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Design Problem∗
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Abstract

Threshold Accepting (TA) is a powerful optimization heuristic
from the class of stochastic local search algorithms. It has been ap-
plied successfully to different optimization problems in statistics and
econometrics, including the uniform design problem. Using the latter
application as example, the stochastic properties of a TA implementa-
tion are analyzed. We provide a formal framework for the analysis of
optimization heuristics like TA, which can be used to estimate lower
bounds and to derive convergence results. It is also helpful for tuning
real applications. Based on this framework, empirical results are pre-
sented for the uniform design problem. In particular, for two problem
instances, the rate of convergence of the algorithm is estimated to be
of the order of a power of -0.3 to -0.7 of the number of iterations.

Keywords: Heuristic optimization; Threshold Accepting; Stochastic analy-
sis of heuristics.
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1 Introduction

Threshold Accepting (TA) is an optimization heuristic.1 It might be con-
sidered as a modification of the more often used Simulated Annealing (SA)
heuristic (Kirkpatrick et al., 1983) using a deterministic acceptance criterion
instead of the probabilistic one in SA. Nevertheless, it shares the property
of most optimization heuristics to provide a stochastic approximation to the
optimum, i.e. results will change when the algorithm is run repeatedly due
to random effects in the start point and search steps.

Given that classical or standard optimization techniques such as New-
ton’s method and its descendants fail to solve many of the problems arising
in statistics and economics, it seems adequate to also consider optimization
heuristics. For example, TA has been successfully applied to many problems
in statistics and econometrics, which could not be tackled by standard opti-
mization algorithms (Winker, 2001). An overview on applications in statistics
and econometrics as well as a detailed description of the algorithm and its
implementation are provided by Winker and Maringer (2005).

Optimization heuristics like TA are used whenever conventional optimiza-
tion tools fail to provide optimal solutions. Optimization heuristics are ap-
pealing because they can be applied in such situations, including the case
when theoretical complexity analysis indicates that an exact optimum solu-
tion cannot be obtained by deterministic methods in reasonable time (NP–
complete problems).

As an example, we consider the application of TA in the context of con-
structing low discrepancy experimental designs. TA has been applied by
Winker and Fang (1997a) to obtain lower bounds for the star–discrepancy,
while Winker and Fang (1997b) use the approach to obtain low discrepancy
U–type designs for the star–discrepancy. Fang et al. (2000) extended the
analysis to several modifications of the L2–discrepancy, while Fang et al.

(2002) and Fang et al. (2003) consider the centered and wrap–around L2–
discrepancy. Here, we use settings from Fang et al. (2003) for the empirical
demonstration of the formal framework. This example differs from the stan-
dard scenario due to the fact, that the analysis by Fang et al. (2003) provides
theoretical lower bounds for the objective function to be minimized. Con-
sequently, a result obtained by the optimization heuristic, which meets this

1For an introduction to optimization heuristics and their classification see Winker and
Gilli (2004).

2



lower bound, represents a proven local minimum. However, given that the
lower bounds cannot be met for all problem instances, the inverse does not
hold true.

The paper is structured as follows. Section 2 introduces a formal frame-
work for the analysis of stochastic optimization algorithms. Section 3 pro-
vides results for an implementation to the uniform design problem. An out-
look to further research is provided in Section 4 together with some conclud-
ing remarks.

2 Formal Framework

Let us assume that TA is implemented for the purpose of minimizing an
objective function f over a search space Ω, which can be finite, discrete
or continuous. Of course, by replacing f with −f , the algorithm can also
be applied to maximization problems. Let fmin denote the minimum of f
over the search space if existent, otherwise the infimum. A single run of
an optimization heuristic like TA will provide an approximation ζ to this
minimum.

Of course, the quality of this approximation will depend on implemen-
tation details, which are typically covered to some extent in the description
of the algorithm.2 Furthermore, in the case of a local search heuristic like
TA, the quality of the approximation will also depend on the number of it-
erations I, which, in general, is almost proportional to the computational
time. Thus, let ζI denote an approximation to the minimum obtained by a
TA implementation with I iterations.

Optimization heuristics comprise random elements. First, they start with
a random candidate solution. Second, the generation of new candidate solu-
tion during a local search typically also includes random elements.3 Finally,
while the acceptance criterion is deterministic for TA, it might comprise fur-
ther randomness for other algorithms, as does, e.g., SA. Thus, for a given
implementation of TA with all parameters set and a given number of itera-
tions, the result of a single run ζI should be considered as a realization of a
random variable.

2A detailed description for the TA heuristics can be found in Winker (2001).
3An exception is the variant of TA discussed by Dueck and Scheuer (1990) with a

purely deterministic selection of new candidate solutions.
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Taking into account this stochastic property,4 the application of TA to
an optimization problem should be considered as a stochastic mapping

TA : Ω → ζI , ζI ∼ DTA

I (µI , σI) (1)

mapping the search space Ω to a random realization ζI depending on the
random number sequence used for the specific run. Thereby, ζI is a ran-
dom realization from a distribution DTA

I (µI , σI). For ease of notation, we
will omit the superscript TA in the rest of the paper. Of course, this dis-
tribution is truncated from the left at the value of the global minimum
fmin = inf{f(x)|x ∈ Ω}. If Ω is finite, the density of DI at fmin is pos-
itive for any I. The same holds true for continuous sets Ω if f satisfies
standard regularity conditions.

Although this framework applies to any application of optimization heuris-
tics, in general, it is not mentioned. Instead, reported results are often re-
stricted to a single estimate ζmin, which is the minimum obtained over a
finite number of runs, R, of the algorithm with a given number of iterations
I, i.e. ζR

min = min{ζ i
I |i = 1, . . . , R}. Sometimes, R is also reported. In the

framework introduced above, we would consider the set {ζ i
I |i = 1, . . . , R} as

a random sample from DI(µI , σI). Given that this distribution is left trun-
cated, the minimum over the set, ζR

min, in general, represents the maximum
likelihood estimator of fmin under the assumption of a given left truncated
distribution. It can also be interpreted as the first order statistic. Never-
theless, one should be interested in the properties of this estimator except
for cases when it is obvious that ζR

min = fmin. Such a situation can be given
if a theoretical lower bound is available for fmin as in the applications to
the uniforms design problems discussed by Fang et al. (2003) and Fang et

al. (2005). However, for most applications in statistics and econometrics,
no binding lower bounds are known. Thus, a more detailed analysis of the
properties of ζR

min is required. In particular, the rate of convergence of ζR
min

to fmin as I → ∞ is of crucial interest. Furthermore, it might be interesting
to study the properties of alternative estimators of fmin.

Before turning to an empirical analysis of DI(µI , σI) in Section 3 for the
application to the uniform design problem, a few general properties of this
distribution can be discussed. For TA, Althöfer and Koschnik (1991) provide

4The same reasoning also applies to implementations of classical optimization algo-
rithms, if the results depend on the initialization of the algorithm, which might be chosen
at random.
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a convergence result. The theorem states that there exist suitable parameters
for the TA implementation such that for any ε > 0 and δ > 0, there exists a
number of iterations I such that

Prob(|ζI − fmin| < ε) > 1 − δ .

Consequently, when I → ∞, all quantiles of DI(µI , σI) converge to fmin,
while, in general, it is not possible to make a statement about µI or σI .
If, however, the search space Ω is finite, and, consequently, the support of
DI(µI , σI) has to be finite, too, µI will converge to fmin and σI will converge
to zero as I → ∞.

In real applications, one is not interested in obtaining a good estimate of
µI , but a good upper bound for fmin. Therefore, the standard proceeding in
applications of optimization heuristics might be justified, namely to sample
several drawings from DI(µI , σI) and to use the minimum of this sample as
estimate for fmin. In fact, while the expectation of a single drawing corre-
sponds to an estimate of µI , the minimum of a sample of several replications,
i.e. the first order statistic from a sample of R replications, corresponds to an
estimate of some lower quantile of DI(µI , σI), which converges to fmin with
the number of iterations I growing to infinity. Even if µI also converges to
fmin, e.g. in the case of a finite Ω, the lower quantiles will converge faster.

Thus, it remains an important question to be answered how to distribute
some given amount of computational resources, say C (measured in itera-
tions), on replications R and iterations per replication I. If all resources
are spent on a single run, this run provides an approximation to µC . If
the resources are split on R replications, each run provides an approxima-
tion to µC/R and all replications together provide an empirical estimate of
DC/R(µC/R, σC/R) which allows to obtain an estimate of the 1/R quantile.

Winker (2001, pp. 129ff) considers an application to a traveling salesman
problem and finds that from a set of possible choice for R of {1, 10, 100}, 10
appeared to be the optimal choice. However, this results cannot be easily
generalized to different problem instances. In the next section, a different
application, the uniform design problem, is considered. Parametric and non-
parametric approximations to DI will be used to derive an optimal tradeoff
for I and R for this application. Furthermore, the speed of convergence of
the parameters of DI will be analyzed by means of linear regression.
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3 Results for Uniform Design

Implementation

The empirical results in this section are based on an application of TA to the
uniform design problem described in Fang et al. (2003). The task consists in
distributing n points in a d–dimensional unit cube as “uniformly” as possible.
Consequently, the objective function is a measure of discrepancy between
the empirical distribution of the given point set and the theoretical uniform
distribution on the unit cube. For specific measures of this discrepancy in
the L2–norm, Fang et al. (2003) and Fang et al. (2005) provide theoretical
lower bounds for the objective function for given values of d and n. Hence, it
is possible to express the value of the objective function obtained by a run of
TA relative to this lower bound. If the lower bound is met, the corresponding
result is a global optimum. Unfortunately, it cannot be guaranteed that for
any d and n, there exists a solution meeting the theoretical lower bound.

3.1 Empirical Distribution

Here, two instances of the uniform design problem with three levels for the
wrap–around L2–discrepancy as objective function are considered. For the
first instance, the size of the experimental design is d = 6 factors and n = 12
runs. For this instance, the lower bound can be obtained for some runs of
the algorithm already for small numbers of iterations. In fact, for the present
implementation, this lower bound could be reached already in one of 1 000
runs with only 500 iterations. However, as pointed out in the previous sec-
tion, looking at this empirical minimum of several runs does not provide all
relevant information and might not be robust. In fact, the lower bound could
not be reached in a single run out of 1 000 runs with 1 000 iterations, while
it has been obtained repeatedly for runs with 5 000 iterations and more. De-
scriptive statistics for 1 000 replications for different values of I are reported
in the left part of Table 1, while the right part reports results for the second
problem instance with d = 10 and n = 15. A more substantial information is
provided by the empirical distribution functions for ζI for differing I, which
are shown in Figure 1.

From the plot it becomes obvious that as I increases, the distribution ζI

approaches a degenerate distribution at fmin = 0. This supports the theoret-
ical convergence result presented in the previous section. For a slightly larger
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Table 1: Minimum, mean, and standard deviations

d = 6, n = 12 d = 10, n = 15
Iterations I Minimum Mean Std.dev. Minimum Mean Std.dev.

200 0.118 2.469 0.783 3.925 6.531 0.778
500 0.000 1.501 0.611 3.335 5.324 0.628

1 000 0.059 0.971 0.469 3.067 4.646 0.539
5 000 0.000 0.244 0.244 2.400 3.406 0.353

10 000 0.000 0.217 0.193 2.263 3.066 0.290
50 000 0.000 0.076 0.057 1.881 2.574 0.235

100 000 0.000 0.060 0.036 1.861 2.439 0.201
500 000 0.000 0.033 0.032 1.345 2.246 0.194

1 000 000 0.000 0.020 0.028 1.613 2.171 0.182
5 000 000 n.a. n.a. n.a. 1.345 2.020 0.172

problem instance, i.e. d = 10 and n = 15, a similar plot of the empirical dis-
tributions of relative deviations from a theoretical lower bound is shown in
Figure 2. Again, it can be observed how the empirical distributions shift left
and become steeper, i.e. µI and σI decrease, as I increases. However, even for
I=5 000 000, the theoretical lower bound is never met, and the empirical dis-
tribution does not exhibit a clear cut minimum, which is reached repeatedly.
Thus, although it cannot be guaranteed that the theoretical lower bound can
be actually met, one might expect that a further increase in I would result
in a further shift of ζI .

3.2 Approximation by Truncated Normal Distributions

The next step of the analysis consists in fitting parametric distributions to
the empirical distributions obtained for different values of I. Obviously, only
left–truncated distributions should be considered. Furthermore, given that
the search space Ω is finite for both instances of the uniform design problem,
the set of possible values of the objective function is finite, too. Consequently,
the distribution functions ζI cannot be continuous, but exhibit discrete steps
at each possible value of the objective function. Nevertheless, given the
huge cardinality of Ω and the resulting small distances between steps in
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Figure 1: Empirical distribution of ζI for different I (d=6,n=12)
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Figure 2: Empirical distribution of ζI for different I (d=10,n=15)
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the distribution function ζI , an approximation by a continuous distribution
function appears admissible.

Thus, in a first step, for each empirical distribution function ζI of both
problem instances, the parameters of a truncated normal distribution are fit-
ted by a maximum likelihood estimation. Obviously, the maximum likelihood
estimator of the truncation value corresponds to the empirical minimum of
the observed values (Schneider, 1986, p. 47). For the first problem instance
with d = 6 and n = 12, the theoretical lower bound of zero is met already
by a run with only 500 iterations. If the lower bound is met, it does not
represent an estimator of the truncation value, but a truncation value of zero
can be considered as being given. For the second instance with d = 10 and
n = 15, the theoretical lower bound is never met. Since theory does not guar-
antee that there exists a solution meeting the lower bound, the truncation
value remains unknown and has to be estimated. For ease of comparison, we
assume the truncation parameter as unknown for both cases. Furthermore,
the estimation is based only on the empirical results for given I, i.e. the
additional knowledge about lower bounds obtained by runs with a different
number of iterations is not taken into account.5

Table 2 summarizes the estimation results for the first problem instance
(d = 6, n = 12), while the corresponding values for d = 10 and n = 15 are
reported in Table 3. Thereby, “Truncation”, µI , and σI are the estimated
parameters of the truncated normal distribution, X̄ and s(X) the empiri-

cal moments and E[X] and
√

V [X] the moments of the truncated normal
distribution.

In both cases, the truncated normal distribution provides a reasonable
approximation to DI . Since the truncation often becomes binding for the
first problem instance already for small values of I, the expectation of the
truncated distribution differs considerably from the expectation of the un-
derlying normal distribution (µI). This effect is much less pronounced for
the second example, where the estimated density at the truncation values is
small for all I.

Given that DI is defined on a finite support for the specific application,
it is not too surprising that a standard goodness–of–fit test rejects the hy-
pothesis that the empirical data are generated from a truncated normal dis-
tribution except for the case D200 for the second problem instance, when the

5The effect of considering this additional information will be considered when analyzing
the distribution of order statistics below.
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Table 2: Truncated normal distributions for d = 6, n = 12

Iterations I Truncation µI X̄ E[X] σI s(X)
√

V [X]

200 0.118 2.465 2.469 2.470 0.789 0.783 0.784
500 0.000 1.486 1.501 1.511 0.630 0.611 0.611

1 000 0.059 0.914 0.971 1.024 0.522 0.469 0.469
5 000 0.000 0.115 0.244 0.726 0.369 0.244 0.244

10 000 0.000 0.000 0.217 0.798 0.290 0.193 0.175
50 000 0.000 0.012 0.076 0.725 0.090 0.057 0.057

100 000 0.000 0.049 0.060 0.298 0.044 0.036 0.036
500 000 0.000 0.000 0.033 0.798 0.046 0.032 0.027

1 000 000 0.000 0.000 0.020 0.798 0.035 0.028 0.021

truncation is not really binding. The discrepancy is particularly strong for
the lower quantiles. Although the lower quantiles of the estimated truncated
normal distributions tend to be slightly smaller than the empirical quan-
tiles as long as the empirical quantiles have positive values, a regression of
empirical quantiles on the quantiles predicted by the truncated normal dis-
tribution does not find a significant bias while exhibiting a very high share
of explained variance (R2 = 0.996 and 0.998 for the 1%–quantile and the two
problem instances, respectively).

Thus, we continue to use this approximation in the following subsections
besides the empirical distribution function. Obviously, for practical appli-
cations, estimates of the truncated normal distribution can be obtained at
lower computational cost than the complete empirical distribution for a con-
siderable number of replications.

3.3 Distribution of Order Statistics

Returning to the question on how to distribute some given amount of com-
putational resources on replications R and iterations per replication I, the
distribution of lower quantiles or – empirically – order statistics is of specific
relevance. Therefore, in this subsection, results on the distribution of order
statistics are presented both based on the empirical distribution function and
on the estimated truncated normal distribution function.

10



Table 3: Truncated normal distributions for d = 10, n = 15

Iterations I Truncation µI X̄ E[X] σI s(X)
√

V [X]

200 3.925 6.530 6.531 6.531 0.780 0.778 0.778
500 3.335 5.323 5.324 5.325 0.630 0.628 0.627

1 000 3.067 4.643 4.646 4.649 0.543 0.539 0.538
5 000 2.400 3.403 3.406 3.411 0.357 0.353 0.353

10 000 2.263 3.063 3.066 3.073 0.294 0.290 0.290
50 000 1.881 2.573 2.574 2.578 0.237 0.235 0.235

100 000 1.861 2.437 2.439 2.444 0.203 0.201 0.201
500 000 1.345 2.246 2.246 2.246 0.194 0.194 0.194

1 000 000 1.613 2.170 2.171 2.174 0.183 0.182 0.182
5 000 000 1.345 2.020 2.020 2.020 0.172 0.172 0.172

If R replications are performed for a given number of iterations I, we
obtain a random sample ζ1, . . . , ζR from DI . Let ζ(1), . . . , ζ(R) denote the
ordered values. This allows to estimate a lower quantile of DI by the first
order statistic ζ(1). The marginal probability density function of ζ(1) is given
by

f1(x) = dI(x)(1 − DI(x))R−1R , (2)

where dI(x) denotes the density function of the distribution DI .
6

Tables 4 and 5 provide the mode and expected value of the first order
statistics for the two problem instances based on the approximation by a
truncated normal distribution introduced in the previous subsection. Alter-
natively, DI(x) can be approximated by the empirical cumulative density
function and dI(x) by some kernel density estimator. However, the estima-
tion of the expected value based on this approximation is complicated by
the missing smoothness of the empirical cumulative density function. Thus,
in both tables, only an estimate of the mode based on this non parametric
approach is added.

6For a general k–th order statistic, the corresponding density is given by

fk(x) = DI(x)k−1dI(x)(1 − DI(x))R−k
R!

(k − 1)!(R − k)!
.
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Table 4: Distribution of first order statistics (d = 6, n = 12)

R = 10 R = 1000
trunc. normal kernel trunc. normal kernel

Iterations I mean mode mode mean mode mode
200 1.253 1.272 1.593 0.118 0.232 0.455
500 0.591 0.587 0.798 0.000 0.000 0.057

1 000 0.214 0.312 0.457 0.059 0.101 0.116
5 000 0.000 0.000 0.058 0.000 0.000 0.058

10 000 0.000 0.000 0.058 0.000 0.000 0.058
50 000 0.000 0.000 0.058 0.000 0.000 0.058

100 000 0.000 0.000 0.058 0.000 0.000 0.058
500 000 0.000 0.000 0.041 0.000 0.000 0.041

1 000 000 0.000 0.000 0.000 0.000 0.000 0.000

Table 5: Distribution of first order statistics (d = 10, n = 15)

R = 10 R = 1000
trunc. normal kernel trunc. normal kernel

Iterations I mean mode mode mean mode mode
200 5.444 5.336 5.400 4.115 4.159 4.389
500 5.001 4.363 4.500 3.361 3.467 3.674

1 000 3.934 3.824 3.828 3.067 3.134 3.220
5 000 2.875 2.868 2.892 2.400 2.436 2.414

10 000 2.747 2.626 2.645 2.263 2.287 2.282
50 000 2.388 2.215 2.259 1.881 1.911 2.014

100 000 2.115 2.132 2.128 1.861 1.883 1.881
500 000 1.970 1.946 1.994 1.640 1.616 1.727

1 000 000 1.875 1.892 1.860 1.613 1.643 1.707
5 000 000 1.776 1.756 1.747 1.480 1.470 1.478
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For the smaller problem instance, the results in table 4 exhibit slight
differences between the different estimates of mode and mean based on para-
metric and nonparametric approximations. However, these differences can
mainly be attributed to border effects for the normal kernel used in the non-
parametric approach when a relevant share of observations is at or close to
the lower bound zero. For the larger problem instance, when the theoretical
lower bound is never reached even for a large number of iterations I, this
effect is less pronounced. Consequently, the results appear more robust in
table 5. Furthermore, for the second problem instance, this finding allows for
the conclusion that the distributions of order statistics are almost symmetric.
For both problem instances and the two distinct numbers of replications con-
sidered (R = 10 and R = 1000), in general, the expected first order statistic
decreases with an increase of the number of iterations per replication.

However, for the practical trade–off between replications R and number
of iterations per replication I for a given total amount of computational
resources C, this finding is not relevant. For this purpose, we consider the
situation of a fixed amount of computational resources C = 20 000 000 and
calculate the expected first order statistic for different pairs (R, I) satisfying
the constraint R × I = C. Table 6 summarizes the results.

Table 6: Expected first order statistics for given C = 20 000 000

d = 6, n = 12 d = 10, n = 15
trunc. normal kernel trunc. normal kernel

R I mean mode mode mean mode mode
50 000 200 0.118 0.121 0.455 3.925 3.935 4.389
20 000 500 0.000 0.000 0.057 3.335 3.346 3.674
10 000 1 000 0.059 0.060 0.116 3.067 3.076 3.220
2 000 5 000 0.000 0.000 0.058 2.400 2.420 2.414
1 000 10 000 0.000 0.000 0.058 2.263 2.287 2.282

200 50 000 0.000 0.000 0.058 2.008 1.971 2.014
100 100 000 0.000 0.000 0.058 1.988 1.961 1.994
20 500 000 0.000 0.000 0.041 1.907 1.883 1.860
10 1 000 000 0.000 0.000 0.000 1.875 1.891 1.860
2 5 000 000 n.a. n.a. n.a. 2.427 1.923 1.995
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For the smaller problem instance (d = 6, n = 12), an optimal solution
can be found with high probability already for a low number of iterations.
Thus, for a large amount of computational resources C = 10 000 000, the
distribution on replications R and iterations I has not a major impact on
the distribution of first order statistics. As long as a minimum number of
5 000 iterations is chosen, one might expect to find the true global optimum
in at least one of R = C/I replications.

The situation is different for the larger problem instance, where the the-
oretical lower bound could not be achieved even when using I = 5 000 000.
Furthermore, the distribution of results does not exhibit a pronounced clus-
tering at some lower values. For this case, the results in table 6 indicate that
it is neither optimal to perform a large number of replications with a small
number of iterations, i.e. sampling from a distribution DI with high mean
and variance, nor to concentrate the available resources on few replications.
Rather, the optimum number of replications seems to be of the order of 10 to
20. This result provides a strong support for the typical application of local
search heuristics, i.e. running the algorithm several times and reporting the
best result of all runs.

3.4 Convergence

The data presented in Table 1 can also be used to estimate the rate of
convergence of µI and σI . For this purpose, nonlinear least squares estimation
of the model

µI = β0 + β1I
−β2 + εI (3)

have been performed. For the first problem instance, the restriction β0 = 0
has been imposed, because for this instance the lower bound can be reached.
The rate of convergence β2 is estimated to be 0.59 for this instance. Relaxing
the restriction β0 = 0 results in an insignificant estimate of β0, while the
estimator of β2 becomes 0.58. The R2 of the model is above 0.999 both with
and without the restriction imposed. Thus, the estimated rate of convergence
for the first problem instance is faster than the standard rate of 1/

√
I.

For the second problem instance, the true lower bound is not known. The
best value found during the experiments corresponds to a 1.345% deviation
from the theoretical lower bound. Consequently, model (3) is estimated both
with unconstrained β0 and β0 = 1.345. The estimation with unconstrained
β0 results in estimators β̂0 = 1.891, i.e. above the best known solution, and
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β̂2 = 0.343. Imposing the restriction β0 = 1.345 reduces the estimated rate of
convergence to β̂2 = 0.250 while the model’s R2 shrinks from 0.999 to 0.988.
Finally, imposing the restriction β2 = 0, i.e. assuming that the theoretical
lower bound can be achieved, reduces the R2 further to 0.945, while the
estimated rate of convergence shrinks to 0.140. Using a likelihood ratio test,
both restrictions have to be rejected. Obviously, further results for higher
values of I are required to obtain a clear cut result for this more complex
instance.

For practical applications, the convergence of the mean might be of less
interest than the convergence of some lower quantiles. Therefore, the con-
vergence analysis has been repeated with the empirical 1%–, 5%– and 10%–
quantiles as dependent variables in equation (3). Again, for the first problem
instance, the restriction β0 = 0 is imposed, while β0 is estimated for the
second problem instance. The estimated rate of convergence β̂2 is higher
than 0.7 for the first problem instance and still faster than 0.3 for the second
problem instance for all three considered quantiles.

4 Conclusions and Outlook

Optimization heuristics like TA are applied more and more often to opti-
mization problems in statistics and econometrics which cannot be tackled
by classical tools. However, the ease of implementation and versatility of
these new tools comes at the cost of introducing an additional stochastic
component in the analysis. In this paper, a formal framework is introduced
to discuss this additional source of randomness.

Based on an example from uniform design theory, practical applications of
the formal framework are demonstrated. It allows to derive optimal restart-
ing schemes by estimating order statistics. Furthermore, the rate of conver-
gence of the algorithm can be estimated for the given problem instances.

The first results obtained in this paper are very promising. Thus, straight-
forward extensions of the approach will be analyzed in the next step. First,
the approximation of the empirical result distribution by a truncated normal
distribution will be tested and alternative distributions will be considered.
Second, for the specific application, the analysis will be repeated for the ab-
solute values of the objective function instead of the relative deviations from
the theoretical lower bound. Then, the results can be generalized more easily
to other problems, for which no lower bounds are available. Finally, for other
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applications of optimization heuristic, e.g., maximum likelihood estimation
in GARCH–settings or estimation of censored quantile regressions, it is not
the convergence of the values of the objective function to its global optimum,
but the convergence of estimated parameters to their “true” values which is
of interest. This convergence can also be considered in the framework intro-
duced in this paper.
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