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Abstract. In Kusuda [45], we developed equilibrium analysis in security market
economy with jump-Wiener information where no finite number of securities can
complete markets. Assuming approximately complete markets (Björk et al. [11] [12])
in which a continuum of bonds are traded and any contingent claim can be repli-
cated with an arbitrary precision, we have shown sufficient conditions for the exis-
tence of approximate security market equilibrium, in which every agent is allowed
to choose any consumption plan that can be supported with any prescribed preci-
sion. In this paper, we derive the Consumption-Based Capital Asset Pricing Model
(CCAPM) using the framework in case of heterogeneous with additively separable
utilities (ASUs) and of homogeneous agents with a common stochastic differential
utility (SDU). The CCAPM says that the risk premium between a risky security
and the nominal-risk-free security can be decomposed into two groups of terms.
One is related to the price fluctuation of the risky security, and the other is related
to that of commodity. Each group can be further decomposed into two terms re-
lated to consumption volatility and consumption jump in case of ASUs, and into
three terms related to consumption volatility, continuation utility volatility, and
jumps of consumption and continuation utility in case of SDU. Next, we present a
general equilibrium framework of jump-diffusion option pricing models in each case
of heterogeneous agents with CRRA utilities and of homogeneous agents with a
common Kreps-Porteus utility. Finally, we construct a general equilibrium version
of an affine jump-diffusion model with jump-diffusion volatility for option pricing
using the framework.
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1. Introduction

The strong evidence that most financial processes (equity prices, interest rates,
exchange rates etc.) are better described by a combination of diffusion and jump
processes (Akgiray and Booth [2], Andersen, Benzoni, and Lund [3], Bakshi, Cao,
and Chen [7], Bates [9] [10], Jorion [42] etc.) has lead researchers to study jump-
diffusion security market models (Back [6], Bakshi, Cao, and Chen [7], Bates [8] [9],
Björk, Kabanov, and Runggaldier [11], Duffie, Pan, and Singleton [22], Naik and
Lee [52] etc.), in particular, in the context of option pricing. In most jump-diffusion
option pricing model, jump is specified by a continuously distributed random vari-
able at each jump time. Then, the “number of sources of uncertainty” is infinite,
and no finite set of securities can complete markets. However, in incomplete market
economy with heterogeneous agents, it is difficult not only to show the existence of
general equilibria, but also to construct analytically tractable market price of jump
risk. Since market price of jump risk is a component of risk premia in Consumption-
Based Capital Asset Pricing Model (CCAPM), analytically intractable market price
of jump risk implies analytically and empirically intractable CCAPM.1 Analytically
intractable market price of jump risk also makes it difficult to construct a jump-
diffusion option pricing model for which analytic or quasianalytic equilibrium price
formulas for European options are available.2 Some researchers assume homoge-
neous agents with a common additively separable utility (ASU) instead of hetero-
geneous agents (Attari [5], Bates [8], Das and Foresi [18], Heston [40], Naik and
Lee [52] etc.).3 Needless to say, the assumption of homogeneous agents is restric-
tive. In addition, even in incomplete market economy with homogeneous agents
with a common ASU, it is still difficult to show the existence of general equilibria,
and the CCAPM with ASU agents have been often rejected (Epstein and Zin [27],
Finn, Hoffman, and Schlagenhauf [29], Hansen and Singleton [36] etc.), and leads us
the equity premium puzzle of Mehra and Prescott [50] and the risk-free rate puzzle
of Weil [62]. One possible explanation of these puzzles is a possible deficiency of
an ASU, that is, both risk aversion and intertemporal substitution depend on the
curvature of von-Neumann Morgenstern utility function. We can disentangle these
two characteristics in the class of stochastic differential utilities (SDUs) which is a
continuous-time version of the class of Epstein-Zin utlities (Epstein and Zin [26])
and a generalization of the class of standard ASUs, and then expect that SDUs
may contribute to solve the equity premium puzzle and/or the risk-free rate puz-
zle. The purpose of this paper is to derive an empirically tractable CCAPM and

1We can derive a version of CCAPM even in such incomplete markets as in Madan [48] and
Back [6], but this incomplete market version of CCAPM is empirically intractable in the sense

that the market price of jump risk in the CCAPM depends on every agent’s consumption plan. If
the jump risk premium were sufficiently small, then we could disregard market price of jump risk.
However, an empirical analysis in Pan [54] suggests that the jump risk premium is not as small

as to be ignored.
2The reason is as follows. In deriving the arbitrage-free price of a European option, we com-

pute the expectation of the option’s payoff under an appropriate equivalent martingale measure.

However, the distribution of option’s payoff under the equivalent martingale measure depends on
the market price of jump risk, so if the market price of jump risk were analytically intractable,

then the computatiopn for the arbitrage-free price of option under would be difficult, too.
3Some of them assume representative agent instead of homogeneous agents. However, this

assumption is inappropriate since representative agent can be constructed only if the associated

equilibrium consumption allocation is Pareto optimal, which is generally unattainable in incom-

plete market economy.
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give a general equilibrium framework of option pricing models under jump-Wiener
uncertainty in each case of ASUs and of SDUs.

Björk, Kabanov, and Runggaldier [11] introduce approximately complete secu-
rity markets with an infinite dimensional martingale generator consisting of a jump
process given by the marked point process (see Appendix A.1) and a Wiener pro-
cess. In approximately complete markets, a continuum of bonds are traded and any
contingent claim can be approximately replicated with an arbitrary precision. In
our previous paper (Kusuda [45]), we introduced the notion of approximate secu-
rity market equilibrium in which every agent is allowed to choose any consumption
plan that can be approximately supported by admissible portfolio with any pre-
scribed precision, and present sufficient conditions for the existence of approximate
security market equilibria in approximately complete markets in each case of ad-
ditively separable utilities (ASUs) and of stochastic differential utilities (SDUs)
with Inada conditions. In this paper, using the framework, we derive an empiri-
cally tractable CCAPM and give a general equilibrium framework of option pricing
models under jump-diffusion uncertainty in each case of heterogeneous agents with
ASUs and of homogeneous agents with a common SDU. In subsequent two papers
(Kusuda [46] [47]), we have proposed jump-diffusion LIBOR rate models using the
framework of this paper.

First, we derive the CCAPM in each case of heterogeneous agents with ASUs and
of homogeneous agents with a common SDU exploiting the result that the product
of the state price and the gain of any security is a martingale in equilibrium. The
CCAPM says that the risk premium between any risky security and the nominal-
risk-free security can be decomposed into two groups of terms. One is related to the
price fluctuation of the security, and the other is related to that of commodity. Each
group can be further decomposed into two terms related to consumption volatil-
ity and consumption jump in the case of ASUs, and into three terms related to
consumption volatility, continuation utility4 volatility, and jumps of consumption
and continuation utility in the case of SDU. We also present empirically tractable
versions of these CCAPMs assuming heterogeneous agents with CRRA utilities and
homogeneous agents with a common Kreps-Porteus utility (Kreps and Porteus [44])
which is a generalization of CRRA utility. We think that the CCAPM with a com-
mon Kreps-Porteus utility may contribute to solve the equity premium puzzle and
risk-free rate puzzle since compared to the existing CCAPM with CRRA utilities
under Wiener information, our CCAPM with a common Kreps-Porteus utility un-
der jump-Wiener information contains two additional risks, and the resultant equity
premium includes the two associated risks. One is the risk related to jump informa-
tion, which is a generalization of possible very rare market crash risk pointed out
in Rietz [56] since all magnitudes of upward and downward jumps are considered
in our jump risk while only a very big magnitude of downward jump is considered
in the market crash risk of Rietz [56].5 The other is the risk related to fluctuation
of continuation utility. Note that this risk is zero in the case of CCAPM with
standard ASUs since the associated equilibrium state price does not depend on the
continuation utility.

4For definition of continuation utility, see a footnote in Assumption 3.
5For arguments of Rietz [56], see Remark 7.
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Then, we show a general equilibrium framework of jump-diffusion option pricing
models in each case of heterogeneous agents with CRRA utilities and of homo-
geneous agents with a common Kreps-Porteus utility. In concrete, we show ana-
lytically tractable formulas for equilibrium market prices of diffusive risk and of
jump risk, for the Wiener process under the risk-neutral measure, and for the jump
intensity under the risk-neutral measure, and derive the dynamics of equilibrium
gain, forward rate, and nominal-risk-free rate processes. These formulas enable
us to construct jump-diffusion option pricing models for which both of analytic
(quasianayltic) equilibrium price formulas for European options and an efficient
estimation method are available. Then, we construct a general equilibrium version
of jump-diffusion stock index model with jump-diffusion volatility, which was pro-
posed in Duffie, Pan, and Singleton [22] as a promising example in the class of affine
jump-diffusion (ADJ) models developed by Heston [39], Bates [9], and Duffie, Pan,
and Singleton [22]. For every AJD model, both of quasi analytic European option
price formulas and efficient estimation methods are available.

Our CCAPM with ASUs is a generalization of the CCAPM with heterogeneous
agents under Wiener and non-Markovian information (Duffie and Zame [25]) and
of the CCAPM with homogeneous agents under jump-Wiener and Markovian in-
formation (Ahn and Thompson [1]). Also, our CCAPM with homogeneous agents’
common SDU is a generalization of the CCAPM with homogeneous agents’ common
SDU under Wiener and Markovian information (Duffie and Epstein [20]) and of the
CCAPM with homogeneous agents’ common Kreps-Porteus utility under Wiener
and non-Markovian information (Fisher and Gilles [30]).

For option pricing, some researchers exploit approximate arbitrage-free pric-
ing approach in incomplete markets (Duffie and Richardson [23], Föllmer and
Schweizer [31], Schweizer [58] [59], etc.). In this approach, an appropriate ap-
proximate replicating criterion is chosen, and then an contingent claim outside the
asset span is priced as the value of an approximate replicating portfolio. However,
the market price of risk remains unknown in this approach.

This paper is organized as follows. In Sections 2 and 3, we review the framework
of our previous paper (Kusuda [45]). In Section 4, we show some preliminary results
for deriving CCAPM. In Sections 5 and 6, we derive the CCAPM in each case of
heterogeneous agents with ASUs and of homogeneous agents with a common SDU.
In Section 7, we present a general equilibrium framework of jump-diffusion option
pricing models and construct a general equilibrium version of the jump-diffusion
stock index model with jump-diffusion volatility.

2. Approximately Complete Security Market Economy

In this section, we introduce a specification of security market economy with
jump-Wiener uncertainty provided in our previous paper (Kusuda [45]), and briefly
review approximately complete markets given in Björk et al. [11] [12].

2.1. Security Market Economy with Jump-Wiener Uncertainty. We con-
sider a continuous-time frictionless pure exchange security market economy with
time span T def= [0, T †] for a fixed horizon time T † > 0. Agents’ common subjective
probability and information structure is modeled by a complete filtered probabil-
ity space (Ω,F ,F,P) where F = (Ft)t∈T is the natural filtration generated by a
d-dimensional Wiener process W and a jump process called marked point process
ν(dt × dz) on a Lusin space (Z,Z) (in usual applications, Z = R

d′ , or Nd
′
, or a
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finite set) with the P-intensity kernel λt(dz) (for marked point process, see Appen-
dix A.1). Note that Martingale Representation Theorem (see Chapter III Corollary
4.31 in Jacod and Shiryaev [41]) shows that the martingale generator in this econ-
omy is (W, (ν(dt×{z})−λt({z}))z∈Z). Thus, if the mark set Z is infinite, then the
martingale generator is infinite dimensional.

There is a single perishable consumption commodity. The commodity space is a
Banach space L2 def= L2(Ω×T,P, µ) where P is the predictable σ-algebra on Ω×T,
µ is the product measure of P and Lebesgue measure on T. There are I agents,
and each of them is represented by (U i, c̄i), where U i is a strictly increasing and
continuous utility on the positive cone L2

+ of consumption process and c̄i ∈ L2
+ is

an endowment process which is assumed to be nonzero, for i ∈ I def= {1, 2, · · · , I}.
The economy is described by a collection

E def= ((Ω,F ,F,P), (U i, c̄i)i∈I).

There are markets for the consumption commodity and securities at every date
t ∈ T. The traded securities are nominal-risk-free security (NOT the risk-free se-
curity) called the money market account and a continuum of zero-coupon bonds
whose maturity dates are (0, T †], each of which has $1 payoff (NOT one unit payoff
of the commodity) at its maturity date. Let p, B, and (BT )T∈(0,T †] denote the con-
sumption commodity price process, nominal money market account price process
and nominal bond price processes, respectively. We write B = (B, (BT )T∈(0,T †])
and call it bond price family.

2.2. Approximately Complete Markets. We allow each agent to hold a port-
folio of the money market account and continuum of bonds, so we set the portfolio
component of continuum of bonds a signed finite Borel measure on [t, T †] for every
event ω ∈ Ω and time t ∈ T.

Definition 1. A portfolio is a stochastic process ϑ = (ϑ0, ϑ1(·)) that satisfies:
1. The component ϑ0 is a real-valued P-measurable process.
2. The component ϑ1 is such that:

(a) For every (ω, t) ∈ Ω×T, the set function ϑ1
t (ω, · ) is a signed finite Borel

measure on [t, T †].
(b) For every Borel set A, the process ϑ1(A) is P-measurable.

Let n ∈ N. Let Ln denote the set of real-valued P-measurable process X

satisfying the integrability condition
∫ T †

0
|Xs|n ds < ∞ P-almost surely. Also let

Ln(λt(dz) × dt) denote the set of real-valued P ⊗ Z-measurable process H satis-

fying the integrability condition
∫ T †

0

∫
Z
|Hs(z)|n λs(dz) ds < ∞ P-a.s. We introduce

the notion of viable bond price family.

Definition 2. A bond price family B is viable if and only if the following conditions
hold:

1. (a) For every T ∈ (0, T †], the dynamics of nominal bond price process BT

satisfies the following stochastic differential-difference equation (SDDE)

dBTt
BTt−

= rTt dt+ vTt · dWt +
∫
Z

HT
t (z) { ν(dt× dz)− λt(dz) dt } ∀t ∈ [0, T )
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with BTT = 1 and BTt = 0 for every t ∈ (T, T †] for some rT ∈ L1,
vT ∈

∏d
j=1 L2, and HT ∈ L1(λt(dz)× dt). Moreover, it follows that:

(i) For every (ω, t) ∈ Ω × T, r ·t (ω), v ·t (ω) ∈ C1((t, T †]) and for every
(ω, t, z) ∈ Ω×T× Z, H ·t (ω, z) ∈ C1((t, T †]).

(ii) For every T ∈ (0, T †], HT
t (ω, z) is bounded.

(iii) The processes (BT )T∈T are regular enough to allow for the differ-
entiation under the integral sign and the interchange of integration
order.6

(b) The dynamics of nominal money market account price process B satisfies
the following SDDE

dBt
Bt

= rBt dt ∀t ∈ T

with B0 = 1 where rBt = −∂ lnBTt
∂T

∣∣∣∣
T=t

.

2. There exists a martingale process ΛB such that

dΛB
t

ΛB
t−

= −vB
t · dWt −

∫
Z

HB
t (z) { ν(dt× dz)− λt(dz) dt } ∀t ∈ T(2.1)

with ΛB
0 = 1 where (vB,HB) ∈

(∏d
j=1 L2

)
× L1(λt(dz) × dt satisfies the

following equation

rTt = rBt + vTt · vB
t +

∫
Z

HT
t (z)HB

t (z)λt(dz).(2.2)

Let B denote the class of viable bond price families.

Remark 1. We call vB
t and HB

t (z)λt(dz) market price of (nominal) diffusive risk
and market price of (nominal) jump risk, respectively.

Remark 2. Suppose that bond price family B satisfies condition 1. Then, condi-
tion 2 is necessary and sufficient for the existence of risk-neutral measures (or also
called spot martingale measures), and it implies that markets are arbitrage-free (for
definitions of risk-neutral measure and arbitrage-free, see Appendix C.2).

Lemma 1. Let B ∈ B and ΛB be the martingale process in Definition 2.
1. The probability measure P̃B given by the Radon-Nikodym derivative

dP̃B = ΛB
T † dP

is a risk-neutral measure at B.
2. The process W̃B given by

W̃B
t = Wt +

∫ t

0

vB
s ds ∀t ∈ T(2.3)

is a P̃B-Wiener process.
3. The marked point process ν(dt× dz) has the P̃B-intensity kernel λ̃t(dz) such

that

λ̃B
t (dz) = (1−HB

t (z))λt(dz) ∀(t, z) ∈ T× Z.(2.4)

6For the marked point process integrals, we can apply the ordinary Fubini Theorem, and for
the interchange of integration with respect to dWt and dt, we can apply the Stochastic Fubini

Theorem (see Protter [55]).
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As shown in Section 5, in incomplete markets, it is difficult to obtain analyti-
cally tractable market prices of risks, in particular, market price of jump risk. Sup-
pose that the market price of jump risk HB

t (z)λt(dz) is analytically intractable.
Then, the arbitrage-free condition (2.2) shows that the CCAPM is analytically and
empirically intractable, and the formula (2.4) implies that P̃B-intensity kernel is
analytically intractable, which makes it difficult to price derivative assets.

Björk, Masi, Kabanov, and Runggaldier [12]) prove that for every B ∈ B, if the
process ΛB in Definition 2 is unique,7, then markets are approximately complete,
which is defined in the following.

Definition 3. Markets are approximately complete at B if and only if for any
T ∈ (0, T †] and any T -contingent claim XT there exists a sequence of replicable
claims (XTn)n∈N converging to XT in L2(Ω,FT , P̃) for some risk-neutral measure
P̃

B (For definitions of contingent claim and replicable claim, see Appendix C.3).

3. Approximate Security Market Equilibrium

In this section, we introduce the notion of approximate security market equi-
librium, and show sufficient conditions for the existence of approximate security
market equilibria in each case of ASUs and of SDUs with Inada conditions follow-
ing our previous paper (Kusuda [45]).

3.1. Approximate Security Market Equilibrium. We give the definition of
approximate security market equilibrium in which an agent is allowed to choose any
consumption plan that is approximately supported by admissible portfolio with any
prescribed precision.

Definition 4. A collection ((ĉi)i∈I, p,B) ∈
∏
i∈I L2

+ × L2 × B constitutes an ap-
proximate security market equilibrium for E if and only if the following hold:

1. For every i ∈ I, ĉi solves the problem

max
ci∈C̄i(p,B)

U i(ci)

where

C̄i(p,B) =
{
ci ∈ L2

+ : ∃(ϑin)n∈N ∈
∏
n∈N

Θ(B̃) s.t.

VB
t (ϑin) =

∫ t

0

ϑi0ns dBs +
∫ t

0

∫ T †

s

ϑi1ns(dT ) dBTs +
∫ t

0

ps(c̄is − cis) ds ∀(n, t) ∈ N×T,

lim
n→∞

VB
T †(ϑ

i
n) = 0

}
where Θ(B̃) is the class of admissible portfolios at B (for definition, see Ap-
pendix C.1), and VB

t (ϑin) is the value process of ϑin at B given by

VB
t (ϑin) = Btϑ

i0
nt +

∫ T †

t

BTt ϑ
i1
nt(dT ).

2. The commodity market is cleared as
∑
i∈I ĉ

i =
∑
i∈I c̄

i.

7For some necessary and sufficient conditions for the uniqueness of ΛB, see Björk, Kabanov,
and Runggaldier [11].
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We refer to approximate security market equilibrium as ASM equilibrium, here-
after. We introduce the notion of implementable bond price family to show an
equivalence of ASM equilibrium and Arrow-Debreu equilibrium.

Definition 5. A viable bond price family B ∈ B is implementable if and only if
the following two conditions hold:

1. The P̃B-density process ΛB is unique.
2. The discounted P̃B-density process ΛB

B is bounded above and bounded away
from zero µ-a.e.

Let B̄ denote the class of implementable bond price families. Kusuda [45] proves
that ((ĉi)i∈I, p,B) with B ∈ B̄ is an ASM equilibrium if and only if ((ĉi)i∈I, π) is
an Arrow-Debreu equilibrium under the relation p = B

ΛBπ. Thus, in order to show
sufficient conditions for the existence of ASM equilibria, it is enough to present
ones for the existence of Arrow-Debreu equilibria.

3.2. Sufficient Conditions for Existence of Equilibria in Case of ASUs.
First, we suppose that every agent has an ASU (Additively Separable Utility).

Assumption 1. For every i ∈ I, the utility U i is an ASU of the form

U i(c) = E

[∫ T †

0

ui(t, cit) dt
]

where the von Neumann-Morgenstern (VNM) utility function ui is a real-valued
C1,2 function on T×R+ such that ui(t, · ) is strictly increasing and strictly concave
on R+ for every t ∈ T.

We consider the aggregate utility in order to construct the representative agent.
Let α ∈ ∆I

+ where ∆I
+ = {α ∈ RI+ |

∑
i∈I αi = 1} and define the aggregate utility

Uα : L2
+ → R by

Uα(c) = max
(c1,c2,··· ,cI)∈

Q
i∈I L2

+

∑
i∈I

αiU
i(ci) s.t.

∑
i∈I

ci ≤ c.

We also define a function c∗ : T× R+ × RI+ → R
I
+ by

(c∗i (t, x, α))i∈I = argmax{ (x1,x2,··· ,xI)∈RI+ :
P
i∈I xi≤x }

∑
i∈I

αiu
i(t, xi).

Then, it follows that under Assumption 1, the aggregate utility Uα has an additively
separable expected utility representation

Uα(c) = E

[∫ T †

0

uα(t, ct) dt
]

where uα(t, x) =
∑
i∈I

αiu
i(t, c∗i (t, x, α)).

One can show that the following assumption is a sufficient condition for the
existence of Arrow-Debreu equilibria (for proof, see Kusuda [45]).8

Assumption 2. The following condition holds:

max
α∈∆I

uαc (t, c̄t(ω)) def= π̄t(ω) ∈ L2
+(3.1)

8The condition (3.1) is shown in Dana [17]. It is easy to see that this condition is weaker than
the one that the aggregate endowment is bounded away from zero.
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The CCAPM with ASU agents cannot explain the high equity premium (Mehra
and Prescott [50]) and/or the low risk-free rate (Weil [62]). One of promising
explanations for these puzzles is a deficiency of an ASU, that is, both of risk aversion
and intertemporal substitution depend on the curvature of VNM utility function
in an ASU. However, as argued in Hall [32], this linkage is inappropriate because
risk aversion concerns the preference of an agent among events while elasticity of
intertemporal substitution concerns the preference of an agent among time. We can
independently handle these two characteristics in the class of stochastic differential
utilities (SDUs), which is a generalization of the class of standard ASUs, and then
expect that SDUs might contribute to solve the equity premium puzzle and/or the
risk-free rate puzzle. In the following subsection, we show sufficient conditions for
existence of equilibria in case of SDUs with Inada conditions.

3.3. Sufficient Conditions for Existence of Equilibria in Case of SDUs
with Inada Conditions. An SDU is a continuous-time version of Epstein-Zin
utility (Epstein and Zin [26]), and was introduced in Duffie and Epstein [19], which
is a utility with expected recursive utility representation, and a generalization of
the standard ASU. An SDU is not necessarily analytically tractable under jump-
Wiener information, but Kusuda [45] shows a subclass of SDUs in which every
SDU can be normalized as shown in Assumption 3 (for details, see Kusuda [45]).
This subclass is still wide, and includes a class of SDUs in which each SDU is
characterized by an expected-utility certainty equivalent (for definition, see Duffie
and Epstein [19]). For instance, Uzawa utility (Uzawa [61]) and Kreps-Porteus
utility which was introduced in Kreps and Porteus [44], and developed in Epstein
and Zin [26] and Weil [63]. So we assume that every agent has a normalized SDU.

Assumption 3. For every i ∈ I, the utility U i is a normalized SDU, i.e U i(ci) =
Y i0 for every ci ∈ L2

+ where Y i is the unique solution in L2 for the following
recursive equation9

Y it = Et

[∫ T †

t

f i(cis, Y
i
s ) ds

]
∀t ∈ T(3.2)

where the aggregator f i is a C1,1 function on R+ × R such that f i( · , y) is strictly
increasing for every y ∈ R and that f i is concave.10

Duffie, Geoffard, and Skiadas [21] shows that the following assumption is suffi-
cient for the existence of Arrow-Debreu equilibria.

Assumption 4. 1. For every i ∈ I, the following two conditions hold:
(a) supy∈R f ic(x, y) <∞ for every x > 0.
(b) The aggregator f i satisfies limx↓0 infy∈R f ic(x, y) =∞.

2. The aggregate endowment is bounded away from zero µ-a.e.

9The process Y it is called the continuation utility process since it is thought of as the continu-

ation utility for c at time t conditional on the information up to the time t.
10A sufficient condition for the existence and uniqueness of the recursive equation (3.2) is that

f i satisfies the following two conditions (for proof, see Duffie and Epstein [19]):

1. A growth condition in consumption, i.e. there exist constants k0 and k1 such that for every
x ∈ R+, we have |f i(x, 0)| ≤ k0 + k1‖x‖.

2. A uniform Lipschitz condition in utility, i.e. there exists a constant k such that for every x ∈ R+

and every (y1, y2) ∈ R2, we have |f i(x, y1)− f i(x, y2)| ≤ k‖y1 − y2‖.
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Remark 3. Consider a standard ASU of the form U(c) = E

[∫ T †
0
e−ρsu(cs) ds

]
.

Then, it follows from Ito’s formula that U can be interpreted as an SDU of the
form

Yt = Et

[∫ T †

t

(
u(cs)− ρYs

)
ds

]
∀t ∈ T.(3.3)

It is straightforward to see that Assumption 4.1.(b) is equivalent to the Inada
condition in the case of ASU.

4. Preliminaries to CCAPM

In this section, we show some preliminary results for deriving CCAPM. We
consider a fixed ASM equilibrium in our approximately complete security market
economy. First, we show that the equilibrium price of any security such that cu-
mulative dividend process is expressed as a finite sum of dividends satisfies Euler
equation, and then define the equilibrium price of a security with more general cu-
mulative dividend process by Euler equation. Next, we see that the product of the
equilibrium state price process and the real equilibrium gain process is a martin-
gale under the agents’ common belief P, or equivalently that the discounted nominal
equilibrium gain process is a martingale under risk-neutral measure. Finally, we
assume that the aggregate endowment process has the SDDE representation, and
show that the equilibrium state price process, real equilibrium gain process, and
the equilibrium commodity price process have SDDE representations.

Hereafter, let B ∈ B̄ and consider a fixed ASM equilibrium ((ĉi)i∈I, p,B) for
E. Then, since the Arrow-Debreu equilibrium ((ĉi)i∈I, π) for E with π = ΛB

B p can
be identified with the ASM equilibrium ((ĉi)i∈I, p,B), we call π as the associated
equilibrium state price.

4.1. Extended Security Price System. We first consider a security with nom-
inal cumulative dividend process D0 given by

D0
t =

∑
0<sn≤t

dsn ∀t ∈ T(4.1)

where dsn ∈ L∞(Ω,Fsn) for every n ∈ {1, 2, · · · , N}, and (sn)n∈{1,2,··· ,N} is a
sequence of times satisfying 0 < s1 < s2 < · · · < sN ≤ T †. Then, since markets
are approximately complete, for every dividend dsn , there exists a sequence of
replicable contingent sn-claims (Xmsn)m∈N converging to dsn in L2(Ω,Fsn , P̃B).
Thus, it follows from arbitrage-free pricing theory that values of dividends dsn is
the limit of values of contingent sn-claims (Xmsn)m∈N. Therefore, we can derive
the security’s equilibrium price St(D0) at time t as the sum of the value of dividend
dsn in the following:

St(D0) = Bt Ẽ
B
t

 ∑
t<sn≤T †

dsn
Bsn

 =
Bt
ΛB
t

Et

 ∑
t<sn≤T †

ΛB
sndsn
Bsn

 =
pt
πt
Et

 ∑
t<sn≤T †

πsn
dsn
psn

 .
(4.2)
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Hereafter, we write the real price process X̌ = X
p for every nominal price process X.

Then, the asset pricing formula (4.3) is rewritten as the following Euler equation.

Št(D0) =
1
πt
Et

 ∑
t<sn≤T †

πsn ďsn

 .(4.3)

Next, we consider a security with more general nominal cumulative dividend process
D given by

dDt

Dt
= rDt dt+ vDt · dWt +

∫ t

0

HD
t (z) { ν(dt× dz)− λt(dz) dt } ∀t ∈ T(4.4)

for every t ∈ T, for some rD ∈ L1, vD ∈
∏d
j=1 L2, and HD ∈ L1(λt(dz)× dt). We

define the equilibrium price of the security by Euler equation.

Definition 6. Let ((ĉi)i∈I, p,B) be an ASM equilibrium for E with B ∈ B̄ and
the associated equilibrium state price π. Then, the equilibrium real security price
process Št(D) is defined by

Št(D) =
1
πt
Et

[∫ T †

t

πs
dDs

ps

]
∀t ∈ T.(4.5)

It is straightforward to see that introducing the security with the price (4.5) into
our economy does not change the equilibrium ((ĉi)i∈I, p,B).

4.2. Martingale Properties. We introduce the notion of nominal gain process
of a security in the following.

Definition 7. The nominal gain process of a security with nominal dividend price
process D given by (4.4) is

Gt(D) = St(D) +Bt

∫ t

0

dDs

Bs
∀t ∈ T.(4.6)

We write G as G(D), hereafter. It immediately follows from (4.5) and (4.6) that
the product of the equilibrium state price process π and the real equilibrium gain
process Ǧ is a P-martingale, or equivalently that the discounted nominal equilibrium
gain process G̃ def= G

B is a P̃B-martingale.11

Lemma 2. For a given ASM equilibrium ((ĉi)i∈I, p,B) for E with B ∈ B̄ and the
associated equilibrium state price π, the following two properties hold:

1. The process πǦ is a P-martingale.
2. The discounted nominal gain process G̃ is a P̃B-martingale.

Proof. See Appendix D.1.

11The proposition that the discounted nominal equilibrium gain process is a P̃B-martingale is
originated with Harrison and Kreps [37], and the one that the product of the equilibrium state

price process and the real equilibrium gain process is a P-martingale is generally attributed to

Hansen and Richard [35].
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4.3. SDDE Representations. We assume that the aggregate endowment has the
SDDE representation (Assumption 5.1 is put just for making CCAPM equations
empirically tractable).

Assumption 5. 1. (a) The Lusin space (Z,Z) is the d′-dimensional Euclidean
space, i.e. (Z,Z) = (Rd

′
,B(Rd

′
)).

(b) The P-intensity kernel of the marked point process ν is given by

λt(dz) = λtφ(z) dz

where λt is a P-measurable process and φ is a p.d.f. on Rd
′
.

2. The dynamics of the aggregate endowment process is given by the SDDE of
the form

dc̄t
c̄t−

= rc̄t dt+ vc̄t · dWt +
∫
Rd
′
H c̄
t (z) { ν(dt× dz)− λtφ(z) dz dt } ∀t ∈ T(4.7)

for some rc̄ ∈ L1, vc̄ ∈
∏d
j=1 L2, and H c̄ ∈ L1(λt(dz)× dt).

Then, we can show that the equilibrium state price process, real equilibrium gain
process, and the equilibrium commodity price process have SDDE representations.
The associated equilibrium state price πt at time t is a function of (t, c̄t) in case of
ASUs, and of (t, c̄t, Yt) in case of SDUs as shown in Lemma 4 in Section 6. Since
the dynamics of c̄ and Y have SDDE representations, it follows from Ito’s formula
that the dynamics of π also has an SDDE representation of the form

dπt
πt−

= rπt dt+ vπt · dWt +
∫
Rd
′
Hπ
t (z) { ν(dt× dz)− λtφ(z) dz dt }(4.8)

for every t ∈ T, for some rπ ∈ L1, vπ ∈
∏d
j=1 L2, and Hπ ∈ L1(λt(dz) × dt).

Moreover, since πǦ is a martingale, by Martingale Representation Theorem πǦ
has an SDDE representation, too. Thus, by Ito’s formula again, the dynamics of
equilibrium gain process Ǧ = πǦ

π also has an SDDE representation of the form

dǦt

Ǧt−
= rǦt dt+ vǦt · dWt +

∫
Rd
′
HǦ
t (z) { ν(dt× dz)− λtφ(z) dz dt }(4.9)

for every t ∈ T, for some rǦ ∈ L1, vǦ ∈
∏d
j=1 L2, and HǦ ∈ L1(λt(dz) × dt).

Finally, since the equilibrium commodity price process p is the product of processes
with SDDE representations, i.e., p = B(ΛB)−1π, Ito’s formula implies that p also
satisfies an SDDE representation of the form

dpt
pt−

= rpt dt+ vpt · dWt +
∫
Rd
′
Hp
t (z) { ν(dt× dz)− λtφ(z) dz dt }(4.10)

for every t ∈ T, where

rpt = rBt + rπt +
1
2

(
‖vpt ‖2 − ‖vB

t ‖2 − ‖vπt ‖2
)

+ λt

∫
Rd
′
Hp
t (z)φ(z) dz,

vpt = vB
t + vπt ,

Hp
t (z) =

1 +Hπ
t (z)

1−HB
t (z)

− 1.

(4.11)
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5. CCAPM with ASUs

In this section, we derive CCAPM with ASUs. We first derive the ordinary
risk premium, i.e., the risk premium between the risky security with the nominal
dividend process D and the risk-free security. Second, we derive the risk premium
between a risky security and the nominal-risk-free security. Finally, we show an
empirically tractable CCAPM assuming CRRA utilities with a common relative
risk aversion.

5.1. CCAPM with respect to Risk-Free Security. First, we consider the
risk premium between the risky security and the risk-free (Not nominal risk-free)
security. Using the explicit formula of equilibrium state price and the result that
the product of the state price process and the real gain process of any security is
a martingale in ASM equilibrium, we obtain explicit formulas of risk-free security
and of the risk premium between the risky security and the risk-free security.

Proposition 1. In addition to Assumptions 1, 2, and 5, if ui ∈ C1,3 for every
i ∈ I, then for a given ASM equilibrium ((ĉi)i∈I, p,B) for E with B ∈ B̄ and the
associated equilibrium state price πt = uα̂c (t, c̄t), the following hold:

1. The real expected instantaneous interest rate (the real risk-free rate) is

(5.1) rF̌t = −u
α̂
ct(t, c̄t)
uα̂c (t, c̄t)

+ γα̂t r
c̄
t −

1
2
γα̂t

(
− c̄tu

α̂
ccc(t, c̄t)

uα̂cc(t, c̄t)

)
‖vc̄t‖2

− γα̂t λt
∫
Rd
′
H c̄
t (z)φ(z) dz + λt

∫
Rd
′
H α̂
t (z)φ(z) dz

for every t ∈ T, where

γα̂t = − c̄tu
α̂
cc(t, c̄t)

uα̂c (t, c̄t)
,

H α̂
t (z) = −u

α̂
c (t, (1 +H c̄

t (z))c̄t−)− uα̂c (t−, c̄t−)
uα̂c (t−, c̄t−)

.

(5.2)

2. The real risk premium between the risky security with its gain process G and
the risk-free security is

rǦt − rF̌t = γα̂t v
c̄
t · vǦt + λt

∫
Rd
′
H α̂
t (z)HǦ

t (z)φ(z) dz(5.3)

for every t ∈ T.

Proof. See Appendix D.2.

Remark 4. In the right-hand side of (5.3), we call the first term γα̂t v
c̄
t · vǦt and

the second term
∫
Rd
′Hα

t (z)HǦ
t (z)λt(dz), the consumption-gain correlated diffusive

risk premium and the consumption-gain correlated jump risk premium, respectively.
Equation (5.3) shows that the risk premium under jump-Wiener information can
be decomposed into the consumption-gain correlated diffusive risk premium risk
premium and the consumption-gain correlated jump risk premium.

Remark 5. Related theoretical works on CCAPM with ASUs are as follows. Bree-
den [13] first derived a CCAPM assuming homogeneous agents under Wiener and
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Markovian information. Ahn and Thompson [1] extended the result to jump-
Wiener and Markovian information. Neither Breeden [13] nor Ahn and Thomp-
son [1] proved the existence of security market equilibria, and both of them as-
sumed homogeneous agents. Duffie and Zame [25] proved the existence of security
market equilibria and derived CCAPM with heterogeneous agents under Wiener
and non-Markovian information. Proposition 1 is a generalization of their results.
Madan [48] and Back [8] derived CCAPM with heterogeneous agents under semi-
martingale and non-Markovian information, although they did not prove the exis-
tence of security market equilibria. However, since we cannot construct the repre-
sentative agent because of market incompleteness, they have derived the CCAPM
as follows. Since the equilibrium state price can be expressed as each agent’s mar-
ginal utility multiplied by a constant, we can replace the representative agent’s
marginal utility in (5.3) with each agent’s marginal utility.

rǦt − rF̌t = − ĉ
i
tu
i
cc(t, ĉ

i
t)

uic(t, ĉit)
vĉ
i

t · vǦt

+ λt

∫
Rd
′

(
−
uic(t, (1 +H ĉi

t (z))ĉit−)− uic(t−, ĉit−)
uic(t−, ĉit−)

)
HǦ
t (z)φ(z) dz ∀t ∈ T.

(5.4)

Dividing both sides of (5.4) by (−u
i
cc(t,ĉ

i
t)

uic(t,ĉ
i
t)

) and then summing the resultant equa-
tions over I agents, we obtain

rǦt − rF̌t = γI
t v

c̄
t · vǦt + λt

∫
Rd
′
HI
t (z)H

Ǧ
t (z)φ(z) dz ∀t ∈ T(5.5)

where

γI
t =

{∑
i∈I

(
−u

i
cc(t, ĉ

i
t)

uic(t, ĉit)

)−1
}−1

c̄t,

HI
t (z) =

∑
i∈I

γI
t(

− uicc(t,ĉ
i
t)

uic(t,ĉ
i
t)c̄t

) (−uic(t, (1 +H ĉi

t (z))ĉit−)− uic(t−, ĉit−)
uic(t−, ĉit−)

)
.

To make that return rates of gain processes are scale-invarant for the aggregate
consumption and that the coefficient γI

t is empirically tractable, we need to as-
sume CRRA (Constant Relative Risk Aversion) utilities with a common relative
risk aversion. However, the coefficient HI

t (z) with CRRA utilities with a common
relative risk aversion γ becomes empirically intractable as follows

HI
t (z) =

∑
i∈I

ĉit
c̄t

(
1− (1 +H ĉi

t (z))−γ
)
.

5.2. CCAPM with respect to Nominal-Risk-Free Security. We established
CCAPM equations (5.1)-(5.3) with ASUs. However, this expression is inconvenient
to test, since the risk-free security is not traded or very limitedly traded in the
real economy. Thus, we replace the risk-free rate with the nominal-risk-free rate in
CCAPM equations (5.1) and (5.3).

Theorem 1. In addition to Assumptions 1, 2, and 5, if ui ∈ C1,3, then for a given
ASM equilibrium ((ĉi)i∈I, p,B) for E with B ∈ B̄ and the associated equilibrium
state price πt = uα̂c (t, c̄t), the following hold:
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1. For real terms, the following hold:
(a) The real expected instantaneous interest rate of the money market account

(real nominal-risk-free rate) is

rB̌t = rF̌t +
(
−γα̂t vc̄t · v

p
t

)
+
(
−λt

∫
Rd
′
H α̂
t (z)

Hp
t (z)

1 +Hp
t (z)

φ(z) dz
)

(5.6)

for every t ∈ T where rF̌t satisfies (5.1).
(b) The real risk premium between the risky security with its gain process G

and the nominal-risk-free security is

(5.7) rǦt − rB̌t = γα̂t v
c̄
t · vǦt + λt

∫
Rd
′
H α̂
t (z)HǦ

t (z)φ(z) dz

−
{(
−γα̂t vc̄t · v

p
t

)
+
(
−λt

∫
Rd
′
H α̂
t (z)

Hp
t (z)

1 +Hp
t (z)

φ(z) dz
)}

for every t ∈ T.
2. For nominal terms, the following hold:

(a) The nominal nominal-risk-free rate is

rBt = rB̌t + rpt − ‖v
p
t ‖2 − λt

∫
Rd
′
Hp
t (z)φ(z) dz(5.8)

for every t ∈ T.
(b) The nominal risk premium between the risky security with its gain process

G and the nominal-risk-free security is

(5.9) rGt − rBt = γα̂t v
c̄
t · vGt + λt

∫
Rd
′

H α̂
t (z)

1 +Hp
t (z)

HG
t (z)φ(z) dz

+ vpt · vGt + λt

∫
Rd
′

Hp
t (z)

1 +Hp
t (z)

HG
t (z)φ(z) dz

for every t ∈ T.

Proof. See Appendix D.3.

Remark 6. Equation (5.7) can be rewritten as

rǦt − rB̌t =
(
rǦt − rF̌t

)
−
(
rB̌t − rF̌t

)
(5.10)

where

rǦt − rF̌t = γα̂t v
c̄
t · vǦt + λt

∫
Rd
′
H α̂
t (z)HǦ

t (z)φ(z) dz,

rB̌t − rF̌t =
(
−γα̂t vc̄t · v

p
t

)
+
(
−λt

∫
Rd
′
H α̂
t (z)

Hp
t (z)

1 +Hp
t (z)

φ(z) dz
)
.

We call terms rǦt −rF̌t and rB̌t −rF̌t , the gain fluctuation risk premium and the com-
modity price fluctuation risk premium, respectively. In the commodity price fluctu-
ation risk premium, we call terms (−γα̂t vc̄t ·v

p
t ) and (−λt

∫
Rd
′H α̂

t (z) Hpt (z)

1+Hpt (z)
φ(z) dz),

the consumption-commodity-price correlated diffusive risk premium and the consumption-
commodity-price correlated jump risk premium, respectively. Equation (5.10) shows
that the risk premium between a risky security and the nominal-risk-free security
equals the security price fluctuation risk premium minus the commodity price fluc-
tuation risk premium. We do not know whether the commodity price fluctuation
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risk premium is positive or not, and it is possible that one of two terms or both
terms in the commodity price fluctuation risk premium are negative.

5.3. CCAPM with CRRA Utilities. CCAPM equations (5.6)-(5.7) are not still
empirically tractable. To obtain more empirically tractable CCAPM equations, we
assume that agents have CRRA utilities with a common relative risk aversion coef-
ficient since it has various desirable properties including the following: (1) CRRA
utility is analytically tractable. (2) The representative agent also has the CRRA
utility with the same relative risk aversion coefficient as shown in Lemma 3. (3)
Return rates of securities are scale-invariant for the aggregate consumption.

Assumption 6. For every i ∈ I, the agent’s VNM utility function is given by

ui(t, x) =

e
−ρit γ

1− γ

{(
x

γ

)1−γ

− 1

}
for γ 6= 1

e−ρit lnx for γ = 1

(5.11)

for every (t, x) ∈ T× R+ and for some ρi ∈ R++ and γ ∈ R++.

If agents have CRRA utilities with a common relative risk aversion coefficient,
then the representative agent also has the CRRA utility with the same relative risk
aversion coefficient.

Lemma 3. Under Assumption 6, 2, and 5, the VNM aggregate utility function is

uα(t, x) =


e−ρ(α) t γ

1− γ


(∑

i∈I(αie
ρit)

1
γ

)γ
∑
i∈I αie

ρit

(
x

γ

)1−γ

− 1

 for γ 6= 1

e−ρ(α) t lnx for γ = 1

(5.12)

for every (t, x) ∈ T×R+ where ρ(α) = − 1
t ln

(∑
i∈I αie

−ρit
)
. In addition, if ρi = ρ

for some ρ ∈ R++ for every i ∈ I, then

uα(t, x) =

e
−ρt γ

1− γ

{(
x

γ

)1−γ

− 1

}
for γ 6= 1

e−ρt lnx for γ = 1

(5.13)

for every (t, x) ∈ T× R+.

Proof. See Appendix D.4.

It follows from Theorem 1 and Lemma 3 that an empirically tractable CCAPM
with CRRA utilities is obtained.

Corollary 1.1. In addition to Assumptions 6, 2, 5, and 9, if ρi = ρ for some
ρ ∈ R++ for every i ∈ I, then for a given ASM equilibrium ((ĉi)i∈I, p,B) for E
with B ∈ B̄ and the associated equilibrium state price πt = uα̂c (t, c̄t), processes γα̂t
and H α̂

t (z) in Proposition 1 and Theorem 1 satisfy

γα̂t = γ,

H α̂
t (z) = 1− (1 +H c̄

t (z))−γ ∀z ∈ Rd
′
,

(5.14)

for every t ∈ T, and the following hold:
1. For real terms, the following holds:
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(a) The real nominal-risk-free rate is

rB̌t = rF̌t +
(
−γ vc̄t · v

p
t

)
+
(
−λt

∫
Rd
′

(
1− (1 +H c̄

t (z))−γ
) Hp

t (z)
1 +Hp

t (z)
φ(z) dz

)(5.15)

for every t ∈ T, where

(5.16) rF̌t = ρ+ γ rc̄t −
1
2
γ(γ + 1)‖vc̄t‖2

− γλt
∫
Rd
′
H c̄
t (z)φ(z) dz + λt

∫
Rd
′

(
1− (1 +H c̄

t (z))−γ
)
φ(z) dz.

(b) The real risk premium between the risky security with its gain process G
and the nominal-risk-free security is

rǦt − rB̌t =γ vc̄t · vǦt + λt

∫
Rd
′

(
1− (1 +H c̄

t (z))−γ
)
HǦ
t (z)φ(z) dz

−

{(
−γ vc̄t · v

p
t

)
+
(
−λt

∫
Rd
′

(
1− (1 +H c̄

t (z))−γ
) Hp

t (z)
1 +Hp

t (z)
φ(z) dz

)}
(5.17)

for every t ∈ T.
2. For nominal terms, the following hold:

(a) The nominal nominal-risk-free rate satisfies (5.8).
(b) The nominal risk premium between the risky security with its gain process

G and the nominal-risk-free security is

(5.18) rGt − rBt = γ vc̄t · vGt + λt

∫
Rd
′

1− (1 +H c̄
t (z))−γ

1 +Hp
t (z)

HG
t (z)φ(z) dz

+ vpt · vGt + λt

∫
Rd
′

Hp
t (z)

1 +Hp
t (z)

HG
t (z)φ(z) dz

for every t ∈ T.

Remark 7. Euler equations with a common CRRA utility have been often rejected
by tests of Generalized Method of Moments (GMM) developed in Hansen [34] and
Cumby, Huizinga, and Obstfeld [16] (Epstein and Zin [27], Finn, Hoffman, and
Schlagenhauf [29], and Hansen and Singleton [36] for US data), and lead us the
equity premium puzzle of Mehra and Prescott [50] and the risk-free rate puzzle
of Weil [62]. Rietz [56] pointed out that one possible explanation of such puzzles
is to disregard effects of possible very rare market crashes. He respecified Euler
equations derived by Mehra and Prescott [50], which is a discrete-time finite di-
mensional Markovian state model, to capture the crash risk, and claimed that the
respecified Euler equations can explain high equity risk premia and low risk-free
returns with reasonable degrees of time preference and risk aversion as long as
crashes are plausibly severe and not too improbable. The jump risk premium in
Ahn and Thompson [1]’s CCAPM equations and ours (5.15)-(5.17) is a general-
ization of the market crash risk premium in Euler equations of Rietz [56] since
all magnitudes of upward and downward jumps are considered in the jump risk
premium while only a very big magnitude of downward jump is considered in the
market crash risk premium. However, as Campbell [15] argued, CCAPM equations
with jump risk premia could not completely solve the equity premium puzzle and
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the risk-free rate puzzle. Another possible explanation of such puzzles is possible
deficiencies of ASU.12 One of such possible deficiencies13 is that both risk aversion
and intertemporal substitution depend on the curvature of VNM utility function.14

These characteristics can be disentangled in the class of SDUs (Stochastic Differen-
tial Utilities). Another rationalization for SDUs is given in Anderson, Hansen, and
Sargent [4], Maenhout [49], and Skiadas [60]. To keep analytical tractability, we
usually assume that every agent does not suspect that his or her belief is misspec-
ified, but it is obvious that he or she does in the real economy. Anderson, Hansen,
and Sargent [4] assumed that every agent suspects that his or her belief is mis-
specified and uses robust control theory to make decisions.Maenhout [49] showed
that under Wiener and Markovian information if an agent with a CRRA utility
uses a robust control criterion to make decisions, then the agent’s utility becomes
a Kreps-Porteus utility, and Skiadas [60] extended this result to the one that under
Wiener and non-Markovian information if an agent with a standard ASU uses a
robust control criterion to make decisions, then the agent’s utility becomes an SDU.
In next section, we consider the CCAPM with SDUs.

6. CCAPM with SDU

In this section, we derive the CCAPM assuming homogeneous agents with a com-
mon SDU. We first derive the CCAPM with general SDU, and then present more
empirically tractable CCAPM equations assuming Kreps-Porteus utility (Kreps and
Porteus [44]) which is a generalization of CRRA utility and have various desirable
properties as explained later.

We first consider an equilibrium state price. Duffie and Skiadas [24] give the ex-
plicit formula of the equilibrium state price process using a utility gradient approach
(see Duffie and Skiadas [24]).

Lemma 4. Under Assumptions 3 and 4, for a given ASM equilibrium ((c̄)i∈I, p,B)
for E with B ∈ B̄, the associated equilibrium state price process satisfies for every
i ∈ I,

πt = α̂i exp
(∫ t

0

f iy(ĉis, Y
i
s ) ds

)
f ic(ĉ

i
t, Y

i
t ) ∀t ∈ T(6.1)

for some α̂ ∈ ∆I
++.

Proof. See Duffie and Skiadas [24].

6.1. CCAPM with General SDU. Since it is difficult to construct the represen-
tative agent’s utility in the case of SDUs, we introduce the following assumption.

Assumption 7. Agents are homogeneous and each of them has a common nor-
malized SDU with an aggregator f and the common endowment c̄.

12For other possible explanations, we could give survival bias, market incompleteness, mar-

ket imperfections, limited participants of agents in the stock market, and problems of temporal
aggregation (for surveys on these explanations, see Campbell [15], and Mehra and Prescott [51]).

13For other alternative utilities for other possible deficiencies of an ASU, we could give some

classes of internal and external habit formation utilities (for surveys on asset pricing with habit
formation utilities, see Campbell [15]).

14The standard ASU has another possible deficiency that agent is indifferent toward the timing

of resolution of uncertainty (for definition, see Kreps and Porteus [44]).
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Then, we can obtain the CCAPM with the common SDU in the same way as in
the previous section.

Theorem 2. In addition to Assumptions 7, 3, 4, and 5, if f ∈ C3,2, then for a
given ASM equilibrium ((c̄)i∈I, p,B) for E with B ∈ B̄ and the associated equilib-
rium state price πt = exp

(∫ t
0
fy(c̄s, Ys) ds

)
fc(c̄t, Yt), the following hold:

1. For real terms, the following hold:
(a) The real nominal-risk-free rate is

rB̌t = rF̌t +
(
−γ̄t vc̄t · v

p
t

)
+
(
−ζ̄t vYt · v

p
t

)
+
(
−λt

∫
Rd
′
H̄t(z)

Hp
t (z)

1 +Hp
t (z)

φ(z) dz
)(6.2)

for every t ∈ T, where vYt and HY
t (z) are volatility and jump magnitude

of continuation utility, and

rF̌t = −fy(c̄t, Yt) + γ̄tr
c̄
t + ζ̄tr

Y
t

− 1
2
γ̄t

(
− c̄tfccc(c̄t, Yt)

fcc(c̄t, Yt)

)
‖vc̄t‖ −

1
2
ζ̄t

(
−Ytfcyy(c̄t, Yt)

fcy(c̄t, Yt)

)
‖vYt ‖ −

c̄tYtfccy(c̄t, Yt)
fc(c̄t, Yt)

vc̄t · vYt

− γ̄tλt
∫
Rd
′
H c̄
t (z)φ(z) dz − ζ̄tλt

∫
Rd
′
HY
t (z)φ(z) dz − λt

∫
Rd
′
H̄t(z)φ(z) dz,

γ̄t = − c̄tfcc(c̄t, Yt)
fc(c̄t, Yt)

, ζ̄t = −Ytfcy(c̄t, Yt)
fc(c̄t, Yt)

,

H̄t(z) = −fc((1 +H c̄
t (z))c̄t−, (1 +HY

t (z))Yt−)− fc(c̄t−, Yt−)
fc(c̄t−, Yt−)

.

(6.3)

(b) The real risk premium between the risky security with its gain process G
and the nominal-risk-free security is

(6.4) rǦt − rB̌t = γ̄t v
c̄
t · vǦt + ζ̄t v

Y
t · vǦt + λt

∫
Rd
′
H̄t(z)HǦ

t (z)φ(z) dz

−
{(
−γ̄t vc̄t · v

p
t

)
+
(
−ζ̄t vYt · v

p
t

)
+
(
−λt

∫
Rd
′
H̄t(z)

Hp
t (z)

1 +Hp
t (z)

φ(z) dz
)}

for every t ∈ T.
2. For nominal terms, the following hold:

(a) The nominal nominal-risk-free rate satisfies (5.8).
(b) The nominal risk premium between the risky security with its gain process

G and the nominal-risk-free security is

(6.5) rGt − rBt = γ̄t v
c̄
t · vGt + ζ̄t v

Y
t · vGt + λt

∫
Rd
′

H̄t(z)
1 +Hp

t (z)
HG
t (z)φ(z) dz

+ vpt · vGt + λt

∫
Rd
′

Hp
t (z)

1 +Hp
t (z)

HG
t (z)φ(z) dz

for every t ∈ T.

Proof. See Appendix D.5.

Remark 8. We call each term in (6.4) as follows:

γ̄t v
c̄
t · vǦt : consumption-gain correlated diffusive risk premium.
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ζ̄tv
Y
t · vǦt : continuation-utility-gain correlated diffusive risk premium.

λt
∫
Rd
′ H̄t(z)HǦ

t (z)φ(z) dz : consumption-continuation-utility-gain correlated jump
risk premium.

−γ̄t vc̄t · v
p
t : consumption-commodity-price correlated diffusive risk premium.

−ζ̄t vYt ·v
p
t : continuation-utility-commodity-price correlated diffusive risk premium.

−λt
∫
Rd
′ H̄t(z)

Hpt (z)

1+Hpt (z)
φ(z) dz : consumption-continuation-utility-commodity-price cor-

related jump risk premium.

Remark 9. If the agents’ common utility is a standard ASU of the form (3.3), then
fc = u′ and fy = −ρ. Thus, it is straightforward to see that CCAPM equa-
tions (6.2)-(6.4) are reduced to the ones (5.6) and (5.7) with ASUs.

Remark 10. Related theoretical works on CCAPM with SDU is in the following.
Duffie and Epstein [20] derived a CCAPM assuming homogeneous agents with a
common SDU under Wiener and Markovian information. In their CCAPM, the
risk premium between a risky security and the risk-free security is a linear combi-
nation of the consumption volatility and the market portfolio volatility. Fisher and
Gilles [30] derived a CCAPM assuming homogeneous agents with a common Kreps-
Porteus utility under Wiener and non-Markovian information. Their CCAPM says
that the risk premium between a risky security and the risk-free security is a linear
combination of the consumption volatility and the volatility of some process that
summarizes all information about future opportunities. Theorem 2 is a generaliza-
tion of their results.

6.2. CCAPM with Kreps-Porteus Utility. To obtain more empirically tractable
CCAPM equations than (6.2)-(6.4), we assume that the common SDU is a Kreps-
Porteus utility (Kreps and Porteus [44]) which is a generalization of CRRA utility
since the class of Kreps-Porteus utilities has various desirable properties including
the following: (1) Return rates of securities are scale-invariant for the aggregate
consumption for every Kreps-Porteus utility. (2) The Arrow-Pratt coefficient of
relative risk aversion and the elasticity of intertemporal substitution are specified
as independent constants in the class. (3) Agent can prefer early or late resolution
of uncertainty in the class.

First, we need to assume that there exists a unique square-integrable continua-
tion process Y satisfying (6.6) since the aggregator of a Kreps-Porteus utility does
not satisfy the growth and uniform Lipschitz conditions in Assumption 3.15

Assumption 8. A utility U is given by U(c) = Y0 for every c ∈ L2
+ where Y is

the unique solution in L2 for the following recursive equation

Yt = Et

[∫ T †

t

f(cs, Ys) ds

]
∀t ∈ T(6.6)

15For Wiener information, Schroder and Skiadas [57] prove the existence and uniqueness of
the square-integrable continuation utility process satisfying (6.6).
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where f satisfies the Kreps-Porteus utility of the form

f(x, y) =


ρ

(1− γ)y
1− 1

η

{ x(
(1− γ)y

) 1
1−γ

}1− 1
η

− 1

 for η 6= 1

ρ(1− γ)y
[
lnx− 1

1− γ
ln(1− γ)y

]
for η = 1

(6.7)

for every (x, y) ∈ R2
+ and for some constants ρ ∈ R++, 1 > γ ≥ 0, η ∈ R++.

Remark 11. Coefficients in the aggregator f are interpreted as follows. γ is the
Arrow-Pratt coefficient of relative risk aversion in static stochastic setting, and ρ
and η are the rate of time preference and the elasticity of intertemporal substitution
in dynamic nonstochastic setting, respectively. The preference for early versus late
resolution of uncertainty is characterized by the sign of γ − 1

η . The agent prefers
early resolution for γ > 1

η , late resolution for γ < 1
η , and indifferent toward the

timing of resolution of uncertainty for γ = 1
η , i.e. the case of CRRA utility.

It follows from Theorem 1 that the CCAPM with Kreps-Porteus utility is ob-
tained.

Corollary 2.1. Under Assumptions 7, 8, 4.2, and 5, for a given ASM equilibrium
((c̄)i∈I, p,B) for E with B ∈ B̄ and the associated equilibrium state price πt =
exp

(∫ t
0
fy(c̄s, Ys) ds

)
fc(c̄t, Yt), processes γ̄t, ζ̄t, and H̄t(z) in Theorem 2 satisfy

γ̄t =
1
η
, ζ̄t =

γ − 1
η

1− γ
,

H̄t(z) = 1− (1 +H c̄
t (z))−

1
η (1 +HY

t (z))−
γ− 1

η
1−γ ∀z ∈ Rd

′
,

(6.8)

for every t ∈ T, and the following hold:

1. For real terms, the following hold:
(a) The real nominal-risk-free rate is

(6.9) rB̌t = rF̌t +
(
−1
η
vc̄t · v

p
t

)
+

(
−
γ − 1

η

1− γ
vYt · v

p
t

)

+
(
−λt

∫
Rd
′

(
1− (1 +H c̄

t (z))−γ(1 +HY
t (z))−

γ− 1
η

1−γ

) Hp
t (z)

1 +Hp
t (z)

φ(z) dz
)
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for every t ∈ T, where

rF̌t = ρ(c̄t, Yt) +
1
η
rc̄t +

γ − 1
η

1− γ
rYt

− 1
2

1
η

(
1
η

+ 1
)
‖vc̄t‖2 −

1
2

γ − 1
η

1− γ

(
γ − 1

η

1− γ
+ 1

)
‖vYt ‖2 −

1
η

γ − 1
η

1− γ
vc̄t · vYt

− 1
η
λt

∫
Rd
′
H c̄
t (z)φ(z) dz −

γ − 1
η

1− γ
λt

∫
Rd
′
HY
t (z)φ(z) dz

+ λt

∫
Rd
′

(
1− (1 +H c̄

t (z))−
1
η (1 +HY

t (z))−
γ− 1

η
1−γ

)
φ(z) dz

(6.10)

where

ρ(c̄t, Yt) =
1− γ
1− 1

η

1 +
γ − 1

η

1− γ

(
c̄t

((1− γ)Yt)
1

1−γ

)1− 1
η

 ρ.

(b) The real risk premium between the risky security with its gain process G
and the nominal-risk-free security is

rǦt − rB̌t =
1
η
vc̄t · vǦt +

γ − 1
η

1− γ
vYt · vǦt

+ λt

∫
Rd
′

(
1− (1 +H c̄

t (z))−
1
η (1 +HY

t (z))−
γ− 1

η
1−γ

)
HǦ
t (z)φ(z) dz

−

{(
−1
η
vc̄t · v

p
t

)
+
(
−
γ − 1

η

1− γ
vYt · v

p
t

)

+
(
−λt

∫
Rd
′

(
1− (1 +H c̄

t (z))−
1
η (1 +HY

t (z))−
γ− 1

η
1−γ

) Hp
t (z)

1 +Hp
t (z)

φ(z) dz
)}

(6.11)

for every t ∈ T.
2. For nominal terms, the following hold:

(a) The nominal nominal-risk-free rate satisfies (5.8).
(b) The nominal risk premium between the risky security with its gain process

G and the nominal-risk-free security is

(6.12)

rGt −rBt =
1
η
vc̄t ·vGt +

γ − 1
η

1− γ
vYt ·vGt +λt

∫
Rd
′

1− (1 +H c̄
t (z))−

1
η (1 +HY

t (z))−
γ− 1

η
1−γ

1 +Hp
t (z)

HG
t (z)φ(z) dz

+ vpt · vGt + λt

∫
Rd
′

Hp
t (z)

1 +Hp
t (z)

HG
t (z)φ(z) dz

for every t ∈ T.

Remark 12. If the common utility is a CRRA utility, i.e. η = 1
γ , then it follows

that γ̄t = γ, ζ̄t = 0, H̄t(z) = 1 − (1 + H c̄
t (z))−γ , and ρ(c̄t, Yt) = ρ, and CCAPM

equations (6.9)-(6.11) are reduced to the ones (5.15)-(5.17) with the CRRA utility.
If the common utility is such that the elasticity of intertemporal substitution is
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infinity, i.e. η = ∞, then it follows that γ̄t = 0, ζ̄t = γ
1−γ , and H̄t(z) = 1 − (1 +

HY
t (z))−

γ
1−γ .

Remark 13. Epstein and Zin [27], Jorion and Giovannini [43], and Hamori [33]
tested Euler equations with a common Kreps-Porteus utility in discrete-time model
using the GMM. However, a GMM estimator is inefficient, and the result of a GMM
test often depends on selected instrument set. Test results for U.S. data in Epstein
and Zin [27] and in Jorion and Giovannini [43] depend on selected instrument sets,
while test results for Japanese data in Hamori [33] do not reject the CCAPM. These
results suggest that to test the CCAPM with SDU, it might be better than to use
the GMM to specify processes of consumption and asset prices and to use an efficient
estimation method such as a likelihood-based method or a Bayesian method. Jorion
and Giovannini [43] also assumed that the growth rate of consumption and return
rates of assets are jointly lognormal and homoscedastic, and tested the CRRA util-
ity hypothesis γ = 1

η using the likelihood ratio test. The test result showed that the
CRRA utility hypothesis is not rejected. Note that their assumption that return
rates of assets are jointly lognormal and that they are homoscedastic correspond
to the one that return rates of assets are subject to Ito processes and that volatil-
ities of assets are constants in continuous-time model. However, recent empirical
analyses have shown that return rates of assets are subject to jump-Wiener pro-
cesses with stochastic volatilities, and that the class of affine jump-diffusion models
with stochastic volatilities is promising to explain dynamics of asset return rates.
We can exploit an efficient estimation and test method such as a characteristic-
function-based method or a Markov Chain Monte Carlo (MCMC) method, using
the time-series data of G, c̄, and p as long as we specify these processes as an affine
jump-diffusion model with stochastic volatilities.

7. General Equilibrium Framework for

Jump-Diffusion Option Pricing Models

In this section, we present a general equilibrium (GE) framework for jump-
diffusion option pricing models in each case of heterogeneous agents with CRRA
utilities and of homogeneous agents with a common Kreps-Porteus utility. In con-
crete, we show analytically tractable formulas for equilibrium market prices of dif-
fusive risk and of jump risk, for the Wiener process under the risk-neutral measure,
and for the jump intensity under the risk-neutral measure, and derive the dynam-
ics of equilibrium nominal gain, forward rate, and nominal-risk-free rate processes.
These formulas enable us to construct jump-diffusion option pricing models for
which both of analytic (quasianayltic) equilibrium price formulas for European op-
tions and an efficient estimation method are available. Then, we construct a GE
version of jump-diffusion stock index model with jump-diffusion volatility, which
was proposed in Duffie, Pan, and Singleton [22] as a promising example in the
class of affine jump-diffusion (AJD) models16 developed by Heston [39], Bates [9],
and Duffie, Pan, and Singleton [22]. For every AJD model, both of quasianalytic
European option price formulas and efficient estimation methods are available (see
Duffie, Pan, and Singleton [22]).

16For definition of AJD model, see Duffie, Pan, and Singleton [22].
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7.1. GE Framework for Jump-Diffusion Option Pricing Models. We as-
sume that jump magnitudes of the aggregate endowment, of the utility process,
and of the P̃B-density ΛB are analytically tractable as follows.

Assumption 9. Jump magnitudes of the aggregate endowment c̄, of the utility Y ,
and of the density ΛB of P relative to P̃B satisfy

H c̄
t (z) = eJc̄(z) − 1,

HY
t (z) = eJY (z) − 1,

HB
t (z) = 1− eJB(z),

(7.1)

for every (t, z) ∈ T× Rd′ where Jc̄, JY , JB : Rd
′ → R.

Then, we obtain the following analytically tractable formulas for the equilibrium
market prices of diffusive risk and of jump risk, for the P̃B-Wiener process, and
for the P̃B-intensity kernel of marked point process ν, and the dynamics of equi-
librium nominal gain, forward rate, and nominal-risk-free rate processes, in each
case of heterogeneous agents with CRRA utilities and of homogeneous agents with
a common Kreps-Porteus utility.

Theorem 3. 1. Under Assumptions 6, 2, 5, and 9, for a given ASM equilibrium
((ĉi)i∈I, p,B) for E with B ∈ B̄ and the associated equilibrium state price
πt = uα̂c (t, c̄t), the following hold:
(a) Market prices of nominal diffusive risk vB

t and of nominal jump risk
HB
t (z)λt(dz) satisfy

vB
t = γα̂t v

c̄
t + vpt = γ vc̄t + vpt ,

HB
t (z)λt(dz) = λt

H α̂
t (z) +Hp

t (z)
1 +Hp

t (z)
φ(z) dz

= λt

(
1− e−

(
γJc̄(z)+Jp(z)

))
φ(z) dz ∀z ∈ Rd

′
,

(7.2)

for every t ∈ T, where Jp(z) = −
(
γJc̄(z) + JB(z)

)
and satisfies Hp

t (z) =
eJp(z) − 1 for every (t, z) ∈ T× Rd′ .

(b) The P̃B-Wiener process W̃B
t and the P̃B-intensity kernel λ̃B

t φ̃
B(z) dz of

marked point process ν satisfy

W̃B
t = Wt +

∫ t

0

(
γ vc̄s + vps

)
ds,

λ̃B
t = ι λt, φ̃B(z) = ι−1e−

(
γJc̄(z)+Jp(z)

)
φ(z) ∀z ∈ Rd

′
,

(7.3)

for every t ∈ T where ι =
∫
Rd
′e−
(
γJc̄(z)+Jp(z)

)
φ(z) dz.

(c) The dynamics of nominal gain process G satisfies
dGt
Gt−

= rGt dt+ vGt · dWt +
∫
Rd
′
HG
t (z) { ν(dt× dz)− λtφ(z) dz dt }

= rBt dt+ vGt · dW̃B
t +

∫
Rd
′
HG
t (z) { ν(dt× dz)− λ̃B

t φ̃
B(z) dz dt }

(7.4)

for every t ∈ T, where

rGt = rBt +
(
γ vc̄t + vpt

)
· vGt + λt

∫
Rd
′

(
1− e−

(
γJc̄(z)+Jp(z)

))
HG
t (z)φ(z) dz,
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or equivalently

d lnGt =
{
rBt +

(
γ vc̄t + vpt −

1
2
vGt

)
· vGt

− λt
∫
Rd
′
e−
(
γJc̄(z)+Jp(z)

)
HG
t (z)φ(z) dz

}
dt

+ vGt · dWt +
∫
Rd
′
ln(1 +HG

t (z)) ν(dt× dz)

=
{
rBt −

1
2
‖vGt ‖2 − λ̃B

t

∫
Rd
′
HG
t (z)φ̃B(z) dz

}
dt

+ vGt · dW̃B
t +

∫
Rd
′
ln(1 +HG

t (z)) ν(dt× dz)

(7.5)

for every t ∈ T.
(d) The dynamics of nominal T -forward rate process fTt satisfies

dfTt = −aTt dt−
∂vTt
∂T
· dWt −

∫
Rd
′

∂HTt
∂T (z)

1 +HT
t (z)

ν(dt× dz)

=
(
vTt ·

∂vTt
∂T

+ λ̃B
t

∫
Rd
′

∂HT
t

∂T
(z)φ̃B(z) dz

)
dt

− ∂vTt
∂T
· dW̃B

t −
∫
Rd
′

∂HTt
∂T (z)

1 +HT
t (z)

ν(dt× dz)

(7.6)

for every t ∈ [0, T ), where

aTt =
(
γ vc̄t + vpt − vTt

)
· ∂v

T
t

∂T
− λt

∫
Rd
′
e−
(
γJc̄(z)+Jp(z)

)
∂HT

t

∂T
(z)φ(z) dz.

(e) The dynamics of nominal nominal-risk-free rate process rBt satisfies

drBt =
(∂f tt
∂T
− att

)
dt− ∂vtt

∂T
· dWt −

∫
Rd
′

∂Htt
∂T (z)

1 +Ht
t (z)

ν(dt× dz)

=
(∂f tt
∂T

+ vtt ·
∂vtt
∂T

+ λ̃B
t

∫
Rd
′

∂Ht
t

∂T
(z)φ̃B(z) dz

)
dt

− ∂vtt
∂T
· dW̃B

t −
∫
Rd
′

∂Htt
∂T (z)

1 +Ht
t (z)

ν(dt× dz)

(7.7)

for every t ∈ [0, T ).
2. Under Assumptions 8, 4.2, 5, 7, and 9, for a given ASM equilibrium ((c̄)i∈I, p,B)

for E with B ∈ B̄ and the associated equilibrium state price, the following hold:
(a) Market prices of nominal diffusive risk vB

t and of nominal jump risk
HB
t (z)λt(dz) satisfy

vB
t = γ̄tv

c̄
t + ζ̄tv

Y
t + vpt =

1
η
vc̄t +

γ − 1
η

1− γ
vYt + vpt ,

HB
t (z)λt(dz) = λt

H̄t(z) +Hp
t (z)

1 +Hp
t (z)

φ(z) dz

= λt

(
1− e−

(
1
η Jc̄(z)+

γ− 1
η

1−γ JY (z)+Jp(z)
))
φ(z) dz ∀z ∈ Rd

′
,

(7.8)
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for every t ∈ T, where Jp(z) = −
(

1
ηJc̄(z) +

γ− 1
η

1−γ JY (z) + JB(z)
)

and

satisfies Hp
t (z) = eJp(z) − 1 for every (t, z) ∈ T× Rd′ .

(b) The P̃B-Wiener process W̃B
t and the P̃B-intensity kernel λ̃B

t φ̃
B(z) dz of

marked point process ν satisfy

W̃B
t = Wt +

∫ t

0

(
γ vc̄s +

γ − 1
η

1− γ
vYs + vps

)
ds,

λ̃B
t = ι λt, φ̃B(z) = ι−1e−

(
γJc̄(z)+

γ− 1
η

1−γ JY (z)+Jp(z)
)
φ(z) ∀z ∈ Rd

′
,

(7.9)

for every t ∈ T where ι =
∫
Rd
′e−
(
γJc̄(z)+

γ− 1
η

1−γ JY (z)+Jp(z)
)
φ(z) dz.

(c) The dynamics of nominal gain process G satisfies
dGt
Gt−

= rGt dt+ vGt · dWt +
∫
Rd
′
HG
t (z) { ν(dt× dz)− λtφ(z) dz dt }(7.10)

for every t ∈ T, where

rGt = rBt +
(
γ vc̄t+

γ − 1
η

1− γ
vYt +vpt

)
·vGt +λt

∫
Rd
′

(
1−e−

(
γJc̄(z)+

γ− 1
η

1−γ JY (z)+Jp(z)
))
HG
t (z)φ(z) dz,

or equivalently

(7.11) d lnGt =
{
rGt +

(
γ vc̄t +

γ − 1
η

1− γ
vYt + vpt −

1
2
vGt

)
· vGt

− λt
∫
Rd
′
e−
(
γJc̄(z)+

γ− 1
η

1−γ JY (z)+Jp(z)
)
HG
t (z)φ(z) dz

}
dt

+ vGt · dWt +
∫
Rd
′
ln(1 +HG

t (z)) ν(dt× dz)

for every t ∈ T.
(d) The dynamics of nominal T -forward rate process fTt satisfies

dfTt = −aTt dt−
∂vTt
∂T
· dWt −

∫
Rd
′

∂HTt
∂T (z)

1 +HT
t (z)

ν(dt× dz)(7.12)

for every t ∈ [0, T ), where

aTt =
(
γ vc̄t +

γ − 1
η

1− γ
vYt + vpt − vTt

)
· ∂v

T
t

∂T
− λt

∫
Rd
′
e−
(
γJc̄(z)+

γ− 1
η

1−γ JY (z)+Jp(z)
)
∂HT

t

∂T
(z)φ(z) dz.

(e) The dynamics of nominal nominal-risk-free rate process rBt satisfies

drBt =
(∂f tt
∂T
− att

)
dt− ∂vtt

∂T
· dWt −

∫
Rd
′

∂Htt
∂T (z)

1 +Ht
t (z)

ν(dt× dz)(7.13)

for every t ∈ [0, T ).

Remark 14. Heath, Jarrow, and Morton [38] derived the dynamics of arbitrage-
free forward rate processes under Wiener information. Björk, Kabanov, and Rung-
galdier [11] extended the result to jump-Wiener information. SDDEs (7.6) and (7.12)
of equilibrium forward rate processes are GE versions of SDDEs of arbitrage-free
forward rate processes given in Björk, Kabanov, and Runggaldier [11].
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Proof. Proofs of 1 and 2 are essentially same, so we prove just 1. Comparing the
arbitrage-free equation (2.2) with the CCAPM equation (5.9), we have

vB
t = γα̂t v

c̄
t + vpt ,

HB
t (z) =

H α̂
t (z) +Hp

t (z)
1 +Hp

t (z)
= 1− e−

(
γJc̄(z)+Jp(z)

)
∀z ∈ Rd

′
,

(7.14)

for every t ∈ T. Substituting (5.14) and (7.1) into (7.14) yields (7.2). Substitut-
ing (7.2) into (2.3) and (2.4), we obtain (7.3). Then, it is straightforward to have
SDDEs (7.4) and (7.5) of gain process. Finally, we obtain SDDEs (7.6) and (7.7)
of forward rate and nominal-risk-free rate processes using Proposition 2.2 in Björk,
Kabanov, and Runggaldier [11].

7.2. Affine Jump-Diffusion Model with Jump-Diffusion Volatility. Baksi,
Cao, and Chen [7], and Bates [10] studied jump-diffusion stock index models with
diffusion volatility and found that models do not explain the level of skewness
implied by the volatility smirk observed in market data. Duffie, Pan, and Single-
ton [22] proposed a jump-diffusion stock index model (Duffie-Pan-Singleton model,
hereafter) with jump-diffusion volatility as an example in the class of AJD models,
and showed that the model could explain the level of skewness. Eraker, Johannes,
and Polson [28] estimated a simplified version of the Duffie-Pan-Singleton model
using the MCMC method, and the test result showed that their version of the Duffie-
Pan-Singleton model can capture the dynamics of the return rate of U.S. stock index
better than nested models such as Heston’s diffusion model with diffusion volatility
(Heston [39]) and Bakshi-Cao-Chen’s jump-diffusion model with diffusion volatility
(Baksi, Cao, and Chen [7]). The Duffie-Pan-Singleton model is an arbitrage-free
model in which the dynamics of a stock index process is exogenously given under
a risk-neutral measure such that the market price of diffusive risk is unknown, and
that the market price of jump risk is exogenously given. We present a GE model in
which equilibrium prices conform to the Duffie-Pan-Singleton model’s specification.

The Duffie-Pan-Singleton model is a 2-dimensional AJD model of the return rate
of a stock and volatility with 4-dimensional space of jump source’s magnitude. Our
GE version of the Duffie-Pan-Singleton model is a 4-dimensional AJD model of
the return rate of a stock, the growth rate of consumption, the inflation rate, and
volatility, with 8-dimensional space of jump source’s magnitude.

Assumption 10. 1. The dimensionality of Wiener process W is four, i.e. d =
4.

2. The dimensionality of space of jump source’s magnitude is eight, i.e. d′ = 8,
and the P-intensity kernel λtφ(z) dz of marked point process ν is given by

λt = λ ∀t ∈ T,

φ(z) = q(1)φ(1)(z) + q(V )φ(V )(z) + q(2)φ(2)(z) ∀z ∈ R8,
(7.15)
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where λ ∈ R+, q = (q(1), q(V ), q(2))′ ∈ ∆3
+, z = (z(1), z(V ), z(2))′ ∈ R3 × R1 ×

R
4, and

φ(1)(z) = δ{(z(V ),z(2))=(0,0)}(z
(V ), z(2)) (2π)−

3
2 exp

[
−1

2

3∑
j=1

(
z

(1)
j

)2]
,

φ(V )(z) = δ{(z(1),z(2))=(0,0)}(z
(1), z(2)) 1{z(V )≥0}(z

(V )) e−z
(V )
,

φ(2)(z) = δ{(z(1),z(V ))=(0,0)}(z
(1), z(V ))

× (2π)−
3
2 exp

[
−1

2

3∑
j=1

(
z

(2)
j − ρ

′
jz

(2)
4

)2] 1{z(2)
4 ≥0}(z

(2)
4 ) e−z

(2)
4

(7.16)

where δ is the Dirac’s delta function.

For simplicity, we suppose the case of ASUs and consider a security with a payoff
only at time T †. Consider a fixed ASM equilibrium ((ĉi)i∈I, p,B) for E with B ∈ B̄
and the associated equilibrium state price πt = uα̂c (t, c̄t). Then, the equilibrium
nominal price S of the security coincides with its nominal gain process, and has the
following SDDE representation of the form

dSt
St−

= rSt dt+ vSt · dWt +
∫
Rd
′
HS
t (z) { ν(dt× dz)− λtφ(z) dt } ∀t ∈ T(7.17)

where vS ∈
∏d
j=1 L2, HS ∈ L1(λt(dz)× dt), and rS satisfies

rSt = rBt +
(
γ vc̄t + vpt

)
· vSt + λt

∫
Rd
′

(
1− e−

(
γJc̄(z)+Jp(z)

))
HS
t (z)φ(z) dz.

Then, our GE version of the Duffie-Pan-Singleton model is shown in the following
corollary. Note that it is straightforward to derive the quasianalytic equilibrium
price formula for a European option on the security applying formulas given in
Duffie, Pan, and Singleton [22] to the risk-neutral equilibrium dynamics (7.18) of
(lnS, V )′.

Corollary 3.1. Suppose that Assumptions 6, 2, 5, 9, and 10 are satisfied, and that
the bond price family B ∈ B̄ is such that the nominal-risk-free rate is constant, i.e.
rBt = r ν-a.e for some r ∈ R++. For a given ASM equilibrium ((ĉi)i∈I, p,B) for E
with the associated equilibrium state price πt = uα̂c (t, c̄t), assume that the following
conditions hold:

1. Volatilities satisfyvSt ′vc̄t
′

vpt
′

 =
√
Vt

 1 0 0 0
%c̄1ςc̄ %c̄2ςc̄ %c̄3ςc̄ 0
%p1ςp %p2ςp %p3ςp %p4ςp


for every t ∈ T, where (%c̄1, %c̄2, %c̄3)′ ∈ {x ∈ R3 : ‖x‖ = 1}, (%c̄1, %c̄2, %c̄3, %c̄4) ∈
{x ∈ R4 : ‖x‖ = 1}, ςc̄, ςp ∈ R++, and V is a positive real-valued process sat-
isfying

dVt = κ(V̄ − Vt) dt+
√
Vt (%V 1ςV , %V 2ςV , 0, 0) dWt +

∫
R8
JV (z) { ν(dt× dz)− λφ(z) dt }
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where κ, V̄ are positive constants, (%V 1, %V 2) ∈ {x ∈ R2 : ‖x‖ = 1}, ςV ∈
R++, and JV is a function on R8 satisfying

JV (z) = 1{z(V ) 6=0}(z)σ
(V )
V z(V ) + 1{z(2)

4 6=0}(z)σ
(2)
V z

(2)
4

where (σ(V )
V , σ

(2)
V ) ∈ R2

++.
2. Jump magnitudes satisfy

JS(z)
Jc̄(z)
Jp(z)

 = 1{z(1) 6=0}(z)


 σ

(1)
S 0 0

ρ
(1)
c̄1 σ

(1)
c̄ ρ

(1)
c̄2 σ

(1)
c̄ 0

ρ
(1)
p1 σ

(1)
p ρ

(1)
p2 σ

(1)
p ρ

(1)
p2 σ

(1)
p

 z(1) +

µ
(1)
S

µ
(1)
c̄

µ
(1)
p




+ 1{z(2) 6=0}(z)


 σ

(2)
S 0 0

ρ
(2)
c̄1 σ

(2)
c̄ ρ

(2)
c̄2 σ

(2)
c̄ 0

ρ
(2)
p1 σ

(2)
p ρ

(2)
p2 σ

(2)
p ρ

(2)
p3 σ

(2)
p

 z
(2)
−4 +

µ
(2)
S

µ
(2)
c̄

µ
(2)
p




for every t ∈ T where JS(z) = ln(1 +HS
t (z)) for every (t, z) ∈ T×Rd′ , and

(ρ(j)
c̄1 , ρ

(j)
c̄2 ) ∈ {x ∈ R2 : ‖x‖ = 1}, (ρ(j)

p1 , ρ
(j)
p2 , ρ

(j)
p3 ) ∈ {x ∈ R3 : ‖x‖ = 1},

µ
(j)
S , µ

(j)
c̄ , µ

(j)
p ∈ R for j = 1, 2.

Then, the following hold:

1. Under the agents’ common belief P, the dynamics of system of processes
(S, V, c̄, p)′ satisfies (E.1) in Appendix E.

2. Under the risk-neutral measure P̃B, the dynamics of system of processes (S, V, c̄, p)′

satisfies the following system of SDDEs:

(7.18)

d


lnSt
Vt

ln c̄t
ln pt

 =


r − λ̃β̃S − 1

2Vt

κV̄ − λβV +
(∑2

j=1

(
γ%V j%c̄jςV ςc̄ + %V j%pjςV ςc̄

)
− κ
)
Vt

rc̄t − λβc̄ +
(
γς2c̄ +

∑3
j=1

(
%c̄j%pjςc̄ςp

)
− 1

2 ς
2
c̄

)
Vt

rpt − λβp +
(
ς2p −

∑3
j=1

(
%c̄j%pjγςc̄ςp

)
− 1

2 ς
2
p

)
Vt

 dt+

√
Vt


1 0 0 0

%V 1ςV %V 2ςV 0 0
%c̄1ςc̄ %c̄2ςc̄ %c̄3ςc̄ 0
%p1ςp %p2ςp %p3ςp %p4ςp

 dW̃B
t +

∫
R8


JS(z)
JV (z)
Jc̄(z)
Jp(z)

 ν(dt× dz)

for every t ∈ T, where (β̃S , βV , βc̄, βp)′ satisfies (E.2) in Appendix E, and the
P̃

B-intensity kernel λ̃B
t φ̃

B(z) dz of marked point process ν satisfies

λ̃B
t = λ̃B def=

(
ι(1)q(1) + q(V ) + ι(2)q(2)

)
λ,

φ̃B(z) = q̃(1)φ̃(1)(z) + q̃(V )φ(V )(z)q̃(2)φ̃(2)(z) ∀z ∈ R8,



29

where

ι(1) = exp
[
−
(
γµ

(1)
c̄ + µ(1)

p

)
+

1
2

((
γσ

(1)
c̄

)2 +
(
σ(1)
p

)2)+
3∑
j=1

(
γρ

(1)
c̄j ρ

(1)
pj σ

(1)
c σ(1)

p

)]
,

ι(2) =
1

1 +
∑3
j=1 ρ

′
j

(
γρ

(2)
c̄j σ

(2)
c + ρ

(2)
pj σ

(2)
p

)
× exp

[
−
(
γµ

(2)
c̄ + µ(2)

p

)
+

1
2

((
γσ

(2)
c̄

)2 +
(
σ(2)
p

)2)+
3∑
j=1

(
γρ

(2)
c̄j ρ

(2)
pj σ

(2)
c σ(2)

p

)
−

3∑
j=1

ρ′j
(
γρ

(2)
c̄j σ

(2)
c + ρ

(2)
pj σ

(2)
p

)]
,

q̃(1) =
ι(1)

ι(1)q(1) + q(V ) + ι(2)q(2)
q(1),

q̃(V ) =
1

ι(1)q(1) + q(V ) + ι(2)q(2)
q(V ),

q̃(2) =
ι(2)

ι(1)q(1) + q(V ) + ι(2)q(2)
q(2),

φ̃(1)(z) = δ{(z(V ),z(2))=(0,0)}(z
(V ), z(2)) (2π)−

3
2 exp

[
−1

2

3∑
j=1

(
z

(1)
j + γρ

(1)
c̄j σ

(1)
c̄ + ρ

(1)
pj σ

(1)
p

)2]
,

φ̃(2)(z) = δ{(z(1),z(V ))=(0,0)}(z
(1), z(V )) (2π)−

3
2 exp

[
−1

2

3∑
j=1

{
z

(2)
j −

(
ρ′jz

(2)
4 − (γρ(2)

c̄j σ
(2)
c̄ + ρ

(2)
pj σ

(2)
p )
)}2

]

×1{z(2)
4 ≥0}(z

(2)
4 )

{
1−

3∑
j=1

ρ′j
(
γρ

(2)
c̄j σ

(2)
c̄ + ρ

(2)
pj σ

(2)
p

)}−1

exp
[
−
{

1−
3∑
j=1

ρ′j(γρ
(2)
c̄j σ

(2)
c̄ + ρ

(2)
pj σ

(2)
p )
}
z

(2)
4

]
.

Remark 15. In this model, the following three types of jumps are incorporated:

1. Jumps in (lnS, ln c̄, ln p)′ with arrival intensity q(1)λ and multivariate nor-
mally distributed jump size with mean vector (µ(1)

S , µ
(1)
c̄ , µ

(1)
p )′ and variance-

covariance matrix

Σ(1) =


(
σ

(1)
S

)2

ρ
(1)
c̄1 σ

(1)
S σ

(1)
c̄ ρ

(1)
p1 σ

(1)
S σ

(1)
p

ρ
(1)
c̄1 σ

(1)
S σ

(1)
c̄

(
ρ

(1)
c̄2 σ

(1)
c̄

)2

ρ
(1)
c̄2 ρ

(1)
p2 σ

(1)
c̄ σ

(1)
p

ρ
(1)
p1 σ

(1)
S σ

(1)
p ρ

(1)
c̄2 ρ

(1)
p2 σ

(1)
c̄ σ

(1)
p

(
ρ

(1)
p2 σ

(1)
p

)2

 .

2. Jumps in V with arrival intensity q(V )λ and exponentially distributed jump
size with mean σ

(V )
V .

3. Simultaneous correlated jumps in lnS and V with arrival intensity q(2)λ.
The marginal distribution of the jump size in V is exponential with mean
σ

(2)
V . Conditional on a realization σ

(2)
V z

(2)
4 of the jump size in V , the jump

size in (lnS, ln c̄, ln p)′ is multivariate normally distributed with mean vector
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(µ(2)
S + ρ′1z

(2)
4 , µ

(2)
c̄ + ρ′2z

(2)
4 , µ

(2)
p + ρ′3z

(2)
4 )′ and variance-covariance matrix

Σ(2) =


(
σ

(2)
S

)2

ρ
(2)
c̄1 σ

(2)
S σ

(2)
c̄ ρ

(2)
p1 σ

(2)
S σ

(2)
p

ρ
(2)
c̄1 σ

(2)
S σ

(2)
c̄

(
ρ

(2)
c̄2 σ

(2)
c̄

)2

ρ
(2)
c̄2 ρ

(2)
p2 σ

(2)
c̄ σ

(2)
p

ρ
(2)
p1 σ

(2)
S σ

(2)
p ρ

(2)
c̄2 ρ

(2)
p2 σ

(2)
c̄ σ

(2)
p

(
ρ

(2)
p2 σ

(2)
p

)2

 .

Appendix A. Marked Point Process

A.1. Definitions. We consider a double sequence (sn, Zn)n∈N where sn is the oc-
currence time of nth jump and Zn is a random variable taking its values on a mea-
surable space (Z,Z) at time sn. Define the random counting measure ν(dt × dz)
by

ν([0, t]×A) =
∑
n∈N

1{sn≤t, Zn∈A} ∀(t, A) ∈ [0, T †]×Z.

This counting measure ν(dt× dz) is called the Z-marked point process.
Let λ be such that

1. For every (ω, t) ∈ Ω×(0, T †], the set function λt(ω, · ) is a finite Borel measure
on Z.

2. For every A ∈ Z, the process λ(A) is P-measurable and satisfies λ(A) ∈ L1.

If the equation

E

[∫ T †

0

Ys ν(ds×A)
]

= E

[∫ T †

0

Ysλs(A) ds
]

∀A ∈ Z

holds for any nonnegative P-measurable process Y , then we say that the marked
point process ν(dt× dz) has the P-intensity kernel λt(dz).

A.2. Integration Theorem. Let ν(dt×dz) be a Z-marked point process with the
P-intensity kernel λt(dz). Let H be a P ⊗ Z-measurable function. It follows that:

1. If we have

E

[∫ T †

0

∫
Z

|Hs(z)|λs(z) ds
]
<∞,

then the process
∫ t

0

∫
Z
Hs(z){ ν(ds× dz)− λs(dz) ds } is a P-martingale.

2. If H ∈ L(λt(dz)× dt), then the process
∫ t

0

∫
Z
Hs(z){ ν(ds× dz)− λs(dz) ds }

is a local P-martingale.

Proof. See p. 235 in Brémaud [14].

Appendix B. Ito’s Formula and Girsanov’s Theorem

B.1. Ito’s Formula. Let X = (X1, ..., Xd)′ be a d-dimensional semimartingales,
and g be a real-valued C2-function on Rd. Then, g(X) is a semimartingale of the
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form

g(Xt) = g(X0) +
d∑
i=1

∫ t

0

∂

∂xi
g(Xs−) dXi

s +
1
2

d∑
i=1

d∑
j=1

∫ t

0

∂2

∂xi∂xj
g(Xs−) d〈Xic, Xjc〉

+
∑

0≤s≤t

{
g(Xs)− g(Xs−) +

d∑
i=1

∂

∂xi
g(Xs−) ∆Xi

s

}
where Xic is the continuous part of Xic and 〈Xic, Xjc〉 is the quadratic covariation
of Xic and Xjc.

B.2. Girsanov’s Theorem.
1. Let v ∈

∏d
j=1 L2 and H ∈ L1(λt(dz)× dt). Define the process Λ by

dΛt
Λt−

= −vt · dWt −
∫
Z

Ht(z) { ν(dt× dz)− λt(dz) dt} ∀t ∈ T

with Λ0 = 1,a and suppose E [ΛT † ] = 1. Then there exists a probability
measure P̃ on (Ω,F ,F) given by the Radon-Nikodym derivative

dP̃ = ΛT † dP

such that:
(a) The measure P̃ is equivalent to P.
(b) The process given by

W̃t = Wt +
∫ t

0

vs ds ∀t ∈ T

is a P̃-Wiener process.
(c) The marked point process ν(dt× dz) has the P̃-intensity kernel such that

λ̃t(dz) = (1−Ht(z))λt(dz) ∀(t, z) ∈ T× Z.

2. Every probability measure equivalent to P has the structure above.

Appendix C. Definitions on Arbitrage-Free Pricing Theory

C.1. Feasible, Self-Financing, and Admissible Portfolios. Let X denote a
real-valued P-measurable process. The discounted process of X is denoted by X̃.
Thus X̃ = X

B . We write B̃ = (B∗, (BT∗)T∈T). We introduce notions of the feasible,
self-financing, and admissible portfolios.

Definition 8. Let B ∈ B.
1. A portfolio ϑ is a feasible portfolio at B if and only if it follows that:∫ T †

t

|BTt | |ϑ1
t (dT )| <∞ P-a.s. ∀t ∈ T,

Btr
B
t ϑ

0
t ,

∫ T †

t

|BTt rTt | |ϑ1
t (dT )| ∈ L1,

∫ T †

t

‖BTt vTt ‖|ϑ1
t (dT )| ∈ L2,∫ T †

t

|BTt HT
t (z)| |ϑ1

t (dT )| ∈ L1(λt(dz)× dt).

Let Θ(B) denote the class of feasible portfolios at B.
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2. A feasible portfolio ϑ ∈ Θ(B) at B is a self-financing portfolio at B if and
only if its value process satisfies

VB
t (ϑ) = VB

t (ϑ) +
∫ t

0

ϑ0
s dBs +

∫ t

0

∫ T †

s

ϑ1
s(dT ) dBTs ∀t ∈ T.

3. A feasible portfolio ϑ ∈ Θ(B) at B is an admissible portfolio at B if and
only if ṼB(ϑ) def= VB(ϑ)

B is bounded below P-a.s. Let Θ(B̃) denote the class of
admissible portfolios at B.

C.2. Arbitrage-Free Markets and Risk-Neutral Measure. Definitions of ar-
bitrage portfolio, arbitrage-free, and risk-neutral measure are given in the following.

Definition 9. Let B ∈ B.
1. A self-financing portfolio ϑ ∈ Θ(B) at B is an arbitrage portfolio at B if and

only if either of the following condition holds:
(a) VB

0 (ϑ) ≤ 0, and VB
T †(ϑ) > 0, i.e. VB

T †(ϑ) ≥ 0 P-a.s. and P({VB
T †(ϑ) >

0}) > 0.
(b) VB

0 (ϑ) < 0, and VB
T †(ϑ) ≥ 0 P-a.s.

2. Markets are arbitrage-free at B if and only if there exists no arbitrage portfolio
in the class of admissible portfolios at B.

3. A probability measure P̃B on (Ω,F) is a risk-neutral measure at B if and only
if P̃B is equivalent to P, and the discounted bond price family B̃ is a local
P̃

B-martingale.

C.3. Contingent and Replicable Claims. We give notions of contingent and
replicable claims.

Definition 10. Let B ∈ B.
1. For every T ∈ (0, T †], a contingent T -claim at B is a FT -measurable random

variable XT such that X̃T ∈ L∞+ (Ω,FT ) where L∞(Ω,FT ) is the space of
almost surely bounded FT -measurable random variables.

2. A contingent T -claim XT is replicable at B if and only if there exists an ad-
missible self-financing portfolio ϑ ∈ Θ(B̃) such that its value process satisfies
VB
T (ϑ) = XT .

Appendix D. Proofs

D.1. Proof of Lemma 2. Let 0 ≤ t < T ≤ T †. Recall πt = ΛB
t

Bt
pt. It follows from

Definition 6 and the P-martingale property of ΛB that

Et[πT ǦT ] = Et

[
πT ŠT + πT B̌T

∫ T

0

dDs

Bs

]
= Et

[∫ T †

T

πs
dDs

ps
+ ΛB

T

∫ T

0

πs dDs

ΛB
s ps

]
= Et

[∫ T †

T

πs
dDs

ps
+
∫ T

t

Es

[
ΛB
T

πs dDs

ΛB
s ps

]]
+ Et

[
ΛB
T

∫ t

0

πs dDs

ΛB
s ps

]
= Et

[∫ T †

t

πs
dDs

ps

]
+ ΛB

t

∫ t

0

dDs

Bs
= πtŠt + πtB̌t

∫ t

0

dDs

Bs
= πtǦt.

In the similar way, we can show 2.
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D.2. Proof of Proposition 1. Applying Ito’s formula to the equilibrium state
price process πt = uα̂c (t, c̄t), we have

rπt =
1

uα̂c (t, c̄t)

{
uα̂ct(t, c̄t) + uα̂cc(t, c̄t) c̄t

(
rc̄t − λt

∫
Rd
′
H c̄
t (z)φ(z) dz

)

+
1
2
uα̂ccc(t, c̄t) c̄

2
t‖vc̄t‖2

}
+ λt

∫
Rd
′
Hπ
t (z)φ(z) dz,

vπt = −γα̂t vc̄t ,

Hπ
t (z) = −H α̂

t (z).

(D.1)

Thus, it follows from (4.9) and (4.8) that for every t ∈ T,

(D.2)
d(πtǦt)
πt−Ǧt−

=
{
rπt + rǦt + vπt · vǦt + λt

∫
Rd
′
Hπ
t (z)HǦ

t (z)φ(z) dz
}
dt

+(vπt +vǦt ) ·dWt+
∫
Rd
′
{ (1+Hπ

t (z))(1+HǦ
t (z))−1 } { ν(dt×dz)−λtφ(z) dz dt }.

Since the process πǦ is martingale under P by Lemma 2, it follows from (D.2) that

rǦt = −rπt − vπt · vǦt − λt
∫
Rd
′
Hπ
t (z)HǦ

t (z)φ(z) dz ∀t ∈ T.(D.3)

Hence, the real risk-free rate is given by rF̌t = −rπt by definition. Therefore, (5.1)
follows from (D.1). Moreover, substituting rπt = −rF̌t , vπt = −γα̂t vc̄t , and Hπ

t (z) =
−Hα

t (z) into (D.3), we have (5.3).

D.3. Proof of Theorem 1. Applying Ito’s formula to G = p Ǧ yields

dGt
Gt−

= rGt dt+ vGt · dWt +
∫
Rd
′
HG
t (z) { ν(dt× dz)− λtφ(z) dz dt } ∀t ∈ T

(D.4)

where

rGt = rpt + rǦt + vpt · vǦt + λt

∫
Rd
′
Hp
t (z)HǦ

t (z)φ(z) dz,

vGt = vpt + vǦt ,

HG
t (z) = (1 +Hp

t (z))(1 +HǦ
t (z))− 1.

(D.5)

Thus, by definition of the nominal-risk-free security, we have vB̌t = −vpt and
HB̌
t (z) = − Hpt (z)

1+Hpt (z)
. Substituting them into (D.3), we have (5.6). Combining

(5.6) with (5.3) yields (5.7). Next, it follows from (D.5) that

rGt − rBt = rǦt − rB̌t + vpt · (vǦt − vB̌t ) + λt

∫
Rd
′
Hp
t (z)(HǦ

t (z)−HǦ
t (z))φ(z) dz

= rǦt − rB̌t + vpt · vGt + λt

∫
Rd
′

Hp
t (z)

1 +Hp
t (z)

HG
t (z)φ(z) dz.

(D.6)
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On the other hand, substituting vǦt = vGt − v
p
t and HǦ

t (z) = 1+HGt (z)
1+Hpt (z)

− 1 into (5.7)
yields

rǦt − rB̌t = γα̂t v
c̄
t · vGt + λt

∫
Rd
′

H α̂
t (z)

1 +Hp
t (z)

HG
t (z)φ(z) dz.(D.7)

Substituting (D.7) into (D.6), we have

rGt − rBt =
(
γα̂t v

c̄
t + vpt

)
· vGt + λt

∫
Rd
′

H α̂
t (z) +Hp

t (z)
1 +Hp

t (z)
HG
t (z)φ(z) dz.(D.8)

D.4. Proof of Lemma 3. Let ui be given by (5.11) for every i ∈ I. Let x ∈ R++.
Then, it follows from definition of c∗ that for every i ∈ I

αie
−ρit

(
c∗i
γ

)−γ
= πt µ-a.e.(D.9)

for some πt > 0 and ∑
i∈I

c∗i = x.(D.10)

The equation (D.9) is rewritten as

c∗i
γ

=
(
αie
−ρit

πt

) 1
γ

.(D.11)

Also, it follows from (D.10) and (D.11) that

πt =
(∑
i∈I

(αie−ρit)
1
γ

)γ (
x

γ

)−γ
.(D.12)

Substituting (D.9) and (D.10) into

uα(t, x) =
∑
i∈I

αie
−ρit γ

1− γ

((
c∗i
γ

)1−γ

− 1

)
,

we have

uα(t, x) =
γ

1− γ

(
x

γ
πt −

∑
i∈I

αie
−ρit

)
.(D.13)

Substituting (D.12) into (D.13) yields (5.12).

D.5. Proof of Theorem 2. Applying Ito’s formula to πt = exp
(∫ t

0
fy(c̄s, Ys) ds

)
fc(c̄t, Yt),

we have

dπt
πt−

= rπt dt+ vπt · dWt +
∫
Rd
′
Hπ
t (z) { ν(dt× dz)− λtφ(z) dz dt }(D.14)
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where

rπt = fy(c̄t, Yt) +
1

fc(c̄t, Yt)

{
fcc(c̄t, Yt) c̄t

(
rc̄t − λt

∫
Rd
′
H c̄
t (z)φ(z) dz

)
+ fcy(c̄t, Yt)Yt

(
rc̄t − λt

∫
Rd
′
HY
t (z)φ(z) dz

)
+

1
2
fccc(c̄t, Yt) c̄2t‖vc̄t‖2

+
1
2
fcyy(c̄t, Yt)Y 2

t ‖vYt ‖2 + fccy(c̄t, Yt) c̄tYt vc̄t · vYt

}
+ λt

∫
Rd
′
Hπ
t (z)φ(z) dz,

vπt = −γ̄tvc̄t − ζ̄tvYt ,
Hπ
t (z) = −H̄t(z).

(D.15)

Appendix E. GE Version of Duffie-Pan-Singleton Model

Under conditions in Corollary 3.1, the dynamics of system of processes (S, V, c̄, p)′

satisfies the following system of SDDEs under the agents’ common belief P:

(E.1) d


lnSt
Vt

ln c̄t
ln pt

 =


r − λ̃β̃S +

(
γ%c̄1ςc̄ + %p1ςp − 1

2

)
Vt

κ(V̄ − Vt)− λβV
rc̄t − λβc̄ − 1

2 ς
2
c̄Vt

rpt − λβp − 1
2 ς

2
pVt

 dt+

√
Vt


1 0 0 0

%V 1ςV %V 2ςV 0 0
%c̄1ςc̄ %c̄2ςc̄ %c̄3ςc̄ 0
%p1ςp %p2ςp %p3ςp %p4ςp

 dWt +
∫
R8


JS(z)
JV (z)
Jc̄(z)
Jp(z)

 ν(dt× dz)

for every t ∈ T, where

β̃S = q̃(1)

{
exp
[
µ

(1)
S +

1
2
(
σ

(1)
S

)2 − (γρ(1)
c̄1 σ

(1)
c̄ + ρ

(1)
p1 σ

(1)
p

)
σ

(1)
S

]
− 1
}

+ q̃(2)

{
1

1− ρ′1σ
(2)
S

exp
[
µ

(2)
S +

1
2
(
σ

(2)
S

)2 − (γρ(2)
c̄1 σ

(2)
c̄ + ρ

(2)
p1 σ

(2)
p

)
σ

(2)
S

]
− 1
}
,

βV = q(V )σ
(V )
V + q(2)σ

(2)
V ,

βc̄ = q(1)

{
exp
[
µ

(1)
c̄ +

1
2
(
σ

(1)
c̄

)2]
+ q(2)

{
1

1−
∑2
j=1

(
ρ′jρ

(2)
c̄j

)
σ

(2)
c̄

exp
[
µ

(2)
c̄ +

1
2
(
σ

(2)
c̄

)2]− 1
}
,

βp = q(1)

{
exp
[
µ(1)
p +

1
2
(
σ(1)
p

)2]− 1
}

+ q(2)

{
1

1−
∑3
j=1

(
ρ′jρ

(2)
pj

)
σ

(2)
p

exp
[
µ(2)
p +

1
2
(
σ(2)
p

)2]− 1
}
.

(E.2)
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