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Abstract

Fix �nite pure strategy sets S1; : : : ; Sn, and let S = S1 � � � � � Sn. In our model of
a random game the agents' payo�s are statistically independent, with each agent's payo�
uniformly distributed on the unit sphere in IRS. For given nonempty T1 � S1; : : : ; Tn � Sn
we give a computationally implementable formula for the mean number of Nash equilibria
in which each agent i's mixed strategy has support Ti. The formula is the product of two
expressions. The �rst is the expected number of totally mixed equilibria for the truncated
game obtained by eliminating pure strategies outside the sets Ti. The second may be
construed as the \probability" that such an equilibrium remains an equilibrium when the
strategies in the sets SinTi become available. Journal of Economic Literature Classi�cation
Number C72.



The Expected Number of
Nash Equilibria of a Normal Form Game

1. Introduction

This paper states and proves a formula characterizing the mean number of equilibria
of a normal form game, relative to a particular distribution on the space of possible payo�s.
In the interest of brevity, and to maintain a single focus, the body of the paper will be
narrowly concerned with the mathematical underpinnings of the formula. Implications of
the formula that are known at present will be sketched in broad strokes in this section
and studied in more detail in other papers. But before entering into such a conceptual
discussion we �rst give a precise formulation of the model, and a brief description of the
result.

Fix nonempty �nite pure strategy sets S1; : : : ; Sn, and let S = S1 � � � � � Sn. In
our model of a random game the agents' payo�s are statistically independent, with each
agent's payo� uniformly distributed on the unit sphere in IRS. Since Nash equilibrium is
invariant under positive aÆne transformations of the vNM payo�s, from the point of view
of the induced distribution of equilibria it would be equivalent to assume that the payo�s
of each agent at each strategy pro�le are i.i.d. normally distributed random variables.

A support is a n-tuple T = (T1; : : : ; Tn) where each Ti is a nonempty subset of Si.
The support of a Nash equilibrium is the support T in which Ti is the set of pure strategies
that receive positive probability under agent i's mixed strategy. Recall (Harsanyi (1973))
that for generic payo�s, hence with probability one under our model of a random game,
all equilibria are regular. One consequence is that, with probability one, all equilibria
are strict, meaning that no agent has a pure strategy that is assigned no probability by
her mixed strategy, but which would yield the equilibrium expected utility. Also, regular
equilibria satisfy all major re�nements, including Kohlberg-Mertens (1986) stability.

Our main result is a formula giving the mean number of Nash equilibria with support
T . Without saying anything about the particulars of the formula, the rest of this section
will describe some of the implications of this result in connection with larger conceptual
issues and related directions of research. At this point we are unable to say much about
the purely mathematical interest of the analysis, which is considerable.

Many doubts have been expressed about the scienti�c status of the Nash equilibrium
concept, but certainly some of the most important derive from the concept's computa-
tional complexity. In introspective theories(1) of how equilibrium is (perhaps only some-
times) achieved, each agent must be able, somehow, to compute her component of the
equilibrium that is played, using only the data de�ning the game. Recently, partly in re-
sponse to the work of Bernheim (1984) and Pearce (1984), which showed that introspection
based on common knowledge of rationality implies the notion of rationalizability, which
is weaker than Nash equilibrium, it has become more popular to motivate the salience
of equilibrium in terms of scenarios in which it results from evolution or learning. (Cf.,
Fudenberg and Levine (1998), Samuelson (1997), Weibull (1995).) Many variations are

(1) See Kuhn (1994) for a discussion of the history of interpretations of the Nash equilibrium concept.
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possible, but in general such stories do not require the individual agents to be computa-
tionally sophisticated. Nonetheless, computational complexity remains important, since
in these interpretations the social adjustment process acts as a computer which solves for
(by converging to) an equilibrium. The mean number of equilibria is less directly relevant
to this computation than to the problem of �nding all equilibria; nonetheless, the number
of equilibria provides some information concerning the ruggedness of the terrain that such
an adjustment process must traverse.

The formula given by the Main Theorem has more tangible implications for the
complexity of the problem of computing the set of all Nash equilibria, as measured by the
concepts of theoretical computer science. Standard notions of complexity depend on the
rate at which the resources (time and/or memory) required by an algorithm grow as the
size of the input increases. The most fundamental division is between algorithms whose
running times grow at rates that are bounded by polynomial functions of characteristics
of the input, and those for which the rate of growth is exponential, or perhaps even
faster. Generally, algorithms with polynomial time and space requirements are described
as \practical," while those with exponential rates of growth are regarded as \impractical."
But many interesting games are small, and still hard for people to solve by hand, so in
game theory even exponential algorithms have considerable practical utility.

The most concrete and immediate applications of the formula given here show that
the mean numbers of equilibria of various sorts grow at rates that are bounded below
by exponential functions. These results feed into a standard tactic for establishing an
exponential lower bound on the complexity class of a computation: show that the size of the
output grows at an exponential rate. The results derived from the formula are somewhat
unusual insofar as most analyses in computer science relate to \worst case complexity,"
which measures the rate of growth, as a function of input size, of the resource requirements
of the most burdensome input of each size. The prevalence of worst case complexity in
computer science is not due to a belief that it is more relevant to practical issues of
computation than mean complexity, but rather to the fact that worst case complexity is
systematically more tractable: mean complexity requires an analysis of all possible inputs,
whereas consideration of a single sequence of inputs of increasing size can establish a
lower bound on worst case complexity. An economically important example is the simplex
algorithm of linear programming, which has been shown to have an exponential worst case
complexity, but has a mean running time (under a natural model of a random problem
instance) that grows quadratically with the size of the problem(2).

One result of this sort has to do with two player games. In Berg and McLennan
(2002) techniques from statistical mechanics are applied to the formula given by the Main
Theorem to show that the mean number of equilibria of a two person game in which
both agents have N pure strategies is exp(N [B + O(logN=N)]), where B � 0:281644
is a constant. This implies an exponential lower bound on the mean complexity of the
computation, but obvious procedures have exponential worst case running times. Thus
both the mean and worst case complexity are seen to be exponential.

Berg and McLennan (2002) establish other interesting results. There is a constant
�, which is approximately 0:3195, such that, for large N , most equilibria of the game in

(2) See Gritzman and Klee (1993, x7) for a survey of related literature.
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which both players have N pure strategies assign positive probability to approximately
�N pure strategies(3). Also, if the number M of pure strategies of one agent is held �xed,
when the number N of pure strategies of the second agent is large the mean number of

equilibria is approximately
�p
� logN=2

�M�1
=
p
M .

Similar calculations for games with more than two agents seem likely to be feasible,
but may not yield such exact results. Our formula is a product of two factors: (a) the mean
number of totally mixed equilibria of a random game which has the support (T1; : : : ; Tn)
as its n-tuple of sets of pure strategies; (b) the probability, for a random game on the
strategy sets (S1; : : : ; Sn), that a totally mixed equilibrium of the truncated game obtained
by eliminating the pure strategies in S1nT1; : : : ; SnnTn is an equilibrium of the given game.
For two player games the �rst factor is a negative power of two, and second factor has
a characterization that allows accurate approximation, both computationally and in the
relevant theoretical calculations. But when n � 3 the �rst factor has a more complex
expression.

There are already some results pertaining to the case n � 3. As will be explained in
more detail as we go along, results from McLennan (2002) give a lower bound in terms of
the maximal number of totally mixed equilibria of a game with strategy sets T1; : : : ; Tn.
McKelvey and McLennan (1997) give a recursive combinatoric characterization of this
number, and also provide upper and lower bounds in closed form. Combining these results
with the methods of statistical mechanics should lead at least to lower bounds on asymp-
totic rates of growth of the mean number of equilibria of all sorts. One result described
in Section 4 is that when n � 12, the mean number of totally mixed equilibria of a ran-
dom game in which each agent has k pure strategies is bounded below by an exponential
function of k.

We characterize not only the mean number of equilibria with support (T1; : : : ; Tn),
but also their distribution in the space of mixed strategy pro�les. That is, there is a
measure that assigns the mean number of equilibria lying in E to each measurable set E
in the space of mixed strategy pro�les. Representing this measure as the mean number
of equilibria with support (T1; : : : ; Tn) times a probability measure on the space of mixed
strategy pro�les, the probability measure turns out to be a product of probability measures
on the agents' spaces of mixed strategies. As is explained in detail in McLennan (1999),
to a surprising extent the mass of these measures is concentrated near the barycenters of
the agents' simplices of mixed strategies.

Numerical computation of the mean number of equilibria is simple to program, and
feasible for fairly large games. (The time consuming step is Monte Carlo approximation
of the mean absolute value of a random square matrix with as many rows and columns
as the dimension of the space of mixed strategies, which is the total number of pure
strategies less the number of agents.) McLennan (1999) and Berg and McLennan (2002)
present various computational results which, in addition to their intrinsic interest, suggest
various monotonicity conjectures concerning the relationship between the numbers of pure
strategies for the agents and the mean number of equilibria.

(3) Expressed precisely, the result is that for any � > 0 it is the case, for suÆciently large N , that the
mean number of equilibria that assign positive probability to between (1 � �)�N and (1 + �)�N of each
player's pure strategies is at least 1� � times the mean number of equilibria of all sorts.
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Some additional related literature is as follows. McKelvey and McLennan (1997)
characterize the maximal number of totally mixed equilibria. The maximal number of
equilibria (on all supports) of a two player normal form game has been studied by Quint
and Shubik (1997), Keiding (1995), McLennan and Park (1999), and von Stengel (1999),
but is not completely understood. In contrast, as a result of work of Dresher (1970), Powers
(1990), and Stanford (1995), the asymptotic distribution of pure equilibria for random
normal form games has been characterized with considerable precision. The maximal
number of pure strategy Nash equilibria for generic payo�s is determined in McLennan
(1997).

The next section states our main result. The contents of the remainder are described
at the end of that section.

2. Statement of the Result

This section presents little more than the minimal amount of information required
to state the main result. This consists of a description of the model of a random game for
the given normal form, the de�nition of (strict) Nash equilibrium as a system of equations
and inequalities, the de�nitions of objects entering the formula for the mean number of
equilibria, and �nally the statement itself.

2.1. Conventions Concerning Manifolds

In general, whenever X is a d-dimensional C1 submanifold of a Euclidean space,
volX(�) (or simply vol(�) if there is no ambiguity) denotes the measure on X corresponding
to the notion of d-dimensional volume derived from the inner product of the ambient space.
In integrals we will sometimes write X in place of volX , e.g.,

R
f dX. When vol(X) is �nite,

the uniform distribution on X is the probability measure UX := volX(�)=volX(X).
We will also consider integrals over d-dimensional real projective space, denoted by

P(IRd+1), which is the set of one dimensional linear subspaces of IRd+1 endowed with the
C1 di�erential structure that makes the map x 7! spanfxg from Sd to P(IRd+1) a local
di�eomorphism. The local inverses of this map give embeddings of \small" subsets of
P(IRd+1) in IRd+1, and the notions of volume and uniform distribution for submanifolds
of Euclidean space are extended to P(IRd+1) by endowing it with the notion of volume
derived, in the obvious way, from these embeddings.

2.2. The Model of a Random Game

Let S = S1 � � � � � Sn. Endow IRS with the standard inner product and associated
norm. For i = 1; : : : ; n let Mi be a copy of the unit sphere in IRS, and let

M :=M1 � � � � �Mn:

The model of a random game studied here, which we describe as the spherical model ,
is given by UM . For any vector of nonzero utilities u = (u1; : : : ; un) the set of Nash
equilibria is the same as the set of Nash equilibria for the vector of normalized utilities
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(u1=ku1k; : : : ; un=kunk) 2 M , so, from the point of view of the induced distribution of
Nash equilibria, any distribution on the space of games (IRS n f0g)n is equivalent to the
distribution onM induced by this normalization. As we mentioned above, a natural model
that is equivalent to the spherical model is that the payo�s of the various agents at the
various pure strategy pro�les are independently and identically distributed normal random
variables.

2.3. Nash Equilibrium as a System of Polynomial Equations and Inequalities

For each i = 1; : : : ; n we index the elements of Si by setting

Ti = ft0i ; t1i ; : : : ; tpii g and Si n Ti = fs1i ; : : : ; sqii g:

Let S�i :=
Q

h6=i Sh and T�i :=
Q

h6=i Th. Typical elements of T�i are written t�i =
(t1; : : : ; ti�1; ti+1; : : : ; tn).

We wish to express the equations and inequalities that make up the de�nition of
Nash equilibrium in the manner that is standard in the theory of polynomial systems. For
this purpose we introduce notation that is uncommon in game theory. Let

Bi := f b 2 f0; 1gT1[:::[Tn : for each h 6= i there is exactly one th 2 Th such that

b(th) = 1, and all other components are zero g:
The elements of Bi are thought of as exponent vectors. (The general idea is described at
the beginning of Section 4.) For � 2 IRT1 � � � � � IRTn and b 2 Bi let

� b :=
nY
i=1

� piY
j=0

�
b(tj

i
)

i

�
:

Let �Bi be the element of IRBi whose component for each b 2 Bi is � b.
The following notation will be useful in combining the components of �Bi with the

components of ui 2 IRS to form expected utilities, and di�erences between the expected
utilities associated with pairs of pure strategies in Si. Let �i : T�i ! Bi be the obvious
bijection: for each h 6= i the h-component th of t�i is the element of Th whose component
in �i(t�i) is one. Let �i : IR

T�i ! IRBi be the associated linear isomorphism given by this
relabelling of coordinates: for each t�i 2 T�i the �i(t�i)-component of �i(z) is zt�i .

We think of ui 2 IRS as an #Si-tuple of elements of IRS�i indexed by the elements of
Si. In turn, the components associated with tji (j = 0; 1; : : : ; pi) and s

k
i (k = 1; : : : ; qi) are

decomposed as (v
tj
i

i ; w
tj
i

i ) and (v
ski
i ; w

ski
i ) where v

tj
i

i ; v
ski
i 2 IRT�i and w

tj
i

i ; w
ski
i 2 IRS�inT�i .

For j = 1; : : : ; pi de�ne

�ji : IR
S ! IRBi by �ji (ui) = �i(v

tj
i

i � v
t0i
i );

and for k = 1; : : : ; qi de�ne

�ki : IR
S ! IRBi by �ki (ui) = �i(v

ski
i � v

t0i
i ):
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In general we will write h�i;  ii to denote the inner product of �i;  i 2 IRBi.
In this system of notation a point � 2 IRT1�� � ��IRTn is a strict(4) Nash equilibrium

for u = (u1; : : : ; un) 2 (IRS)n with support (T1; : : : ; Tn) if, for all i = 1; : : : ; n:

(N1) h�ji (ui); �Bii = 0 for all j = 1; : : : ; pi;
(N2) h�ki (ui); �Bii < 0 for all k = 1; : : : ; qi;
(N3) �i is in the interior of the positive orthant of IRTi ;
(N4) the sum of the components of �i is one.

Each component of �Bi is multilinear, in the sense of being linear separately in each
�h. Therefore the truth values of (N1)-(N3) are una�ected by the multiplication of any �i
by a positive scalar. Consequently the number of solutions of this system is una�ected if
(N4) is replaced by another \normalization" that selects a representative point from each
ray emanating from the origin in IRTi. Let

N := N1 � � � � �Nn and N++ := N++
1 � � � � �N++

n

where, for each i, Ni is the unit sphere in IR
Ti and N++

i is the intersection of Ni with the
interior of the positive orthant. In very general terms, the advantage of these spaces is
that N has a rich group of symmetries.

2.4. Statement of the Main Result

The most important analogue of the graph of the equilibrium correspondence will be

V = f (u; �) 2M �N : (N1) and (N2) g:

Our strategy is to characterize the distribution of solutions of (N1) and (N2) in N , after
which the distribution of solutions of (N1)-(N3) is obtained by restricting attention to
N++. Since the distribution of roots of (N1) and (N2) is a scalar multiple of UN , the
expected number of roots of (N1) and (N2) in N++ is 2�(jT1j+���+jTnj) times the expected
number of roots in N .

Let �1 : V !M and �2 : V ! N be the restrictions to V of the natural projections
from M � N . Our goal is to characterize the measure � on N de�ned, for measurable
E � N , by

�(E) =

Z
M

#
�
��11 (u) \ ��12 (E)

�
dUM (u):

We now de�ne various objects that enter the statement of the result. For i = 1; : : : ; n
let pi := jTij � 1 be the dimension of Ni, let p := (p1; : : : ; pn) be the vector of these
dimensions, and let

p := p1 + � � �+ pn:

E�ectively p is the number of degrees of freedom in the system of polynomial equations
we are studying.

(4) The quali�er strict refers to the strictness of the inequalities in (N2). For generic utilities, all
equilibria are strict (Harsanyi (1973)) so there is no di�erence between the expected number of Nash
equilibria and the expected number of strict Nash equilibria.
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The expectation of the absolute value of the determinant of a certain random matrix
is the most complicated object entering the formula below. Let D(p) be the p� n matrix
with entries

Dki(p) =

�
0; if p1 + � � �+ pi�1 < k � p1 + � � �+ pi,

1; otherwise.

For example

D(1; 2; 3) =

2
666664

0 1 1
1 0 1
1 0 1
1 1 0
1 1 0
1 1 0

3
777775 :

Let ~Zp be a p � p random matrix whose rows are indexed by the integers k = 1; : : : ; p,
whose columns are indexed by the pairs ij for i = 1; : : : ; n and j = 1; : : : ; pi, and whose
entries ~zijk are independently distributed normal random variables with mean zero and

variance Dki(p). That is, ~Zp is a p� p matrix of centered normal random variables with
variance matrix D(p)C(p) where

C(p) :=

2
664
1 : : :1 0 : : :0 : : : 0 : : :0
0 : : :0 1 : : :1 : : : 0 : : :0

...
...

...
0 : : :0 0 : : :0 : : : 1 : : :1

3
775

is an n � p column-copying matrix that has exactly p1 1's in the �rst row, p2 1's in the
second row, ... , pn 1's in the nth row. Continuing the example above,

D(1; 2; 3)C(1; 2; 3) =

2
666664

0 1 1
1 0 1
1 0 1
1 1 0
1 1 0
1 1 0

3
777775
2
4 1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 1

3
5 =

2
666664

0 1 1 1 1 1
1 0 0 1 1 1
1 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

3
777775 :

For integers a; b � 0 let r(a; b) be the probability that �0=
p
a+ 1 is greater than each

of �1; : : : �b when �0; �1; : : : ; �b are i.i.d. normal random variables with mean zero. Lemma
6.14 gives a geometric description of this quantity, showing that it is the fraction of the
volume of a certain sphere occupied by a certain cone.

Let � : (0;1)! (0;1) be Euler's function: �(s) � R10 exp(�x)xs�1 dx:
Main Theorem: For all measurable E � N ,

�(E) = UN (E) �
� nY
i=1

r(pi; jSi n Tij)
�
� 2n� p

2 �
� nY
i=1

�=2

�(pi+12 )

�
�E�j det ~Zpj�:
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To obtain the version of the result that is most natural from the point of view of game
theory we restrict attention to roots whose components are all positive, as per (N3). Since
� is a multiple of the uniform distribution, to obtain the total number of Nash equilibria
with support T we divide by 2p+n. Under the natural map the uniform distribution on
N++
i induces a distribution on the unit simplex in IRTi.

Corollary: For each i = 1; : : : ; n let �Æ(Ti) := f �i 2 IRTi
� :

P
si2Ti

�i(si) = 1 g be the
open simplex of totally mixed strategy vectors with support Ti, and let

� : N++ ! �Æ(T1)� � � � ��Æ(Tn) be the map �(�) :=
� �1
k�1k1 ; : : : ;

�n
k�nk1

�

where k�ik1 :=
P

si2Ti
j�i(si)j. For each measurable E � �Æ(T1) � � � � � �Æ(Tn) the

expected number of Nash equilibria in E is

UN++ (��1(E)) � 2� 3
2p �

� nY
i=1

r(pi; jSi n Tij)
�
�
� nY
i=1

�=2

�(pi+12 )

�
�E�j det ~Zpj�:

2.5. Outline of the Argument

The proof of the Main Theorem has three phases. The �rst is Proposition 4.1,
which is a result from McLennan (2002) that characterizes the mean number of roots of
a certain random system of polynomial equations. The Appendix reproduces, with slight
adaptation, the proof from McLennan (2002). The next section illustrates the ideas of this
argument by executing the calculation in a simple special case.

We refer to the special case of the Main Theorem given by T1 = S1; : : : ; Tn = Sn as
the full support case. In the full support case condition (N2) is vacuous, and the system of
equations given by (N1) falls within the class of equations considered by Proposition 4.1.
However, the distribution on coeÆcient vectors considered in Proposition 4.1 is not the
one obtained by starting with our model of a random game and passing to the system of
equations (N1). The second phase of the argument, given in Section 5, completes the proof
of the full support case by showing that, nonetheless, the two random equation systems
induce the same distribution of roots in N .

The third phase, which passes from the full support case to the general result, begins
with the following observation. The spherical model, applied to the sets of pure strategies
T1; : : : ; Tn, is equivalent, from the point of view of the induced distribution of roots of (N1),
to the distribution obtained from the spherical model, applied to the sets of pure strategies
S1; : : : ; Sn, by projection onto the space of payo�s associated with pure strategy vectors
in T1 � � � � � Tn. (This is completely obvious from the point of view of the equivalent
model of a random game in which the payo�s at the various pure strategy vectors are
i.i.d. normal random variables.) Consequently it suÆces to show that, for any measurable
E � N ,

Q
i r(pi; jSi n Tij) is the ratio of the expected number of roots of (N1) and (N2) in

E and the expected number of roots of (N1) in E. This is accomplished in Section 6.
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3. An Illustrative Calculation

The main ideas in the proof of Proposition 4.1 are displayed in this section by follow-
ing the computation of the mean number of real roots of a random univariate polynomial.
Since Section 6 follows many of the same steps, this calculation is also illustrative of the
argument presented there. As in Edelman and Kostlan (1995), which gives a much more
extensive introduction to a broad range of related ideas, we present the ideas in a sequence
that conveys some sense of the historical development of the subject.

First of all, consider the problem, �rst studied by Kac (1943), of determining the
mean number of real roots of a quadratic polynomial at2+bt+c where a; b; c are i.i.d. normal
random variables with mean zero. Elementary properties of the normal distribution imply
that the normalized coeÆcient vector (a; b; c)=k(a; b; c)k is uniformly distributed in the unit
sphere in IR3. It seems that the problem is a matter of determining the area of the set of
points in this sphere at which the discriminant b2 � 4ac is positive.

Economists are accustomed to thinking of \parameters," such as the coeÆcients
a; b; c, as being exogenous and given. This seems to reinforce habits of thought that
lead one to attempt to determine an average over a space of parameters by integrating
the quantity of interest, here the number of solutions, across the given measure on the
parameter space. From a mathematical point of view, however, this is usually an ill-
behaved calculation. The set of solutions of an economic model is typically the set of
�xed points of a function or correspondence. For polynomials it is relatively hard to pass
from a given polynomial to its roots. In contrast, if, for a particular point in the solution

space, we ask what parameters have that point as a solution, the set of such parameters is

often very well behaved. For general equilibrium theory this point of view is emphasized
in Balasko (1988) where the equilibrium manifold of an exchange economy is displayed
as a vector bundle(5) in which the set of endowments that have a particular equilibrium
allocation is the �ber.

For the quadratic polynomial the idea of integrating over the space of solutions leads
us to de�ne  : IR! S2 � IR3 by

(t) =
(t2; t; 1)

k(t2; t; 1)k :

Observing that t is a root of the polynomial aT 2+ bT + c if and only if (a; b; c) ? (t), we
see that the probability that the polynomial will have a root in the interval (t; t+�t) is,
for small �t, approximately equal to the fraction of the sphere's area that lies between the

(5) A vector bundle is a type of �ber bundle. There are several closely related types of �ber bundles, the
simplest of which is the topological notion: we say that a map � : E ! B between topological spaces is a
�bration, and that E is a �ber bundle with base space B, if there is a topological space F , called the �ber ,
such that for each b 2 B there is a neighborhood Ub � B and a homeomorphism �b : Ub � F ! ��1(Ub)
such that � Æ �b coincides with the standard projection Ub � F ! Ub. This �bration is C1 if E, B,
and F are C1 manifolds, � is a C1 map for which all points of E are regular, and each �b is a C1

di�eomorphism. A vector bundle is a �ber bundle in which F is a �nite dimensional vector space, and,
for all b; b0; � 2 B such that � 2 Ub \ U

0
b
, the homeomorphism from F to itself that takes f to the second

component of ��1
b0

(�b(�; f)) is linear. If F has an inner product and this map is always an orthogonal

transformation, there is an associated sphere bundle �0 : E0 ! B constructed by letting F 0 be the unit
sphere in F , letting E0 = [b2B �b(Ub � F 0), and letting �0 be the restriction of � to E0.
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two great circles consisting of the points orthogonal to (t) and (t+�t) respectively, and
this fraction is approximately 1=� times the distance from (t) to (t+�t). (To see that
1=� is the appropriate factor consider that, for a given great circle, with two exceptions
each point in the sphere is orthogonal to exactly two points on the great circle.) For small
�t the distance from (t) to (t+�t) is approximately k0(t)k ��t. Therefore the mean
number of real roots is the length of the curve  divided by �. While this may not seem
like an obvious increase in tractability, in fact the length of , and a host of related issues,
have been studied extensively. (Cf., Edelman and Kostlan (1995).)

A di�erent response to the complexities of the length of  is to avoid them by �nding
a modi�ed problem that is better behaved. In particular, we may ask whether a di�erent
distribution of coeÆcient vectors might be more tractable. In algebraic geometry it is
often simplifying to replace an inhomogeneous polynomial such as ax2 + bx + c with the
homogenized polynomial ax2+ bxy+ cy2 obtained by multiplying each monomial by a new
variable, here y, raised to a power chosen to give rise to a polynomial that is homogeneous:
all monomials have the same total degree. If (x; y) is mapped to 0 by this polynomial
function, then so is (�x; �y) for any scalar �, so we may think of the \roots" of the
polynomial as being one dimensional linear subspaces of IR2, i.e., the elements of the
projective space P(IR2).

The distribution of coeÆcient vectors we have been assuming, that a, b, and c are
i.i.d. normal random variables, is \natural" in the psychological sense of being the �rst to
spring to mind, but there is a de�nite mathematical sense in which a di�erent distribution
of coeÆcient vectors is simpler. Consider, for 0 � � < 2�, the transformation of variables
corresponding to a coordinate system that is rotated � radians:

(x; y) = (w cos � + z sin �;�w sin � + z cos �):

Substituting in the quadratic, we obtain a quadratic polynomial in the variables (w; z):�
a cos2 � � b cos � sin � + c sin2 �

�
w2 +

�
2(a� c) cos � sin � + b(cos2 � � sin2 �)

�
wz

+
�
a sin2 � + b cos � sin � + c cos2 �

�
z2:

We will consider distributions on the space of coeÆcient vectors that are invariant under
these transformations, meaning that, for any �, the distribution of transformed coeÆcient
vectors agrees with the given distribution.

We now digress, introducing relevant terminology and concepts from group theory.
A group H with identity element e is said to act (from the left) on a space X if there is a
rule associating an element hx 2 X to each pair (h; x) 2 H �X that satis�es:

(a) ex = x for all x 2 X;
(b) h(h0x) = (hh0)x for all h; h0 2 H and x 2 X.

A function f with domain X is invariant under the action if f(hx) = f(x) for all
x 2 X and h 2 H. Various other usages of the term `invariant' can be understood in terms
of this de�nition being satis�ed in relation to derived actions of H. For example, one says
that a set is invariant, or an invariant, when it is really the set's characteristic function
that satis�es this de�nition. When X is a linear space we say that an inner product is
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invariant under the action when, formally, we mean that the inner product is invariant
under the derived action h(x; x0) = (hx; hx0) on X �X. When we say that a measure on
X is invariant, what we mean formally is that the measure (which is a real valued function
on a �-algebra) is invariant under the derived action of H on the �-algebra.

The action on X is said to be transitive(6) if, for any two elements x; x0 2 X, there
is some h 2 H with hx = x0. The only nontrivial result from group theory that we will
use is the following famous theorem.

Proposition 3.1: (E.g., Royden (1988, ch. 14)) If X is compact, the action on X is
continuous in the sense that, for each h 2 H, the map x 7! hx is continuous, and H acts
transitively, then (up to multiplication by a scalar) there is exactly one invariant measure
(called Haar measure) on X.

Most of the groups that appear in our work will be instances or products of the
orthogonal group O(IRm+1), which is the group of linear automorphisms of IRm+1 that
preserve the inner product. Of course the unit sphere Sm centered at the origin is invariant
under the obvious action of O(IRm+1) on IRm+1, so there is an induced action on Sm which
is easily shown to be transitive. The uniform distribution on Sm is the unique invariant
measure of this action. Similarly, there is an induced action of O(IRm+1) onm-dimensional
projective space, and the unique invariant measure is the uniform distribution.

Our goal in the remainder of this section will be to compute the expected number of
roots, in one dimensional projective space, of the polynomial

a0x
n + a1x

n�1y + � � �+ any
n

with respect to a particular distribution of coeÆcient vectors speci�ed below. The group
O(IR2) acts on the space of homogeneous polynomials P of degree n in the variables (x; y)
by the rule OP = P ÆO�1. We would like to �nd a measure on the space of such polynomials
that is invariant under this action, in the hope that the implied distribution of real roots
might be well behaved. Automatically such a distribution must have the pleasant property
that the implied distribution of roots in one dimensional projective space will be invariant
under rotations of the plane, hence a multiple of the uniform distribution.

If we restrict attention to distributions in which the coeÆcients a0; : : : ; an are in-
dependently and normally distributed, our problem is to solve for a system of variances
with the desired property. Alternatively, we may look for an inner product on the space of
coeÆcient vectors with respect to which the monomials xn; xn�1y; : : : ; yn are orthogonal
and the central multinormal distribution is invariant. The latter condition will hold if the
transformation of polynomials (which is always linear) is an orthogonal transformation. It
turns out that the inner product

*
nX
i=0

aix
n�iyi;

nX
i=0

bix
n�iyi

+
=

nX
i=0

�
n

i

��1
aibi (1)

(6) This concept is unrelated to the usages of the term `transitivity,' say for preferences, that are most
common in economics.
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is invariant(7), so that a desirable distribution on the space of coeÆcient vectors is obtained
if each ai is distributed normally with mean 0 and variance

�
n
i

�
. For the remainder of this

section let H be the space of coeÆcient vectors f = (a0; : : : ; an) endowed with this inner
product, letM denote the unit sphere relative to this inner product, and let N denote the
unit sphere S1 in IR2.

Let F : H� IR2 ! IR be the evaluation map:

F (f; (x; y)) := f(x; y) = a0x
n + a1x

n�1y + � � �+ any
n:

From the point of view of the distribution of roots, the central multinormal distribution on
the space of coeÆcient vectors and the uniform distribution on the unit sphere M in this
space are equivalent, and the latter is more convenient in certain respects. The incidence
variety is

V := F�1(0) \ (M�N) = f (f; (x; y)) 2 M�N : f(x; y) = 0 g:
Note that F is invariant under the action

O(f; (x; y)) := (f ÆO�1; O(x; y))
of O(IR2) on H � IR2, so V is invariant under this action, and there is an action on V
de�ned by restriction.

We would like to show that each point (f; (x; y)) 2 V is a regular point of the
restriction of F to M � N , since then the regular value theorem (e.g., Guillemin and
Pollack (1965)) would imply that V is an n-dimensional C1 manifold. Since (x; y) 6= (0; 0),
not all of the monomials xn�iyi vanish, so f is a regular point of F (�; (x; y)) : H ! IR.
Interpreting f as an element of TfH and abusing notation by identifying f and (f; 0) 2
T(f;(x;y))(H�IR2), we have DF (f; (x; y))f = 0. (To see this note that (x; y) is a root of �f
for all � 2 IR.) Since f is a regular point of F (�; (x; y)), there must be a vector v 2 TfM
such that DF (f; (x; y))v 6= 0. It follows that f is a regular point of the restriction of
F (�; (x; y)) to M, which implies that (f; (x; y)) is a regular point of F jM�N , as desired.

Let
�1 : V !M and �2 : V ! N

be the natural projections. Sard's theorem implies that the critical values of �1 constitute
a set of measure zero in M, so they can be ignored in computing the expected number
of real roots of the equation. A measure � on V may be de�ned by requiring that if
U � V is an open set containing only regular points of �1 and the restriction of �1 to U
is injective, then �(U) = UM(�1(U)). For any open Z � V the expected number of real
roots corresponding to points (x; y) 2 Z isZ

M

#(��11 (x) \ Z) dUM(x) = �(Z):

(7) This invariance is not particularly easy to prove. Perhaps the most accessible and self contained
account is Edelman and Kostlan (1995, pp. 15{17). There are other inner products that are invariant,
but this is the only invariant inner product in which the monomials are orthogonal. These matters are
discussed in detail in Kostlan (2000).
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In turn there is a measure � on N de�ned by requiring that, for each measurable E � N ,
�(E) = �(��12 (E)), i.e., � = � Æ ��12 . If Z = ��12 (�2(Z)), then �(Z) = �(�2(Z)). In this
sense � is the distribution of roots.

It turns out that �2 is the projection of a C1 sphere bundle. The �ber above
(x; y) 2 N is

V(x;y) := f f 2 M : (f; (x; y)) 2 V g:
Consider a particular (x0; y0) 2 N . As the set of coeÆcient vectors in M that are orthog-
onal to (xn0 ; x

n�1
0 y0; : : : ; y

n
0 ), V(x0;y0) is an (n�1)-dimensional sphere inM. Varying (x; y)

in a neighborhood of (x0; y0) can be thought of as inducing a motion of the sphere V(x;y)
in M, and, roughly speaking, the probability of having a root in a small neighborhood
of (x0; y0) will be proportional to the speed at which V(x;y) moves as we vary (x; y) near
(x0; y0).

This intuition is made rigorous, at the natural level of generality, by an integral
formula of Shub and Smale (1993, p. 273). (Cf. Blum et. al. (1998, p. 240).) We now
describe the consequence of this formula in the current context. For (f; (x; y)) 2 V let

A(f; (x; y)) : T(x;y)N ! TfM
be the linear map whose graph is the orthogonal complement ?(f;(x;y)) of T(f;(x;y))V(x;y)
in T(f;(x;y))V , and let A�(f; (x; y)) be the adjoint(8) of this map. In this setting the Shub-
Smale integral formula states that for any open set Z � V ,Z

M

#(��11 (f) \ Z) df =

Z
N

Z
V(x;y)\Z

det
�
A�(f; (x; y))A(f; (x; y))

�1=2
df d(x; y): (2)

The idea expressed in this formula is geometric, so that the assumed measures on M, N ,
and V(x;y) are the natural notions of n-dimensional volume and length (which we have
been denoting by vol(�)) that are derived from the inner products of the ambient spaces.
In particular, the expected number of roots is the integral of #(��11 (f)) with respect to
the uniform distribution on M, soZ

M

#(��11 (f) \ Z) dUM(f) =
1

vol(M)

Z
M

#(��11 (f) \ Z) df: (3)

When Z = ��12 (Y ) for some open Y � N , so thatZ
N

�Z
V(x;y)\Z

� � � df
�
d(x; y) =

Z
Y

�Z
V(x;y)

� � � df
�
d(x; y);

the right hand side of the formula above can be further simpli�ed by exploiting the invari-
ances arising out of the action

O(f; (x; y)) = (f ÆO�1; O(x; y))

(8) Recall that if V and W are inner product spaces, and L : V ! W is linear, the adjoint of L is the
linear transformation L� : W ! V de�ned implicitly by the requirement that hv; L�wi = hLv;wi for all
v 2 V and w 2W .
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of O(IR2) on M�N . Without going into any detail at this point (examples of this sort of
argument occurs in Section 6 and the Appendix) we simple assert that

Z
V(x;y)

det
�
A�(f; (x; y))A(f; (x; y))

�1=2
df

is a constant function of (x; y) 2 N . So, since the action of O(IR2) on N is transitive, for
any open Y � N and any (x0; y0) 2 N (including those not in Y )

Z
Y

Z
V(x;y)

det
�
A�(f; (x; y))A(f; (x; y))

�1=2
df d(x; y)

= vol(Y ) �
Z
V(x0;y0)

det
�
A�(f; (x0; y0))A(f; (x0; y0))

�1=2
df:

(4)

In evaluating the integral on the right hand side we are now free to choose (x0; y0)
as we please, and it turns out to be simplest to work with (1; 0). Note that for f =
(a0; a1; : : : ; an) 2 M the condition f 2 V(1;0) amounts to a0 = 0.

Lemma 3.2: For all f = (0; a1; : : : ; an) 2 V(1;0),

det
�
A�(f; (1; 0))A(f; (1; 0))

�1=2
= ja1j:

Proof: We have

TfM := f� = (�0; �1; : : : ; �n) 2 H : hf; �i = 0 g

= f� 2 H :

�
n

1

��1
a1�1 + � � �+

�
n

n

��1
an�n = 0 g

and
T(1;0)N = f (�;  ) 2 IR2 : (1; 0) � (�;  ) = 0 g = f (0;  ) :  2 IR g:

Observe that
@(a1x

n�1y + � � �+ any
n)

@y

����
(x;y)=(1;0)

= a1

and consequently

DF (f; (1; 0))(�; (0;  )) = Df(1; 0)(0;  ) + �(1; 0) = a1 + �0:

(Here �(1; 0) is the polynomial � evaluated at (1; 0).) Therefore

T(f;(1;0))V = f (�; (0;  )) 2 TfM� T(1;0)N : a1 + �0 = 0 g:
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A vector (�; (0;  )) 2 T(f;(1;0))V is in T(f;(1;0))V(1;0) if and only if  = 0, in which case
�0 = 0. That is,

T(f;(1;0))V(1;0) = f ((0; �1; : : : ; �n); (0; 0)) 2 TfM� T(1;0)N g
A vector (�; (0;  )) 2 T(f;(1;0))V that is orthogonal to T(f;(1;0))V(1;0) must satisfy

0 = h�; �0i =
�
n

1

��1
�1�

0
1 + � � �+

�
n

n

��1
�n�

0
n

for all �0 2 TfM such that �00 = 0, and 0 =
�
n
1

��1
a1�1 + � � �+

�
n
n

��1
an�n since � 2 TfM,

so �1 = � � � = �n = 0. This means that

?(f;(1;0))= f ((�0; 0; : : : ; 0); (0;  )) : a1 + �0 = 0 g;
and A(f; (1; 0)) is the linear map taking (0; 1) 2 T(1;0)N to (�a1; 0; : : : ; 0) 2 TfM. The
adjoint A�(f; (1; 0)) is the map taking (�0; �1; : : : ; �n) 2 TfM to (0;�a1�0) 2 T(1;0)N .
We conclude that A�(f; (1; 0))A(f; (1; 0)) is the map taking (0; 1) 2 T(1;0)N to (0; a21) 2
T(1;0)N , and its determinant is a21, as desired.

We now endow V(1;0) with the geometrically natural coordinate system. Recalling
that the inner product (1) is not the usual one, let

z0 =
a0q�
n
0

� ; z1 = a1q�
n
1

� ; : : : ; zn =
anq�
n
n

�
be the system of coordinates for H in which the ith standard unit basis vector is the vector
of unit length, relative to (1), that is a positive multiple of the coeÆcient of the monomial
xn�iyi. Then V(1;0) is the (n�1)-dimensional unit sphere in the coordinate subspace given
by z0 = 0, so Z

V(1;0)

ja1j dz =
p
n

Z
V(1;0)

jz1j dz: (5)

Summarizing the work to this point, (2), (3), (4), and (5) combine to imply that, for any
open Y � N :Z

M

#(��11 (f) \ ��12 (Y )) dUM(f) =
vol(Y )

vol(M)
� pn

Z
V(1;0)

jz1j df: (6)

The calculation may be completed in numerous ways. We choose one that illustrates
in simpli�ed form the ideas underlying Lemmas 6.11 and 6.12 and the notation employed
there. Let D = (�1; 1) be the open unit disk in IR1, let E = Sn�2 and F = Sn�1 be the
(n� 2)-dimensional and (n� 1)-dimensional unit spheres. The �ber V(1;0) corresponds to
F , and we will arrive at a more tractable version of the right hand side of (6) by means of
the change of variables

 : D � E ! F de�ned by (p; r) = (p; (1� p2)1=2r):
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The determinant of the Jacobean of this function is computed as follows. The partial
derivative of  with respect to p is (1;�p(1 � p2)�1=2r) and the norm of this vector is
(1 � p2)�1=2. Evaluating D(p; r) at the various elements of an orthonormal basis of
T(p;r)(D � E) = TpD � TrE whose �rst element is in TpD, one �nds that the image is a
pairwise orthogonal basis of T(p;r)F whose elements other than the �rst all have length

(1� p2)�1=2. Therefore

j detD(p; r)j = (1� p2)�1=2((1� p2)1=2)n�2 = (1� p2)
n�3
2 :

Noting that the inde�nite integral of p(1 � p2)
n�3
2 is �(1 � p2)

n�1
2 =(n � 1), we combine

these calculations in the change of variables formula, computing thatZ
F

jz1j df =

Z
D�E

jpj � j detD(p; r)j d(p; r)

= vol(E) �
Z
D

jpj � (1� p2)
n�3
2 dp

= 2vol(E)

Z 1

0

p(1� p2)
n�3
2 dp

=
2vol(E)

n� 1
:

Substituting this in (6) and applying the formula

vol(Sm�1) = 2
�m=2

�(m2 )
(m � 1) (7)

for the volume of the (m�1)-dimensional unit sphere (e.g., Federer (1969) p. 251) we may
�nally conclude that, for any open Y � N ,

Z
M

#(��11 (f) \ ��12 (Y )) dUM(x) = UN (Y ) � vol(N)vol(E)

vol(M)
� 2

p
n

(n� 1)

= UN (Y ) �
2� � �(n+12 ) � 2� n�1

2

2�
n+1
2 � �(n�12 )

� 2
p
n

(n� 1)
= UN (Y ) � 2

p
n;

where the last equality derives from the formula �(s + 1) = s�(s). Since there are two
roots in the circle corresponding to each point in one dimensional projective space, the
mean number of roots in one dimensional projective space is

p
n.

4. A Random Multihomogeneous System

The calculation of the last section has been extended in a sequence of papers (Kostlan
(1993), Shub and Smale (1993), Rojas (1996), McLennan (2002)) to increasingly general
systems of multivariate polynomial equations. The last of these results will be applied in
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the proof of the full support case. The statement of the formula developed in McLennan
(2002) is the main objective of this section.

The most general class of systems of polynomial equations considered here are the
so-called sparse systems. We will work with polynomials in the variables x = (x1; : : : ; xr).
For an exponent vector a 2 Nr let xa denote the monomial xa11 � � �xarr . A sparse system of

polynomials is given by specifying supports A1; : : : ;Ap � Nr, where each Ak is nonempty
and �nite, the interpretation being that we are studying the polynomial equation systems
of the form f(x) = (f1(x); : : : ; fp(x)) = 0 where, for k = 1; : : : ; p,

fk(x) =
X
a2Ak

fkax
a

is a polynomial that is a weighted sum of the monomials corresponding to the exponent
vectors in Ak. The system is said to be unmixed if A1 = � � � = Ap; otherwise it is said
to be mixed. For k = 1; : : : ; p let Hk := IRAk be the space of real coeÆcient vectors
fk = (fka)a2Ak

, and let H = H1 � � � � � Hp:
The theory of sparse systems is of relatively recent origin. Classical theory was

dominated by the view that any particular system of polynomial equations could be ho-
mogenized (using the generalization of the procedure employed in the last section) and
then viewed as an instance of the general homogeneous system (this will be de�ned below)
so that results concerning this system were universally applicable. Bernshtein's (1975)
theorem (stated below) gave an important impetus to the development of the theory of
sparse systems because it displayed a property that was generic in the space of systems
for the given supports that di�ered from the corresponding generic property of the gen-
eral homogeneous system of which the sparse system was a specialization. In addition,
increasing attention to computational eÆciency has led to interest in the development of
algorithms (e.g., Emiris and Canny (1995), Huber and Sturmfels (1995), Verschelde, Ver-
linden, and Cools (1994)) for solving systems of polynomial equations that take advantage
of the sparseness that is typically present in applications. Algorithms of this sort are being
incorporated into the Gambit(9) package of software for analysis of noncooperative games.

The sparse system is multihomogeneous if the following description is satis�ed: the
variables in x are grouped in n blocks (y1; : : : ;yn), where yi = (yi0; yi1; : : : ; yipi), and, for
a given p� n matrix D of nonnegative integers, each Ak represents the set of polynomials
that are homogeneous of degree dki as a function of yi, i = 1; : : : ; n. In combinatoric terms
this means that

Ak = Ak1 � � � � � Akn

where Aki is the simplex (in the integer lattice) of coeÆcient vectors in Npi+1 whose
components sum to dki.

If (y1; : : : ;yn) is a root of the multihomogeneous system f = 0, then, for any scalars
�1; : : : ; �n, the point (�1y1; : : : ; �nyn) is also a solution, so it is natural to look for solutions
in the space Sp1 � � � � � Spn , where Spi is the unit sphere in IRpi+1. In this section we
denote this space by N := N1 � � � � � Nn. (It is even more natural to count solutions in

(9) http://www.hss.caltech.edu/~gambit/Gambit.html.
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the cartesian product of projective spaces P(IRp1+1)� � � � �P(IRpn+1), but this would be
less convenient in the analysis.)

The multihomogeneous system is said to be exactly determined if there are, e�ec-
tively, as many equations as degrees of freedom:

p = p1 + � � �+ pn = r � n:

Henceforth we consider only this case. Note that, with this restriction, the system is
determined by the vector of dimensions p := (p1; : : : ; pn) and the matrix D. When n = 1
we say that the system is an instance of the general homogeneous system.

The product group

G := O(IRp1+1)� � � � �O(IRpn+1)

acts on IRp1+1 � � � � � IRpn+1 in the obvious way: gx := (g1y1; : : : ; gnyn). Clearly N is
an invariant of this action. Since the composition of a linear function with a homogeneous
function is homogeneous, of the same degree, for each k = 1; : : : ; p there is also an action
of G on each Hk de�ned by gf = f Æ g�1.

We endow each Hk with the inner product

hfk; f 0kik :=
X
a2Ak

�(a)fkaf
0
ka

where

�(a) :=
a10! � : : : � a1p1 !

(a10 + � � �+ a1p1)!
� : : : � an0! � : : : � anpn !

(an0 + � � �+ anpn)!
: (8)

McLennan (2002) shows that this is the unique (up to multiplication by a scalar) inner
product on Hk that is invariant under the action of G and which has distinct monomials
orthogonal. (The extension from the two dimensional case mentioned in the last section to
this level of generality is easy: by virtue of that result, h�; �ik is the unique inner product
that is invariant under the action of those elements of G that rotate one 2-dimensional
coordinate subspace while leaving all other variables �xed. But such elements generate G,
in the sense that the smallest subgroup of G containing all �nite products of such elements
is G itself.)

Let M := M1 � � � � �Mp where each Mk is the unit sphere, with respect to this
inner product, in Hk. We study the model of a random multihomogeneous system given by
the uniform distribution UM. The distributution of roots of the random system is given
by the measure � on N de�ned, for measurable E � N , by

�(E) =

Z
M

#
�f � 2 E : f(�) = 0 g� dUM(f):

Let ~Z(p;D) be a random p�pmatrix whose entries ~zijk are independently distributed normal

random variables with mean zero and variance dki. That is, ~Z(p;D) is a p � p matrix of
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centered normal random variables with variance matrix DC(p) where C(p) is the n � p
column copying matrix from Section 2.

Proposition 4.1: (McLennan (2002))

�(N) = 2n�p=2 �
� nY
i=1

�=2

�(pi+12
)

�
�E�j det ~Z(p;D)j

�
;

and �(E) = UN (E) � �(N) for all measurable E � N .

Proof: Appendix A.

For each i here are 2 points in Ni for each point in P(IRpi+1), so the mean number of
roots in P(IRp1+1)�� � ��P(IRpn+1) is obtained by dividing by 2n. For the unmixed general
homogeneous system consisting of p homogeneous equations of degree d Kostlan (1993)
showed that the mean number of real roots in p-dimensional projective space is

p
dp. Rojas

(1996) gives a formula that generalizes this to the case of an unmixed multihomogeneous
system. For the mixed general homogeneous system consisting of homogeneous equations
of degrees d1; : : : ; dp Shub and Smale (1993) show that the mean number of real roots

in P(IRp+1) is
pQp

k=1 dk. As is explained in McLennan (2002), all these results can be
derived without diÆculty from the formula above.

The classical result known as Bezout's theorem asserts that, for generic systems of
complex coeÆcients, the general homogeneous system has

Qp
k=1 dk roots in p-dimensional

complex projective space. Bernshtein's (1975) theorem is a generalization for an exactly
determined sparse system in p variables characterized by supports A1; : : : ;Ap � Np. For
k = 1; : : : ; p the Newton polytope of equation k, denoted by Qk, is the convex hull of
Ak. The mixed volume of the tuple (Q1; : : : ; Qp) is the coeÆcient of �1 � � ��p in the
polynomial(10) vol(�1Q1 + � � �+ �pQp). Let C� = C n f0g. Bernshtein's theorem asserts
that, for generic systems of complex coeÆcients, the number of roots of the system in
(C�)p is equal to the mixed volume of (Q1; : : : ; Qp). McLennan (2002) uses Proposition
4.1 to generalize the relation, given by the Shub-Smale theorem, between the mean number
of roots of the general homogeneous system and the Bezout number: the mean number
of roots of the multihomogeneous system in P(IRp1+1) � � � � � P(IRpn+1) is greater than
or equal to the square root of the number given by Bernshtein's theorem for the exactly
determined system obtained by \demultihomogenizing" by setting y10 = � � � = yn0 = 1.

McKelvey and McLennan (1997) show that for a given normal form there are payo�s
for which there are as many totally mixed (i.e., full support) regular Nash equilibria as are
permitted by Bernshtein's theorem. For each root in P(IRp1+1) � � � � � P(IRpn+1) there
are 2n roots in N . Since the roots in N are uniformly distributed, the fraction lying in
N++ is

Q
i 2
�(p1+1) = 2�(p+n). In the full support case the Main Theorem asserts that

the mean number of roots of (N1) is the same as the mean number of roots in N given

(10) See Ewald (1996) for a proof that vol(�1Q1 + � � � + �pQp) is, in fact, a polynomial function of

�1; : : : ; �p � 0.
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by Proposition 4.1 for the corresponding multihomogeneous system. Putting these facts
together leads to the conclusion that the mean number of totally mixed Nash equilibria is

greater than or equal to 2�p times the square root of the maximal number of regular totally
mixed Nash equilibria.

This lower bound may be used to establish exponential rates of growth of the mean
number of totally mixed equilibria as the size of the game grows in various ways. McKelvey
and McLennan (1997) use a recursive characterization of the number of roots given by

Bernshtein's theorem to establish that
Qn�1

i=1 (n � i)pi is a lower bound on the maximal
number of totally mixed Nash equilibria, so the mean number of totally mixed Nash
equilibria is greater than or equal to

2�p

vuutn�1Y
i=1

(n� i)pi :

(Note that
Qn�1

i=1 (n � i)pi is maximized if the agents are indexed so that p1 � � � � �
pn.) For example, for normal forms in which p1 = � � � = pn = k, the bound reduces to�
(n� 1)!=22n

�k=2
: For integral n, (n� 1)!=22n � 1 if and only if n � 12, so that the mean

number of totally mixed equilibria of the random game in which all agents have the same
number of pure strategies grows exponentially when there are twelve or more agents.

5. The Full Support Case

This section proves the full support case of the Main Theorem. For i = 1; : : : ; n
we identify IRpi+1 with IRTi , and we specialize the multihomogeneous system of the last
section to the system (N1) by setting

Ap1+���+pi�1+1 = � � � = Ap1+���+pi = Bi:

Equivalently, D = D(p). The argument is a matter of comparing the random multihomo-
geneous system for this data with the random game model. Naively one might hope that
the two distributions of coeÆcient vectors are the same, possibly after rescaling, but the
situation is not so simple.

The geometric basis of our argument has the following informal description. Suppose
several equations in a sparse system have the same support. Each equation amounts to a
requirement that the vector of monomials in the support is orthogonal to the coeÆcient
vector, so collectively the equations amount to the requirement that the vector of mono-
mials in the support is orthogonal to the plane spanned by the coeÆcient vectors of the
various equations. Any distribution on the space of coeÆcient vectors induces a distribu-
tion on the relevant space of planes, and it is possible that di�erent distributions on the
space of coeÆcient vectors induce the same distribution on the space of planes, in which
case they must induce the same distribution of roots. Let � := �1 � � � � � �n where, for
each i, �i is the Grassman manifold(11) of pi-dimensional linear subspaces of IRBi.

(11) This manifold has the following description. The elements of �i are the linear subspaces of dimension
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Beginning with the construction for the random multihomogeneous system, we de-
compose a coeÆcient vector f = (f1; : : : ; fp) as f = (g1; : : : ;gn) by setting

gi = (gi1; : : : ; gipi) := (fp1+���+pi�1+1; : : : ; fp1+���+pi):

Let M� := G�1 � � � � � G�n �M where, for each i,

Gi :=Mp1+���+pi�1+1 � � � � �Mp1+���+pi

and G�i is the set of gi = (gi1; : : : ; gipi) 2 Gi such that gi1; : : : ; gipi are linearly independent.
Of course each G�i has full measure in Gi, so M� has full measure in M. De�ne the map
' :M� ! � by setting '(f) := ('1(g1); : : : ; 'n(gn)) where each 'i : G�i ! �i is the map

'i(gi) := spanfgi1; : : : ; gipig:

Comparing the de�nition of Bi with (8) shows that �(a) = 1 for all a 2 Bi, so the
inner product de�ned there coincides with the usual one. This means that there is no
ambiguity in saying that for each i and h = 1; : : : ; pi, x 2 IRT1 � � � � � IRTn is a root of gih
if and only if xBi is orthogonal to gih. Therefore f(x) = 0 if and only if

xB1 ? '1(g1); : : : ;x
Bn ? 'n(gn);

and the distribution of roots of a randomly distributed f 2 M is the same as the distribu-
tion of points in N satisfying

xB1 ? 1; : : : ;x
Bn ? n (9)

when  2 � is a random n-tuple of planes with distribution UM� Æ '�1.
We now give a similar description of the distribution of solutions of (N1) for the

random game model. To avoid systems with redundant equations we restrict attention to
M� :=M�

1 � � � � �M�
n where, for each i,

M�
i := fui 2Mi : �

1
i (ui); : : : ; �

pi
i (ui) are linearly independent g:

It is easy to show that each M�
i has full measure in Mi, so M

� has full measure in M .
De�ne  : M� ! � by setting  (u) = ( 1(u1); : : : ;  n(un)) where each  i : M

�
i ! �i is

the map
 i(ui) := spanf�1i (ui); : : : ; �pii (ui)g:

Then (u; �) 2 V if and only if

�B1 ?  1(u1); : : : ; �
Bn ?  n(un);

pi in IRBi . Consider a pair of subspaces V;W � IRBi of dimensions pi and jBij � pi respectively that
are complementary, in the sense that V \W = f0g and V +W = IRBi . The map that takes an element
� 2 L(V;W ) to the plane f v + �(v) : v 2 V g is a parameterization of a subset of �i, and it is not hard
to check that two such parameterizations have C1 (in fact analytic) overlap, so the collection of such
parameterizations de�nes a di�erentiable structure on �i.
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and consequently the distribution of solutions of (N1) in the full support case coincides
with the distribution of � 2 N satisfying (9) when  2 � is a random n-tuple of planes
with distribution UM� Æ  �1.

The result will follow once we show that UM� Æ '�1 = UM� Æ  �1. To begin with,
observe that since g1; : : : ;gn and u1; : : : ; un are statistically independent, the �rst of these
is the product of the measures UGi Æ'�1i , while the second is the product of the measures
UM�

i
Æ  �1i . Therefore it suÆces to show that UG�

i
Æ '�1i = UM�

i
Æ  �1i for each i.

In general, if a group H acts on two spaces X and Y , a map F : X ! Y is said to
be H-equivariant (or simply equivariant if H is clear) if F (hx) = hF (x) for all x 2 X and
h 2 H. If � is an invariant measure on X and F : X ! Y is H-equivariant, then � Æ F�1
is an invariant measure on Y since, for measurable E � Y and h 2 H, we have

(� Æ F�1)(hE) = �(F�1(hE)) = �(hF�1(E)) = �(F�1(E)) = (� Æ F�1)(E):

For i = 1; : : : ; n there is an obvious action of O(IRBi) on �i given by setting OV :=
fOv : v 2 V g for V 2 �i and O 2 O(IRBi). It is easy to show that the action of O(IRBi)
on �i is transitive: choose orthonormal bases for V; V 0 2 �i and construct an orthogonal
transformation taking the basis of V to the basis of V 0. Consequently Proposition 3.1
implies that �i has a unique invariant measure.

Let O(IRBi) act on Gi by the rule O(gi1; : : : ; gipi) := (Ogi1; : : : ; Ogipi). Clearly G�i
is invariant under this action, so there is induced (by restriction) action on G�i . The
equivariance of 'i follows directly from its de�nition. Each of the cartesian factors of Gi is
the unit sphere in IRBi, and the uniform distribution on this sphere is invariant under the
action of O(IRBi). In general, if � is an invariant measure for the action of H on a space X
and k � 1 is an integer, then the k-fold product �� � � ��� is an invariant measure for the
action h(x1; : : : ; xk) := (hx1; : : : ; hxk) of H on Xk. Therefore UGi is an invariant measure
under the action on Gi. Since G�i has full measure in Gi, UG�

i
is an invariant measure for

the induced action on G�i . We conclude that UG�
i
Æ '�1i is the invariant measure on �i.

For O 2 O(IRBi) let
T iO := ��1i ÆO Æ �i : IRT�i ! IRT�i ;

where �i : IR
T�i ! IRBi is the function introduced in Section 2. Since S1 = T1; : : : ; Sn = Tn,

the decomposition of ui introduced in Section 2 reduces to ui = (v
t0i
i ; : : : ; v

t
pi
i

i ). There is
an action of O(IRBi) on IRS = IRT given by setting

Oui :=
�
T iO(v

t0i
i ); : : : ; T

i
O(v

t
pi
i

i )
�
: (10)

Since T iO is linear, �1i ; : : : ; �
pi
i are equivariant, and consequently  i is equivariant. Since

O 2 O(IRBi) and �i is a relabelling of coordinates, hence inner product preserving, we
have T iO 2 O(IRT�i). Therefore the map ui 7! Oui is an orthogonal transformation, so
that Mi and M

�
i are invariant, and these spaces have actions induced by restriction. The

uniform distribution on Mi is invariant and M�
i has full measure in Mi, so UM�

i
is an

invariant measure. Therefore UM�

i
Æ  �1i is also the invariant measure on �i, hence equal

to UG�
i
Æ '�1i as desired.
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6. Extension to the General Case

The passage from the full support case to the general case is a matter, for given
measurable E � N , of comparing the following three quantities: (a) the expected number
of roots in E of (N1) and (N2); (b) the expected number of roots in E of (N1); (c) the
expected number of roots in E of (N1) for the spherical model applied to the truncated
game obtained by removing all pure strategies in S1 n T1; : : : ; Sn n Tn. The full support
case characterizes (c). As we explained in Section 2, the distribution of coeÆcient vectors
given by (N1) is equivalent, from the point of view of the induced distribution of roots,
to the distribution for the truncated game obtained by eliminating pure strategies outside
T1; : : : ; Tn, so (b) and (c) are the same. Thus it suÆces to prove that the ratio of (a) and
(b) is

Qn
i=1 r(pi; jSi n Tij).

Let

~V := f (u; �) 2M �N : (N1) g; so that V = f (u; �) 2 ~V : (N2) g:

Let ~�1 : ~V !M and ~�2 : ~V ! N be the restrictions to ~V of the natural projections from
M �N . Then �1 and �2 are the restrictions of ~�1 and ~�2 to V . Let ~� be the measure on
N de�ned, for measurable E � N , by

~�(E) :=

Z
M

#
�
~��11 (u) \ ~��12 (E)

�
dUM (u):

The remainder is devoted to the proof of:

Proposition 6.1: For all measurable E � N with ~�(E) > 0,

�(E)

~�(E)
=

nY
i=1

r(pi; jSi n Tij):

Since the Borel �-algebra is generated by the open sets, it suÆces to prove this for E open.
The proof is fairly lengthy, paralleling many of the steps in the proof of Proposition 4.1 in
the Appendix. We divide it into a number of shorter steps.

6.1. Manifold Theoretic Properties

Proposition 6.2: ~V is a smooth manifold of the same dimension as M .

Proof: By the regular value theorem (e.g., Guillemin and Pollack (1965)) it suÆces to
show that 0 is a regular value of the restriction to M �N of the map

(u; �) 7! �h�11(u1); �B1i; : : : ; h�p11 (u1); �
B1i; : : : ; h�1n(un); �Bni; : : : ; h�pn1 (un); �

Bni�:
It is easy to verify that all points in (IRS)n�Qi(IR

Ti nf0g) are regular points of this func-
tion: if no component �i of � is vanishing, then �

Bi 6= 0, and each component h�ji (ui); �Bii
can be freely varied, without a�ecting any other component, by varying ui(t

j
i ; �).
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We wish to show that each point (u; �) 2 ~V is also a regular point of the restriction
of the function to M � N . Let (v; �) denote a vector in (IRS)n �Qi IR

Si, thought of as

a tangent vector at (u; �). For each i and j, h�ji (ui); �Bii is linear as a function of ui and

multilinear as a function of � . If (u; �) 2 V , so that h�ji (ui); �Bii = 0, each vi is a scalar

multiple of ui and each �i is scalar multiple of �i, then the derivative of h�ji (ui); �Bii along
the vector (v; �) is zero. Consequently, if Df(u; �) is surjective, so is the restriction of
Df(u; �) to T(u;�)(M �N), which consists of those vectors (v; �) with vi orthogonal to ui
and �i orthogonal to �i for each i.

The set of utilities that have a particular � 2 N as a solution of (N1) is well behaved,
and varies in a smooth manner as � varies. The �ber over � is

~V� := fu 2M : (u; �) 2 ~V g:

It will sometimes be convenient to abuse notation by not distinguishing explicitly between
~V� and ~��12 (�) �M�N . The �ber over � is a cartesian product of subspheres of the spheres
Mi given by the equations de�ning ~V , so its topology is independent of � , suggesting the
following result.

Lemma 6.3: ~�2 : ~V ! N is a C1 �bration.

Proof: Standard methods (e.g., Milnor and Stashe� (1974, x3)) can be used to prove that
for each i,

f (ui; �) 2 IRS �N : h�ji (ui); �Bii = 0 for all j = 1; : : : ; pi g
is a C1 vector bundle over N , after which ~V is seen to be the product (in the sense of
taking the cartesian product of the �bers over each base point) of the associated sphere
bundles(12).

Application of the Shub-Smale integral formula (Shub and Smale (1993, p. 273),
Blum et. al. (1998, p. 240)) yields:

Proposition 6.4: For any open set Z � ~V ,

Z
M

#(~��11 (u) \ Z) du =
Z
N

Z
~V�\Z

det
�
A�(u; �)A(u; �)

�1=2
du d� (11)

where A(u; �) : T� (N)! Tu(M) is the linear map whose graph is the orthogonal comple-
ment ?(u;�) of T(u;�) ~V� in T(u;�) ~V and A�(u; �) is the adjoint of A(u; �).

(12) Recall footnote 5.
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6.2. More Equivariant Group Actions

The next goal is to show that when Z = V or Z = ~V , the inner integral on the right
hand side of (11) does not depend on � . This will be done by exploiting the symmetry that
we built into the mathematical apparatus with the choice of the distribution of payo�s and
the displacement of the space of mixed strategies for each agent from the unit simplex to
the positive orthant of the unit sphere. This symmetry is expressed in various actions of
the group

G := O(IRT1)� � � � �O(IRTn):

To begin with, there is the action of G on IRT1 � � � � � IRTn given by the rule

g� := (g1�1; : : : ; gn�n):

Of course N is invariant under this action, and there is consequently an action of G on N
given by restriction.

In the following we use a general result about group actions. Suppose that the groups
H and H 0 both act on a space X. Then the rule (h; h0)x = h(h0x) de�nes an action of the
product group H � H 0 on X if h0(hx) = h(h0x) for all x 2 X, h 2 H and h0 2 H. (In
fact this condition is necessary as well as suÆcient: if h0(hx) 6= h(h0x) then the e�ect of
(e; h0)(h; e0) would not agree with the e�ect of (h; h0).)

Lemma 6.5: For each i there is a unique action of G on IRBi, by orthogonal transforma-
tions, with respect to which the map � 7! �Bi is G-equivariant.

Proof: For each h 6= i we may think of IRBi as a cartesian product of copies of IRTh indexed
by the various elements of

Q
a6=h;i Ta. Equivariance clearly requires that the action of any

Oh 2 O(IRTh) is to simultaneously transform each copy according to Oh. To show that this
rule does, indeed, de�ne a group action, we need to show that the e�ect of Oh 2 O(IRTh)
commutes with the e�ect of Oh0 2 O(IRTh0 ) when h 6= h0.

It is probably easier to understand the idea in a general and abstract setting. Let A
and B be nonempty �nite sets, and denote the standard unit basis vectors of IRA�B by
e(�;�). Let the action of O(IRA) (resp. O(IRB)) on IRA�B be given by construing IRA�B

as a cartesian product of copies of IRA indexed by B (resp. IRB indexed by A) with the
action given by simultaneously transforming each copy. If Y and Z are elements of O(IRA)
and O(IRB) respectively, with matrices (y�) and (zÆ�), then for each (�; �) 2 A� B we
have

Z(Y e(�;�)) = Z
�X
2A

y�e(;�)

�
=
X
2A

y�
�
Ze(;�)

�
=
X
2A

y�
�X
Æ2B

zÆ�e(;Æ)

�

=
X
Æ2B

zÆ�

�X
2A

y�e(;Æ)

�
=
X
Æ2B

zÆ�

�
Y e(�;Æ)

�
= Y

�X
Æ2B

zÆ�e(�;Æ)

�
= Y (Ze(�;�)):

As in Section 2 we write

ui =
�
(v
t0i
i ; w

t0i
i ); : : : ; (v

t
pi
i

i ; w
t
pi
i

i ); (v
s1i
i ; w

s1i
i ); : : : ; (v

s
qi
i

i ; w
s
qi
i

i )
�
:
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Generalizing the action (10) for the full support case, there is an action of O(IRBi) on IRS

given by setting

Oui :=
�
(T iO(v

t0i
i ); w

t0i
i ); : : : ; (T

i
O(v

t
pi
i

i ); w
t
pi
i

i ); (T iO(v
s1i
i ); w

s1i
i ); : : : ; (T iO(v

s
qi
i

i ); w
s
qi
i

i )
�
;

where T iO := ��1i ÆO Æ �i is the function introduced in the last section. The last result may
be reinterpreted as saying that there is a homomorphism

�i : G! O(IRBi) satisfying (g�)Bi = �i(g)�
Bi

for all � 2 IRT1�� � ��IRTn and g 2 G. In general, whenever the range of a homomorphism
acts on a space, there is an obvious induced action of the domain. In this sense we may
de�ne an action of G on the space IRS of utilities for agent i by setting gui := �i(g)ui.

For j = 1; : : : ; pi, ui 2 IRS, and g 2 G we now have

h�ji (gui); (g�)Bii = h�i(T i�i(g)v
tj
i

i � T i�i(g)v
t0i
i ); (g�)

Bii
= h�i(g)(�i(vt

j

i

i � v
t0i
i )); �i(g)�

Bii
= h�i(vt

j

i

i � v
t0i
i ); �

Bii
= h�ji (ui); �Bii:

Here the �rst and last equalities derive from the de�nitions of �ji and gui, the second
combines the de�nition of T i�i(g) with the last result, and the third follows from �i(g) 2
O(IRBi). Similarly,

h�ki (gui); (g�)Bii = h�ki (ui); �Bii
for all k = 1; : : : ; qi, ui 2 IRS, and g 2 G.

There is now an action of G on M given by gu = (gu1; : : : ; gun) and an action on
M �N given by g(u; �) = (gu; g�). Of course an important consequence of the equations
above is:

Lemma 6.6: ~V and V are invariants of the action of G on M �N : for all g 2 G we have
g ~V = ~V and gV = V:

The next two results show that the inner integral of the right hand side of (11) is
independent of � , so that the right hand side of (11) is the inner integral at an arbitrary
point times the volume of N .

Lemma 6.7: Let Z � ~V be an open set that is invariant under the action of G: gZ = Z
for all g 2 G. Then for any � 2 N ,

Z
~V�\Z

det(A�(u; �)A(u; �))1=2 du =

Z
~Vg�\Z

det(A�(u; g�)A(u; g�))1=2 du:
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Proof: As a general matter, if P is a submanifold of IRk that is invariant under the action
of an orthogonal transformation O 2 O(IRk), then the tangent space TpP at a point p 2 P
(understood concretely as a subspace of IRk) is invariant in the sense that TOpP = O(TpP ).
If P is invariant under the action of a subgroup H � O(IRk), then in this sense there is an
induced action on the tangent bundle

TP := f (p; v) : p 2 P; v 2 TpP g
given by restricting the action of H on IRk � IRk.

For all g 2 G we have

T(gu;g�) ~Vg� = g(T(u;�) ~V� ) and T(gu;g�) ~V = g(T(u;�) ~V );

so ?(gu;g�)= g(?(u;�)). Now the relations

A(gu; g�) = g ÆA(u; �) Æ g�1 and A�(gu; g�) = g ÆA�(u; �) Æ g�1
follow directly from the de�nitions of A(u; �) and its adjoint. The map (u; �) 7! (gu; g�)
is an isometry between ~V� \Z and ~Vg� \Z, so the change of variables formula, followed by
application of the invariances above and elementary properties of the determinant, yields
the desired equation.

For each m the action of the orthogonal group O(IRm+1) on the unit sphere Sm is
transitive. As the cartesian product of transitive actions, the action of G on N is also
transitive. Therefore the last result implies:

Lemma 6.8: For any open set Z � ~V that is invariant under the action of G, any open
Y � N , and any � 2 N ,Z

M

#(~��11 (u) \ ~��12 (Y ) \ Z) du = vol(Y ) �
Z
~V�\Z

det(A�(u; �)A(u; �))1=2 du:

The following result extracts the relevant consequences of our work up to this point.

Lemma 6.9: For all open Y � N with ~�(Y ) > 0 it is the case, for any � 2 N , that

�(Y )

~�(Y )
=

R
~V�\V

det(A�(u; �)A(u; �))1=2 duR
~V�
det(A�(u; �)A(u; �))1=2 du

: (12)

Proof: Applying Proposition 6.4 to evaluate the de�nitions of ~�(Y ) and �(Y ) yields

�(Y )

~�(Y )
=

R
N

R
~V�\V \~�

�1
2 (Y )

det(A�(u; �)A(u; �))1=2 du d�R
N

R
~V�\~�

�1
2 (Y ) det(A

�(u; �)A(u; �))1=2 du d�

=

R
Y

R
~V�\V

det(A�(u; �)A(u; �))1=2 du d�R
Y

R
~V�
det(A�(u; �)A(u; �))1=2 du d�

:

Since ~V and V are invariant under the action of G, Lemma 6.8 implies that the inner
integrals of both the numerator and the denominator are independent of � .
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6.3. Reduction to a Smaller Set of Variables

In the further evaluation of the right hand side of (12) we are free to choose � as we
please. The choice of � = t0 = (t01; : : : ; t

0
n) has the advantage that the integrand depends

on only a few of the variables ui(s) de�ning u. For each i let

R�i = f t�i 2 T�i : tj 6= t0j for exactly one j g;

and let Ri = Ti �R�i � S.

Proposition 6.10: Suppose that u; u0 2 ~Vt0 , and that, for each i, the projections of ui
and u0i to IR

Ri agree. Then A(u; t0) = A(u0; t0).

Proof: In order to be able to express its derivative using conventional notation, for i =
1; : : : ; n we introduce the function �i(�) := �Bi from N to IRBi. Then (u; �) 2 M �N is
in ~V if and only if h�ji (ui); �i(�)i = 0 for all i = 1; : : : ; n and j = 1; : : : ; pi.

Fix u 2 ~Vt0 . Now T(u;t0) ~V is the set of (w; ) 2 (IRS)n � IRT1 � � � � � IRTn such that
wi ? ui and  i ? t0i for all i (so that (w; ) 2 T(u;t0)(M �N)) and

0 = hD�ji (ui)wi; �i(t0)i+ h�ji (ui); D�i(t0) i

for all i and j = 1; : : : ; pi. In view of the linearity of �ji , the latter condition reduces to

0 = h�ji (wi); �i(t0)i+ h�ji (ui); D�i(t0) i:

In turn T(u;t0) ~Vt0 = f (w; ) 2 T(u;t0) ~V :  = 0 g is seen to be the set of (w; 0) 2 (IRS)n �
IRT1 � � � � � IRTn such that for all i, wi ? ui and 0 = h�ji (wi); �i(t0)i for all j = 1; : : : ; pi.
Therefore ?(u;t0) is the set of (w; ) 2 (IRS)n � IRT1 � � � � � IRTn such that for all i:

(a) wi ? ui;
(b)  i ? t0i ;

(c) 0 = h�ji (wi); �i(t0)i+ h�ji (ui); D�i(t0) i for all j = 1; : : : ; pi;
(d) wi is perpendicular to all w0i that are perpendicular to ui and which satisfy

0 = h�ji (w0i); �i(t0)i for all j = 1; : : : ; pi.

Note that the equilibrium condition implies that 0 = h�ji (ui); �i(t0)i for all i, so that
(a) and (d) together are equivalent to

(d0) wi ? w0i for all w
0
i 2 IRS satisfying 0 = h�ji (wi); �i(t0)i for all j = 1; : : : ; pi.

The characterization of ?(u;t0) given by (b), (c), and (d0) refers to u only through the

terms h�ji (ui); D�i(t0) i. Direct di�erentiation of the function �i shows that these terms
depend only on the components of ui for the pure strategy pro�les in Ri.

The �ber ~Vt0 is a cartesian product over i of the subset of the sphere Mi given by
the conditions

0 = h�1i (ui); �i(t0)i = � � � = h�pii (ui); �i(t0)i;
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i.e., ui(t
0) = ui(t

0jt1i ) = � � � = ui(t
0jtpii ). The next step is to simplify by applying a

change of variables that is derived from a di�eomorphism between this subset of Mi and
a cartesian product in which one factor is the space of the variables that do not a�ect the
integrand in (12), by virtue of the last result. In the reparameterized integral the e�ect
of these variables on the integral reduces to multiplication by the volume of the relevant
portion of this space.

Although the next two lemmas are notationally cumbersome, the underlying idea is
a computation at the level of elementary calculus, and has already appeared in the �nal
calculation of Section 3. The complex appearance is due entirely to the complexity of the
intended application's environment.

Lemma 6.11: For i = 1; : : : ; n suppose that:

(a) ai; bi; ci are nonnegative integers;
(b) ~Di is the open unit disk in IRai;
(c) ~Ei is the subsphere of the unit sphere in IRbi+ci consisting of those unit vectors

(qi; ri) 2 IRbi � IRci such that qi1 = � � � = qibi ;

(d) ~F i is the subsphere of the unit sphere in IRai+bi+ci consisting of those unit
vectors (pi; qi; ri) 2 IRbi � IRci such that qi1 = � � � = qibi .

For each i de�ne i : ~Di � ~Ei ! ~F i by

i(pi; (qi; ri)) =
�
pi; (1� kpik2)1=2qi; (1� kpik2)1=2ri�:

Let ~D :=
Q

i
~Di and ~F :=

Q
i
~F i, let

~E := f (q; r) 2
Y
i

IRbi �
Y
i

IRci : (q1; r1) 2 ~E1; : : : ; (qn; rn) 2 ~En g;

and let  : ~D � ~E ! ~F be the function

(p; (q; r)) :=
�
1(p

1; (q1; r1)); : : : ; n(p
n; (qn; rn))

�
:

Then for all (p; (q; r)) 2 ~D � ~E,

j detD(p; (q; r))j =
nY
i=1

(1� kpik2) ci�12 :

Proof: First we compute that

Di(pi; (qi; ri))� pi

kpik ; 0
� = d(x; (1� x2)1=2)

dx

���
x=kpik

 = (1� kpik2)�1=2:

Consider an orthonormal basis for Tpi ~Di that includes p
i=kpik. The images of its elements

under Di(pi; (qi; ri)) are pairwise orthogonal, and except for the image of pi=kpik, each
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has unit length. The image under Di(pi; (qi; ri)) of an orthonormal basis of T(qi;ri)
~Ei will

be pairwise orthogonal, and each will have length (1� kpik2) 12 . Furthermore, the images
of the two bases are orthogonal, and dim ~Ei = ci, so

j detDi(pi; (qi; ri))j = (1� kpik2) ci�12 :

With respect to such bases, the matrix of D is block diagonal with the matrices of the
Di as the blocks, so that

j detD(p; (q; r))j = j detD1(p1; (q1; r1))j � : : : � j detDn(pn; (qn; rn))j:
Lemma 6.12: In addition to the hypotheses of the last result, suppose that, for each
i = 1; : : : ; n, Ei is an open subset of ~Ei. Let

E = f (q; r) 2 ~E : (qi; ri) 2 Ei for all i = 1; : : : ; n g;
and set F :=

Q
i Fi where

F i =
�
(pi; qi; ri) 2 ~F i : (qi; ri) 6= (0; 0) and

(qi; ri)

k(qi; ri)k 2 E
i
	
:

If h : ~D ! IR is a bounded measurable function, thenZ
F

h(p1; : : : ; pn) dF = vol(E) �
Z
~D

h(p)
� nY
i=1

(1� kpik2) ci�12

�
dp:

Proof: Applying the last result, the change of variables formula givesZ
F

h(p1; : : : ; pn) dF =

Z
~D�E

h(p)j detD�p; (q; r))�j d( ~D � E)

=

Z
~D�E

h(p)
� nY
i=1

(1� kpik2) ci�12

�
d( ~D � E)

and the asserted equation follows from Fubini's theorem.

The application of these results is as follows.

Lemma 6.13: For each i = 1; : : : ; n let ~Ei be the set of elements of the unit sphere in
IRSnRi

with
ui(t

0) = ui(t
0jt1i ) = � � � = ui(t

0jtpii );
and let

Ei := fui 2 ~Ei : ui(t
0) > ui(t

0jsi) for all si 2 Si n Ti g:
If Y � N is open with vol(Y ) > 0, then

�(Y )

~�(Y )
=

vol(E)

vol( ~E)
=

nY
i=1

vol(Ei)

vol( ~Ei)
:

Proof: Let ~Di be the unit disk in IRRi , and let ~Fi be the set of all ui 2 Mi satisfying
this equation. To evaluate the numerator and denominator, respectively, of (12), we apply
Lemma 6.12 twice, once as indicated by the notation and once with Ei replaced by ~Ei.
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6.4. Reinterpretation of the Function r

Proposition 6.1 now follows from the result below, which interprets the function r
as the fraction of the volume of a certain sphere (such as ~Ei above) contained in the
intersection (such as Ei above) of the sphere with a particular cone.

Lemma 6.14: For nonnegative integers a; b; c with a; b � 0, and c � a+ b,

r(a; b) =
vol(fx 2 Sc : x0 = x1 = � � � = xa > maxfxa+1; : : : ; xa+bg g)

vol(fx 2 Sc : x0 = x1 = � � � = xa g) :

Proof: Let e0; e1; : : : ; ec be the unit basis vectors of IRc+1. Let �0; �a+1; �a+2; : : : ; �c be
i.i.d. normal random variables, let

~x = �0 � e0 + e1 + � � �+ eap
a+ 1

+ �a+1 � ea+1 + � � �+ �c � ec;

and let ~y = ~x=k~xk. By virtue of standard properties of the multivariate normal distribution,
~y is a uniformly distributed random point in the sphere fx 2 Sc : x0 = x1 = � � � =
xa g. The ratio of volumes in the assertion is now seen to be the probability of the event
�0=

p
a+ 1 > maxf�a+1; : : : �a+bg.

{ 31 {



References

1. Y. Balasko, Foundations of the Theory of General Equilibrium, Academic Press, London,
(1988).

2. B. D. Bernheim, Rationalizable strategic behavior, Econometrica 52 (1984), 1007{1028.
3. J. Berg and A. McLennan, The asymptotic expected number of Nash equilibria of two

player normal form games, mimeo, University of Minnesota, (2002).
4. D. N. Bernstein, The number of roots of a system of equations, Functional Analysis and

its Applications 9 (1975), 183{185.
5. L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and Real Computation, Springer-

Verlag, New York, (1998).
6. M. Dresher, Probability of a pure equilibrium point in n-person games, Journal of Com-

binatorial Theory 8 (1970), 134{145.
7. A. Edelman and E. Kostlan, How many zeros of a random polynomial are real?, Bulletin

of the American Mathematical Society 32 (1995), 1{37.
8. I.Z. Emiris and J.F. Canny, EÆcient incremental algorithms for the sparse resultant and

the mixed volume, Journal of Symbolic Computation 20 (1995), 117{149.
9. G. Ewald, Combinatorial Convexity and Algebraic Geometry , Springer-Verlag, New York,

(1996).
10. H. Federer, Geometric Measure Theory , Springer, New York, (1969).
11. D. Fudenberg and D. K. Levine, The Theory of Learning in Games, MIT Press, Cam-

bridge, MA (1998).
12. P. Gritzman and V. Klee, Mathematical programming and convex geometry, Handbook of

Convex Geometry , vol. I, P. M. Gruber and J. M. Wills (eds) (1993).
13. V. Guillemin and A. Pollack, Di�erentialTopology , Prentice-Hall, Englewood Cli�s, (1965).
14. J. C. Harsanyi, Oddness of the number of equilibrium points: a new proof, Int. J. Game

Theory, 2 (1973), 235{250.
15. B. Huber and B. Sturmfels, A polyhedral method for solving sparse polynomial systems,

Mathematics of Computation 64 (1995), 1541{1555.
16. M. Kac, On the average number of real roots of a random algebraic equation, Bulletin of

the American Mathematical Society 49 (1943), 314{320 and 938.
17. H. Keiding, On the maximal number of Nash equilibria in a bimatrix game. Games and

Economic Behavior 21 (1995), 148-160.
18. E. Kohlberg and J.-F. Mertens, On the strategic stability of equilibria, Econometrica 54

(1986), 1003{1038.
19. E. Kostlan, On the distribution of roots of random polynomials, From Topology to Compu-

tation: Proceedings of the Smalefest , Hirsch, M., Marsden, J., and Shub, M. (eds) Springer-
Verlag (1993).

20. E. Kostlan, On the expected number of real roots of a system of random polynomial
equations, in Foundations of Computational Mathematics: Proceedings of the Smalefest

2000 , Cucker, F., and Rojas, M. (eds) World Scienti�c (2002).
21. H. Kuhn, et. al., The work of John Nash in game theory: Nobel seminar, December 8,

1994, Journal of Economic Theory 69 (1996), 153{185.
22. R. D. McKelvey and A. McLennan, The maximal number of regular totally mixed Nash

equilibria, Journal of Economic Theory 72 (1997), 411{425.

{ 32 {



23. A. McLennan, The maximal generic number of pure Nash equilibria, Journal of Economic
Theory 72 (1997), 408{410.

24. A. McLennan, The maximal number of real roots of a multihomogeneous system of poly-
nomial equations, Beitr�age zur Algebra und Geometrie 40-2 (1999), 343-350.

25. A. McLennan, The expected number of real roots of a multihomogeneous system of poly-
nomial equations, forthcoming in the American Journal of Mathematics, (2002).

26. A. McLennan and I.-U. Park, Generic 4x4 games have at most 15 Nash equilibria, Games
and Economic Behavior 26 (1999), 111-130.

27. J.W. Milnor and J.D. Stashe�, Characteristic Classes, Annals of Mathematics Studies 76,
Princeton University Press, Princeton (1974).

28. D. G. Pearce, Rationalizable strategic behavior and the problem of perfection, Economet-
rica 52 (1984), 1029{1050.

29. I. Powers, Limiting distributions of the number of pure strategy Nash equilibria, Interna-
tional Journal of Game Theory 19 (1990), 277{286.

30. T. Quint and M. Shubik, A theorem on the number of Nash equilibria in a bimatrix game,
International Journal of Game Theory 26 (1997), 353{360.

31. J. M. Rojas, On the average number of real roots of certain random sparse polynomial sys-
tems, Lectures on Applied Mathematics Series, ed. by J. Renegar, M. Shub, and S. Smale,
American Mathematical Society, 1996.

32. H.L. Royden, Real Analysis, Third Edition, Macmillan, New York, 1988.
33. L. Samuelson, Evolutionary Games and Equilibrium Selection, MIT Press, Cambridge, MA

1997.
34. M. Shub and S. Smale, Complexity of Bezout's theorem II: volumes and probabilities,

Computational Algebraic Geometry (F. Eyssette and A. Galligo, eds.), Progr. Math., vol.
109 (1993), Birkhauser, Boston, 267{285.

35. S. Smale, On the average number of steps of the simplex method of linear programming,
Mathematical Programming 27 (1983), 241-262.

36. W. Stanford, A note on the probability of k pure Nash equilibria in matrix games, Games
and Economic Behavior 9 (1995), 238-246.

37. J. Verschelde, P. Verlinden, and R. Cools, Homotopies exploiting Newton polytopes for
solving sparse polynomial systems, SIAM Journal of Numerical Analysis 31 (1994), 915{
930.

38. J. W. Weibull, Evolutionary Game Theory , MIT Press, Cambridge, MA (1995).

{ 33 {



Appendix A. The Proof of Proposition 4.1

This Appendix reproduces the proof of Proposition 4.1 from McLennan (2002), with
some minor modi�cations arising from di�erences in notational system and other adjust-
ments to the current context.

Recall, from Section 4, how we de�ned an action of G on each Hk by setting
gf := f Æ g�1, and how hfk; f 0kik :=

P
a2Ak

�(a)fkaf
0
ka is the unique inner product that is

both invariant under this action and has distinct monomials orthogonal. We denote the
orthogonality relation derived from h � ; � ik by ?k. For each k = 1; : : : ; p let �k : N ! Hk

be the function whose a-component, for a 2 Ak, is

�ka(�) := �(a)�1�a:

Note that fk(�) = hfk; �k(�)ik, so that � 2 N is a root of fk 2 Mk if and only if
fk ?k �k(�).

Lemma A.1: Each �k is G-equivariant with respect to the actions of G on N and Hk.
The image of �k is contained in the unit sphere of Hk.

Proof: For �xed � and g, �k(g�) = g�k(�) follows from the fact that, for all fk 2 Hk,

hgfk; g�k(�)ik = hfk; �k(�)ik = fk(�) = fk(g
�1(g�)) = hgfk; �k(g�)ik:

Here the �rst equality is the invariance of the inner product established in McLennan
(2002), and the other three equalities are essentially matters of de�nition.

Clearly �k(�) is a standard basis vector of Hk if �1; : : : ; �n are all standard basis
vectors in IRp1+1; : : : ; IRpn+1 respectively. For such a � the �rst claim implies that any
vector of the form �k(g�) is contained in the unit sphere, so the second claim follows from
the transitivity of the action of G on N .

Let F :M�N ! IRp be the evaluation map with components

Fk(f; �) := fk(�) = hfk; �k(�)ik:

In this context the incidence variety is V = F�1(0).
Since fk(�) = 0 if and only if fk ?k �k(�), for (f; �) 2 V we may construe �k(�) as

a tangent vector in TfkMk. Consider the e�ect on F of perturbing fk in the direction of
�k(�): since jj�k(�)jj = 1 the image of

((0; : : : ; �k(�); : : : ; 0); 0) 2 T(f;�)(M�N)) � �Y
k

TfkMk

�� T�N

under DF (f; �) is the kth unit basis vector of IRp. Thus the image of DF (f; �) is all of
IRp. Since (f; �) was an arbitrary point in V , every point in V is a regular point of F , i.e.,
0 is a regular value of F , so the regular value theorem (e.g., Guillemin and Pollack (1965))
implies:
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Lemma A.2: V is a C1 submanifold of M�N with dimV = dimM.

Let �1 and �2 be the projections from V toM and N respectively. Abusing notation,
we let V� denote both of the �bers

��12 (�) � V �M�N and f f 2 M : (f; �) 2 ��12 (�) g

over a point � 2 N , with the appropriate interpretation to be inferred from context. For
each k let V�;k be the set of fk 2 Mk with fk(�) = 0. As the intersection of Mk with
a hyperplane, this set is a subsphere of Mk of codimension one. Thus the topology of
V� = V�;1 � � � � � V�;p is independent of � .

Lemma A.3: �2 : V ! N is a C1 �bration.

As in the proof of Lemma 6.3, standard methods (e.g., Milnor and Stashe� (1974,
x3)) can be used to prove that each f (fk; �) 2 Hk�N : fk(�) = 0 g is a C1 vector bundle
over N , after which V is seen to be the product (in the sense of taking the cartesian
product of the �bres over each base point) of the associated sphere bundles.

A:1 An Integral Formula

By de�nition

�(N) =
1

vol(M)

Z
M

#(��11 (f)) dM: (13)

Sard's theorem implies that almost all points ofM are regular values of �1, so we need only
consider such points in computing the average number of roots. Consider a regular point
(f; �) of �1. Since T(f;�)V is mapped surjectively onto TfM by D�1(f; �), the restriction of
DF (f; �) to T�N � T(f;�)(M�N) must be nonsingular, else (f; �) would not be a regular
point of F . The implicit function theorem implies that there is a neighborhood U � M
of f for which there is a smooth J : U ! N with J(f) = � whose graph is contained in
V . The condition matrix at (f; �) is the matrix of DJ(f) which, by the implicit function
theorem, is

C(f; �) := �
�@F
@�

(f; �)
��1 @F

@f
(f; �) : TfM! T�N:

This linear transformation gives a description of the way polynomial systems f are asso-
ciated with their roots near (f; �). Let C�(f; �) : T�N ! TfM be the adjoint of C(f; �).

Proposition A.4: (Blum, et. al. (1998, p. 240)) For any open U � V ,Z
M

#(��11 (f) \ U) dM =

Z
N

Z
Vy\U

det
�
C(f; �)C�(f; �)

��1=2
dV�dN:

Lemma A.5: If (f; �) 2 V is a regular point of �1, then

det
�
C(f; �)C�(f; �)

��1=2
= j detDf(�)j:
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Proof: The adjoint @F
@f (f; �)

� of @F
@f (f; �) is the map v 7! (v1�1(�); : : : ; vp�p(�)). To see

this we compute that, for v 2 T0IRp and � 2 TfM = Tf1M1 � � � � � TfpMp,

D@F
@f

(f; �)�; v
E
=
D�h�1; �1(�)i1; : : : ; h�p; �p(�)ip�; vE

= h�1; v1�1(�)i1 + � � �+ h�p; vp�p(�)ip
=
D
�;
�
v1�1(�); : : : ; vp�p(�)

�E
:

Lemma A.1 implies that each �k(�) is a unit vector, so @F
@f

(f; �)� is an isometric
embedding of IRp in H. In general, if V and W are inner product spaces and i : V ! W
is linear, then (i�)� = i, and if i is an isometric embedding, then i� is the orthogonal
projection onto i(V ) followed by i�1, so that i� Æ i = IdV . Thus

@F
@f (f; �)

@F
@f (f; �)

� is the
identity on T0IR

p. Since the matrix of the adjoint of a linear transformation is the transpose
of the transformation's matrix, substituting the de�nition of the condition matrix leads to

det
�
C(f; �)C�(f; �)

��1=2
= det

�@F
@�

(f; �)�1
@F

@f
(f; �)

@F

@f
(f; �)�

�@F
@�

(f; �)�1
����1=2

= det
�@F
@�

(f; �)�1
�@F
@�

(f; �)�1
����1=2

=
��det @F

@�
(f; �)

�� = j detDf(�)j:

The last two results imply that for any open U � V we have

Z
M

#(��11 (f) \ U) dM =

Z
N

Z
V�\U

j detDf(�)j dV�dN: (14)

A:2 Invariance

Combining the actions of G on the various Hk, we obtain an action of G on H given
by

gf := (f1 Æ g�1; : : : ; fp Æ g�1):
We will exploit this symmetry to further simplify the right hand side of (14). Each Mk

is invariant under the action of G on Hk since the inner product of Hk is invariant. Thus
M is invariant under the action of G on H, and the restriction of this action to M is an
action of G on M. Of course N is invariant under the usual action of G on

Qn
i=1 IR

pi+1.
Combining these actions, we derive an action of G on M�N given by g(f; �) := (gf; g�).
For any g 2 G, f 2 M, and � 2 N we have gf(g�) = f Æ g�1(g�) = f(�), so:

Lemma A.6: The variety V is invariant under the action of G on M�N : gV = V for
all g 2 G. Consequently g(V� ) = Vg� for all � and g.

Proposition A.7: The quantity
R
V�
j detDf(�)j dV� is independent of � .
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Proof: Observe that

D(gf)(g�) = D(f Æ g�1)(g�) = Df(�) Æ g�1

(the second equality is from the chain rule) so that j detD(gf)(g�)j = j detDf(�)j: We
now have the calculation thatZ

Vg�

j detDf(g�)j dVg� =
Z
V�

j detD(gf)(g�)j dV� =
Z
V�

j detDf(�)j dV� :

Here the �rst equality is an application of the change of variables formula to the change of
variables g : V� ! Vg� , which is an isometry, so that the Jacobian is identically one. The
claim now follows from the fact that the action of G on N is transitive.

Applying this to (14), for any open Y � N and any � 2 N we haveZ
M

#(��11 (f) \ ��12 (Y )) dM = vol(Y ) �
Z
V�

j detDf(�)j dV� : (15)

Clearly (b) of Proposition 4.1 follows directly from this. The remaining task is to prove
(a) of that result.

A:3 The Final Calculations

It is now convenient to introduce the model of a random multihomogeneous system
in which the coeÆcient vectors of the various equations are statistically independent, with
the coeÆcient vector of the kth equation centrally normally distributed in Hk relative to
h�; �ik. Concretely this means that the coeÆcients ~fka are independent Gaussian random
variables with mean 0 and variance �(a)�1. Let �k be the probability measure on Hk that
is the distribution of ~fk, and let

� := �1 � � � � � �p

be the distribution of ~f := ( ~f1; : : : ; ~fp).

Fixing � 2 N , let ~f� = ( ~f�;1; : : : ; ~f�;p) be the orthogonal projection of ~f onto the

subspace of polynomial systems for which � is a root. For each k, k ~f�;kk and ~f�;k=k ~f�;kk
are statistically independent, and the normalized vector is uniformly distributed in V�;k,
so Z

H

j detD ~f� (�)j d� =

Z
H

� pY
k=1

k ~f�;kk
�
�
���detD� ~f�;1

k ~f�;1k
; : : : ;

~f�;p

k ~f�;pk
�
(�)
��� d�

=
� pY
k=1

E
�k ~f�;kk�� 1

vol(V� )

Z
V�

j detDf(�)j dV� :

Combining this with (13) and (15), we now obtain

�(N) =
vol(N) � vol(V� )

vol(M) �Qp
k=1E

�k ~f�;kk�
Z
H

j detD ~f� (�)j d�: (16)
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Lemma A.8: Let ~� = (~�1; : : : ; ~�m) where ~�1; : : : ; ~�m are independent identically dis-
tributed normal random variables with mean zero and unit variance. Then

E
�k~�k� =

p
2 � �(m+1

2 )

�(m2 )
: (17)

Proof: We compute that

E
�k~�k� = Z 1

�1

� � �
Z 1

�1

kxk � ( 1p
2�
e�x

2
1=2 dx1) � � � ( 1p

2�
e�x

2
m=2 dxm)

= (2�)�m=2

Z
IRm

kxk � e�kxk2=2 dx

= (2�)�m=2

Z 1

0

(re�r
2=2) � vol(Sm�1) � rm�1 dr:

The change of variables t := r2=2 givesZ 1

0

rme�r
2=2 dr =

Z 1

0

(2t)m=2e�t
dtp
2t

= 2
m�1
2

Z 1

0

t
m�1
2 e�t dt = 2

m�1
2 �

�m+ 1

2

�
;

so the asserted formula is now obtained from the formula (7).

The formula (7) for sphere volume implies

vol(Ni) = 2
�

pi+1

2

�(pi+12 )
; vol(Mk) = 2

�
dimHk

2

�(dimHk

2 )
; vol(V�;k) = 2

�
dimHk�1

2

�(dimHk�1
2 )

;

and Lemma 6.8 yields

E
�k ~f�;kk� =

p
2 � �(dimHk

2 )

�(dimHk�1
2 )

:

Since vol(M) = vol(M1) � � � � � vol(Mp), and similarly for N and V� , substituting into
(16) and simplifying yields

�(N) = 2n�p=2 �
� nY
i=1

p
�

�(pi+12 )

�
�
Z
H

j detD ~f� (�)j d�: (18)

In the further evaluation of this quantity we are free to let � be any convenient point
in N . We will compute at �0 = (e10; : : : ; en0) 2 N where, for 1 � i � n, ei0; ei1; : : : ; eipi
are the standard unit basis vectors of IRpi+1. Note that T�0N is spanned by the p vectors

bih := (0; : : : ; eih; : : : ; 0) (1 � i � n; 1 � h � pi);

For each k let
a0k = (a0k1; : : : ; a

0
kn) 2 Ak
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where, for each i, a0ki = (dki; 0; : : : ; 0) 2 Aki. Then �
a0k
0 = 1 and �a0 = 0 for all a 2 Aknfa0kg,

so the polynomials fk having �0 as a root are those with fka0
k
= 0, and the map f 7! f�0

is the projection taking each fka0
k
to zero. Elementary calculus yields

D ~f�0;k(�0)bih =

�
~fkaih

k
if dki > 0,

0 if dki = 0,

where, for each k and i such that dki > 0 and each h = 1; : : : ; pi, a
ih
k is a0k with a

0
ki replaced

by (dki � 1; 0; : : : ; 0; 1; 0; : : : ; 0) (the `1' is at the hth component). In this way we obtain
a description of D ~f�0(�0) as an p � p matrix with rows indexed by f1; : : : ; fp, columns
indexed by the pairs (i; h), and this (k; ih){entry. Evaluating (8) with a = aihk shows that

the variance of ~fkaih
k
is �(aihk )

�1 = dki, so the matrix of D ~f�0(�0) has the same distribution

as ~Z. In view of (18) this observation completes the proof of Proposition 4.1.
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