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Nontechnical Summary

In 1987, the report of the World Commission on Environment and Development (Brundtland

Commission) defined Sustainable Development (SD) as “development, which meets the needs

of the present without compromising the ability of future generations to meet their own

needs”. Sustainable Development has meanwhile become one of the most prominent

catchwords on the world’s policy agenda. Nearly all governments and multinational firms

have committed themselves to the overall concept of Sustainable Development. Taking a lead

role, the European Union (EU) requires Sustainability Impact Assessment (SIA) in terms of a

“careful assessment of the full effects of [any larger] policy proposal ... [that] ... must include

estimates of its economic, environmental and societal inputs inside and outside the EU” (EC,

2001).

Yet, Sustainable Development, which is not just about environment, but also about

economy and society, has proven hard to define and rather susceptible for ambiguities.

Furthermore, the three dimensions of Sustainable Development, i.e. environmental quality,

economic performance (gross efficiency) and equity concerns are inherently intertwined and

subject to trade-offs. Accomplishing one objective frequently means backpedaling on another.

The quantification of trade-offs calls for the use of numerical model techniques in order to

assess systematically and rigorously the interference of the many forces that interact in the

economy thereby affecting potential Sustainable Development indicators.

In general, there is no specific model, which fits all requirements for comprehensive

Sustainability Impact Assessment, but rather a package of models (or methods) depending on

the policy measure or issue to be assessed and the availability of data. However, when it

comes to providing a flexible backbone tool for Sustainability Impact Assessment, the current

paper tries to make a good case for the use of computable general equilibrium (CGE) models.

We argue that computable general equilibrium models can incorporate several key

sustainability indicators in a single micro-consistent framework, thereby allowing for a

systematic quantitative trade-off analysis between environmental quality, economic

performance and income distribution. Furthermore, the computable general equilibrium

approach provides an open framework for linkages to sector-specific models, important

relationships to other disciplines adopting an integrated assessment approach or the

incorporation of new economic research strings. This flexibility makes computable general

equilibrium models a central tool for  Sustainability Impact Assessment.
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1 INTRODUCTION

In 1987, the report of the World Commission on Environment and Development (WCED or

Brundtland Commission) defined Sustainable Development (hereafter: SD) as “development,

which meets the needs of the present without compromising the ability of future generations to

meet their own needs” (WCED, 1987). In June 1992, the Rio Earth Summit concluded that “the

right to development must be fulfilled so as to equitably meet developmental and environmental

needs of present and future generations” (UNCED, 1992a, Principle 3). SD has meanwhile

become one of the most prominent catchwords on the world’s policy agenda. Nearly all

governments and multinational firms have committed themselves to the overall concept of SD.

The ubiquity of SD as a yardstick for human activities is reflected in the growing importance

of Sustainability Impact Assessment (hereafter: SIA) of governmental policies. Initially, the

assessment of SD impacts concentrated on trade policy reforms (see, e.g., Kirkpatrick and Lee,

1999, for the SIA of WTO’s Millennium Round proposal). More recently, SIA has been extended

to other policy areas. Taking a lead role, the European Union (EU) meanwhile requires “careful

assessment of the full effects of [any larger] policy proposal ... [that] ... must include estimates of

its economic, environmental and societal inputs inside and outside the EU” (EC, 2001). The

argument behind is that SIA can improve the SD coherence of policy initiatives across various

areas by identifying spillovers and inter-linkages.

However, SD, which is not just about environment, but also about economy and society, has

proven hard to define and rather susceptible for ambiguities. One reason for this is that SD

explicitly incorporates an (normative) equity dimension, which is “so hopelessly subjective that

it cannot be analyzed scientifically” (Young, 1994). Another reason is that the scope of the

concept seems prohibitively comprehensive and therefore complex to make it operational in

concrete practice.

Acknowledging the huge inherent difficulties to come up with pragmatic approaches to the

concept of SD and the need for SIA, the scientific community has focused in a first step on the

identification of appropriate indicators. These efforts included the development of qualitative

tools (e.g. electronic checklists such as IASTAR, see http://iaplus.jrc.es) that can provide useful

orientation for policy decision makers. Yet, qualitative approaches are unable to commensurate

different impacts. This constitutes a major shortcoming, since the three dimensions of SD, i.e.

environmental quality, economic performance (gross efficiency) and equity concerns are

inherently intertwined and subject to trade-offs. Accomplishing one objective frequently means

backpedaling on another. Therefore, research activities on SIA increasingly aim at developing
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quantitative tools for trade-off-analysis along the SD dimensions. Since economics is the study

of trade-offs, there is plenty for economists to contribute in order to make the concept of SD

operational. One important contribution of (environmental) economics over the last decade has

been the thorough assessment of external costs, in particular for energy transformation and

transport activities, as a prerequisite towards “getting the prices right” (see, e.g., EC, 1999;

Friedrich and Bickel, 2001). Given external cost estimates, two aspects of SD, namely economic

performance (gross efficiency) and environmental quality, can be merged to a comprehensive net

efficiency dimension. Furthermore, while economics has little to say on equity per se, the sound

economic quantification of distributional effects for different agents and trade-offs between

equity and efficiency objectives is a prerequisite for any rational policy debate.

The quantification of trade-offs calls for the use of numerical model techniques in order to

assess systematically and rigorously the interference of the many forces that interact in the

economy thereby affecting potential SD indicators. Compared to (stylized) analytical models, the

numerical approach facilitates the analysis of complex (non-linear) system interactions and the

impact assessment of structural policy changes. In the end, the decisions how to resolve potential

trade-offs must be taken on the basis of societal values and political decisions. However, model-

based analysis puts decision making on an informed basis concerning sustainable development

rather than on fuzzy or contradictory hunches.

A major challenge in building quantitative SIA tools is the policy makers’ demand for

comprehensive coverage of potentially important policy impacts. SIA tools must identify “the

chain of significant cause-effect links from the … [policy] measures … through to any

sustainability impact” and produce “comparable indicators of the magnitude and dimensions of

each sustainability impact” (EC, 2003a) as an input into policy formulation and implementation.

Obviously, quantitative SIA does not only require an adequate reduction of complex real-world

relationships but – as a pre-requisite – the translation of potentially vague policy proposals into a

concrete policy impetus that can be “processed” within an analytical model.

There is a wide range of quantitative models for assessing the causal chains between a

proposed policy change and its potential economic, environmental and social impacts. Models

mainly differ with respect to the emphasis placed on (i) sectoral details versus economy-wide

scope, (ii) econometric foundation of functional relationships, and (iii) the richness of behavioral

assumptions for economic agents. Referring to criterion (i), there is a widespread distinction

between bottom-up sector-level models and top-down macroeconomic models. Referring to

criterion (ii), models can be classified as either econometrically estimated when driving

equations are based on econometric techniques using mostly time-series data or as calibrated
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when parameters of functional forms are simply selected to fit a single empirical observation.

Referring to criterion (iii), models may be distinguished between micro-/macro-founded

approaches and simple accounting frameworks.

While such a taxonomy of models can be useful, it has its limits. For example, the common

dichotomy between top-down economy-wide models and bottom-up sectoral models is in

general not of theoretical nature (i.e. due to controversial theoretical underpinnings) but simply

relate to the level of aggregation and the scope of ceteris paribus assumptions. In fact, there have

been various model developments merging bottom-up approaches and top-down models within

one consistent framework (see, e.g., Böhringer, 1998). Furthermore, among top-down models

there is often an exaggerated divide between econometric demand-driven Keynesian models and

computable general equilibrium (CGE) models. Popular arguments against the informational

value of CGE models include that these models must be calibrated (and thus lack empirical

evidence) and can neither reflect disequilibria (such as unemployment or under-utilization of

production capacities) nor transitional dynamics. In turn, econometric Keynesian models are

often accused of a lack of micro-foundation. These claims ignore substantial developments

during the last two decades to overcome such policy-relevant shortcomings.

In general, there is no specific model, which fits all requirements for comprehensive SIA,

but rather a package of models (or methods) depending on the policy measure or issue to be

assessed and the availability of data. However, when it comes to providing a flexible backbone

tool for SIA, the current paper tries to make a good case for the use of CGE models (see also

Böhringer, forthcoming). We argue that CGE models can incorporate several key sustainability

(meta-) indicators in a single micro-consistent framework, thereby allowing for a systematic

quantitative trade-off analysis between environmental quality, economic performance and

income distribution. Furthermore, the CGE approach provides an open framework for linkages to

sector-specific models, important relationships to other disciplines adopting an integrated

assessment approach or the incorporation of new economic research strings. This flexibility

makes CGE models a central tool for SIA.

The structure of the paper is as follows. Section 2 addresses the definition of SD indicators

as a prerequisite for SIA. We focus on two highly policy-relevant indicator lists (UN, 2001; EC,

2003b), distinguishing between (i) indicators that are covered by our stylized core CGE model

(as laid out in section 3), (ii) indicators that are in the scope of more or less straightforward

extensions of our core CGE model, and (iii) indicators that are rather difficult to address in

quantitative (CGE) analysis. Section 3 provides a non-technical introduction into a standard

multi-sector, multi-region CGE model of global trade and energy use that we consider as a
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possible backbone for (more) comprehensive quantitative SIA. Section 4 illustrates some selected

extensions of this core modeling framework that allow for appropriate treatment of potentially

important impacts triggered by specific policy proposals. Section 5 outlines possible model

linkages. Section 6 concludes.

Two major caveats apply: First, we do not cover competing or complementary quantitative

modeling approaches to SIA, i.e. we do not provide a cross-comparison of model-specific

strengths and weaknesses. Second, our exclusive focus on quantitative (CGE-based) analysis

should not exaggerate the role numerical approaches can play in SIA. Policy decisions are the

outcome of a broader participatory process where stakeholders and other interested parties

communicate a wide range of values, perceptions and judgements to policy makers (Tamborra,

2002). Quantitative analysis – if available at all – can at best strengthen or weaken policy

arguments, putting decision making on a more informed basis.

2 INDICATORS FOR SUSTAINABLE DEVELOPMENT

Monitoring progress towards SD requires in the first place the identification of operational

indicators that provide manageable units of information on economic, environmental and social

(including institutional) conditions. The crucial role of SD indicators has been prominently

emphasized by the United Nations Conference on Environment and Development (UNCED),

held in Rio de Janeiro in 1992, that calls on individual countries as well as international

governmental and non-governmental organizations to “develop and identify indicators of

sustainable development in order to improve the information basis for decision-making at all

levels” (UNCED, 1992b, Agenda 21, Chapter 40). Since then, much work has been devoted on

indicators for measuring SD. The Compendium of Sustainable Development Indicator Initiatives

lists more than 500 sustainable indicator efforts (Parris and Kates, 2003). Here, we focus on two

policy-relevant systems of sustainable indicators that have been developed by the United Nations

Commission on Sustainable Development (CSD – section 2.1) and the European Commission

(EC – section 2.2) for use by countries on a national level. Reflecting the purpose of the paper,

the exposition of the indicator systems below (Tables 1 and 2) includes our subjective and

preliminary assessment which individual indicators may be captured within a CGE modeling

framework.
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2.1 United Nations Commission on Sustainable Development (CSD)

The United Nations Commission on Sustainable Development (CSD), established in 1992 to

ensure effective follow-up of the UNCED, focused its work to date mainly on the development

and testing of indicators that could be readily used in planning, policy formulation, and

evaluation at the national level. The initial work program on Indicators of Sustainable

Development resulted in a list of 134 indicators, which covers social, environmental, economic,

and institutional aspects of SD. After voluntary national testing (within 22 countries) and expert

group consultation, a reduced and revised set of 58 “core indicators” categorized within 15

themes and 38 sub-themes (see Table 1) for monitoring the progress towards SD was released

(UN, 2001).

2.2 European Commission (EC)

Efforts by the European Community to integrate environmental objectives into the different

fields of policy-making date back to the early 1970s as manifested e.g. within the first

Environmental Action Plan (EAP, 1973). The Amsterdam Treaty, signed in 1997, codified

environmental policy integration as a central EU policy element within Article 6:

“... environmental protection requirements must be integrated into the definition and

implementation of the Community policies ... in particular with a view to promoting sustainable

development” and furthermore re-enforced Article 2, which defines SD as a fundamental

objective for the European Community.
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Table 1: CSD theme indicator framework (UN, 2001)

Theme Sub-theme Indicator

C
O

R
E

EX
TE

N
D

ED

Economic
Economic Economic Performance 1. GDP per Capita X
Structure 2. Investment Share in GDP X

Trade 3. Balance of Trade in Goods and Services X
Financial Status 4. Debt to GNP Ratio X

5. Total ODA Given or Received as a Percent of GNP X
Consumption Material Consumption 6. Intensity of Material Use X
and Production Energy Use 7. Annual Energy Consumption per Capita X
Patterns 8. Share of Consumption of Renewable Energy Resources X

9. Intensity of Energy Use X
Waste Generation and 10. Generation of Industrial and Municipal Solid Waste X
Management 11. Generation of Hazardous Waste X

12. Management of Radioactive Waste
13. Waste Recycling and Reuse X

Transportation 14. Distance Traveled per Capita by Mode of Transport X
Environmental
Atmosphere Climate Change 15. Emissions of Greenhouse Gases X

Ozone Layer Depletion 16. Consumption of Ozone Depleting Substances X
Air Quality 17. Ambient Concentration of Air Pollutants in Urban Areas X

Land Agriculture 18. Arable and Permanent Crop Land Area X
19. Use of Fertilizers X
20. Use of Agricultural Pesticides X

Forests 21. Forest Area as a Percent of Land Area X
22. Wood Harvesting Intensity X

Desertification 23. Land Affected by Desertification X
Urbanization 24. Area of Urban Formal and Informal Settlements

Oceans, Seas Coastal Zone 25. Algae Concentration in Coastal Waters
and Coasts 26. Percent of Total Population Living in Coastal Areas

Fisheries 27. Annual Catch by Major Species
Fresh Water Water Quantity 28. Ann. Withdrawal of Ground & Surface Water as % of Total Avail. X

Water Quality 29. BOD in Water Bodies X
30. Concentration of Faecal Coliform in Freshwater

Biodiversity Ecosystem 31. Area of Selected Key Ecosystems
32. Protected Area as a % of Total Area

Species 33. Abundance of Selected Key Species
Social
Equity Poverty 34. Percent of Population Living below Poverty Line X

35. Gini Index of Income Inequality X
36. Unemployment Rate X

Gender Equality 37. Ratio of Average Female Wage to Male Wage X
Health Nutritional Status 38. Nutritional Status of Children

Mortality 39. Mortality Rate Under 5 Years Old
40. Life Expectancy at Birth

Sanitation 41. Percent of Population with Adequate Sewage Disposal Facilities
Drinking Water 42. Population with Access to Safe Drinking Water
Healthcare Delivery 43. Perc. of Population with Access to Primary Health Care Facilities

44. Immunization Against Infectious Childhood Diseases
45. Contraceptive Prevalence Rate

Education Education Level 46. Children Reaching Grade 5 of Primary Education
47. Adult Secondary Education Achievement Level

Literacy 48. Adult Literacy Rate
Housing Living Conditions 49. Floor Area per Person
Security Crime 50. Number of Recorded Crimes per 100,000
Population Population Change 51. Population Growth Rate

52. Population of Urban Formal and Informal Settlements
Institutional
Institutional Strategic Impl. of SD 53. National Sustainable Development Strategy
Framework International Cooperation 54. Implementation of Ratified Global Agreements
Institutional Information Access 55. Number of Internet Subscribers per 1000 Inhabitants
Capacity Comm. Infrastructur 56. Main Telephone Lines per 1000 Inhabitants

Science & Tech. 57. Expenditure on Research and Development as a Percent of GDP X
Disaster Prep. & Resp. 58. Economic and Human Loss Due to Natural Disasters

 X   Incorporation of the indicator in the core and extended CGE model, respectively.
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The Gothenburg Summit in 2001 came up with the definition of an European Union

Strategy for Sustainable Development that combines the commitment to improved environmental

performance (Helsinki European Council 1999) with the objective “to become the most

competitive and dynamic knowledge-based economy in the world capable of sustainable

economic growth with more and better jobs and greater social cohesion” (Lisbon European

Council 2000). An annual stocktaking of the progress towards SD – due at each spring summit –

was agreed upon. The first progress report was prepared for the Barcelona Summit in 2002,

featuring 76 structural indicators. The subsequent report in 2003 then included 107 indicators.

Since the large number of indicators made it rather difficult to draw a clear picture on SD

progress (EC, 2003b) the Spring Report 2004 has been scheduled to report on only 14 structural

indicators thereby balancing the importance of employment, innovation and research, economic

reform, social cohesion and the environment (see Table 2).

Table 2: EC structural indicators proposed for Spring Report 2004 (EC, 2003b)

EC Indicator CSD
correspondence C

O
R

E

EX
TE

N
D

ED

I. GDP per capita (1) X

II. Labor productivity X

III. Employment rate (36) X

IV. Employment rate of older workers X

V. Spending on human resources (public exp. on education) (46-47)

VI. Research and Development expenditure (57) X

VII. Information Technology expenditure (55-56) X

VIII. Financial market integration (conv. of bank lending rates) X

IX. At risk-of-poverty rate (34) X

X. Long-term unemployment X

XI. Dispersion of regional employment rates X

XII. Greenhouse gases emissions (15) X

XIII. Energy intensity of the economy (7-9) X

XIV. Volume of transport (14) X
 X   Incorporation of indicator in the core and extended CGE model, respectively.
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3 THE CGE BACK-BONE TO (SUSTAINABLE) IMPACT ANALYSIS

Among numerical methods, computable general equilibrium (CGE) models are widely employed

by various national and international organizations (EU Commission, IMF, World Bank, OECD,

etc.), research centers, and universities for economic policy analysis at the sector-level as well as

the economy-wide level. CGE models build upon general equilibrium theory that combines

behavioral assumptions on rational economic agents with the analysis of equilibrium conditions.

They provide counterfactual (ex-ante) comparisons, assessing the outcomes with reform in place

with what would have happened had it not been undertaken (or undertaken in a different way).

The main virtue of the CGE approach is its comprehensive micro-consistent representation of

price-dependent market interactions. The simultaneous explanation of the origin and spending of

the agents' income makes it possible to address both economy-wide efficiency as well as

distributional impacts of policy interference. This has made CGE models a standard tool for the

quantitative analysis of policy interference in many domains including fiscal policy, trade policy,

and environmental policy. For survey articles see e.g. Bhattacharyya (1996), Bergman (1990),

Borges (1986), Conrad (1999, 2001), Klepper et al. (1994) and Shoven and Whalley (1992).

In section 3.1, we lay out the generic structure of a multi-sector, multi-region CGE

framework of global trade and energy use. We consider a multi-region framework as

indispensable for SIA of major policy initiatives in a world that is increasingly integrated through

trade. Policy interference in open economies not only cause adjustment of domestic production

and consumption patterns but also influence international prices via changes in exports and

imports. The changes in international prices, i.e. the terms of trade, imply a secondary benefit or

burden, which can significantly alter the impacts of the primary domestic policy. Likewise,

countries, which do not undertake policy reforms will nevertheless be affected through

international spillovers. In addition to the consistent representation of trade links, the detailed

representation of energy flows captures a major segment of the environmental SD dimension, i.e.

energy usage and air quality. Combustion of fossil fuels is a driving force of global warming

through the release of CO2 and cause serious regional and transboundary pollution through

emissions/imissions of SOx and NOx. The comprehensive scope of multi-region, multi-sector

CGE models explains why such models play a dominant role in the assessment of trade policy

impacts (see e.g. Lee and Kirckpatrick, 2001; Francois and Reinert, 1997) and climate policy

analysis (see e.g. Böhringer and Löschel, 2002). In section 3.2, we sketch the central steps

involved in applied CGE analysis that readily transfer to SIA of policy reforms and address the

issue of model parameterization.
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3.1 The Core Model

Figure 1 provides a diagrammatic structure of the standard multi-sector multi-region trade model

with energy flows as often used for comparative-static impact analysis of trade and

environmental or energy policies. Primary factors of a region r include labor rL , capital rK  and

resources ,ff rQ  of fossil fuels ff (crude oil, coal, and gas). The specific resource used in the

production of crude oil, coal and gas results in upward sloping supply schedules. Production Yir

of commodities i in region r, other than primary fossil fuels, is captured by aggregate production

functions which characterize technology through substitution possibilities between various

inputs. Nested constant elasticity of substitution (CES) cost functions with several levels are

employed to specify the KLEM substitution possibilities in domestic production sectors between

capital (K), labor (L), energy (E) and non-energy intermediate inputs, i.e. material (M).

Depending on data availability, the economy can be disaggregated into as many as several

hundred producing sectors (see, e.g., U.S. Department of Commerce, 1993).

Final demand Cir in each region is determined by utility maximization of a

representative agent RAr subject to a budget constraint. Total income of the representative agent

consists of his factor income. Final demand is given as a CES composite which combines

consumption of an energy aggregate with a non-energy consumption bundle. The substitution

patterns within the non-energy consumption bundle as well as the energy aggregate are described

by nested CES functions. Emissions are associated with fossil fuel consumption in production,

investment, and final demand.

All goods used on the domestic market in intermediate and final demand correspond to

a CES composite Air of the domestically produced variety and a CES import aggregate Mir of the

same variety from the other regions, the so-called Armington good (Armington, 1969). Domestic

production either enters the formation of the Armington good or is exported to satisfy the import

demand of other regions. The balance of payment constraint, which is warranted through flexible

exchange rates, incorporates the benchmark trade deficit or surplus for each region.
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3.2 Central Steps in CGE-based SIA

The use of quantitative models for measuring SD impacts of policy reforms requires the

specification of indicators, instruments, and analytical chains. First, measurable sustainability

indices covering the SD concerns of interest have to be defined and instruments that may

promote sustainability in different domains have to be identified. Then, the complete path

from the application of the instrument to the impact on the sustainability indicator has to be

modeled. Finally, policy explorations have to be carried out and implications on the

sustainability indicators have to be assessed.

Our core (generic) CGE model of global trade and energy use can be applied for

quantitative trade-off analysis along the three dimension of sustainability since it allows the

representation of the entire chain from policy interference to implied changes in major SD

indicators (predominantly economic and environmental impacts). A wide range of policy

measures that are subject to SIA is readily available in the core modeling framework such as

environmental policies (e.g. emission permits and taxes), fiscal measures (e.g. structural

adjustments, tax reforms) or trade policies (e.g. trade liberalization).

Our core CGE model focuses on traditional economic performance indicators (CSD

1, 3, 6, 7, 9; EC I-III, XIII) and environmental impacts in terms of emissions from fossil fuel

combustion, most notably CO2 (CSD 15; EC XII). The analytical chain from instruments to

impacts on SD indicators can be illustrated for the imposition of carbon taxes. Carbon (or

energy) taxes raise marginal costs of production due to abatement expenditure and tax

payments, which leads to higher market prices. The higher domestic price attracts imports and

lowers exports of energy-intensive goods (CSD 3). Firms substitute labor, material and capital

for the taxed energy input for keeping adjustment costs low. Consumers reduce their

consumption of energy alike. The reduced energy consumption (CSD 7, 9; EC XIII) and fossil

fuel use results in reductions in CO2 emissions, the main greenhouse gas (CSD 15; EC XII).

Labor demand benefits from the positive substitution effect (CSD 36; EC II, III). Material use

(CSD 6) also tends to increase. However, there is also a negative output effect due to

increased prices and reduced domestic production (CSD 1; EC I) that results from the new

distortions in intermediate and final consumption.

The central steps involved in constructing and using CGE models for policy impact

analysis are summarized in Figure 2. Initially, the policy issue must be carefully studied to

decide on the appropriate model design as well as the required data. The second step involves

the use of economic theory (at best, the draft of a simple analytical maquette model) in order
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to lay out key economic mechanisms that may drive the results in the more complex

numerical model (causal chain). Data work, model formulation and implementation then

delivers the framework for numerical policy analysis. This step also involves the set-up of

alternative policy instruments and strategies that induce changes vis-à-vis the reference

situation (scenario definition). In determining results of policy simulations, the choice and

parameterization of functional forms are crucial. The procedure most commonly used to select

parameter values is known as calibration (see Mansur and Whalley, 1984). Calibration of the

free parameters of functional forms requires a consistent one year’s data (or a single

observation represented as an average over a number of years), together with exogenous

elasticities that are usually taken from literature surveys. Benchmark data is typically

delivered in value terms. In order to obtain separate price and quantity observations, the

common convenient procedure is to choose units for goods and factors so that they have a

price of unity in the benchmark equilibrium. The calibration is a deterministic procedure and

does not allow for statistical test of the model specification. The one consistency check that

must necessarily hold before one can proceed with policy analysis is the replication of the

initial benchmark: the calibrated model must be capable of generating the base-year

(benchmark) equilibrium as a model solution without computational work. Within the policy

simulations single parameters or exogenous variables are changed and a new (counterfactual)

equilibrium is computed. Comparison of the counterfactual and the benchmark equilibrium

then provides information on the policy-induced changes of economic variables such as

employment, production, consumption, relative prices, etc. Finally, the model results must be

interpreted based on sound economic theory. In that, theoretical analysis and numerical work

are complementary. As theoretical models must be highly stylized to keep analytical

tractability, their direct contribution to actual policy analysis remains limited. Numerical

methods are required to account for policy-relevant complexities but must be accompanied by

theoretical analysis to detect potential (programming) errors and to reduce the black-box

character of quantitative simulations.

The extent to which policy instruments alter sustainable development indicators

depends crucially on the responsiveness of supply and demand with respect to price changes

(i.e. elasticities). Due to the reliance on exogenous elasticity values and a single base-year

observation, comprehensive sensitivity analysis on key elasticities and possibly alternative

assumptions on economic incentives should be performed before concrete policy

recommendations are derived. A deliberate sensitivity analysis helps to identify robust
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insights on the complex relationships between assumptions (inputs) and results (outputs), i.e.

sort out the relative importance of a priori uncertainties.

Figure 2: Steps in CGE analysis (Böhringer, 1996)
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4 CORE MODEL EXTENSIONS

Our core model covers only a few indicators for SIA (see column “core” in Tables 1 and 2). In

this section, we illustrate some extensions of the core model that widen its scope and policy

relevance with respect to SIA. There are various other developments of the CGE methodology

targeted to specific aspects for SIA that are not covered here.

As to environmental impacts, our core model focuses on carbon dioxide from fossil

fuel use, since it constitutes the largest contribution to global warming. However, there are

potentially important non-CO2 greenhouse gases (GHG) as well as other detrimental

emissions that should be included in a broader SIA. Real world economies are characterized
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by initial market distortions such as taxes (subsidies) and imperfections on goods and factor

markets. The existence of market distortions can substantially alter the impacts of policy

interference. A further important extension of the core model is the addition of dynamics in

order to investigate the adjustment path of economies during the transition towards some SD

targets in the future. Policy-induced technological change may also have substantial

implications for the relative attractiveness of alternative policy initiatives. Finally, our core

model considers distributional analysis across regions but lacks a disaggregation of the

representative agent into heterogeneous households or different generations.

4.1 Air (CSD 15-17; EC XII)

In our core model carbon emissions are directly linked to fossil fuel inputs in production or

consumption. Carbon emission abatement can take place either through reduction of good

output or substitution of non-polluting inputs for polluting inputs (fuel switching and fuel

savings). However, other GHG emissions, ozone depleting substances or air pollutants cannot

be directly linked in fixed proportions to input or output activities in economic sectors.

Approaches to endogenize non-CO2 pollution control in CGE models include: (i) the

creation of clean-up sectors (“end-of-pipe” abatement actitivies) separately from the

technology associated with the production of the good output that use capital, labor and other

inputs to provide abatement services which are demanded by emitting sectors as an additional

input (Conrad and Schröder, 1991) and (ii) modeling the GHG directly as an input into

production. To introduce GHG control, the production function is parameterized in

consistence with technological based marginal abatement cost curves of control options

(Hyman et al., 2003).

4.2 Initial Taxes and Revenue Recycling

It is well known that the way revenues from environmental regulation (e.g. emission taxes or

auctioned tradable permits) are used has major impacts on the social costs of the

environmental policies (see, e.g., Goulder, 1995). When revenues are employed to reduce

existing tax distortions, environmental regulation presents an opportunity to simultaneously

improve environmental quality and offset at least part of the adjustment burden by reducing

the costs of the tax system.

In our core model, revenues are recycled lump-sum to the representative agent in each
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region and initial tax distortions are not explicitly considered. It is straightforward to

incorporate a governmental sector that collects taxes (e.g. production taxes or subsidies,

intermediate input taxes, consumption taxes, tariffs, which are used to finance the public good

provision and public transfers. Additional income from environmental taxes or emission

levies such as carbon taxes on industrial and final fossil fuel use may then be used within a

revenue-neutral (equal-yield) tax reform (see e.g. Goulder 1995, Böhringer et al., 1997).

4.3 Imperfect Competition on Factor and Goods Markets

Involutary unemployment (CSD 36; EC III, IV)

Persistent unemployment at high levels is a central impediment to SD in many countries.

Thus, a major requirement to new policy initiatives is that unemployment problems will at

least not be worsened. A convenient shortcut to replace the competitive labor market in our

core model is the specification of a „wage curve“ (Blanchflower and Oswald, 1994). The

wage curve reflects empirical evidence on the inverse relationship between the level of wages

and the rate of unemployment. In such a model, the wage curve, together with labor demand,

determines the level of involuntary unemployment (see, e.g., Böhringer et al., 2003a).

Imperfectly competitive goods markets

The core model is based on perfectly competitive goods markets. However, there is a

widespread suspicion that such a setting misses important industrial organization effects of

policy interference such as changes in economies of scale or price mark-ups. In order to

account for these effects, the core model can be extended to feature imperfectly competitive

supply behavior and increasing returns to scale (see Böhringer and Löschel, forthcoming).

Relaxing the assumption of perfect competition, allocation effects emerge from increased

competition and the exploitation of scale economies (so-called pro-competitive effects):

Market enlargement increases competition between firms that enforces lower prices. It can

also lead to higher production and the use of economies of scale. Increased competition from

the greater substitutability of products within the enlarged market is another source for

rationalization gains under imperfect competition.

4.4 Dynamic Specification (CSD 2)

Key issues in SD policy involve interference over longer time periods. Examples include
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GHG abatement strategies to cope with global warming or direct regulation of energy

technologies such as an administered phase-out of nuclear power or a phase-in of renewable

energies. A dynamic framework is essential to capture the adjustment path of physical and

human capital stocks for such exogenous policy changes. Furthermore, it allows to address

issues of resource depletion, stock pollution and economic growth which are central to the SD

debate. On the consumption side, dynamics involve the representation of the savings behavior

of households. On the production side, dynamics involve the description of investment

decisions (including resource exploration and extraction strategies) of firms. There are two

basic approaches to handle dynamics: (i) the dynamic-recursive framework based on myopic

expectations, and (ii) the fully intertemporal setting with perfect foresight.

Adopting a dynamic-recursive approach the static core model is solved for a sequence

of temporary equilibria with consumers allocating income between present and future

consumption (through savings) at each point in time. Savings is based on the expected return

assuming myopic predictions (i. e. the households assume prices to remain constant). On the

production side of the economy there are also myopic expectations assumed. Equilibrium

ensures the saving-investment equality. The path for the economy is a set of connected

equilibria where the current period’s saving augments capital in the next period. Capital

stocks are updated as an intermediate calculation between periods.

Following the intertemporal approach the static model is casted into an intertemporal

setting where consumption and investment decisions are based on rational expectations of

future prices (Lau et al., 2002). This assures that the effects of policy interference on savings

and investments are consistently taken into account. The intertemporal framework reveals

effects of policy changes on intertemporal consumption and investment (savings) decisions,

permits measurement of transition costs (inter-sectoral adjustments) and rates of resource

depletion as well as long-term growth effects, which can be significant relative to long-term

gains.

4.5 Technological Change (CSD 2, 8, 57; EC V-VII)

For the measurement of sustainability, an appropriate incorporation of technological change

may be of paramount importance (see EMF, 1996). In our core model (as in most existing

CGE models), technological change is considered to be a non-economic, exogenous variable.

Economic activities and policies have then no impact on research, development, and diffusion

of new technologies. Changes in technologies are solely the result of price substitution along a
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given production isoquant (described by price elasticities) and shifts of the isoquant through

changes in factor demand. Existing technologies are gradually replaced in CGE models as

relative prices of alternative technologies change.

Only more recently, CGE models took into account the empirical evidence that

technological change is to an important degree endogenous, i.e. responding to socio-economic

(policy) variables like prices, investment in R&D, or cumulative production (see Löschel,

2002 for an overview). As, e.g., environmental policy implicitly or explicitly increases the

price of energy, firms invest in R&D with the intention of producing profitable new (energy

efficient) products and processes. Goulder and Schneider (1999) construct a dynamic CGE

model in which firms in each sector employ physical capital and knowledge capital to

produce output. Knowledge accumulation (expenditure on R&D activities) reduces the input

requirements for the industries. But the accumulation of knowledge is costly. In addition, the

investment in R&D may provide spillovers, or positive technological externalities. In the

same manner, spillovers from, e.g., IT expenditures could be modeled.

4.6 Equity (CSD 34-37; EC III, IV, IX-XI)

As mentioned before, the quantification of social aspects in CGE models featuring a single

representative household per region is limited. To assess the distributional impacts of policies,

a disaggregation of the household sector into several types of households is required.

Jorgenson and Wilcoxen (1993) subdivided the household sector into demographic groups

that differ by characteristics such as family size, age of head, region of residence, race and

urban and rural location and considered 1344 different household types based on these

criteria.

From a dynamic perspective the analysis of distribution issues may require an extension

towards overlapping generations (OLG) models, where households are heterogeneous by age,

i.e. agents are distinguished by date of birth. There are various examples of single-country

CGE models with overlapping generations. Keuschnigg and Kohler (1994) use a Blanchard

type approach where different generations are alive each period and each generation has the

same constant death probability independent of age (perpetual youth approach) to study

intergenerational effects of fiscal policy. Rasmussen and Rutherford (forthcoming) employ a

multi-sector OLG model of the Auerbach-Kotlikoff type to investigate the impacts of an

environmental tax reform at the single country-level. However, an OLG framework with

multiple regions, sectors and households (generations) still poses considerable computational
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challenge and requires severe trade-offs with the level of remaining details that can be

captured in the model.

5 FURTHER EXTENSIONS: MODEL LINKAGES

Inherently, the strength of rather aggregate, economy-wide CGE models in capturing

sustainability effects of policy initiatives at the level of different regions, sectors and

households cause deficiencies when it comes to more narrow specific or small-scale impact

assessment. There are many complementary quantitative models that feature substantially

more details of technological conditions (e.g. engineering bottom-up energy system models),

socio-economic household behaviour (e.g. micro-simulation models) or natural science

relationships (e.g. climate models, water stress models, land-use models).

This raises the question to which extent and in which manner different models can be

linked towards a more comprehensive coverage of SIA requirements. In principle, there are

two basic approaches for model linkages which are loosely termed as soft-link vis-à-vis hard-

link (see, e.g., Böhringer 1996). Roughly speaking, the soft-link approach involves

combination of two or more models that have been developed independently from another and

can be run stand-alone. Due to the heterogeneity in complexity and accounting methods

across different models, the soft-link approach stands out for substantial problems in

achieving overall consistency and convergence of iterative solution approaches. On the other

hand, it allows to maintain detailed information embodied within the various (often

interdisciplinary) models without requiring comprehensive central expertise. Furthermore,

linkages can be based on established models rather than requiring modeling work from

scratch. These rather pragmatic advantages may outweigh to some degree pending

deficiencies in overall consistency. The hard-link approach puts strong emphasis on internal

consistency and therefore makes use of a single integrated modeling framework (e.g. our core

CGE model presented in section 3). Information from other models are directly “coded” into

the core model. This means that data and functional relationships from other models must be

condensed and synthesized in a way compatible to the structure of the core model.

In modeling practise, most examples of soft-links between top-down CGE models and

bottom-up approaches refer to energy-economy model systems (see, e.g., Bergman and

Lundgren, 1990). There are various large-scale detailed sectoral models for energy (CSD 7-9;

EC XIII) and transport (CSD 14; EC XIV) that may be soft-linked to CGE models to cover a
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wider range of sustainability indicators such as PRIMES (EC, 1995) and POLES (EC, 1996),

or TREMOVE (van Herbruggen, 2002).

Beyond soft-linked energy-economy model systems, integrated assessment models (IAM)

seek to combine knowledge from multiple disciplines in an analytic framework to assess the

effects of different policy options. The IAM framework typically features broad system

linkages and feedbacks, particularly between socio-economic and biophysical processes. For

example, within the IMAGE model system (IMAGE-Team, 2001), a CGE sub-model and a

population sub-model feed basic information on economic and demographic developments for

several world regions into other linked sub-models such as a land-cover model (which

calculates global land-use and land-cover changes including changes in agricultural land

(CSD 18), forests (CSD 21), and desertification (CSD 23). Another prominent example is the

MIT Integrated Global System Model (IGSM) consisting of a set of coupled sub-models of

economic development and associated emissions, natural biogeochemical cycles, climate, and

natural ecosystems (Prinn et al., 1998). There, a CGE model is applied to “predict” emissions

used subsequently as an input in the atmospheric chemistry model and the climate model. To

date most of the potential feedbacks between the socio-economic and biophysical systems are

not formally modeled. Instead, the sub-models use the results of the economic model as

exogenous parameters. In other words, there is only a one-way soft link between economic

variables and their relationship with biophysical variables. Exceptions with two-way (hard-)

links where biophysical variables (such as air quality) affect consumer welfare, labor

productivity or capital depreciation include Nordhaus (1994) and Vennemo (1997).

Hard linkages stand out for the direct integration of bottom-up information within top-

down (CGE) models. As illustrated initially by Böhringer (1998) in a static stylized CGE

model, the bottom-up representation of certain segments within the top-down model is

straightforward. In practical application to energy regulation (e.g. Böhringer et al., 2003b and

2003c), the bottom-up representation of major power supply options enhances the

transparency and “credibility” of simulated technological responses in electricity production

that are triggered by specific nuclear phase-out policies. A similar procedure has been

employed in the development of CGE models for integrated assessment of the costs and

benefits from climate change policies: Complex relationships in the climate system have first

been simplified through appropriate aggregation, i.e. reduced forms of more elaborated

climate models (Nordhaus and Yang, 1996; Nordhaus and Boyer, 2000).

Bottom-up indicators may also be directly incorporated into multi-sector, multi-region
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CGE models through exogenous coefficients or estimated “meta”-functions. A prominent

example is the representation of complex abatement options for non-CO2 greenhouse gases

which are not modeled in detail. Instead, exogenous marginal abatement cost curves for non-

CO2 greenhouse gases based on sophisticated bottom-up analysis are employed (Hayhoe et

al., 1999; Reilly et al., 1999). Fæhn and Holmøy (2003) link consumption of material goods

to solid waste generation for deposition (CSD 10-11). Xie and Saltzman (2000) use an

environmentally extended social accounting matrix to identify three general types of pollution

(waste water, smog dust, and solid waste) and include the respective pollution-abatement

sectors (CSD 10, 13). Strutt and Anderson (2000) use a comprehensive environmental input-

output data set complemented by case studies to project anticipated changes in technology in

order to assemble a matrix of environmental coefficients over time. Based on these

coefficients they estimate the environmental impact per unit of economic activity in each

sector and project environmental outcomes for water use (CSD 28), water pollution (CSD 29)

and air pollution (CSD 15-16; EC XII). The water pollution content of the effluent is provided

by four measures: biological oxygen demand, chemical oxygen demand, dissolved solids, and

suspended solids. Berck et al. (1991) provide an overview of the use of CGE models to assess

water regulation which becomes an increasingly important policy issue in drier regions. A

major modeling challenge concerns the appropriate representation of water supply and

demand (Hertel, 1999). Decaluwe et al. (1997) have addressed this issue in the context of an

CGE model of the Moroccan economy in which they investigate the implications of water

pricing policies. Supply responses of groundwater and surface water (collected by dams) are

modeled stochastically. In contrast, Robinson and Gehlhar (1995) developed a CGE model of

Egypt in which land and water are combined in a linear fashion in the sectoral production

function.

Complementary model information that can be hard-linked to CGE models may

substantially improve the applicability of the CGE approach for problem-tailored SIA in

various policy fields such as land use, desertificiation, agriculture or water management.

Difficulties might arise in the reconciliation of top-down and bottom-up data stemming from

different data sources. Due to different accounting methods (e.g., different depreciation rules)

substantial data adjustments may be necessary before a consistent data base for the hard-

linked model is available.
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6 CONCLUDING REMARKS

The objective of a sustainable future needs a comprehensive methodology to perform SIA

quantitatively. An issue that can not be clearly measured will be difficult to improve. In this

paper, we tried to sustain the view that CGE models can serve as a useful tools for assessing

the impacts of policy interference on environmental quality, economic performance and

equity. CGE models can incorporate various important SD indicators in a single consistent

framework and allow for a systematic quantitative tradeoff analysis.

REFERENCES
Armington, P. A. (1969), A Theory of Demand for Products Distinguished by Place of

Production, IMF Staff Papers, 16 (1), 159–178.

Bhattacharyya, S. C. (1996), Applied General Equilibrium Models for Energy Studies: A

Survey, Energy Economics, 18, 145-164.

Berck, P., S. Robinson, and G. Goldman (1991), The use of computable general equilibrium

models to assess water policies, in: A. Dinar and D. Zilberman (ed.), The economics

and management of water and drainage in agriculture, Boston, MA: Kluwer Academic

Publishers.

Bergman, L. (1990), The Development of Computable General Equilibrium Modeling, in: L.

Bergman, D. W. Jorgenson and E. Zalai (eds.), General Equilibrium Modeling and

Economic Policy Analysis, Cambridge, 3-30.

Bergman, L. and S. Lundgren (1990), General Equilibrium Approaches to Energy Policy

Analysis in Sweden, in: L. Bergman, D. W. Jorgenson and E. Zalai (eds.), General

Equilibrium Modeling and Economic Policy Analysis, Oxford: Basil Blackwell,

351-382.

Blanchflower, D. G. and A. J. Oswald (1994), The Wage Curve. Cambridge. MA: MIT Press.

Böhringer, C. (1996), Allgemeine Gleichgewichtsmodelle als Instrument der energie- und

umweltpolitischen Analyse. Theoretische Grundlagen und Empirische Anwendung,

Dissertationsschrift, Frankfurt: Peter Lang.

Böhringer, C. (1998), The Synthesis of Bottom-Up and Top-Down in Energy Policy

Modeling, Energy Economics 20 (3), 233-248.

Böhringer, C. (forthcoming), Sustainability Impact Analysis: The Use of Computable General

Equilibrium Models, Économie Internationale.



22

Böhringer, C. und A. Löschel (2002), Economic Impacts of Carbon Abatement Strategies, in:

C. Böhringer, M. Finus and C.Vogt, Controlling Gobal Warming, Perspectives from

Economics, Game Theory and Public Choice, Cheltenham: Edward Elgar, 98-172.

Böhringer, C. and A. Löschel (eds.) (forthcoming), Climate Change Policy and Global Trade,

ZEW Economic Studies, Heidelberg: Physica.

Böhringer, C., K. Conrad and A. Löschel (2003a), Carbon Taxes and Joint Implementation –

An Applied CGE Analysis for Germany and India, Environmental and Resource

Economics, 24 (1), 49-76.

Böhringer, C., T. Hoffmann and A. Löschel (2003b), Dismantling Nuclear Power in Europe:

Macroeconomic and Environmental Impacts, ZEW Discussion Paper 03-15,

Mannheim.

Böhringer, C., A. Müller and M. Wickart (2003c), Economic Impacts of a Premature Nuclear

Phase-Out in Switzerland, Swiss Journal of Economics and Statistics, 139 (4), 461-

505.

Böhringer, C., T. F. Rutherford, A. Pahlke, U. Fahl and A. Voß (1997), Volkswirtschaftliche

Effekte einer Umstrukturierung des deutschen Steuersystems unter besonderer

Berücksichtigung von Umweltsteuern, Stuttgart.

Borges, A. (1986), Applied General Equilibrium Models: An Assessment of their Usefulness

for Policy Analysis, OECD Economic Studies, 7, 7-43.

Conrad, K. (1999), Computable General Equilibrium Models for Environmental Economics

and Policy Analysis, in: J.C.J.M. van den Bergh (ed.): Handbook of Environmental

and Resource Economics, Cheltenham, Edward Elgar, 1061-1087.

Conrad, K. (2001), Computable General Equilibrium Models in Environmental and Resource

Economics, in: T. Tietenberg and H. Folmer (eds.): The International Yearbook of

Environmental and Resource Economics 2002/2003, 66-114.

Conrad, K. and M. Schröder (1991), An Evaluation of Taxes on Air Pollutant Emissions: An

Applied General Equilibrium Approach, Swiss Journal of Economics and Statistics,

127 (2), 199-224.

Decaluwe, B., A. Patry, and L. Savard (1997), When Water is No Longer a Gift From

Heaven: A CGE Model of the Moroccan Economy, Paper presented at the

DIAL/PARADI Conference on CGE Modeling in Developing Economies, Paris,

4.-5.9.1997.

EAP (Environmental Action Programme) (1973), First Environmental Action Plan, 1973-



23

1977, published in OJ C 112, 20.12.1973.

EC (European Commission) (1995), PRIMES, DG XII, EUR 16713, Brussels.

EC (European Commission) (1996), POLES 2.2, DG XII, EUR 17358, Brussels.

EC (European Commission) (1999), EXTERNE: Externalities of Energy, Vol. 1-10, Brussels

1995/99 (http://www.ExternE.info).

EC (European Commission) (2001), A Sustainable Europe for a Better World: A European

Union Strategy for Sustainable Development, Commission's proposal to the

Gothenburg European Council, COM(2001)264 final, Brussels, 15.5.2001.

EC (European Commission) (2003a), Sustainability Impact Assessment of Trade Agreements

– Making Trade Sustainable?, Background Paper, DG Trade Seminar, Brussels,

6-7.2.2003.

EC (European Commission) (2003b), Structural Indicators, Communication from the

Commission, COM(2003)585 final, Brussels, 8.10.2003.

EMF (Energy Modeling Forum) (1996), Markets for Energy Efficiency, EMF Report 13,

Volume I, Stanford University, Stanford, CA.

Fæhn T. and E. Holmøy (2003), Trade liberalisation and effects on pollutive emissions to air

and deposits of solid waste. A general equilibrium assessment for Norway, Economic

Modelling, 20, 703-727.

Francois, J. F. and K. A. Reinert (eds.) (1997), Applied Methods for Trade Policy Analysis: A

Handbook, New York: Cambridge University Press.

Friedrich, R. and P. Bickel (eds.) (2001), Environmental External Costs of Transport, Berlin:

Springer.

Goulder, L. H. (1995), Effects of Carbon Taxes in an Economy with Prior Tax Distortions:

An Intertemporal General Equilibrium Analysis, Journal of Environmental Economics

and Management, 29, 271-297.

Goulder, L. H. and S. Schneider (1999), Induced Technological Change, Crowding Out, and

the Attractiveness of CO2 Emissions Abatement, Resource and Environmental

Economics, 21 (3–4), 211–253.

Hayhoe, K., A. Jain, H. Pitcher, C. MacCracken, M. Gibbs, D. Wuebbles, R. Harvey, and D.

Kruger (1999), Costs of Multigreenhouse Gas Reduction Targets for the USA,

Science, 286, 905-906.

Hertel, T. W. (1999), Applied General Equilibrium Analysis of Agricultural and Resource

Policies, Staff Paper 99-2, Department of Agricultural Economics, Purdue University.



24

Hyman, R. C., J. M. Reilly, M. H. Babiker, A. De Masin, and H. D. Jacoby (2003), Modeling

Non-CO2 Greenhouse Gas Abatement, Environmental Modeling and Assessment,

8 (3), 175-186.

IMAGE-Team (2001), The IMAGE 2.2 implementation of the SRES scenarios. A

comprehensive analysis of emissions, climate change and impacts in the 21st. Century,

RIVM CD-ROM publication 481508018, National Institute for Public Health and the

Environment, Bilthoven, the Netherlands.

Jorgenson, D. W. and P. J. Wilcoxen (1993), Reducing US Carbon Emissions: An

Econometric General Equilibrium Assessment, Resource and Energy Economics, 15,

7-25.

Keuschnigg, C. and W. Kohler (1994), Modeling Intertemporal General Equilibrium: An

Application to Austrian Commercial Policy, Empirical Economics, 19, 131-164.

Kirkpatrick, C. and N. Lee (1999), WTO New Round Sustainability Assessment Study, Phase

Two Main Report (Manchester Study), Institute for Development Policy and

Management and Environmental Impact Assessment Centre, University of Manchester

(http://www.idpm.man.ac.uk/sia-trade).

Klepper, G., J.-O. Lorz, F. Stähler, R. Thiele and M. Wiebelt (1994), Empirische allgemeine

Gleichgewichtsmodelle – Struktur und Anwendungsmöglichkeiten, Jahrbücher für

Nationalökonomie und Statistik, 213, 513-544.

Lau, M. I., A. Pahlke and T. F. Rutherford (2002), Approximating Infinite-horizon Models in

a Complementarity Format: A Primer in Dynamic General Equilibrium Analysis,

Journal of Economic Dynamics and Control, 26, 577-609.

Lee, N. and C. Kirkpatrick (2001), Methodologies for Sustainability Impact Assessments of

Proposals for New Trade Agreements, Journal of Environmental Assessment Policy

and Management, 3 (3), 395-412.

Löschel, A. (2002), Technological Change in Economic Models of Environmental Policy: A

Survey, Ecological Economics, 43, 105-126.

Mansur, A. and J. Whalley (1984), Numerical Specification of Applied General Equilibrium

Models: Estimation, Calibration, and Data, in: H. E. Scarf. and J. B. Shoven (eds.),

Applied General Equilibrium Analysis, New York: Cambridge University Press, 69-

127.

Nordhaus, W. D. (1994), Rolling the “DICE”: An Optimal Transition Path for Controlling

Greenhouse Gases, Resource and Energy Economics, 15, 27-50.



25

Nordhaus, W. D. and J. Boyer (2000), Warming the World: Economic Models of Global

Warming, Boston, MA: MIT Press.

Nordhaus, W. D. and Z. Yang (1996), A Regional Dynamic General-Equilibrium Model of

Alternative Climate-Change Strategies, American Economic Review, 86, 741-765.

Parris, T. M. and R. W. Kates (2003), Characterizing and Measuring Sustainable

Development, Annual Review of Environment and Resources, 28, 559-586.

Prinn, R., H. Jacoby, A. Sokolov, C. Wang, X. Xiao, Z. Yang, R. Eckaus, P. Stone, D.

Ellerman, J. Melillo, J. Fitzmaurice, D. Kicklighter, G. Holian, and Y. Liu May (1998),

Integrated Global System Model for climate policy assessment: Feedbacks and

sensitivity studies, Climatic Change, 41 (3/4), 469-546).

Rasmussen, T. N. and T.F. Rutherford (forthcoming), Modeling Overlapping Generations in a

Complementarity Format, Journal of Economic Dynamics and Control.

Reilly, J., R. Prinn, J. Harmisch, J. Fitzmaurice, H. Jacoby, D. Kicklighter, J. Melillo, P.

Stone, A. Sokolov, and C. Wang (1999), Multiple Gas Assessment of the Kyoto

Protocol, Nature, 401, 549-555.

Robinson, S. and C. Gehlhar (1995), Land, Water and Agriculture in Egypt: The Economy-

wide Impact of Policy Reform, IFPRI TMD Discussion Paper 1, Washington, D.C.

Shoven, J. B. and J. Whalley (1992), Applying General Equilibrium, Cambridge, Cambridge

University Press.

Strutt, A. and K. Anderson (2000), Will Trade Liberalization Harm the Environment? The

Case of Indonesia to 2020, Environmental and Resource Economics, 17, 203–232.

Tamborra, M (2002), Socio-Economic Tools For Sustainability Impact Assessment - The

Contribution of EU Research To Sustainable Development, European Communities,

Office for Official Publications of the European Communities, Luxembourg.

UN (United Nations) (2001) Indicators of Sustainable Development: Guidelines and

Methodologies, New York.

UNCED (The United Nations Conference on Environment and Development, Earth Summit)

(1992a), Rio Declaration on Environment and Development, Rio de Janeiro,

3.–14.6.1992.

UNCED (The United Nations Conference on Environment and Development, Earth Summit)

(1992b), Agenda 21, Rio de Janeiro, 3.–14.6.1992.

U.S. Department of Commerce (1993), Input-Output Table of the U.S. Economy, 1987,

Bureau of Economic Analysis, Washington, DC.



26

Van Herbruggen, B. (2002), In Depth Description of the TREMOVE Model, Transport &

Mobility Leuven, March 2002, Leuven.

Vennemo, H. (1997), A Dynamic Applied General Equilibrium Model with Environmental

Feedbacks, Economic Modeling, 14, 99-154.

WCED (World Commission on Environment and Development, The Brundtland

Commission) (1987), Our Common Future, Oxford: Oxford University Press.

Xie, J. and S. Saltzman (2000), Environmental Policy Analysis: An Environmental

Computable General-Equilibrium Approach for Developing Countries, Journal of

Policy Modeling, 22(4), 453–489.

Young, H. P. (1994), Equity in Theory and Practice, Princeton, N.J.: Princeton University

Press.




