (2000) provide further

details on the model.

1The Box–Cox quantile regression model was introduced by Powell (1991).
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3 Estimation Problem

A Box–Cox quantile regression amounts to minimize the following objective

minβ∈B,λ∈R
1

n

n∑
i=1

ρθ(yi − (λx′
iβ + 1)1/λ),

for observations i = 1, . . . , n where the check function is given by ρθ(t) = θ|t|1It≥0+(1−θ)|t|1It<0 and

1I denotes the indicator function. Powell (1991) shows that this nonlinear estimator is consistent

and asymptotically normal, see also Machado and Mata (2000) for a concise discussion of the

asymptotic distribution. However, these studies do not explicitly address the issue of actually

computing the estimates. In principle, this could be estimated directly using the Koenker and

Park (1996) algorithm for nonlinear quantile regressions.

Chamberlain (1994) and Buchinsky (1995) suggest the following attrative simplification in

form of a two step procedure based on the equivariance property of quantiles with respect to a

strictly positively monotonic transformation

1. estimate βθ(λ) conditional on λ by

β̂θ(λ) = argminβ∈B
1

n

n∑
i=1

ρθ(yλi − x′
iβ) (2)

2. estimate λ by solving

minλ∈R
1

n

n∑
i=1

ρθ(yi − (λx′
iβ̂θ(λ) + 1)1/λ) (3)

Note that the objective in (2) cannot be used to estimate both βθ and λ (this would result in the

degenerate estimator β̂θ = 0 and λ̂ = −∞). Chamberlain (1994) sketches the large sample theory

of the two step estimator. Buchinsky (1995) derives large sample properties of this estimator for

discrete regressors when applying the minimum distance method.

When implementing the two step procedure, we encountered the following general numerical

problem which is not mentioned in any of the cited references above. For every λ, it is not

guaranteed that for all observations i = 1, ..., n the inverse Box-Cox transformation λx′
iβ̂θ(λ) +

1 is strictly positive. However, this is necessary to implement the second step of Buchinsky’s

procedure.2 It is natural to omit the observations for which this condition is not satisfied. But

2The issue also arises for any other available computation method in the literature when evaluating (λx′
iβ̂θ(λ)+

1)1/λ, e.g. using the algorithm developed by Koenker and Park (1996) for nonlinear quantile regression or in the

minimum–distance approach of Buchinsky (1995), see equation (10) on page 117 of the paper.
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this raises a number of problems. First, the set of observations omitted changes when going

through an iterative procedure to find the optimal λ. Second, it is not a priori clear how such

an omission of observations affects the asymptotic distribution of the resulting estimator. Third,

should still the full set of observations be used in the first step? The purpose of this note is to

suggest a structured way on how to implement the necessary omission of data points and to clarify

the consequences of doing so.

4 Modified Estimation

Stage two can only be solved if

λx′
iβ̂θ(λ) + 1 > 0 (4)

for all i = 1, . . . , n. This clearly depends on the first stage estimates and the specific value

of λ. A violation of this condition may occur due to the finite sample bias of the estimates, by

misspecification of the model, or equivalently, when the second step is evaluated during an iterative

procedure to obtain the estimator.3 Therefore, in finite samples the inequality (4) may not hold

for all observations. Our modification of the estimator consists of using only those observations in

the second step for which the second stage of the estimation is always well defined for all λ ∈ R.

The first step is still implemented based on all observations which allows asymptotically for a

more efficient estimator.

Define the set of admissible observations Nθ,n as those i = 1, ..., n for which λx′
iβ̂θ(λ) + 1 > 0

for all λ ∈ R. Note that Nθ,n may change with the number of observations due to variation of β̂θ

and due to additional observation. A method for finding Nθn in applications is suggested below.

Instead of problem (3), we now solve in the second step

minλ∈R
1

n

n∑
i=1

1Ii∈Nθ,n
· ρθ(yi − g̃i[λ, β̂θ(λ)]), (5)

where for any c ∈ IR

g̃i[λ, β̂θ(λ)] =




c if λ > 0 and if x′
iβ̂θ(λ) ≤ −1/λ

c if λ < 0 and if x′
iβ̂θ(λ) ≥ −1/λ

(λx′
iβ̂θ(λ) + 1)1/λ otherwise.

3For some λ during the iteration process, step 1 results in the linear quantile projection of yλ on xi as defined

in the appendix. Even for the true projection, i.e. the true associated parameter values, it is not guaranteed that

condition (4) is satisfied for all observations. The condition is only satisfied for sure for the true λ and under the

assumption that the model is not misspecified.
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Note it does not matter what value of c is chosen because the indicator function in equation (5)

is always zero in these cases. This notation is introduced in order to have an objective function

with a well defined sum from 1 to n. It is shown in the appendix that the modified estimator is

consistent and asymptotically normally distributed. The asymptotic variance matrix for (β̂′
θ, λ̂)

just uses the observations in Nθ,n.

How to choose the set of admissible observations Nθ,n?

To choose the set of admissible observations Nθ,n for the iteration process in λ ∈ R, we use a

very simple heuristic rule which works for sure in the bivariate regression case K = 2 involving

an intercept. In this case, it turns out that it is only necessary to check for the smallest and the

largest values λ and λ in R, respectively, whether g̃i[λ, β̂θ(λ)] is well defined. The selection rule

defines Nθ,n as the set of observations i for which the condition λx′
iβ̂θ(λ) + 1 > 0 holds for both

λ = λ and λ = λ}. This rule is based on the following result.4

Proposition 1: For the bivariate regression model K = 2 (one regressor plus an intercept) assume

that Fεθ
(u|x) is a continuous distribution function almost surely and that the design matrix has

full rank 2. If, for some observation i, λx′
iβ̂θ(λ) + 1 > 0 for λ ∈ {λ, λ}, then λx′

iβ̂θ(λ) + 1 > 0 for

all λ ∈ [λ, λ] with probability one.

Proposition 1 can be motivated as follows (the proof can be found in the appendix). If for some

λ > 0 and some data point i the linear quantile regression in step 1 of the estimation procedure

yields x′
iβ̂θ(λ) = −1/λ. Then, the fitted value is a weighted average of two observations with

perfect fit, see Theorem 3.1 in Koenker and Bassett (1978). This is due to the linear quantile

regression involving a linear program. Since the predicted values for the latter two interpolated

observations lie strictly above −1/λ the weight on the observation with the higher value of y

must be negative. A reduction in λ reduces the distance between the fitted value and −1/λ more

strongly for the latter observation compared to the observation with positive weight. Therefore,

the linear combination of the fitted values must increase.

Unfortunately, Proposition 1 does not hold for the case with K ≥ 3. In the appendix, we

provide a counter example. However, in our subsequent simulation exercise, we found no case

4Note that proposition 1 does not hold for censored Box-Cox quantile regressions because the result hinges

critically on the interpolation of actual data points for linear quantile regressions. This is not necessarily the case

for censored quantile regressions, see Fitzenberger (1997). Simulation experience (simualtion results are available

upon request) indicates that our selection rule works for censored Box-Cox quantile regressions only up to an upper

and lower bound of λ. These bounds seem to depend on the simulation design. Further research is necessary on

this issue.
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Table 1: Finite sample evidence from 1.000 Monte Carlo experiments (θ = 0.5). Means with

standard deviations in parentheses.

n = 100 n = 1.000

% of i not in N0.5,n 6.3% (0.02) 6.6% (0.01)

β̂1 50.020 (0.52) 50.003 (0.15)

β̂2 1.001 (0.03) 1.000 (0.01)

β̂3 1.000 (0.25) 0.997 (0.08)

λ̂ 1.500 (0.01) 1.500 (0.00)

where applying the selection rule based on proposition 1 did not work perfectly during the search

for estimating λ. In the following, we will argue why this is the case under most circumstances.

For the proof of Proposition 1 (see appendix) it is critical whether the following condition

holds
∂∆

∂λ
=

K∑
h=1

ghlog(y(h))y
λ
(h) < 0 (6)

for interpolated observations h = 1, ..., K with ∆ =
∑K

h=1 ghy
λ
(h) = 0 and

∑K
h=1 gh = 1.5 Note that

this condition holds strictly if the minimum of the dependent variable for all observations with

negative weights is not smaller than the maximum of the dependent variable for all observations

with positive weights, i.e. min{y(h), gh < 0} ≥ max{y(h), gh > 0}. This is a useful benchmark,

since −1/λ, which is the fitted value at the critical data points, is strictly below y(h),λ for all h.

It is natural that gh is positive if y(h) is small and gh is negative if y(h) is large. This is likely to

hold “on average” and therefore condition (6) is likely to hold for practical designs.

As a theoretical alternative to avoid the above problems and to show the asymptotic validity

of the estimator, one could choose Nθ,n as the set of observations i for which λx′
iβ̂θ(λ) + 1 > 0 for

all λ ∈ [λ, λ]. However, this is not a rule which can be strictly applied in actual estimation.

5This weights represent a regressor vector, for which the fitted value lies at the critical boundary, by the

coefficients in the linear combination of interpolated design points, see appendix for more details.
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5 Simulations

This section presents finite sample results for the modified estimator. We use the following model:

yλ = β0 + β1x1 + β2x2 + ε,

where x1 ∼ N(200, 110), x2 ∈ {0, 1}, Prob(x2 = 0) = Prob(x2 = 1) = 0.5, β = (50, 1, 1)′,

ε ∼ N(0, 1) and λ = 1.5 with R = [−0.5, 2.5]. We draw 1.000 independent random samples from

this model. Even though in principle, observations based on this model might violate the critical

condition (4), in our simulations all observations drawn satisfy this condition for the chosen

parameter values. Estimates for β are obtained using the Koenker and Park (1996) algorithm

for MATLAB provided by Hunter (2002). The second stage is solved by using the fminsearch

function of MATLAB 6.5 which uses the Nelder-Mead simplex method for non differentiable

objective functions. Table 1 presents the results for two experiments based on 1.000 replications

with sample sizes n = 100 and n = 1.000.

The results show that the numerical problem addressed in this note is by no means negligible.

On average, between 6 and 7 percent of all observations are affected for this simple data generating

process. The results also show that our modification of the estimator works well in practice. The

averages of the estimates are very close to the true parameter values and the estimator appears

to be unbiased even in small samples.

Figure 1 depicts the empirical distributions of the share of observations not falling in N0.5,n and

of the estimates of λ. It turns out that in some samples more than 10 percent of the observations

are affected by the numerical problem addressed here when the sample size is 100. As to be

expected, the share of critical observations is much more concentrated around 6 percent when

the sample size is 1.000. The distribution of λ̂ is nicely concentrated around the true parameter

λ = 1.5 and as to be expected the variance decreases with the sample size.
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Figure 1: Distribution of shares of inadmissible observations not in N0.5,n and distribution of λ̂
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Appendix

Proof of Proposition 1: Without loss of generality, assume that λ > 0. In the following, we

will show that λx′
iβ̂θ(λ) + 1 > 0 implies λx′

iβ̂θ(λ) + 1 > 0 for all λ ∈ (0, λ].

Therefore, assume λ > 0 in the following. The proof proceeds in a number of steps.

1. The condition λx′
iβ̂θ(λ) + 1 > 0 is equivalent to x′

iβ̂θ(λ) > − 1
λ

and our result is implied by
∂x′

iβ̂θ(λ)

∂λ
< 1

λ2 for x′
iβ̂θ(λ) being close to − 1

λ
, which is to be shown.

2. We omit for this step the index i. Note that

f(y, λ) ≡ ∂yλ

∂λ
=

1

λ2
+

yλ(λln(y) − 1)

λ2

and

f(y, λ)

(
>

=

)
0 for y

(
�=
=

)
1 and f(y, λ)




<

=

>


 1

λ2
for y




<

=

>


 exp

(
1

λ

)
.

Starting at some λ, for y being small, i.e. y < exp(1/λ), reducing λ will result in an increase

and for y being large, i.e. y > exp(1/λ), in a decline of yλ + 1/λ.

3. The interpolation property of linear quantile regression (Koenker and Bassett, 1978, The-

orem 3.1) implies that x′
(h)β̂θ(λ) = y(h),λ

6 for h = 1, ..., K individual observations with

linearly independent x(h) and i(h) ∈ {1, ..., n} representing individual distinct observations

(x(h) = xi(h), y(h) = yi(h)). This interpolation property is the consequence of the fact that

estimating a linear quantile regression involves solving a standard linear program. A re-

duction in λ for λ > 0 results in a stronger decline of the interpolated y(h),λ the higher

its value. In particular, for a small y(h),λ it follows that y(h),λ + 1/λ = x′
(h)β̂θ(λ) + 1/λ in-

creases. Note, that for an infinitesimally small reduction in λ, the set of interpolated data

points i(h), h = 1, ..., K does not change (only the interpolated values y(h),λ do change), see

Koenker and D’Orey (1987, p. 385) for a similar argument.

4. Suppose for some λ ≤ λ and some observation i with xi =
∑K

h=1 ghx(h) (the weights gh are

given by the fact that every xi can be represented as a linear combination of K linearly

independent vectors x(h)) it is the case that x′
iβ̂θ(λ) = −1/λ. Due to the presence of

an intercept, it is clear that
∑K

h=1 gh = 1. By the interpolation property, it follows that∑K
h=1 ghy(h),λ = −1/λ. The latter statement is equivalent to ∆ ≡ ∑K

h=1 ghy
λ
(h) = 0, where

6With y(h),λ = (yλ
(h) − 1)/λ for λ �= 0 and y(h),λ = log(y(h)) for λ = 0.
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the left–hand–side denotes the difference between the fitted value for observation i and the

critical value −1/λ. We will show that ∂∆/∂λ < 0.

5. Assume without loss of generality y1 �= y2 (for the case y1 = y2 there are no critical data point

with fitted values not lying strictly above −1/λ thus requiring not further consideration).

For the critical data point i in the previous step, it follows that g1 = yλ
(2)/(y

λ
(2) − yλ

(1)) and

g2 = 1 − g1 = yλ
(1)/(y

λ
(1) − yλ

(2)). Then, after some straightforward manipulations, we obtain

∂∆

∂λ
=

2∑
h=1

ghlog(y(h))y
λ
(h) =

yλ
(2)y

λ
(1)[log(y(1)) − log(y(2))]

λ(yλ
(2) − yλ

(1))
< 0 .

The inequality holds because [log(y(1)) − log(y(2))] and [λ(yλ
(2) − yλ

(1))] have opposite signs.

6. After more than an infinitesimal change of λ it may occur that the set of interpolating

observations changes. For the specific lambda, when this occurs, the linear quantile re-

gression will interpolate another data point l = 1, ..., n with x′
lβ̂θ(λ) = yl,λ in addition to

i(h), h = 1, ..., K, again see Koenker and D’Orey (1987, p. 385) for a similar argument. If

λ moves infinitesimally further, then the data point l will replace one of the interpolated

i(h) in the set of interpolated data points. For the new set of interpolated data points, the

regressor vectors will again be linearly independent. Since the quantile regression interpo-

lates all y(h),λ as well as yl,λ and all except one of the i(h) data points remain interpolated

when λ moves beyond the critical value, the same argument applies as in the previous step.

Thus, also for such critical values of λ, where the set of interpolated data points changes, it

is clear that both one directional derivatives (∂∆/∂λ)dλ<0 and (∂∆/∂λ)dλ>0 are non-positive

for critical observations where the quantile regression interpolates −1/λ.

The proof proceeds in an analogous way for λ < 0 showing that if λx′
iβ̂θ(λ) + 1 > 0 holds for

λ = λ, then it holds for all λ ∈ [λ, 0).

�

Counter example for the result in Proposition 1 for K = 3

Consider the following data set with n = 10 observations and 2 regressors x1i and x2i:
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i xi,1 xi,2 yi

1 -2 -2 0.3

2 1 3 0.2

3 1 3 0.2

4 1 3 0.2

5 2 -3 2.0

6 2 -3 2.0

7 2 -3 2.0

8 3 -1 1.9600354921

9 3 -1 1.9600354921

10 3 -1 1.9600354921

Note that three times three observations are the same respectively and that for λ = 2 the Box–

Cox quantile regression at the median (θ = 0.5) interpolates observations 2(=3,4), 5(=6,7), and

8(=9,10). Observation 1 is a critical observation for our purpose with x′
1β̂θ(λ) = −1/λ = −0.5 for

λ = 2. For λ = 1.99, the fitted value is x′
1β̂θ(λ) = −0.50310 < −0.50251 = −1/λ and for λ = 2.01,

the fitted value is x′
1β̂θ(λ) = −0.49691 > −0.49751 = −1/λ. For λ = 2, one obtains (g1, g2, g3) =

(1.125, 2.75,−2.875) as weights for observation 1 with g1, g2, g3 referring to observations 2, 5, and

8, respectively. Furthermore, ∂∆/∂λ =
∑K

h=1 ghlog(y(h))y
λ
(h) = 0.11932 > 0 for λ = 2. The critical

condition (6) is violated in this case, because of the large positive weight g2 for the observation

with the highest value of the dependent variable y5 = 2.0.

Asymptotic Properties of modified estimator

We establish the asymptotic properties of our modified estimator based on the following four

steps, following the analysis of the asymptotic distribution of Box–Cox quantile regression in

Chamberlain (1994, appendix A.2) and building on the analysis in Powell (1991). For a given

quantile θ, λ0 and β0,θ are the true parameter values.

1. For a given λ and under standard regularity conditions, the linear quantile regression esti-

mator β̂θ(λ) is
√

n–consistent converging to the coefficients of the linear quantile projection

(this terminology is analogous to the linear projection for least squares, see Wooldridge,

2002, chapters 2 and 3) in the population

βθ(λ) = argminβ Eρθ(yλ − x′β) .

11



Under standard regularity conditions as in Powell (1991) or Chamberlain (1994), in par-

ticular y is continuously distributed conditional on x guaranteeing differentiability of the

population objective function, and analogous to the least squares case, it can be shown then

that βθ(λ) satisfies the following first order condition∫
x

{∫
y

x(I(yλ < x′β) − θ)f(y|x)dy

}
f(x)dx = Ex(I(yλ < x′β) − θ) = 0

as a population moment condition, where I(.) is the indicator function. It is clear that

for the true λ0, we obtain βθ(λ0) = β0,θ. Even though, the linear quantile projection as

an approximation does not satisfy Quant(yλ|x) = x′βθ(λ) for general λ (analogous to the

least squares case, see Wooldridge, 2002) the population moment condition suffices for β̂θ(λ)

to be a
√

n–consistent estimator of βθ(λ), as suggested by Chamberlain (1994) and shown

explicitly in Fitzenberger (1998).

2. The dummy variable indicating the admissible observations for the modified estimator is

given by

1Ii∈Nθ,n
= I({λx′

iβ̂θ(λ) + 1 > 0} and {λx′
iβ̂θ(λ) + 1 > 0})

which is based on the estimated linear quantile projections for both λ and λ. For the

population projections, define

Ii = I({λx′
iβθ(λ) + 1 > 0} and {λx′

iβ(λ) + 1 > 0}) .

√
n–consistency of β̂θ(λ) implies that E(1Ii∈Nθ,n

− Ii) = Op(n
−1/2) and V ar(1Ii∈Nθ,n

− Ii) =

Op(n
−1) for uniformly bounded moments (higher than second) of xi. Alternatively, in cases,

when our heuristic rule does not work, one can define

1Ii∈Nθ,n
= I({λx′

iβ̂θ(λ) + 1 > 0} for all λ ∈ [λ, λ].

However, this “rule” can not be easily checked in practical applications.

3. The objective function for the second step of the modified estimator in equation (5) can be

written as

1

n

n∑
i=1

Ii · ρθ(yi − g̃i[λ, β̂θ(λ)]) +
1

n

n∑
i=1

(1Ii∈Nθ,n
− Ii) · ρθ(yi − g̃i[λ, β̂θ(λ)]). (7)

By the Cauchy–Schwarz inequality, the absolute value of the second term can be bounded

from above by

| 1
n

n∑
i=1

(1Ii∈Nθ,n
− Ii)

2|1/2 · | 1
n

n∑
i=1

ρθ(yi − g̃i[λ, β̂θ(λ)])2|1/2 .
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The first term in this product converges to zero in probability uniformly at a rate faster

than
√

n and the second term is uniformly bounded from above in probability. Thus, the

asymptotic properties of the modified estimator can simply be derived as resulting from

minimizing the first term in equation (7), i.e. the estimation error in 1Ii∈Nθ,n
does not matter

asymptotically.

4. Since conditional on xi, Ii is not random, the asymptotic analysis in Powell (1991) and Cham-

berlain (1994) applies analogously to the modified estimator provided that E(1/n)
∑

i Iixix
′
i

is uniformly positive definite in order to guarantee identification. For finite λ and λ this

condition is satisfied for non-degenerate distributions of xi. Under this assumption and stan-

dard regularity conditions as in Powell (1991), consistency and
√

n asymptotic normality

of the modified estimator follows immediately based on the consideration in Powell (1991)

and Chamberlain (1994). Denoting η′ = (β′, λ) and following Chamberlain’s (1994, p. 204)

notation (see also the appendix in Machado and Mata, 2000) as closely as possible, the

asymptotic covariance matrix of the joint modified estimator η̂ = (β̂(λ̂)′, λ̂) is given by

[
A0

∂m(η0)

∂η′

]−1

A0 θ(1 − θ) E

(
xix

′
i Ii

∂g̃i

∂η
x′

i

xiIi
∂g̃i

∂η′ Ii
∂g̃i

∂η′
∂g̃i

∂η

)
A0

[
A0

∂m(η0)

∂η′

]−1′
,

where A0 =

(
EK 0 0

0 ∂βθ(λ0)
∂λ

1

)
, EK is the K × K identity matrix,

and m(η) = E

(
(I(yλ,i < xiβ) − θ) · xi

Ii · (I(yλ < xiβ) − θ) · ∂g̃i

∂η

)
.

The asymptotic results derived here differ from Chamberlain (1994) only by the fact that

the dummy Ii enters the asymptotic first order condition for the second step of the estimator

when optimizing over λ. Since Ii is nondecreasing for all observations when a finer set R is

used (i.e. λ decreases or λ increases) still containing λ0, the asymptotic variance decreases (in

the usual matrix sense), i.e. the modified estimator becomes asymptotically more efficient.
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