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Abstract

This paper outlines testing procedures for assessing the relative out-of-sample predictive accuracy of multiple con-
ditional distribution models. The tests that are discussed are based on either the comparison of entire conditional
distributions or the comparison of predictive confidence intervals. We also briefly survey existing related methods
in the area of predictive density evaluation, including methods based on the probability integral transform and the
Kullback-Leibler Information Criterion. The procedures proposed in this paper are similar in many ways to An-
drews’ (1997) conditional Kolmogorov test and to White’s (2000) reality check. In particular, a predictive density

test is outlined that involves comparing square (approximation) errors associated with models 2, 2 = 1, ..., 1, by
2
constructing weighted averages over U of F/ <<F,~(u]Zt, 02) — Fb(u’Zt7 00)) ) , where F()(’) and E(’) are

true and model-i distributions, 2 € U, and U is a possibly unbounded set on the real line. A conditional confidence
interval version of this test is also outlined, and appropriate bootstrap procedures for obtaining critical values when
predictions used in the formation of the test statistics are obtained via rolling and recursive estimation schemes
are developed. An empirical illustration comparing alternative predictive models for U.S. inflation is given for the

predictive confidence interval test.

JEL classification: C22, C51.
Keywords: block bootstrap, rolling and recursive estimation scheme, parameter estimation error,
predictive density.

* Valentina Corradi, Department of Economics, Queen Mary, University of London, Mile End Road, London E1
4NS, UK, v.corradi@Qqmul.ac.uk. Norman R. Swanson, Department of Economics, Rutgers University, 75 Hamilton
Street, New Brunswick, NJ 08901, USA, nswanson@econ.rutgers.edu. The authors owe great thanks to Clive W.J.
Granger, whose discussions on the matter provided much of the impetus for the research reported in this paper. The
authors also wish to thank participants of the conference in honor of Clive W.J. Granger on Predictive Methodology
and Application in Economics and Finance held at the University of California, San Diego in January 2004 for many
useful comments. Finally, a great many thanks are owed to the editor, Graham Elliott, and an anonymous referee for
many useful comments. Corradi gratefully acknowledges ESRC grant RES-000-23-0006, and Swanson acknowledges

financial support from a Rutgers University Research Council grant.



1 Introduction

In the management of financial risk in the insurance and banking industries, there is often a need for
examining confidence intervals or entire conditional distributions. One such case is when value at
risk measures are constructed in order to assess the amount of capital at risk from small probability
events, such as catastrophes (in insurance markets) or monetary shocks that have large impact on
interest rates (see Duffie and Pan (1997) for further discussion). These considerations in part
account for the development over the last few years of a new strand of literature addressing the
issue of predictive density evaluation. Some of the important recent papers in this area include
Diebold, Gunther and Tay (DGT: 1998), Christoffersen (1998), Bai (2003), Diebold, Hahn and
Tay (1999), Hong (2001) and Christoffersen, Hahn and Inoue (2001), and Giacomini (2002).! This
paper has two primary objectives. First, we build on the results of Corradi and Swanson (2004a,b)
by outlining a procedure for assessing the relative out-of-sample predictive accuracy of multiple
conditional distribution models that can be used with rolling and recursive estimation schemes.
Second, we provide a brief survey of related techniques, such as those based on the use of the
probability integral transform and the Kullback-Leibler Information Criterion (KLIC).

The literature on the evaluation of predictive densities is largely concerned with testing the
null of correct dynamic specification of an individual conditional distribution model. However,
in the literature on the evaluation of point forecast models it is acknowledged that all models
in a group that is being evaluated may be misspecified (see e.g. White (2000) and Corradi and
Swanson (2002)). In this paper, we draw on elements of these two literatures in order to provide
tests for choosing amongst a group of misspecified out-of-sample predictive density (or confidence
interval) models. Reiterating our above point, the focus of most of the papers cited above is that
the density associated with the true conditional distribution is clearly the best predictive density.
Therefore, evaluation of predictive densities is usually performed via tests for the correct (dynamic)
specification of the conditional distribution. Along these lines, by making use of the probability
integral transform, DGT suggest a simple and effective means by which predictive densities can

be evaluated. Using the DGT terminology, if pry1(ys41]€2%) is the “true” conditional distribution

!Ten years ago, when Clive Granger was asked by one of the authors of this paper in an interview what he thought
the most important future areas in time series analysis were, he replied that predictive density construction and

evaluation was one of the most critical areas which needed to be developed.



of yry1]Q%, then pry1(yer1/€%) is an identically and independently distributed uniform random
variable on [0, 1]; so that the difference between an empirical version of pyq(ye41/€2) constructed
using estimated parameters and the 45 degree line can be used as measure of goodness of fit.?

A feature common to the papers cited above is that the null hypothesis is that of (dynamic)
correct specification. Our approach differs from these as we do not assume that any of the com-
peting models (including the benchmark) are correctly specified.? Thus, we posit that all models
should be viewed as approximations of some true unknown underlying data generating process.
For this reason, it is our objective in this paper to provide a conditional Kolmogorov test, in the
spirit of Andrews (1997), that allows for the joint comparison of multiple misspecified conditional
distribution models, for the case of dependent observations. In particular, assume that the object
of interest is the conditional distribution of a scalar, y;y1, given a (possibly vector valued) condi-
tioning set, Z¢, where Z! contains lags of y;;1 and/or lags other variables. Now, given a group
of (possibly) misspecified conditional distributions, Fi(u|Z%,0]),..., Fy(u|Z",67), assume that the
objective is to compare these models in terms of their closeness to the true conditional distribution,
Fo(u|Zt,00) = Pr(y1 < u|Z%). If n > 2, we follow White (2000), in the sense that we choose a
particular conditional distribution model as the “benchmark” and test the null hypothesis that no
competing model can provide a more accurate approximation of the “true” conditional distribution,
against the alternative that at least one competitor outperforms the benchmark model. However,

unlike White, we evaluate predictive densities rather than point forecasts. Needless to say, pairwise

2Using the same approach, Bai (2003) proposes a Kolmogorov type test based on the comparison of
P41 (yt+1|Qt,9AT) with the CDF of a uniform on [0,1]. As a consequence of using estimated parameters, the lim-
iting distribution of his test reflects the contribution of parameter estimation error and is not nuisance parameter
free. To overcome this problem, Bai (2003) uses a novel device based on a martingalization argument to construct
a modified Kolmogorov test which has a nuisance parameter free limiting distribution. His test has power against
violations of uniformity but not against violations of independence. Hong (2001) proposes an interesting test, based
on the generalized spectrum, which has power against both uniformity and independence violations, for the case in
which the contribution of parameter estimation error vanishes asymptotically. For the case where the null is rejected,
Hong (2001) also proposes a test for uniformity that is based on a comparison between a kernel density estimator
and the uniform density, and that is robust to non independence (see also Hong and Li (2003)). Diebold, Hahn and
Tay (1999) propose a nonparametric correction for improving the density forecast when the uniform (but not the
independence) assumption is violated. Finally, Bontemps and Meddahi (2003, 2004) suggest a GMM type approach
for testing normality and various distributional assumptions, which is robust to parameter estimation error.

3Corradi and Swanson (2003) allow for dynamic misspecification under both hypotheses.



comparison of alternative models, in which no benchmark need be specified, follows from our results
as a special case. In our context, accuracy is measured using a distributional analog of mean square
error. More precisely, the squared (approximation) error associated with model i, i = 1,...,n, is
measured in terms of the average over U of F ((Fi(u]Zt, o) — Fo(u] 21, 00))2> , where u € U, and
U is a possibly unbounded set on the real line. Additionally, integration over u in the formation
of the actual test statistic is governed by ¢(u) > 0, where [, ¢(u) = 1. Thus, one can control not
only the range of u, but also the weights attached to different values of u, so that more weight can
be attached to important tail events, for example.*

We also consider tests based on an analogous conditional confidence interval version of the above
measure. Namely, E(((Fl(E]Zt, o)) — Fy(u) 21, 01)) — (Fo(m| 7%, 00) — Fo(ul 7%, 00)))2), where u and
u are “lower” and “upper” bounds on the confidence interval to be evaluated.®

Our test that is based on the conditional confidence interval loss measure as similar to the
White (2000) reality check in the sense that both tests involve fixing w € U, so that distribu-
tional asymptotics hinge upon showing pointwise convergence. However, our density accuracy test
requires convergence as a process, as it is based upon a functional over u € U, and hence stochas-
tic equicontinuity must be established, unlike in the case of the reality check. Additionally, the
bootstrap procedures outlined in this paper account for parameter estimation error rather than
assuming that it vanishes, asymptotically. Finally, it should be noted that standard bootstrap
statistics in contexts similar to that considered in this paper (such as in White (2000)) are usually
formed by subtracting the actual statistic from an analogous statistic formed using bootstrap data

and estimators. We show, however, that the use of recursive and rolling estimation schemes in-

“Berkowitz (2001) also considers evaluation of particular regions of a distribution. In particular, he proposes a
likelihood ratio test for the null of normality against autoregressive alternatives, when the region of interest is the
left tail of a density forecast. The advantage of his test is that is easy to implement and has a standard limiting
distribution, although it is designed to have power against fixed alternatives, and does not account for parameter

estimation error.

®An in-sample test based on the conditional confidence interval loss measure is outlined in Corradi and Swanson
(2004b). It should perhaps be stressed, though, that the out-of-sample version of the test discussed here is sub-
stantively different, due in large part to the rolling and recursive estimation schemes used in the construction of
predictions (see below for further discussion). On the other hand, the predictive density test discussed below which
is based on K ((FZ (u|Z ¢ 92 ) — Fo(u|Z ¢ 90)>2) has not been previously proposed in an in-sample context. However,
the in-sample version of the test is technically much less complicated than the out-of-sample version, and follows

directly from the results presented below.



stead requires bootstrap terms, say 1{y},; < u} — F;(u|Z** 0r ), t > R, to be recentered around

»Vit,r
the (full) sample mean, namely % Z]T;;H (1{yj+1 <u} — Fy(u|Zt, gz‘,m))27 where * denotes boot-
strapped data, 0 and 0 are discussed below, and i, 7,7 are indexes defined in Section 2. This is
necessary as the bootstrap statistic is constructed using the last P resampled observations (where
P is the number of predictions), which in turn have been resampled from the full sample.

One well known measure of distributional accuracy is the Kullback-Leibler Information Criterion
(KLIC). This measure is useful because the “most accurate” model can be shown to be that which
minimizes the KLIC (see Section 2 for a more precise discussion). Using the KLIC approach,
Giacomini (2002) suggests a weighted version of the Vuong (1989) likelihood ratio test for the case
of dependent observations, while Kitamura (2002) employs a KLIC based approach to select among
misspecified conditional models that satisfy given moment conditions.® Furthermore, the KLIC
approach has been recently employed for the evaluation of dynamic stochastic general equilibrium
models (see e.g. Schortheide (2000), Fernandez-Villaverde and Rubio-Ramirez (2004), and Chang,
Gomes and Schorfheide (2002)). For example, Fernandez-Villaverde and Rubio-Ramirez (2004)
show that the KLIC-best model is also the model with the highest posterior probability. In general,
there is no reason why our measure of accuracy is more “natural” than the KLIC, or vice-versa.
However, in the next section we outline how certain problems (such as comparing conditional
confidence intervals) that are difficult to address using the KLIC can be handled quite easily using
our measure of distributional accuracy.

The limiting distribution of the suggested predictive density evaluation statistic turns out to be a
functional of a Gaussian process with a covariance kernel reflecting both (dynamic) misspecification
and parameter estimation error (PEE). The limiting distribution is not nuisance parameter free
and critical values cannot be directly tabulated. Valid asymptotic critical values can be obtained
via an empirical version of the block bootstrap which properly takes into account PEE, however.
The PEE contribution is summarized by the limiting distribution of p1/2 ZtT;P} (@t — QT) , where
R denotes the length of the initial estimation period, P the number of predictions (as mentioned
above), ét is either a recursive m—estimator constructed using the first ¢ observations or a rolling
m—estimator constructed using observations from ¢ — R 4+ 1 to ¢, and 67 is its probability limit.

In this context, it follows intuitively that in the recursive case, earlier observations are used more

0f note is that White (1982) shows that quasi maximum likelihood estimators (QMLEs) minimize the KLIC,

under mild conditions.



frequently than temporally subsequent observations, while in the rolling case, observations in the
center of the sample are used more frequently than observations either at the beginning or at the
end of the sample. This introduces a location bias to the usual block bootstrap, as under standard
resampling with replacement schemes, any block from the original sample has the same probability
of being selected.” In order to circumvent this problem, we suggest a re-centering of the bootstrap
score, resulting in a new bootstrap estimator, say gt, which is no longer the direct analog of 0;, but
which is asymptotically unbiased, as required. It should be noted that the idea of re-centering is
not new in the bootstrap literature for the case of full sample estimation. In fact, re-centering is
necessary, even for first order validity, in the case of overidentified generalized method of moments
(GMM) estimators (see e.g. Hall and Horowitz (1996), Andrews (2002, 2004), and Inoue and
Shintani (2004)). This is due to the fact that, in the overidentified case, the bootstrap moment
conditions are not equal to zero, even if the population moment conditions are. However, in the
context of QMLE estimators (and m—estimators in general) using the full sample, re-centering is
needed only for higher order asymptotics, but not for first order validity, in the sense that the bias
term is of smaller order than 7 '/2 (see e.g. Andrews (2002)). In the case of rolling and recursive
QMLE estimators, though, the bias term is instead of order -1/ 2 and so it does contribute to the
limiting distribution. This points to a need for re-centering when using such estimation schemes,
as discussed in our section on the bootstrap. In addition to outlining appropriate re-centering
methods, we discuss the case in which all parameters are jointly estimated as well as the case where
the conditional mean parameters are first estimated via OLS or NLS, and the error variance is
subsequently estimated using the residuals from the conditional mean model.®

The rest of the paper is organized as follows. Section 2 outlines the setup, presents the predictive
density accuracy test, and states the asymptotic properties of the test statistic for both the case of

recursive and rolling parameter estimation schemes. Section 3 is broken into three subsections. The

“Note that in the fixed sampling scheme, we just need to take into account the contribution of VR <§R — OT),
whose limiting distribution is properly captured by “standard” block bootstrap techniques, using for example the
results of Goncalves and White (2003). This case has been considered by Corradi and Swanson (2004b), within the

context of in sample evaluation of conditional misspecified distribution models.

8From a theoretical perspective, it should be noted that all of our rolling estimation scheme results are new
to this paper. Additionally, our recursive estimation scheme results for the case where parameters are estimated

sequentially are new, while those for the joint estimation case summarize previous results reported in Corradi and

Swanson (2004a).



first subsection outlines bootstrap procedures for mimicking the limiting distribution of parameter
estimation error in rolling estimation schemes, while the second subsection summarizes results from
Corradi and Swanson (2004a) for recursive estimation schemes. Finally, the third subsection applies
the results of the previous two subsections in order to obtain asymptotically valid critical values
for the predictive density accuracy tests. In Section 4, an empirical example based on predicting
U.S. inflation is presented. Finally, concluding remarks are gathered in Section 6. All proofs are in
an appendix. Hereafter, P* denotes the probability law governing the resampled series, conditional
on the sample, £* and Var* the mean and variance operators associated with P*, o},(1) Pr—P
denotes a term converging to zero in P*—probability, conditional on the sample except a subset of
probability measure approaching zero, and finally O%(1) Pr —FP denotes a term which is bounded
in P*—probability, conditional on the sample except a subset of probability measure approaching

zZero.

2 Predictive Density Evaluation

Our objective is to “choose” a conditional distribution model that provides the most accurate out-
of-sample approximation of the true conditional distribution, given multiple predictive densities,
and allowing for misspecification under both the null and the alternative hypothesis. One strategy
that yields tests of the null of correct specification that are equally as useful as those discussed
above is the conditional Kolmogorov test approach of Andrews (1997), which is based on a direct
comparison of empirical joint distributions with the product of parametric conditional and non-
parametric marginal distributions. Corradi and Swanson (2004b) extend Andrews (1997) in order
to allow for the in-sample comparison of multiple misspecified models. As discussed above, one of
our main objectives in this paper is the extension of those results to out-of-sample predictive den-
sity evaluation in the context of different estimation schemes. From the perspective of prediction,
we assume that the objective is to form parametric conditional distributions for a scalar random
variable, y;y1, given Z!, and to select among these, where Z% = (g, ..., Yt—s;115 Xty oy Xt—s911),
t=s,..,7,. T +s, with s = max{si, so}, and T4+s=T, with T = (s + R) + P. Assume that

1 =1, ...,n different models are estimated. In order to examine rolling estimation schemes, define



the rolling m-estimator for the parameter vector associated with model 7 as:

N 1 ¢ .
O;.trol = arg max — E Infi(y;, 29 1,0;), R+s<t<T—1,i=1,.,n (1)
€04 .
j=t—R+1

and

02 = arg max F/(In f;(y;, z 0:)), (2)
‘e .

k2 £2

where f;(+|-,6;) is the conditional density associated with F;(-|-), ¢ = 1,...,n, so that 02 is the
probability limit of a quasi maximum likelihood estimator (QMLE). If model 7 is correctly specified,
then 02 = 0y. We compute a sequence a P estimators, first using observations from s + 1 to R + s,
then from to s +2 to R+ s+ 1, and so on until we use the last R observations, that is from P + s
to T'— 1. These estimators are then used to construct sequences of P 1-step ahead forecasts and
associated forecast errors, for example. In the context of such rolling estimators, it is necessary
to distinguish between the cases of P < R and P > R, as we shall see below. The rolling and
recursive estimation schemes defined above are commonly used in out of sample forecast evaluation
(see e.g. West (1996), West and McCracken (1998), Clark and McCracken (2001 and 2003)).
Notable exceptions are Giacomini and White (2003), who propose the use of a rolling scheme with
a fixed window, not increasing with the sample size, so that estimated parameters are treated as
mixing variables, and Pesaran and Timmerman (2004), who, in order to take into account possible
structure breaks, suggest an adaptive manner for choosing the window of observations.

We also consider recursive estimation schemes, for which we define the recursive m-estimator

for the parameter vector associated with model ¢ as:

t
@-,mec = argerineaé % Zlnfi@ﬁ 77710), R+s<t<T-1,i=1,..,n (3)
j=s

and 92 defined as in (2). Again following standard practice, this estimator is first computed using
observations from s + 1 to R + s observations, and then from s + 1 to £+ s + 1 observations, and
so on until the last estimator is constructed using 1" — 1 — s observations. As previously, these
estimators are then used to construct sequences of P 1-step ahead forecasts and associated forecast
€TTors.

Now, define the group of conditional distribution models from which we want to make a selec-

tion as Fy(u|Zt, QI), ey B (u] Z8,01), and define the true conditional distribution as Fy(u| 2%, 6p) =



Pr(y:11 < u|Z%). In the sequel, Fy(-|-,0]) is taken as the benchmark model, and the objective is to
test whether some competitor model can provide a more accurate approximation of Fy(-|-,6p) than
the benchmark.”

Following Corradi and Swanson (2004b), we begin by assuming that accuracy is measured
using a distributional analog of mean square error. More precisely, the squared (approxima-
tion) error associated with model i, i = 1,...,n, is measured in terms of the average over U of
E ((Fi(u]Zt, o) — Fo(u] 21, 00))2> , where u € U, and U is a possibly unbounded set on the real
line.

In particular, we say that model 1 is more accurate than model 2, if
2 2
/U b <<F1(U’Zt7 01) — Fo(u|Z", 90)) - <F2(U’Zt7 03) — Fo(ulZ", 90)) ) ¢(u)du <0,

where [; ¢(u)du =1 and ¢(u) > 0, for all w € U C R. For any given evaluation point, this measure
defines a norm and it implies a standard goodness of fit measure. Notice that this measure is intu-
itively appealing as it is related closely to standard mean square error loss measures. Additionally,
the measure has the added appeal that the weighting function, ¢(u), can be used to essentially
“focus attention” on certain regions of U that are of interest (i.e. larger weights can be placed on
certain regions). Finally, U can be defined so that certain ranges of the data can be examined.
This sort of flexibility should be useful in many financial applications, for example.

As mentioned above, another measure of distributional accuracy available in the literature is the
KLIC (see e.g. White (1982), Vuong (1989), Giacomini (2002), and Kitamura (2004)), according
to which we should choose Model 1 over Model 2 if

B(log f1(ye41]2",6}) — log faye 1] 2%, 63)) > 0.

The KLIC is a sensible measure of accuracy, as it chooses the model which on average gives
higher probability to events which have actually occurred. Also, it leads to simple likelihood ratio
type tests. Interestingly, Fernandez-Villaverde and Rubio-Ramirez (2004) have shown that the
best model under the KLIC is also the model with the highest posterior probability. Although
our approach and the KLIC approach should perhaps be viewed as alternatives, and as such one

might want to implement both tests in some contexts, it should be noted that if we are interested

°In our framework, the competing models are known. Thus, our approach is different than the probability integral

transform approach, where only the null model is explicitly stated.



in measuring accuracy over a specific region, or in measuring accuracy for a given conditional
confidence interval, say, this cannot be done in a straightforward manner using the KLIC, while it
can easily be done using our measure. For example, if we want to evaluate the accuracy of different
models for approximating the probability that the rate of inflation tomorrow, given the rate of
inflation today, will be between 0.5% and 1.5%, say, we can do so quite easily using the square
error criterion, but not using the KLIC.

The hypotheses of interest are:

Ho: max [ E{(F7,0) - Fo(u| 7", 00))" - Fyo(u] 2, 00) = Fo(u| 2, 0o) *\ é(u)du < 0
k—2,...,n/U << ) ( ) ) (4)

versus

Hy kr%axn/UE ((Fl(u’ZtﬁD - Fo(u’Ztﬁg))z B <Fk<u’Zt,0£) - FO(u’Zt’QO))2> d(u)du > 0(,5)

where ¢(u) > 0 and [;¢(u) = 1, v € U C R, U possibly unbounded. Note that for a given
u, we compare conditional distributions in terms of their (mean square) distance from the true

distribution. We then average over U.10 The statistic is:

Zpﬂ—— max /ZPUTl E)o(uw)du, 7=1,2 (6)

where for 7 = 1 (rolling estimation scheme)7

~ 2 ~ 2
Zpui(l,k) Z <<1{yt+1 <u}— F1(u!Zt,91,t,mz)) - <1{yt+1 <u}— Fk(U’Ztaek,t,rol)) )
7)
and for 7 = 2 (recursive estimation scheme),

. P . 2
Zpu2(1,k) Z <<1{yt+1 <up— Fl(u!Zt,Ql,t,rec)) - <1{yt+1 <uf— Fk(“’Ztagk,t,rec)) ? ;
8)

197f interest focuses on testing the null of equal accuracy of only two predictive conditional distribution models,
say F1 and Fj, we can use an extension of the Diebold-Mariano (1995) test where conditional distributions instead

of conditional means are evaluated. In this case, we can restate the above hypotheses as:
Ho : / E ((F1 (u|Z",00) - Fo(u|Zt790)>2 — (Fr(ulz',6)) - Fo(u|Zt790)>2) d(w)du =0
U

versus

Ha: / E ((F1 (u|Z",60) — Fo(u] 2", 90))2 — (Fr(ulz*,0)) - Fo(u|Zt790)>2) p(u)du # 0.



where QAZ-’WO[ and @-,mec are defined as in (1) and in (3).
Now, note the hypotheses above can be restated in the following convenient form:
s e () = () d(u)du < 0
k=2,...m JUu

versus

Hy : kgaxn/U (M%(u) - u%(u)) P(u)du > 0,

where p2(u) = E <<1{yt+1 <u}— Fi(u]Zt,Qj))Q) , 2 = 1,...,n. The intuition underlying this re-
statement of hypotheses is very simple. First, note that for any given u, E(1{y;1 < u}|Z%) =
Pr(yi1 < ulZt) = Fy(u|Zt, 00). Thus, 1{yr1 < u} — Fi(u|ZY, 02) can be interpreted as an “error”
term associated with computation of the conditional expectation under F;. Now, write the statistic
in equation (7) as:

T—1

> <<<1{yt+1 <u} — Fy(u| 2, gl,t,rol))Q - M%(W)

t=R

w‘“

(1o < ) = ALl 2 D)) = @) ) + 72 G0 = ). ©)

S

In the appendix, it is shown that the first term in equation (9) weakly converges as a process on

U. Also,
pi(u) = E ((1{yt+1 < u} — Fy(u|Z", ej)f)
= b (((1{yt+1 <u}— Fo(u]Zt,Qo)) — (Fi(uyzt,ej) — Fo(u]Zt700)))2>
= B(({yenr <u} - B(ulZ',00)%) + E <<E(U’Zt7 07) — Fp(u| 7", 00))2> 7

given that the expectation of the cross product is zero (which follows because 1{ysy1 < u} —
Fo(u|Zt, 0p) is uncorrelated with any measurable function of Z*). Therefore,
() = o) = B ((Fil2,0]) = Fo(ul 2. 00)) ) = B ((Fiwl2',0]) = Fotul2'.00)")
(10)
In the sequel, we require the following assumptions.
Assumption Al: (y, X;), with y; scalar and X; an RS—valued (0 < ¢ < 0o) vector, is a strictly
stationary and absolutely regular —mixing process with size —4(4 4+ ) /v, ¥ > 0.
Assumption A2: (i) 02 is uniquely identified (i.e. E(In f;(ys, 271, 6;)) < E(n fi(ye, 2471, 02)) for

any 0; # 02 ); (i) In f; is twice continuously differentiable on the interior of ©;, for i = 1,...,n, and

10



for ©; a compact subset of Re(®); (iii) the elements of Vj, In f; and Vgi In f; are p—dominated on
©;, with p > 2(2 + ), where v is the same positive constant as defined in Assumption Al; and
(i) & (—Vgi In fZ(QZ)) is positive definite uniformly on ©;.*1
Assumption A3: T'= R+ P, and as T'— oo, P/R — 7, with 0 < 7 < o0.
Assumption A4: (i) F;(u|Zt, 0;) is continuously differentiable on the interior of ©; and V, F;(u| Z?, 02)
is 2r-dominated on ©;, uniformly in u, r > 2,4 = 1,...,n;'? and (ii) let vg(u) =plimy
Var (3 = (((torn < 0 = Bi@iz40))” - @) = (o < ) = B@lz,0)” =) ) ).
k =2,...,n, define analogous covariance terms, vy y(u), k, k' = 2,...,n, and assume that [vy 5 (u)]
is positive semi-definite, uniformly in .

Assumptions Al and A2 are standard memory, moment, smoothness and identifiability condi-
tions. Al requires (y:, X:) to be strictly stationary and absolutely regular. The memory condition
is stronger than a—mixing, but weaker than (uniform) ¢—mixing. Assumption A3 requires that
R and P grow at the same rate. Of course, if R grows faster than P, then there is no need to
capture the contribution of parameter estimation error when constructing bootstrap critical values
for the tests discussed in the sequel. Assumption A4(i) states standard smoothness and domination
conditions imposed on the conditional distributions of the models, and assumption A4(ii) states
that at least one of the competing models, F5(|-, 01)7 wory Fn(-]-,07), has to be nonnested with (and
non nesting) the benchmark.
Proposition 1a: Let Assumptions Al-A4 hold. Then,

max /U (Zp,uﬁ(l7 k) — VP (u%(u) - u%(u))) o (u)du 2, kgjdx,n/(] Zp g () oy (u)du,

k=2,...,n

where Zpy r(u) is a zero mean Gaussian process with covariance Ck’k/(u,u’). Here, 7 = 1 corre-
sponds to the rolling estimation scheme, 7 = 2 corresponds to the recursive estimation scheme, and
Cy x(u, ') equals:

o0

B Y (o= ah = Fi@z0)) = @) ( ({2 ) = £ 1279 0D)” = i)

PR—

"We say that Vo, In fi(ys, Z°71,0;) is 2r—dominated on ©; if its v — th element, v = 1,..., 0(4), is such that
| Vo, In fi(ye, 27, 6:)
White (1988, pp. 33).
"*We require that for v = 1,...,0(3), (£ (VoF;(ulZ*,0])) < Di(u), with sup, sup,c 5 B(Di(u)*") < oo.

Y < Dy, and E(|Dt|2r) < 00. For more details on domination conditions, see Gallant and
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j—— 00

" ( > (1= w = Fdz2 ) = it@) (o= o) = P1270)) - uw))

j——00

—2F ( i <<1{y5+1§ uf — Fl(uyZSﬁD)? B M%(W) <<1{ys+j+1§ u'y — Fk<u/’Z5+j70£))2 B M%(“/)>)

PR—

+4Hjm9;(u)’A(91)E ( S Vo In fily,4]2°,61)V,, 1nf1(ys+j+1!ZS+j79D/) A(Ql)mgj(u’)

+AILmy () A0) ( > Vo Infuly, 112, 6,)V, lnfk<ys+j+1rzs+%02>’) A(G g (')

j=—o0

o0

ALy (u) A0 B ( > Vo Infily, 4| 2°,00)V,, lnfk<ys+j+1rzs+%02>’) AG)my ()

j=—o0

o0

Z Vo, 1nf1(y5+1]Z5,0D <<1{ys+g+1< u} = By (u] 271, QT — i (u

)
)

FACTLmy (u) A(G]) ( > Vo 1 il 2500 (100 0} = el 27

PR—

—4CTLmy (w) A(0]) E (
1

—ACTm, (u) A(G]) E ( 50 Vo iyl 2300 (o< 0} = Fy(al271.6))) ))
j=—00

FACTmy (u) A} B ( 5 Vo ln 0| 200 (1 0% 0 = ol 270D = i ))
J

j——00

with M3 (w) =FE (V@iFi(u]Zt, o) (1{yt+1 <u} — F(u|Z, 02))) and

A(QZ) = AZT = (E (—Vgilnfi(ytH]Zt?QZ)))il. For 7 = 1 : when P < R, II; = (ﬂ—L;),
CIl; = 3, and when P > R, II; = (1 — #) and C1l} = (1 — #) Finally, for 7 = 2, 1l =
2(1 — 7 'In(1 4+ 7)) and CIl = 0.511,.

From this proposition, we see that when all competing models provide an approximation to the
true conditional distribution that is as (mean square) accurate as that provided by the bench-
mark (i.e. when [; (u3(u) — pi(u)) ¢(u)du = 0,Vk), then the limiting distribution is a zero
mean Gaussian process with a covariance kernel which is not nuisance parameters free. Ad-

ditionally, when all competitor models are worse than the benchmark, the statistic diverges to
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minus infinity at rate VP. Finally, when only some competitor models are worse than the bench-
mark, the limiting distribution provides a conservative test, as Zp will always be smaller than
maxg—o . n o (Zp,u(l7 k) — /P (u3(u) — 12 (u))) ¢(u)du, asymptotically. Of course, when H 4 holds,
the statistic diverges to plus infinity at rate VP.

Rather than using statistics such as ours, which are based on taking the maximum of a statis-
tic formed by pairwise comparison of multiple models, as a way to avoid sequential testing bias
associated with comparison of multiple models, one might instead rely on bounds, such as (mod-
ified) Bonferroni bounds. However, a well known drawback of such approaches is that they are
conservative, particularly when we compare a large number of models. Recently, a new approach,
based on the false discovery rate (FDR) has been suggested by Benjamini and Hochberg (1995),
for the case of independent statistics. Their approach has been extended to the case of dependent
statistics by Benjamini and Yekutieli (2001).'* The FDR approach allows one to select among
alternative groups of models, in the sense that one can assess which group(s) contribute to the re-
jection of the null. The FDR approach has the objective of controlling the expected number of false
rejections, and in practice one computes p-values associated with m hypotheses, and orders these
p-values in increasing fashion, say P < ... < F; < .... < Pn. Then, all hypotheses characterized by
Py < (1—(2—1)/m)a are rejected, where a is a given significance level. Such an approach, though
less conservative than Hochberg’s (1988) approach, is still conservative as it provides bounds on
p-values. More recently, Storey (2003) introduces the g—value of a test statistic, which is defined
as the minimum possible false discovery rate for the null is rejected. McCracken and Sapp (2004)
implement the g—value approach for the comparison of multiple exchange rate models. Overall, we
think that a sound practical strategy could be to first implement our test. The test can then be
complemented by using a multiple comparison approach, yielding a better overall understanding
concerning which model(s) contribute to the rejection of the null, if it is indeed rejected. If the null
is not rejected, then one simply chooses the benchmark model. Nevertheless, even in this case, it
may not hurt to see whether some of the individual hypotheses in their joint null hypothesis are
rejected via a multiple test comparison approach. Of course, another way to obtain a arguably very

“crude” ranking of models is to simply order the models according to their individual values (e.g.

13Benjamini and Yekutieli (2001) show that the Benjamini and Hochberg (1995) FDR. is valid when the statis-
tics have positive regression dependency. This condition allows for multivariate test statistics with a non diagonal

correlation matrix.

13



B ~ 2
according to # ZZ;P} (1{yt+1 <u}— Fi(u]Zt, Qi,t,rol)) ).
As mentioned above, one situation in which our approach offers an interesting alternative to the
KLIC approach is when interests lies in the comparison of conditional confidence interval models.

Following Corradi and Swanson (2004b), define the hypotheses of interest as:

H: max E (((Fl(mzt,ei) ~ P 2,0))) — (Fo(@| 2, 60) — Fo(ul 2", 00)))”

k=2,...,n

— (P2, 0]) - Peul2,6])) — (Fol@| 2", 00) — Fo(ul 7", 00)))2> <.

versus

k=2,....,n

oy max E(((Fl(TL]Zt,QD ~ i) 2.6))) — (Fo(am 2. 60) — Fo(ul 2", 00)))’

~ ((Futalz',6)) ~ w2, 0])) - (Fa(@l2",00) — Folwl2',0)))" ) > 0.

and consider the following statistic

Vpr= max Vpuzr(1,k) (12)
k=2,...n
where
= R R
Vewasr (1, k) = 7P <<1{u <Y1 Suf — (Fl(l_t!Zt7 O1.+) — Fi(u|Z, 01,1&,7)))
t—R

_ —iot 3 t 7 2

— (Hu <yen <0 — (F(@ 2", Or) — Fulul 2", 010.0)) ) ) (13)

where s = max{s1,s2}, 7 = 1,2, Op 17 = O tror for 7 =1, and Oy + = Oy ¢ rec for 7 = 2. Further,

note that the conditional interval version of u? — u% above can be analogously written as:'*

it -t = B (((A@Z0) - Az, 0) - (R(@ 2, 00) - Rz 0)))°)
5 (@2 0)) - Rz’ 0) - (Rlz'.00) - FowlZ,00)))) . (19

Consider the rolling estimation case. We then have the following result.

Proposition 1b: Let Assumptions Al-A4 hold. Then for 7 =1,

max (Vp&,aﬁ(l, k) —\P (,LL% - ,u%)) 4,  Tmax Vp g (u, ),

k=2,....,n =2,...,n

¥Note that p?, pu2, defined below, depend on the specific interval, i.e. depend on wu,u. However, for notational

brevity we omit the dependence on u,u.
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where Vpy (u,u) is a zero mean normal random variable with covariance cxr, = vgg + Prk + Dk,
where vy, denotes the component of the long-run variance matrix we would have in absence of
parameter estimation error, pg; denotes the contribution of parameter estimation error and and
cprr, denotes the covariance across the two components. In particular:

Ukk = Ei (((mSysHsa}—(Flmrzwb—Fﬂu!zwb))?—ui)

j=—o0

<(1{u < Yoqi45 S Uf — (Fl(ﬁ’Zva@D - Fl(ﬂ’ZSJrjv@D))Q - M%)) (15)

+ i <<(1{ﬂ < Ysy1 <TUF — (Fk(TLIZS,HIZ) — Fk(u]ZS,Qg)))Q —M%>

j=—00

(1< vrns <7 - (R@iz.6) - Fialz.6)) -4t ) (16)

—2k i <<(1{ﬂ < Yst1 SUp — (Fl(TLIZﬂQD — Fy(u] 2%, 0{)))2 — M%)

j=—o00

((Hu < Ysp1j S U — (Fk(ﬂ!Z”j, 9;1) — Fy(u) 72t 92)))2 - M%)) (17)

Prr = 4mgj/A(041F)E ( Z v91 In f1<y5+1’Z57 QJIF)v@l In f1<y5+1+j’ZS+j7 04{)/) A(Q;)mgj

j=oo (18)
+4miy A(QZ)E (ji@o Vo, In fi(y,|2°,0,)Vy I iy, ;1 27, 9;)’) A(QZ)mgi (19)
—8mgIA(91)E (jioo Vo, In f1(y,|2°,61)V, In fi(y,, |1 2°F, 9;)’) A(QZ)mei (20)
CPre = _4méjA(0DE (jioo Vi, In fl(yS!ZS,QD

. . 2
(M=o <7 = (A@Z.0) - Fwlze9,0D))" - 2) )
+8m, A E ( > VoI fily 2", 0))
j=—00

(< gy <) = (B(@2¥,0) - Pl 2, 0)) - 2 )
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') . . 2
—4mg;A<0£>E S Vo, n fuly,| 2%, 6}) ((1@ < yory <y — (Be(@ 2, 0) - il 2°1,0)))) - uz)

j=—00
with myy' = E (Vo, (B@ 2", 0) - Fi@|2%,0])) (Hu < ye <@} - (B(@2,0) - Fi(@|2,0)))))
-1
and A(QZ) = (E (— In V3 fi(ye 27, 02))) . An analogous result holds for the case where 7 = 2,
and is omitted for the sake of brevity.

In the next section, we discuss the construction of bootstrap critical values for the above tests.

3 Bootstrap Critical Values

We begin by outlining bootstrap methods for mimicking the limiting distribution of —= \/— Zt Rts (gi,t,rol — QT)
and \/— Zt Ris (AZ trec — QT) where Qi,t,ml and Qi,t,rec are the rolling and recursive estimators as
defined in (1) and (3). For fixed sampling schemes, the properties of the block bootstrap for
m—estimators and/or GMM estimators with dependent observations have been studied by several
authors. For example, Hall and Horowitz (1996) and Andrews (2002a,b) show that the block boot-
strap provides improved critical values, in the sense of asymptotic refinements, for “studentized”
GMM estimators and for tests of overidentifying restrictions, in the case where the covariance across
moment conditions is zero after a given number of lags. In addition, Inoue and Shintani (2003)
show that the block bootstrap provides asymptotic refinements for linear overidentified GMM es-
timators for general mixing processes. A recent contribution which is useful in our context is
that of Goncalves and White (2004), who show that for m—estimators, the limiting distribution of
\/T(ng - @T) provides a valid first order approximation to that of \/T(@T — 02 ) for heterogeneous
and near epoch dependent series, where @"T is a resampled estimator, and 1" denotes the length of
the entire sample. Based on the results mentioned above, one might expect # (0;‘ r — QAM,T)
to have the same limiting distribution as # Z:]% (@,w — 02 ) , 7 = 1,2 for the rolling and re-
cursive estimation cases, respectively. However, in the rolling case, observations in the middle of
the sample are used more frequently than observation at either the beginning or the end of the
sample, while in the recursive case, earlier observations are used more frequently than temporally
subsequent observations. This introduces a location bias to the usual block bootstrap, as under
standard resampling with replacement, any block from the original sample has the same probability
of being selected. Also, the bias term varies across samples and can be either positive or negative,

depending on the specific sample. In the next three subsections, we address these issues by first
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developing bootstrap estimators that capture parameter estimation error, and thereafter outlining

appropriate bootstrap test statistics for use in critical values construction.

3.1 The Block Bootstrap for Parameter Estimation Error: Rolling Estimation

Scheme

Consider the overlapping block resampling scheme of Kiinsch (1989), which can be applied in our
context as follows:!® At each replication, draw b blocks (with replacement) of length ! from the
sample W; = (yq, thl), where bl =T — s. Thus, the each block is equal to W1, ..., W;,, for some
i =s—1,...,T—1+1, with probability 1/(T'—s—I+41). More formally, let I}, k = 1, ..., b be iid discrete
uniform random variables on [s—1, s, ..., T—1+1]. Then, the resampled series, W}* = (y;, Z*'" 1), is

such that Wy, Wg, . WS WS o We = W, Wiy, o, Why, Wy oo, Wi 4y, and so a resam-

pled series consists of b blocks that are discrete i¢d uniform random variables, conditional on the

sample.

Suppose we define the bootstrap estimator, 5:‘ +ro1 0 be the direct analog of QAZ-,t,ml. Namely,

* 1 ! * *,7— .
Gotirot = ME e R jtZI:%Jrllnfi(yj? Z2710,), Rys<t<T—1,i=1,..,n (21)

By the first order conditions, 1_%2 Z?ZFRJA Vg In fl(y;‘7 AC RS 5;-"“,0[) = 0, and via a mean value

expansion of 1_%2 Zz‘:t— ri1 Voln fl(y;‘7 AC RS 0 ¢ o) around 6; ¢ .o, after a few simple manipulations,

15The main difference between the block bootstrap and the stationary bootstrap of Politis and Romano (PR:1994)
is that the former uses a deterministic block length, which may be either overlapping as in Kiinsch (1989) or non-
overlapping as in Carlstein (1986), while the latter resamples using blocks of random length. One important feature
of the PR bootstrap is that the resampled series, conditional on the sample, is stationary, while a series resampled
from the (overlapping or non overlapping) block bootstrap is nonstationary, even if the original sample is strictly
stationary. However, Lahiri (1999) shows that all block boostrap methods, regardless of whether the block length is
deterministic or random, have a first order bias of the same magnitude, but the bootstrap with deterministic block
length has a smaller first order variance. In addition, the overlapping block boostrap is more efficient than the non

overlapping block bootstrap.
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for the case of R > P, we have that

~ —
<0i,t,7’ol - Qi,t,rol)

1 1 1 t -1 1 t N
- —P Z E Z vg In fl<y;<7 Z*’J 17 tarol) E Z 1nfz wa*’] Qi,t,rol)
— R+

t=R j=t—R+1
1 Ty t o
— AZT—P > - > Veln fi(yl, 21, 05 000) | +o0p+(1) Pr—P
t=R j=t—R+1
1 P+s ] N R+s ] N
= AI? Z (j —s)Ve 1nfi<y;‘<7Z*’J7170i,t,rol) +P Z Vo 1nfi(y;7Z*’]7179i,t,mz)
PR P j=P+s+1
T-1
" (P+5— (= R)Voln fily}, 27, e)) top(1) PrP, (22)
j=R+s+1

where AZT = A(@Z) is as defined in the statement of Proposition la, and @:’t’ml € (@‘,t,mu gzt,mz) .
Analogously,

LP (é\i,t,rol - 02)

1 P+s ) . R+s .
= AI\FTR ( ST G -)Veln fiy;, 270D+ P Y Veln fiyy, 2771,0))
J

j=s+1 j=P+4s+1
T—1 ]
+ > (P+s—(j—R)Veln fi(y;, 22 1,6]) | +o0p-(1) Pr—P. (23)
j=R+s+1

Now, given (2), &/ (Vg In fi(y;, 2771, 0:)) = 0 for all j, and # Z;I,% (gi,t,rol — 02) has a zero mean
normal limiting distribution (see Theorem 4.1 in West (1996)). On the other hand, as any block of

observations has the same chance of being drawn,

. o = o ,
E (Ve In fi(y;, 277 179i,t,mz)) =7 > Voln fi(y;, 271, Oiror) + O <?> Pr—P,
et (24)

where the O (%) term arises because the first and last [ observations have a lesser chance of

being drawn (see e.g. Fitzenberger (1997)).16 Now, TES Z;:SI Vo ln f;(y;, 271 Am’ml) % 0,

and is instead of order Op (T*I/Q) Thus, \/P Zt R T p Z]T;SI Voln fi(y;, Zi=1 Qz‘,t,ml) = Op(1),

181n fact, the first and last observation in the sample can appear only at the beginning and end of the block, for

example.
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and does not vanish in probability. This clearly contrasts with the full sample case, in which

ﬁ Z;:Sl Ve ln fi(y;, 2771 QZ 1) = 0, because of the first order conditions.!” Thus, \/— Z ( T ol gi’t’ml)
cannot have a zero mean normal limiting distribution, but is instead characterized by a location

bias that can be either positive or negative depending on the sample.

Given (24), 7«1,5 Z;:SI Vofilys, 2771, é\i,t,rol)-

Hence, define a new bootstrap estimator, 0 as:

2,t,rol?

t

n* 1 * 4 n
O trol = arg max — Z In fi(y;, 2 I10;) — 9/ Z Voln fi(y;, 271, 0:48) |
€O TR Tt (25)

where R+ s <t <T —1and¢=1,...,n Given first order conditions,

RZJ tRi1 (V@fi(y;f 79 1,0;’}’7,0[) (TZ g Vg Filyyr, 29 i1 Qi,t,rol))) = 0, and via a mean
value expansion of 1_%2 ZJ —t Ri1 V@fz(yj A 0:‘t o) around Qz‘,t,rou after a few simple manipula-

tions, we have that:

;] T <~ R )
— Z * — 0.
i,t,rol t,t,rol

VP &

1 L1 & ~
= B=% 7 > | Vefilys, 200! 0i.1.1) — Z Voli(yy, 27, 0s1.r)

P t—R j=t—R+1 ] '—s

+op«(1) Pr—P.

Given (24), it is immediate to see that the bias associated with \/P (0:,t,7’ol QAZ-,W,O[) is of

order O (lel/ 2) , conditional on the sample, and so it is negligible for first order asymptotics, as
1 =o(TV?).

the following result then holds.

Proposition 2: Let Assumptions A1-A3 hold. Also, assume that as 1T’ — oo, | — o0, and that

# — 0. Then, as T, P and R — o0,
P(W: sup P7*“( Z(z,t,rol ztrol)gv>_ ( Z(ztrol )§U> >5>_>07
veRe(®)

where P} denotes the probability law of the resampled series, conditional on the sample.
Broadly speaking, Proposition 2 states \/— Zt R ( i trol Qi’t’ml) has the same limiting distri-

bution as \/— Zt Ris (AZ trol — 02 ) , conditional on the sample, and for all samples except a set

"Note that if P/R — 0 and so P/T — 0, then # -1 _1 Z] . Vg In f; (y;, Z3- i7t7rol) = op(1), and thus

t=R T —s

the location bias is negligible. However, this possibility is ruled out by Assumption A3.
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with probability measure approaching zero. Note that given A3, both R and P grow with the
sample size at the same rate as T.1°
Thus far, we have considered the case in which all parameters are jointly estimated. However, it
is quite customary to first estimate conditional mean parameters via OLS or NLS and subsequently
estimate the error variance using residuals. Along these lines, let 0; = (3;, 0%), where §; is grei)—1
valued and o2 is a scalar. Additionally, let In f;(y;, 2971, 3;) = —(y; — g:(Z771, 3;))?,
1 t

Bitirol = arg min — ;+l<yj — g2V 3=, R4+s<t<T-1,i=1,..,n

where g is twice differentiable and 2r—dominated on B, and & O'Z trol = & ZE‘:%RH (yj—gi(ijl, @,t,ml))Q.
The bootstrap estimator is instead

. o 1 =t L~
ﬁztrol arg min E Z (yj _gi<Z 7 17ﬁi))2 - Z ej’,t,rolvﬁgi<ZJ 1761’,1&,7’0[)

pieBi bt TR j'=s+1
where éj’,t,rol = (yj’ - gi<Zj 717 ﬁi,t,rol)) and
~2 1 t i1 5 15 9
O-z,tfrol it rol TR Zj*t R+1 ((y; - g'<Z*’J 7ﬁi,t,7’05)) T Z 5+1<yg’ - gZ<ZJ 7/6i7t7T0l)) ) :
Note that o O'Z t o1 18 computed using residuals evaluated at ﬁl t,rol and not at ﬁ

2,t,rol”

Proposition 3: Let A1-A3 hold. Also, assume that as 1" — oo, [ — 00, and that — 0. Then,

T1/4

T 2k
P ( 1 Z (( z,t,rol ) ( ﬁz,t,rol )) < U)
Pt:R z,t,rol z,t,rol
L [ Bitro 3
_PT 2,,70 o 5 S v S e
( P Z]:"?, (( Zyt7TOl 0-22T

3.2 The Block Bootstrap for Parameter Estimation Error: Recursive Estima-

as T, P and R — o0,

tion Scheme

Let W} = (yf, 2" 1) be defined as in the previous subsection. Also, define a new recursive
bootstrap m-estimator as,
t

~ 1 R
Qf,t,rec = arg rneaé‘: ; Z In fz(y] 3 Z*’J ! 0 - 0/ Z v@ In fz Yy 7 17 Qi,t,rec) 3
'L % j:S /75+1

"®If P/R — 0, then both 5 Y77 (@Mol - ej) p(1) and = 377 ( ol — @,mol) — op+(1) Pr—P.
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where R+ s <t <T —1, and ¢ = 1,...,n. The following result then holds.

Proposition 4: Let Assumptions A1-A3 hold. Also, assume that as 1T’ — oo, | — oo, and that
— 0. Then, as T", P and R — o0,

(3 (=) <0) = (5 3 (=) <o) ) 0

where P} denotes the probability law of the resampled series, conditional on the (entire) sample.

1
T1/4

Plw: sup
veRe(®)

52 2 F
Now let ﬁz t.recs ﬁl tirees Oitrecs and O O'Z t rec De defined as 3; ¢ -0, 5 and &2

o~
itrolr Oitrol except

ztrol7

that a recursive rather than a rolling estimation scheme is used. The following result then holds.

Proposition 5: Let A1-A3 hold. Also, assume that as 1" — oo, [ — 00, and that — 0. Then,

7"1/4

1 & G
P7t (_ Z (( i2,t,7’ec ) ( ﬁz,t,rec )) < U)
Pt:R O-i,;t,rec z,t,rec a
1 & G f
—Pr|—= Z @Q’t’mc — %T <vl||>e
Pt:R Oitrec g,

Given the results of the above subsections, it is now straightforward to write down appropriate

as T, P and R — o0,

bootstrap test statistics for use in the construction of valid critical values for our tests. This is

done in the next subsection.

3.3 Bootstrap Critical Values for the Predictive Density Accuracy and Predic-

tive Confidence Interval Tests

We can now construct appropriate bootstrap statistics, from whence bootstrap critical values can
be constructed. Using the bootstrap sampling procedures defined in the previous section, one first

constructs appropriate bootstrap samples. Thereafter, form bootstrap statistics as follows,

Zhe = x| Zp, (L R)O()du
’ k=2,...n JU T

where for 7 = 1 (rolling estimation scheme) and for 7 = 2 (recursive estimation scheme):

~ 2 ~ 2
Zpur (LK) = Z (((1{y:+1 <) = B2 0,)) = (1ot £ 0 - B2 3;,))

-1

ﬂH

- 5
(]

+

N 2 . 2
<<1{yj+1 <wu}— Fi(u| 2%, 01,1&,7)) — (1{yj+1 <u} — Fy(u| 27, Qk,t,r)) )
1

J=s
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Note that each bootstrap term, say 1{y;, | < u} — F;(u|Z**,0%, ), t > R, is recentered around the

2,t,T

P 2
(full) sample mean % ZJT;SIH (1{yj+1 <u} — Fi(ul 2", Qi’tﬁ)) . This is necessary as the bootstrap

statistic is constructed using the last P resampled observations, which in turn have been resampled
from the full sample. In particular, this is necessary regardless of the limit of P/R as T — oo.
However, it should be noted that if P/R — 0, then there is no need to mimic parameter estimation
error, and so one can simply use QAM,T instead of git,ﬂ in the formulation of Zf, (1,k). In this
case, though, it is still necessary to recenter around the (full) sample mean.

For the confidence interval case, define:

V;,T = k{nax V];,g,ﬂ,7'<17 k)

=2,...,n

* 1 — * — — | 7%t % *t  * 2
VP,g,H,T(L k) = —P (1{ﬂ < Y11 < u} - <F1<u’Z 701,t,7) - F1<u’Z 701,t,7)))
=R
- ~ 2

- (Mu < vi < - (B@27,00,,0) — @2, 0;,,0))) )

1 =l _ o . 2
——= <<1{u <Y1 Sup— <F1<u’ZJ7 O1,07) — Fi(u| 27, 01,1&,7)))

T Jj=s+1

— (1{u < yj+1 Sup— (Fk@!ZJ} Ors.e) — Fi(ul 27, 5,%7)))2)) ’

where, as usual, 7 = 1, 2. The following results then hold.
Proposition 6: Let Assumptions A1-A3 hold. Also, assume that as 1T’ — oo, | — o0, and that
# — 0. Then, as T, P and R — oo, for 7 =1,2:

P |w:sup
veR

Py <krr%ax / Z (L K)p(u)du < v) -p ( max / 78 (1 k)g(u)du < U>‘ > 5> —0,
=2,...,n JU k=2,..m JUu

where 7%, (1,k) = Zpur(1,k) — VP (13 (u) — p2(w)), and where p3(u) — pf(u) is defined as in
equation (10).

Proposition 7: Let Assumptions A1-A3 hold. Also, assume that as 1T’ — oo, | — o0, and that
# — 0. Then, as T, P and R — oo, for 7 =1,2:

P|w:sup
veER

Py <kmax Voumr(1,k) < U) - P <kmax Viuar(1k) < v)‘ > 5> 0,

=2y —Zy.., T
where Vi (1,k) = Vp;(1, k) — VP (13 — 1), and where uf — u? is defined as in equation (14).
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The above results suggest proceeding in the following manner. For brevity, just consider the case
of Zp ;. For any bootstrap replication, compute the bootstrap statistic, Zp . Perform B bootstrap
replications (B large) and compute the quantiles of the empirical distribution of the B bootstrap
statistics. Reject Hy, if Zp, is greater than the (1 —a)th-percentile. Otherwise, do not reject. Now,
for all samples except a set with probability measure approaching zero, Zp, has the same limiting
distribution as the corresponding bootstrapped statistic when £ (u?(u) — p2(u)) = 0, ¥ k, ensuring
asymptotic size equal to a. On the other hand, when one or more competitor models are strictly
dominated by the benchmark, the rule provides a test with asymptotic size between 0 and «. Under
the alternative, Zp, diverges to (plus) infinity, while the corresponding bootstrap statistic has a
well defined limiting distribution, ensuring unit asymptotic power. From the above discussion, we
see that the bootstrap distribution provides correct asymptotic critical values only for the least fa-
vorable case under the null hypothesis; that is, when all competitor models are as good as the bench-
mark model. When maxy_s,_» frr (43 (u) — p2(u)) dp(u)du = 0, but [; (13 (u) — pi(uw)) ¢(u)du < 0
for some k, then the bootstrap critical values lead to conservative inference. An alternative to our
bootstrap critical values in this case is the construction of critical values based on subsampling (see
e.g. Politis, Romano and Wolf (1999), Ch. 3). Heuristically, construct 1" — 2bp statistics using
subsamples of length by, where bp/T — 0. The empirical distribution of these statistics computed
over the various subsamples properly mimics the distribution of the statistic. Thus, subsampling
provides valid critical values even for the case where maxgz—s__n fir (13(u) — p2(u)) ¢(u)du = 0,
but fr; (13 (u) — p2(u)) ¢(u)du < 0 for some k. This is the approach used by Linton, Maasoumi and
Whang (2003), for example, in the context of testing for stochastic dominance. Needless to say, one
problem with subsampling is that unless the sample is very large, the empirical distribution of the
subsampled statistics may yield a poor approximation of the limiting distribution of the statistic.
An alternative approach for addressing the conservative nature of our bootstrap critical values is
suggested in Hansen (2001). Hansen’s idea is to recenter the bootstrap statistics using the sample
mean, whenever the latter is larger than (minus) a bound of order /2T loglogT. Otherwise, do
not recenter the bootstrap statistics. In the current context, his approach leads to correctly sized
inference when maxy_s, . n fr; (13 (u) — p2(u)) d(u)du = 0, but f; ((u) — pi(u)) ¢(u)du < 0 for
some k. Additionally, his approach has the feature that if all models are characterized by a sample

mean below the bound, the null is “accepted” and no bootstrap statistic is constructed.
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4 Empirical Illustration - Forecasting Inflation

In this section we use a simple stylized macroeconomic example to illustrate how to apply the
predictive density accuracy test discussed in Section 2.19 In particular, assume that the objective is
to select amongst 4 different predictive density models for inflation, including an linear AR model
and an ARX model, where the ARX model differs from the AR model only through the inclusion
of unemployment as an additional explanatory variable. Assume also that 2 versions of each of
these models are used, one assuming normality, and one assuming that the conditional distribution
being evaluated follows a Student’s ¢ distribution with 5 degrees of freedom. Further, assume that
the number of lags used in these models is selected via use of either the SIC or the AIC. This
example can thus be thought of as an out-of-sample evaluation of simplified Phillips curve type
models of inflation.

The data used were obtained from the St. Louis Federal Reserve website. For unemployment, we
use the seasonally adjusted civilian unemployment rate. For inflation, we use the 12th difference
of the log of the seasonally adjusted CPI for all urban consumers, all items. Both data series
were found to be I(0), based on application of standard augmented Dickey-Fuller unit root tests.
All data are monthly, and the sample period is 1954:1-2003:12. This 600 observation sample
was broken into two equal parts for test construction, so that R = P = 300. Additionally, all
predictions were 1-step ahead, and were constructed using the recursive estimation scheme discussed
above.?0 Bootstrap percentiles were calculated based on 100 bootstrap replications, and we set
w € U C [Infmin, Infmax|, Where Inf; is the inflation variable being examined, and 100 equally
spaced values for u across this range were used (i.e. ¢(u) is the uniform density). Lags were selected
as follows. First, and using only the initial R sample observations, autoregressive lags were selected
according to both the SIC and the AIC. Thereafter, fixing the number of autoregressive lags, the
number of lags of unemployment (Unem;) was chosen, again using each of the SIC and the AIC.

This framework enabled us to compare various permutations of 4 different models using the Zps

19Monte Carlo experiments examining the finite sample properties of the tests are ongoing, and will be reported in
subsequent research. A preliminary indication of the finite sample performance of the tests proposed in this paper,
however, is available in Corradi and Swanson (2004a), where related tests that focus on the conditional mean rather

than the conditional distribution are discussed.

20Results based on the rolling estimation scheme have been tabulated, and are available upon request from the

authors.
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statistic, where
ZPQ— max /Zpuz 1 ]C )d

and
- 2 - 2
ZPu 2 1 k Z (1{[nft+1 < u} - Fl(u’Z 701,t,T60)) - (1{[nft+1 < u} - Fk(“’Z 70k,t,7’ec)) )

as discussed in Section 2. In particular, we consider (i) a comparison of AR and ARX models, with
lags selected using the SIC; (ii) a comparison of AR and ARX models , with lags selected using the
AIC; (iii) a comparison of AR models, with lags selected using either the SIC or the AIC; and (iv) a
comparison of ARX models, with lags selected using either the SIC or the AIC. Recalling that each
model is specified with either a Gaussian or Student’s ¢ error density,we thus have 4 applications,
each of which involves the comparison of 4 different predictive density models. Results are gathered
in Tables 1-4. The tables contain: mean square forecast errors - MSFE (so that our density accuracy
results can be compared with model rankings based on conditional mean evaluation); lags used;
Jo \/—Z (1{fnft+1 <u} — Fy(u|Zt, 01 t)) ¢p(u)du = DMSFE (for “ranking” based on our
density type mean square error measures), and {50,60,70,80,90} split and full sample bootstrap
percentiles for block lengths of {3,5,10,15,20} observations (for conducting inference using Zps).
Although this empirical application is presented only for illustrative purposes, we feel that the
results presented in Tables 1-4 are indicative of the types of results that may generally be obtained
upon application of the tools developed in this paper. For example, notice that lower MSFEs are
uniformly associated with models that have lags selected via the AIC. This rather surprising result
suggests that parsimony is not always the best “rule of thumb” for selecting models for predicting
conditional mean, and is a finding in agreement with one of the main conclusions of Marcellino,
Stock and Watson (2004). Interestingly, though, the density based mean square forecast error
measure that we consider (i.e. DMSFFE) is not generally lower when the AIC is used. This
suggests that the choice of lag selection criterion is sensitive to whether individual moments or
entire distributions are being evaluated. Of further note is that maxg_o 4 [y Zpu2(1, k)é(u)du
in Table 1 is -0.046, which fails to reject the null hypothesis that the benchmark AR(1)-normal
density model is at least as “good” as any other SIC selected model. Furthermore, when only AR
models are evaluated (see Table 3), there is nothing gained by using the AIC instead of the SIC,
and the normality assumption is again not “bested” by assuming fatter predictive density tails

(notice that in this case, failure to reject occurs even when 50th percentiles of either the split or
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full sample recursive block bootstrap distributions are used to form critical values). In contrast to
the above results, when either the AIC is used for all competitor models (Table 2), or when only
ARX models are considered with lags selected by either SIC or AIC (Table 4), the null hypothesis
of normality is rejected using 90th percentile critical values. Further, in both of these cases, the
“preferred model”, based on ranking according to DM SFE, is (i) an ARX model with Student’s ¢
errors (when only the AIC is used to select lags) or (ii) an ARX model with Gaussian errors and lags
selected via the SIC (when only ARX models are compared). This result indicates the importance
of comparing a wide variety of models. If we were only to compare AR and ARX models using
the AIC, as in Table 2, then we would conclude that ARX models beat AR models, and that
fatter tails should replace Gaussian tails in error density specification. However, inspection of the
density based MSFE measures across all models considered in the tables makes clear that the lowest
DMSFE values are always associated with more parsimonious models (with lags selected using

the SIC) that assume Gaussianity.

5 Concluding Remarks

In this paper we have outlined predictive density and predictive conditional confidence interval
accuracy tests. In addition, we briefly surveyed related predictive density evaluation methods,
and stressed that our methods differ from many of these in the sense that we allow all competing
models to be misspecified. We also outlined simple block bootstrap procedures applicable to a wide
class of test statistics (those for which limit distributions are functionals of Gaussian processes)
constructed using estimators obtained via rolling and recursive estimation schemes. Interestingly,
in the context of predictive density and conditional confidence interval tests, it turns out that the
standard block bootstrap is not the same as the simple bootstrap that we propose - instead, the
usual bootstrap approach must be modified in a number of ways prior to use in conjunction with
predictions formed using recursive and rolling estimation schemes. An empirical example based on
forecasting models of inflation is used to illustrate our methodology, and it is found that evaluation
based on AR models leaves nothing to choose between AR(1) models under normality and models
under alternative Student’s ¢ distributional assumptions and those with lags selected using the AIC
instead of the SIC. On the other hand, when the lag selection device is fixed to be the AIC, then

ARX predictive density models “win”, and the Student’s ¢ distribution better mimics the actual
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distribution of the predictive density than the Gaussian distribution.

This paper is meant as a starting point. Much further research is needed, both theoretical
and empirical, before the full impact of the bootstrap procedures and predictive density accuracy
tests that we have outlined will become clear. For example, our bootstrap procedures need to be
examined via Monte Carlo experimentation. Additionally, empirical and Monte Carlo investigation
comparing and contrasting the different predictive models using tests of the conditional mean as
well as the conditional distribution will shed further light on the trade-off between using alternative

varieties of predictive accuracy tests.
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6 Appendix

The main theoretical contributions of this paper are contained in the proofs of Propositions 2 and
3, as the other propositions follow in a fairly straightforward manner, given the results of Corradi
and Swanson (2004a,b).

Proof of Proposition la: Let p?(u) = F ((1{%“ <wu} — Fi(u| 2, 9:))2>

2
=F ((1{yt+1 <u} — Fplu| 4, 00))2) + E <(Fo(u]Zt7 o) — F;(u|Zt, 02)) > . We begin by consider-
ing the rolling case. For any given u,

T-1 N 9 ~ 2
Z <<1{yt+1 <wu}— Fi(u] 2t 91,t,mz)) - (1{yt+1 <u} — Fp(ulZt, Qk,t,mz)) )

t=R+s

1
Zpu(l,k) = ﬁ

T

I
—

= % oy ((Hym < u} = (|2 D)) - u%(u))
—;%tR;(HmH<u}zwmzemMmz—@w0+v?w%o—@w»

=j%i§i«H%Hsm—ﬂwwumf—ﬁw0
-7%%i@mﬂsw—ﬂwmﬁﬁ—@w0
—%tisvglm(uyzaémd) (11 < u} = Bi(ul 2", 0)) VP (0100 07)
2N Vo Bl B a) (W <}~ Bl 2 0)) VP (G — 07)

t=R+s

VP (u) — pd(w) + op(1)
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—_

1 C

= /P Z < Hyer1 SU}—Fl(u’ZthD)Q_M%(u)>
=R

TZ: ((1{yt+1 <uf— Fk(U’Ztv 011))2 - M%(U)>

t=s
Z Z In fi(y;, 27, 01)

R+s j=t—R+1

+2m,, ( T Z Z In fr.(y;, 271, 0)

= R+s j=t—R+1

+VP(i (w) = i () +op(1)
= Tp(w) + VP(ui(w) - s () +op(1) (26)

%H

_2m91<

ﬂ\

where gi,t,rol c (@-,t,ml, 02), 1=1,...,n,and Mgt (w)=FE (VgiFi(u]Zt, 02)’ (1{yt+1 <wu} — F(u| 71, 02)))
and A(0]) = (E (—Vgi In fi(ye1| 2, 02)))71and where the op(1) term holds uniformly in u € U.
We need to distinguish between the case of P < R and P > R. In the former case, by Lemma 4.1

in West and McCracken (1998, WM), \/— Zt Ris R Z] e rp I fi(y;, 291 QT) is asymptotically
normal with variance (7T — %2) B (Z],,oo Vo, In f1(yst1] 2%, QT)VQI In f1(ysyjr1| 25t QT) ) while
the long run covariance between

\/_Zt R+ts RZ] =t— R+11nfk(yJ7Z] QT) and

F S0 ((Hon < 0} = R@iZ40)” = (@) isgiven by

, 2
1 <Z]OO Vo, In f1(ys 11| 2%, 0]) <(1{ys+j+1 <u} — Fy(ul 251, 0,1)) — u%(u))) . Again from Lemma
4.1 in WM, for the case of P > R, (7‘[’ — %2) and 5 are replaced by (1 — %) and (1 — #) .
In the recursive case, the second last line in (26) becomes,

T-1 t
1

T—1
ﬁ Z 1 Z In fi( ymZJ 1 01)+2m ( )A(@T \/1]3 Z Z In fr,(y;, Z =1 0r)
t=R+s

~21my (u) A(B})
j=s+1 t= R+s j=s+1

and the asymptotic variance of the parameter estimation error component as well as the covariance

term follow from Lemma A5 in West (1996). The statement in the Proposition will follow once

we have shown convergence of the finite dimensional distribution and stochastic equicontinuity in

U. Now, convergence of finite dimensional distributions follows straightforwardly from the Cramer-

Wold device. Now, in order to show that /p(u), as defined in (26) weakly converges as a process
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on U, we need to show that it is stochastic equicontinuous on U. First note that,

1 T-1

pw) = == 3 (Fhlz o) — B (Fi(ul2,0)
t=R
2

- (Rl 2!, 0)1{Yi1 < u} = B (R@|Z", 0)1{Yiy1 < u}))

T
-

e

(F2(ul2",00) - B (Bl 2',0))))

ﬂ

:U

fj (Fk(l 2, 00)1{Yi 11 < u} = B (F(ul 2", 0)1{¥i11 < u}))
=R

=2y ()P (14, = 0]) + 2my1 () VP (B — 6]) + 0p(1), (27)

o~

where Mg () =F <V@iFi(u]Zt, 02)’ <1{yt+1 <u} — Fy(u| 2t 92))) , and the op(1) term holds uni-
formly in w € U. Let I; p(u) be the term in the 7 — th line of (27). Then,

1 T—-1 2 T—-1 1 T 2 T
Ip(u) = ﬁt - I ¢(u —ﬁ;%[u ﬁ 273,t(u)+ﬁ;%74,t(u)
—2my (u )ﬁ?(@lml 0)—|—2m ()@@,W—@;)+OP(1), (28)

and noting that meT(u)’ is equicontinuous on U, it suffices to show that the first four terms on the

right hand side of (28) are stochastic equicontinuous on U. Thus, it suffices to show that,

4
lim sup Z P sup

T—o00 E—1 u,u; €U
pr(uyuj)<6

T—1

1 1
—— Tktu—— Tktuj
75 & Tl =75 3 I

>e| =0, a6—0,

where pg(u,u;) = (E((Th(u) — fk,t(uj))‘l))l/él. Now, define the bracketing number, Ny 4(€,U), to
be the smallest number, n € N, for which there exists (uy,...,u,) € U, such that for any v € U

there exists u;, 7 = 1,...,n ensuring that (E((7x(u) — fk,t(uj))‘l))l/4

< ¢. Once we have shown
that for k=1, ...,4, fol log Ny 4(€,U)de < oo, then stochastic equicontinuity of /7(u) on U follows
from Theorem 1 (Application 1) in Doukhan, Massart and Rio (DMR: 1995). In fact, given the
size of the mixing coefficients in A(i), 3252, 718, is a convergent series, and thus condition (2.10)

in DMR can be replaced with the condition that fol \/10g Ny 4(e,U)de < oo, for k=1, ...,4. Now,

1/4

(E((4(uy) - rl,t(u))‘l))”4 < <E ((Ff(u!Zﬁ@D — Ff(uj!ZtﬁDf»

+ ‘/V (Ff(u!z, o) — F(ug|z, QD) fo(z)dz| (29)
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where fo(-) denotes the “true” marginal density of the conditioning variable(s), and V' is the support

of Z*. With regard to the first term on the RIS of (29), note that there exists a Z € V such that,

(5 (20700 - iz 00)')) = ([ (R0l 00 - Ptz 00) oonaz)

1/4
| (f, (F2lz0) - FRGlz.0D) o)z
with ¢} = - 7 < 00. We can choose (ut,...,un) € U, such that
(fv (FIZ(U‘Z,QI)*Ff(Uj‘;:GI)> fO(Z)dZ)

FE(uylZ, QD =jbé, 7 =1,...,1/6, so that the LHS of the last inequality above is majorized by C}é.
With regard to the second term on the RHS of (29),

[ (PRl 00) = PR, 00) foe)az

<Gy [ |Fule, 1) = Piwlz.0D)| fol2)dz
v (30)

S |FRlz0])- F2(u;]2.00)| fo(2)dz
[y | F(ulz00) = F2(u;12.00) | fo(2)dz
J6,j =1,...,1/6, so that for any u we can find an u; ensuring that the last term in (30) is majorized

by Cy8. Now, set 6(e) = €/(Cy + Cy), so that Ny 4(e,U) =1/86(¢) = (Cy + C’z)e*l, for 0 < e < 1/2,
and fol \/log((Cl + C9)/e)de < fol log((C1 4 C9)/€)de = log(C1 4+ C2) + 1 < oo. Finally, note that

where Cy = < c0. For the same (u1, ..., up ) as above, set F2(u;|Z, 01) =

Iyr(u), Is7(u), and Iy 7(u) can be treated in an analogous manner. It has been already shown in

Section 2 that

| () = ) ofu)a
- /U <E <(F1(u]Zt, 07) — Fo(u| 2", 00))2> ~E <(Fk(u]Zt, 0)) — Fo(u| 7, 00))2>> (w)dur.

Thus, by the continuous mapping theorem it follows that,

max /U(ZT,U(LIC)—\/T(,LL%(u)—u%(u)))qﬁU( du—>  1nax /Zlk

k=2,....m 2,00,

where Z) () is a zero mean Gaussian process with covariance Cy(u, ') defined as in (11), for

k=2 ..m

Proof of Proposition 1b: Follows directly from Theorem 1 in Corradi and Swanson (2004b).
Proof of Proposition 2: As all models can be treated at the same manner, for notational

simplicity, we drop the subscript denoting the model. Given (?7?), by first order conditions,
1 t

E Z (VGIHf(y]7Z*J ! Qtrol ( ZVQIHf yk7 lvgt,rol))) :07 tZR‘I’S

j=t—R+1
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Thus, a Taylor expansion around gt,ml yields:

j=j—R+1

1 < .
x(;z ) (velnf@;,zw Byrat) ( ngmf% 1,@,,00))),

j=t—Rt1

-1
N n 1 ! * rrx,j—1 p*
< t,rol 0127’05) = (E Z v(% In f<yj ) ™ 1’ et,rol))

. -1
where Qt rol € <0t rol? 0, ml) Hereafter, let AT = <E <V(9 In f(y;, 2971, QT))) . Recalling that we

resample from the entire sample, regardless the value of ¢, it follows that:
1 d *,5—1 k-1 !
E Z (Velnf(y]7Z’ 9) Zvelnf (yr, 2", 0) + Op- 7)) Pr—P, 1)
— R+

where the Op» (%) term is due to the end effect (i.e. due to the contribution of the first and last

[ observations, as shown in Lemma Al in Fitzenberger (1997)). Thus,

-1
sup su Viln AN — AT
TR ( 2. Vo] >)

VAN

-1 -1
sup su V2in AN E* (Vin VACREN
Supsup ( ]Z oI () )) ( S B (Vi )))

] )

-1
+ sup sup ( ZE* (Vglnf(yj,Z*’] 1 0))) — ATl (32)

t>RHcO =

Given (31), and Assumptions A1-A2, the second term on the RHS of (32) is op(1). Recalling
also that the resampled series consists of b independent and identically distributed blocks, and that
b/T'/? — oo, it follows that the first term on on the RHS of (32) is 0p+(1) Pr— P, given the uniform
law of large number for ¢¢d random variables. Thus,

1T1

Z 0,
t,rol — Utyrol
752 R( o )
SR (ot (5
= Bl—&— - v@Q(?J 7Z*J 0t rol ( Veq yk7 70t,7’ol)>>
\/ﬁt:R Rj:tfR+1 g
+op«(1) Pr—P, (33)
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and a first order expansion of the RHS of (33) around 07 yields:

i <0t ror = Or mz)

=R
1 T—1 1 t
= A=> 13 X (Vglnf(yj AN ( nglnf (yp, 2571 0*)))

Pt:R j=t—R+1 k=g
N I _

+A —= Z D Z (vg hlf(?/tZ*’J Qt rol ( Z ve lnf yk7 179t,7’0l)>>
‘/TD t=R R j=t—R+1 ’

% (ot = 07)) + o0+ (1) Pr—P. (34)

We need to show that the second term on the RHS of (34) is op+(1) Pr —P. Note that this term is

majorized by

t

> (velnf@J,Z*“e ( nglnfyk,z’“@)))

j=t—Rt1 =

VP

AT sup sup e

t>ROcO

915
supT ‘Qt,rol -
t>R

with 1/3 < 9 < 1/2. Recalling also that ol = T and I = o(T*), it follows that b/T%/* — co.
Thus, by the same argument used in Lemma 1(i) in Altissimo and Corradi (2002), and given (31),
it follows that:

t

lZ (Velnf(ymZ*’] Lo) ( Zve In f(yp, Z° 1 0)))‘ =04+ ( loglbogb) , a.5.—P.

sup sup
t>ROCO i
J—s
Thus,
VP | \
supsup = | Y, | Valn f(yj, 271, 0) - Zvelnf y;, 2771,0) | || = op:(1), Pr—p,
tZR(?E@ ]:tfR*Fl j &

for ¥ > 1/3. Finally, for all ¥ < 1/2, sup;> RY ‘QAWO[ — QT‘ = op(1) by Lemma A3 in West (1996).
Let Vo In f(y7, 75971 0T = hy and Vo ln f(y;, 27~ 1,07) = h and recall that,

1 ¢ l
E Z]; (Vglnf(y ACEE 9*) nglnf Uk, 287101 + Op (T)
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Assuming P < R, the right hand side of (34), can be written as,

~ ~
< t,rol — 0127’05) =

~
—_

- 5
l“lg

R SRR I(C s L ST
A— (t—s)(hy —hr)+ A" — (hi — hr)
\/ﬁR t=s+1 R t=P+s+1
1 T-1
+A'—— 3" (P+s—(t—R)) (hf —hr
\/ﬁR t—=R+s+1 ( )
+op(1), Pr—P. (35)

Now, \/Lﬁ Z;}% (52‘ rol — é\t,ml) satisfies a central limit theorem for triangular independent arrays
(see e.g. White and Wooldridge (1988)), and thus, conditional on the sample, it converges in
distribution to a zero mean normal random variable.

Furthermore, by Lemma 4.1 in West and McCracken (1998):

T
_pt) 4 O AT
Z}; (Qt rol ) - N (O,QHA C()()A ) ,

. /
where COO = Z;ifoo F ((ve lnf(st, ZS7 QT)) <V(9 h’lf<y1+5+j7 Z‘H‘]7 QT)) > and Il == —71'2/3 for
P < Rand Il =1 —72/3 for P > R. Therefore, the statement in the theorem will follow once we

have shown that:

* 1 d 0% )
Var (— > ( tyrol 9t,7’0l)> = 211ATCoo A", Pr—P. (36)

* P R+s * * 1 — . *
+Var (? > hj)—l—Var (\fT > (P—s—(j—R))hj)—l—o(l) Pr—P

j=P+s+1 j=R+tst1 (37)
where the o(1) Pr —P term comes from the fact that the covariance term are o(1) Pr — P, given the
independence of the blocks.?!

Var* (ﬁjz (j—S)h;) =Var* ( ZZ ) h11+z)

=s+1 k 12=1

U For notational simplicity, we start summation from 1 instead than from s. As s is finite, this has no consequence

on the asymptotic behavior.
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l

= (\/]—DRZZZ k—1)l+1) (’f—1)Z+J’)(hlk+i—ﬁP)(hIk+j—EP)/)

k=1:=1j=1

= PRQZZZ k=114 3)((k = D)+ B ((ners = Br)(hars = Br))

k=1:i=1j=1

l l Pl
1 _
k=1:=1j= 1 t*l
l l
= pRQZZZ B =11+ i)((k = D1+
k=1:=13=1
I 1

+——ZZZ k—11+3)((k— 1)1 +7) (1

k=1:=1j5=1

P-1

(hHZ—hT (heyj — ) — v g)>
t=l

O(l/P"?) pPr—pP (38)

We need to show that the last term on the last equality in (38) is o(1) Pr —P. First, as for all k,1, j

((kfl)lﬂl)%(g(k*l)lﬂ) < 1, it is majorized by

bl l l 1 P-1 . .
P >0 (]_3 <(ht+z‘ = hr)(herj = hr) = %‘—j)
i=1j=1 t=l
1 P-1 1
= | (O =)y = Br)' = ;)| + O/ P?) Pr—p (39)
t=l j=—1

The first term on the RHS of (39) goes to zero in probability, by the same argument as in Lemma
2 in Corradi (1999)22. For the first term on the RHS of the last equality in (38), note that

1 l

1
pR2 ZZZ k=140 ((k = DI+ 7)y-5 = PZ 3 Ut +4)y + 0@/ PY2) P

k=1i=1j=1 t=l j=—I

PR2ZtQZ% ZZ (t+4) = )y +O(/PY?) Pr—P
=

t I j==1
By the same argument as in Lemma 4.1 in West and McCracken (1998), the second term on the

RHS above approaches zero, while

ZtQ Z v — Coo

t=l ]7—[

22The domination condition here are weaker than those in Lemma 2 in Corradi (1999) as we require only convergence

to zero in probability and not almot surely.
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By a similar argument, and following the proof of Lemma 4.1 in West and McCracken (1998), it

can be shown that

P R+S
Var* T Z i)l = (7 —7")Coo+op(1)

j=P+st1

Rts+1

. 1 = ) « w2
Var (\/_TR].Z (P—s—(J—R))hj) = 5 Coo+or(1).

Finally, the case of P > R can be treated along the same lines.

Proof of Proposition 3: We consider only the case of P < R. The fact that ﬁ Z;}% <BZ‘7, ol — @,ml)
has the same limiting distribution as in Proposition 2, follows by exactly the same arguments in

the proof of Proposition 2 above. Now,

1 t L 1 ™1 L
~2,% ~2 * *,5—1 2 ) rrkg—1 2
Oit,r — Oit,R = R E : (?Jj — Gi(Z7 7, Bityrol))” — T E , (Wi —9:(Z™7 7 Birat))” | 4
j=t_Rt1 k=s+1 (40)

. i -~ ~2 _ i -~
and so, letting €2 = (y! — gi(Z"7Y, Birr))? € = % 4 a1y — Gi(Z97, Biyra))?, €2 =

(= gu(Z777 1, B1)? and & = 7 534 (9 — gi(Z71, 81))% for P <R,

L d ~2,% ~92 . 1 = ! ~2 =2\ 1 Lt . ~2 =2
NG tz]:{ <Uz‘,t,R Uz,l&,R) = /PR t;g j;};ﬂ <€] GT) = /PR jzs;r1(J 5) <€] GT)
e Ri (&2 -%7) T Tzl (P+s—(j-R) (5 &)
j=Ptstl 7 VPR j=Rtstl o

1 P+s
= 7rr 2 U= (- #)
j=st

j=P+s+1 R+s+1

The statement then follows by the same argument used in the proof of Proposition 2.

Proof of Proposition 4: This proof follows from Theorem 1 in Corradi and Swanson (2004a).
Proof of Proposition 5: This proof follows using arguments similar to those used in the proof
of Proposition 3.

Proof of Proposition 6: The proof to this proposition follows as a straightforward modification
of Theorem 3 in Corradi and Swanson (2004b).

Proof of Proposition 7: The proof follows from Theorem 3 in Corradi and Swanson (2004a).
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Table 1: Comparison of Autoregressive Inflation Models with and Without Unemployment Using s1c®)

Model 1 - Normal Model 2 - Normal Model 3 - Student’st Model 4 - Student’s t

Specification AR ARX AR ARX
lag Selection SIC (1) SIC (1,1) SIC (1) SIC (1,1)
MSFE 0.00083352 0.00004763 0.00083352 0.00004763
DMSFE 1.80129635 2.01137942 1.84758927 1.93272971
Zpaw2(1,k) benchmark -0.21008307 -0.04629293 -0.13143336
Critical Values
Bootstrap with Adjustment Bootstrap without Adjustment
Percentile 3 5 10 15 20 3 5 10 15 20
50 0.094576  0.095575  0.097357 0.104290 0.105869 0.059537 0.062459 0.067246 0.073737 0.079522
60 0.114777  0.117225 0.128311 0.134509 0.140876  0.081460 0.084932 0.097435 0.105071 0.113710
70 0.142498  0.146211 0.169168 0.179724 0.200145 0.110945 0.110945 0.130786  0.145153  0.156861
80 0.178584  0.193576  0.221591  0.244199  0.260359 0.141543  0.146881  0.185892  0.192494  0.218076
90 0.216998  0.251787 0.307671 0.328763  0.383923  0.186430 0.196849  0.254943 0.271913  0.312400

() Notes: Entires in the table are given in two parts (1) summary statistics, and (ii) bootstrap percentiles. In (i):
“specification” lists the model used. For each specification, lags may be chosen either with the SIC or the AIC, and
the predictive density may be either Gaussian or Student’s ¢, as denoted in the various columns of the table. The
bracketed entires beside SIC and AIC denote the number of lags chosen for the autoregressive part of the model
and the number of lags of unemployment used, respectively. MSF'FE is the out-of-sample mean square forecast
error based on evaluation of P=300 1-step ahead predictions using recursively estimated models, and DMSFFE =

N2
fU # ZZ:Pi (1{Inft+1 <u}-—I (u|Zt,917t)) ¢(u)du, where R = 300, corresponding to the sample period from

1954:1-1978:12, is our analogous density based square error loss measure. Finally, Zp. 2(1,k) is the accuracy test
statistic, for each benchmark/alternative model comparison. The density accuracy test is the maximum across the
Zpu2(1,k) values. In (ii) percentiles of the bootstrap empirical distributions under different block length sampling
regimes are given. The “Bootstrap with Adjustment” allows for parameter estimation error, while the “Bootstrap
without Adjustment” assumes that parameter estimation error vanishes asymptotically. Testing is carried out using
90th percentiles (see above for further details).

Table 2: Comparison of Autoregressive Inflation Models with and Without Unemployment Using AIC(*)

Model 1 - Normal Model 2 - Normal Model 3 - Student’st  Model 4 - Student’s t

Speci fication AR ARX AR ARX

lag Selection AIC (3) AIC (3,1) AIC (3) AIC (3,1)

MSFE 0.00000841 0.00000865 0.00000841 0.00000865

DMSFE 2.17718449 2.17189485 2.11242940 2.10813786

Zpu2(1, k) benchmark 0.00528965 0.06475509 0.06904664

Critical Values
Bootstrap with Adjustment Bootstrap without Adjustment
Percentile 3 5 10 15 20 3 5 10 15 20

50 -0.004056  -0.003820 -0.003739 -0.003757 -0.003722 -0.004542 -0.004448 -0.004316 -0.004318 -0.004274
60 -0.003608 -0.003358  -0.003264 -0.003343 -0.003269 -0.004318 -0.003999 -0.003911 -0.003974 -0.003943
70 -0.003220 -0.002737 -0.002467 -0.002586 -0.002342 -0.003830 -0.003384 -0.003287 -0.003393 -0.003339
80 -0.002662 -0.001339 -0.001015 -0.001044 -0.000321 -0.003148 -0.001585 -0.001226 -0.001340 -0.000783
90 -0.000780  0.001526 0.002828 0.002794 0.003600  -0.000925  0.001371 0.002737 0.002631 0.003422

) Notes: See notes to Table 1.
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Table 3: Comparison of Autoregressive Inflation Models Using SIC and AIC™)

Model 1 - Normal

Model 2 - Normal

Model 3 - Student’s t

Model 4 - Student’s t

Specification AR AR AR AR
lag Selection SIC (1) AIC (3) SIC (1) AIC (3)
MSFE 0.00083352 0.00000841 0.00083352 0.00000841
DMSFE 1.80129635 2.17718449 1.84758927 2.11242940
Zpaw2(1,k) benchmark -0.37588815 -0.04629293 -0.31113305
Critical Values
Bootstrap with Adjustment Bootstrap without Adjustment
Percentile 3 5 10 15 20 3 5 10 15 20
50 0.099733 0.104210 0.111312 0.114336 0.112498 0.063302 0.069143 0.078329 0.092758  0.096471
60 0.132297 0.147051 0.163309 0.169943 0.172510 0.099277 0.109922 0.121311 0.132211  0.135370
70 0.177991  0.193313 0.202000 0.217180 0.219814 0.133178 0.150112 0.162696 0.177431  0.185820
80 0.209509  0.228377 0.245762 0.279570 0.286277 0.177059 0.189317 0.210808 0.237286  0.244186
90 0.256017 0.294037 0.345221 0.380378 0.387672 0.213491 0.244186 0.280326  0.324281  0.330913
) Notes: See notes to Table 1.
Table 4: Comparison of Autoregressive Inflation Models with Unemployment Using SIC and A1C™)
Model 1 - Normal Model 2 - Normal Model 3 - Student’st Model 4 - Student’s t
Speci fication ARX ARX ARX ARX
lag Selection SIC (1,1) AIC (3,1) SIC (1,1) AIC (3,1)
MSFE 0.00004763 0.00000865 0.00004763 0.00000865
DMSFE 2.01137942 2.17189485 1.93272971 2.10813786
Zpao(1,k) benchmark -0.16051543 0.07864972 -0.09675844
Critical Values
Bootstrap with Adjustment Bootstrap without Adjustment
Percentile 3 5 10 15 20 3 5 10 15 20
50 0.013914 0.015925 0.016737 0.018229 0.020586 0.007462 0.012167 0.012627 0.014746 0.016022
60 0.019018  0.022448 0.023213 0.024824 0.027218 0.013634 0.016693 0.018245 0.019184  0.022048
70 0.026111  0.028058  0.029292 0.030620 0.033757 0.019749 0.022771 0.023878 0.025605  0.029439
80 0.031457 0.033909 0.038523 0.041290 0.043486 0.025395 0.027832 0.033134  0.034677  0.039756
90 0.039930 0.047533 0.052668 0.054634 0.060586 0.035334 0.042551 0.046784  0.049698  0.056309

() Notes: See notes to Table 1.
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