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Abstract

This paper analyzes the conditions under which consistent estimation can be achieved in instrumental
variables (IV ) regression when the available instruments are weak, in the local-to-zero sense of Staiger and
Stock (1997) and using the many-instrument framework of Morimune (1983) and Bekker (1994). Our analysis
of an extended k-class of estimators that includes Jackknife IV (JIV E) establishes that consistent estimation
depends importantly on the relative magnitudes of rn, the growth rate of the concentration parameter, and
Kn, the number of instruments. In particular, LIML and JIV E are consistent when

√
Kn
rn

→ 0, while two-

stage least squares is consistent only if Kn
rn

→ 0, as n →∞. We argue that the use of many instruments may
be beneficial for estimation, as the resulting concentration parameter growth may allow consistent estimation,
in certain cases.
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1 Introduction

In the weak instruments literature, it has become standard in recent years to analyze the properties of estimators

and test statistics using the local-to-zero framework pioneered by Staiger and Stock (1997), which takes the

coefficients of the instruments in the first-stage regression to be in a n−
1
2 shrinking neighborhood of zero, where n

is the sample size. An interesting feature of the Staiger-Stock framework is that unlike the conventional asymptotic

setup, the concentration parameter does not diverge but rather, roughly speaking, stays constant in expectation

as the sample size grows. Since the concentration parameter is a natural measure of the strength of identification

in an IV regression model, the local-to-zero device allows the Staiger-Stock framework to better mimic the weak

instrument situation than the conventional setup with fixed coefficients, and Staiger and Stock show that the two-

stage least squares (2SLS) and the limited information maximum likelihood (LIML) estimators are no longer

consistent and instead converge to nonstandard distributions in the limit under this framework.1,2

Another important direction that IV regression research has taken involves the study of situations where the

number of available instruments is large, using an asymptotic framework that takes the number of instruments to

infinity as a function of the sample size. This approach was first taken by Morimune (1983) and later generalized

by Bekker (1994) (see also Angrist and Krueger (1995), Bekker and van der Ploeg (1999), van Hasselt (2000),

Donald and Newey (2001), Hahn, Hausman, and Kuersteiner (2001), Hahn (2002), and Hahn and Inoue (2002)).

In contrast to the papers using the local-to-zero setup, authors taking the many instruments approach typically

assume that the concentration parameter grows at the same rate as the sample size. Hence, these papers tend

to study scenarios where the instruments are not as weak as those assumed in papers employing a local-to-zero

setup.

The purpose of this paper is to provide a unified framework under which the asymptotic behavior of different

estimators can be studied in the presence of weak and/or many instruments. More precisely, the setup adopted

here combines key features of both the local-to-zero and the many instruments asymptotic frameworks. This

combined framework, in turn, allows us to analyze the consistency of various single-equation estimators under

a single coherent set of conditions. In particular, we show that when the number of instruments is taken to

infinity, the concentration parameter can grow, even if each individual instrument is only weakly correlated with

the endogenous explanatory variables, and consistency of certain estimators can be established under weaker

conditions than has previously been assumed in the literature. Our results, thus, complement those of Stock
1The observation that the concentration parameter is a natural measure of the strength of instruments has been made by Phillips

(1983), Rothenberg (1983), and Stock and Yogo (2003a), amongst others.
2Related work by Sargan (1988), Phillips (1989) and Choi and Phillips (1992) addresses the implications for statistical inference

when the underlying simultaneous equations model is underidentified or is only partially identified.
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and Yogo (2003b), who derive the limiting distributions of various k-class estimators when the concentration

parameter grows at the same rate as the number of instruments. Although we do not provide distributional

results in this paper, our setup is more general than that of Stock and Yogo (2003b) as we assume more general

conditions on the stochastic properties of the instruments and we allow for weaker instruments, as measured by

the order of magnitude of the concentration parameter. In addition, we examine a broad class of IV estimators

which extends the well-known k-class by allowing the value of k to vary across observations. We refer to this class

of estimators as the ω-class, and we show that members of this class which satisfy certain general conditions are

consistent even if rn, the rate of growth of the concentration parameter, grows slower than Kn, the number of

instruments, and possibly much slower than the sample size n, provided that
√

Kn

rn
→ 0, as n →∞. Specializing

our results to specific estimators, we show that LIML and JIV E both satisfy our conditions for consistency,

whereas the 2SLS estimator does not. Indeed, the 2SLS estimator is shown to be consistent only if Kn

rn
→ 0, as

n →∞. Our analysis, thus, also provides a precise characterization of the sense in which the 2SLS estimator is

asymptotically deficient relative to LIML and JIV E, in the case of weak identification.3

The remainder of the paper describes our model and assumptions as well as presents and discusses our main

results. All proofs are gathered in an appendix. In the sequel, Tr(·) denotes the trace of a matrix, A+ denotes

the Moore-Penrose inverse of a (possibly singular) matrix, “ > 0” denotes positive definiteness when applied to

matrices, λmax (A) and λmin (A) denote, respectively, the maximal eigenvalue and the minimal eigenvalue of the

real, symmetric matrix A, lim
n→∞

an denotes the limit inferior of the sequence {an}, and lim
n→∞

an denotes the limit

superior of the sequence {an}. In addition, PX = X(X ′X)−1X ′ denotes the matrix which projects orthogonally

onto the range space of X and QX = I − PX .

2 Model, Assumptions, and Main Results

Consider the simultaneous equations model (SEM)

y1n = Y2nβ + Xnγ + un, (1)

Y2n = ZnΠ + XnΦ + Vn, (2)

where y1n and Y2n are, respectively, an n×1 vector and an n×G matrix of observations on the G+1 endogenous

variables of the system, Xn is an n × J matrix of observations on the J exogenous variables included in the
3A very interesting recent paper on the subject discussed herein, which was written subsequent to this one, is that of Han and

Phillips (2003). One of the main differences between our paper and theirs is the following. Our paper focuses explicitly on a linear

IV regression setup, while Han and Phillips (2003) consider a (possibly) nonlinear GMM framework. On the other hand, our paper

studies estimators such as LIML and JIV E, which lie outside of the class of GMM estimators considered by Han and Phillips (2003),

and we show that these estimators have some desirable properties under weak identification.
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structural equation (1), Zn is an n×Kn matrix of observations on the Kn instrumental variables, or exogenous

variables excluded from the structural equation (1), and un, Vn are, respectively, an n × 1 vector and an n × G

matrix of random disturbances. Also, define Zn = (Zn, Xn). Furthermore, let ηi = (ui, v
′
i)
′ where ui and v′i are,

respectively, the ith component of the random vector un and the ith row of the random matrix Vn. The following

assumptions are used in the sequel.

Assumption 1: Π = Πn = Cn

bn
for some sequence of positive real numbers {bn} , non-decreasing in n, and for

some sequence of nonrandom, Kn ×G parameter matrices {Cn} .

Assumption 2: Let
{
Zn,i : i = 1, ..., n; n ≥ 1

}
be a triangular array of RKn+J -valued random variables, where

Zn,i = (Z ′n,i, X ′
i)
′ with Z ′n,i and X ′

i denoting the ith row of the matrices Zn and Xn, respectively. Moreover,

suppose that: (a) Kn → ∞ as n → ∞ such that Kn

n → α for some constant α satisfying 0 ≤ α < 1; (b) there

exists a positive integer N such that ∀n ≥ N, Zn is of full column rank Kn + J almost surely; and (c) {rn}
is a non-decreasing sequence of positive real numbers such that, as n → ∞, rn

n → κ for some constant κ, with

0 ≤ κ < ∞, and Ψn = C′nZ′nQXn ZnCn

b2nrn
, where QXn = In −Xn(X ′

nXn)−1X ′
n, and there exist constants D and D,

with 0 <D ≤ D < ∞, such that D ≤ lim
n→∞

λmin (Ψn) and lim
n→∞

λmax (Ψn) ≤ D almost surely.4

Assumption 3: Assume that: (a) Zn and ηi are independent for all i and n; (b) {ηi} ≡ i.i.d.(0,Σ), where Σ > 0,

and Σ can be partitioned conformably with (ui, v
′
i)
′ as Σ =

(
σuu σ′V u

σV u ΣV V

)
, with σg

V u and and Σ(g,h)
V V denoting

the gth element of σV u and the (g, h)th element of ΣV V ; respectively; and (c) there exists some positive constant

Dη < ∞ such that max
{
E

(
u4

i

)
, E

(
v4

i1

)
, ..., E

(
v4

iG

)} ≤ Dη.

The estimators we consider can be written in the form:

β̂ω,n =
(
Y ′

2n

[
In −QZn

Ωn

]
QXnY2n

)+ (
Y ′

2n

[
In −QZn

Ωn

]
QXny1n

)
, (3)

where Ωn = diag (ω1,n, ω2,n, ...., ωn,n). It is easily seen that this class of estimators is broader than the well-

known k-class in the sense that each k-class estimator can be obtained from the formula above by setting ω1,n =

ω2,n = .... = ω = k for a particular k. We shall refer to the class of estimators given by expression (3) above as

the ω−class. One reason for defining this broader class of estimators is that an interesting estimator which is not

a member of the k-class is JIV E; but JIV E is a member of the ω−class. It is often convenient to rewrite (3) as:

β̂ω,n =
(
Y ′

2n

[
PZn

− PXn −QZn
Ω̃nQXn

]
Y2n

)+ (
Y ′

2n

[
PZn

− PXn −QZn
Ω̃nQXn

]
y1n

)
, (4)

4More primitive conditions that imply Assumption 2 are given in the extended version of this paper, Chao and Swanson (2002).
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where Ω̃n = Ωn − In, Ω̃n = diag (ω̃1,n, ω̃2,n, ...., ω̃n,n) , and ω̃i,n = ωi,n − 1, for i = 1, ..., n. Note that, without

further restrictions on ωi,n (i = 1, ..., n), (or ω̃i,n (i = 1, ..., n)), β̂ω,n is not a consistent estimator for β. Consistent

estimation can be obtained, however, given the following restriction:

Assumption 4: Suppose that for each i and n, ω̃i,n can be decomposed into the sum of two components as

ω̃i,n = ωi,n + ξi,n, such that ωi,n is either non-random or depends only on the exogenous variables Zn, so that

ωi,n = fn,i(Zn). Also, assume that ωi,n and ξi,n satisfy the following conditions: (a) lim
n→∞

ln < ∞ a.s., where

ln = sup
1≤ i ≤n

|ωi,n|; (b)
n∑

i=1

ωi,n (1− hi,n) = Kn a.s. ∀n, where hi,n is the ith diagonal element of PZn
; (c)

n∑
i=1

E
(
ω2

i,n

)
= O(Kn); and (d) sup

1≤ i ≤n
|ξi,n| = op

(
rn

n

)
.

Theorem 2.1: Under Assumptions 1-4, let β̂ω,n be defined as in equation (4) above. Suppose that rn → ∞ as

n →∞, such that
√

Kn

rn
→ 0. Then, β̂ω,n

p→ β0 as n →∞.

Remark 2.2: (i) Note that under Assumption 2(c), rn can be interpreted as the rate at which the concentration

parameter Σ−
1
2

V V ΠnZ ′nQXnZnΠnΣ−
1
2

V V grows as n increases. An assumption on the rate of growth of the concen-

tration parameter seems natural here since the concentration parameter is a measure of instrumental strength.

Because we are interested in the case of weak instruments, Assumption 2(c) stipulates that rn must grow no

faster than n. In fact, we will be interested primarily in the case where rn grows much slower than n. In addition,

Assumption 3 requires the instrument matrix Zn to be independent of the disturbance vector ηi for all i and

n, and also requires the disturbances to have finite absolute fourth moments. Note that these assumptions are

weaker than the corresponding assumptions in Morimune (1983) and Bekker (1994), where fixed instruments and

i.i.d. Gaussian errors are assumed.

(ii) To see the relationship between our framework and that of Staiger and Stock (1997), note that the Staiger-

Stock setup takes bn =
√

n, Z ′nQXnZn = Op (n), and the number of instruments to be fixed as n →∞, so that C

is a (fixed-dimensional) K ×G matrix such that C ′C = O(1). It is easily shown in their case that rn = O(1), so

that the concentration parameter does not diverge but is bounded in probability. Numerical results reported in

Staiger and Stock (1997) show that asymptotic distributions of estimators and test statistics derived under this

setup give very good approximations to their finite sample distributions, particularly if the number of instruments

is not large relative to the sample size. Our paper here builds upon their work by looking at the case where one

uses a large number of weak instruments, so that Kn is allowed to approach infinity as a function of n. In this

case, it turns out that the concentration parameter may grow even when the coefficient matrix Π in the first-

stage equation is modeled as being small in the local-to-zero sense because, while each individual instruments

may be weakly correlated with the endogenous regressors, the combined effect of using a lot of instruments may
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nevertheless lead to a very large concentration parameter.5

(iii) It is also of interest to compare our setup with that of Bekker (1994).6 Focusing on the case J = 0, the

alternative asymptotics considered by Bekker (1994), in our notations, boils down to one where the quantity

(n − G)−1Π′Z ′nZnΠ is kept fixed, as both Kn and n go to infinity, such that Kn

n → α, for some constant α

satisfying 0 ≤ α < 1. It follows that the Bekker approach assumes that the concentration parameter grows at

the rate of the sample size n. Our framework, thus, allows for weaker instruments, as measured by the order of

magnitude of the concentration parameter, than that of Bekker, since we allow rn to grow at possibly a much

slower rate than n.

Our setup is also closely related to others in the literature. For example, in an important paper, Donald and

Newey (2001) use a setup which is similar to ours, although we do not require the exogenous regressors Zi to be

i.i.d, and we allow Kn to diverge at the same rate as n.

(iv) Many commonly-used IV estimators are members of the ω−class, including:

a. Limited Information Maximum Likelihood (LIML) Estimator:

β̂LIML,n =
(
Y ′

2nQXnY2n − λ̂LIML,nY ′
2nQZn

Y2n

)+ (
Y ′

2nQXny1n − λ̂LIML,nY ′
2nQZn

y1n

)
, (5)

where λ̂LIML,n is the smallest root of the determinantal equation:

det
{(

y′1nQXny1n y′1nQXnY2n

Y ′
2nQXny1n Y ′

2nQXnY2n

)
− λn

(
y′1nQZn

y1n y′1nQZn
Y2n

Y ′
2nQZn

y1n Y ′
2nQZn

Y2n

)}
= 0 (6)

b. Two-Stage Least Squares (2SLS) Estimator:

β̂2SLS,n =
(
Y ′

2n(PZn
− PXn)Y2n

)+ (
Y ′

2n(PZn
− PXn)y1n

)
. (7)

c. Jackknife Instrumental Variables Estimator (JIV E):

β̂JIV E,n =
(
Y ′

2n

[
In −QZn

Hn

]
QXnY2n

)+ (
Y ′

2n

[
In −QZn

Hn

]
QXny1n

)
, (8)

where Hn = diag
(

1
1−h1,n

, ...., 1
1−hn,n

)
, with hi,n being the ith diagonal element of PZn

.

With respect to the last estimator, JIV E, it should be noted this estimator was first proposed by Phillips

and Hale (1977) but was further studied and given its jackknife interpretation by Angrist, Imbens, and Krueger

(1999)7. In addition, we note that for JIV E to be well-defined, we need the following assumption:
5Technically, this can occur because, in our setup, Kn, the number of rows of the sequence of matices Cn, is now allowed to go to

infinity as n → ∞. Hence, the concentration parameter Σ
− 1

2
V V Π′nZ′nQXnZnΠnΣ

− 1
2

V V =
Σ
− 1

2
V V

C′nZ′nQXn ZnCnΣ
− 1

2
V V

n
may diverge even if

Z′nQXn Zn

n
= Op(1).

6The type of asymptotic approximation used by Bekker (1994) dates back to the work of Anderson (1976), Kunitomo (1980), and

Morimune (1983), as is pointed out by Bekker in his paper.
7Still another paper that examined JIV E is Blomquist and Dahlberg (1999), which provided a Monte Carlo study comparing

JIV E with a number of other IV estimators.
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Assumption J: There exists a constant h, with 0 < h < 1, such that 0 ≤ hi,n ≤ h a.s. for 1 ≤ i ≤ n and for all

n sufficiently large such that PZn
is well-defined almost surely8’9.

As shown in the appendix, both LIML and JIV E satisfy Assumption 4, and hence Theorem 2.1 holds.

However, this is not the case for the 2SLS estimator.10

Corollary 2.3: Suppose that rn → ∞ as n → ∞, such that
√

Kn

rn
→ 0. Then, (a), under Assumptions 1-3,

β̂LIML,n
p→ β0 as n →∞ and (b), under Assumptions 1-3 and J, β̂JIV E,n

p→ β0 as n →∞.

Theorem 2.4: Under Assumptions 1-3, let β̂2SLS,n be defined as in equation (7) above. As n →∞ : (a) for rn

Kn
→

0, β̂2SLS,n
p→ β0 + Σ−1

V V σV u; (b) for rn

Kn
→ δ (0 < δ < ∞), β̂2SLS,n − β0 = (δΨn + ΣV V )−1

σV u + op(1),where

Ψn=C′nZ′nQXnZnCn

b2nrn
; and (c) for Kn

rn
→ 0, β̂2SLS,n

p→ β0.

Thus, in contrast to LIML and JIV E, 2SLS is inconsistent when the concentration parameter grows at

the same or slower rate than the number of instruments, and is consistent only when the instruments are strong

enough so that rn grows faster than Kn.11 Interestingly, Theorem 2.4(a) shows that for rn

Kn
→ 0, the 2SLS

estimator (while inconsistent) does not converge to a random limit, in contrast to the case when the number of

instruments is held fixed (i.e. see Staiger and Stock (1997)). Rather, the 2SLS converges in probability to a

nonrandom limit equaling the sum of β0 and the OLS bias term, Σ−1
V V σV u. This result is consistent with the

result given in Chao and Swanson (2001) based on sequential asymptotics, where it is shown that the variance of

the 2SLS estimator tends to zero as the number of instruments goes to infinity, but a non-zero bias remains.

(v) To better understand the discrepancy between asymptotic behavior of the 2SLS estimator vis-à-vis those

estimators which satisfy Assumption 4, it is helpful to focus discussion on the special case where J = 0 and

G = 1 (i.e., the case where there are no included exogenous regressors and only one endogenous regressor in the

structural equation). As mentioned above, an ω−class estimator can be viewed as an IV estimator where the

8Note that Assumption J does rule out exogenous regressors of the form ei = (0, ..., 0, 1, 0, ..., 0), where ei denotes the ith column

of In, but it does not rule out dummy variable regressors in general.

9Note also that Assumption 2(b) implies that, for n sufficiently large, the matrix Z
′
nZn is positive definite almost surely, so that(

Z
′
nZn

)−1
exists. It is in this sense that we say that the projection matrix PZn

= Zn

(
Z
′
nZn

)−1
Z
′
n is well-defined almost surely

for n sufficiently large.
10There are many other recent important papers that examine the JIVE estimator, and which are not discussed here. For example,

the reader is referred to Hahn and Newey (2003), and the references cited therein.
11Theorem 2.4 above is consistent with the results of Hahn and Kuersteiner (2002), who examine the asymptotic properties of the

2SLS estimator in the case where the number of instruments is fixed, bn = n−δ,and (in our notation) Z′nZn = Op (n) . In their case,

rn = n1−2δ; and hence, as long as δ < 1/2, the concentration parameter will grow and the 2SLS estimator will be weakly consistent.

Our results extend theirs and show that, more generally, it is the relative magnitudes of rn and Kn which determine whether the

2SLS estimator is consistent, and the rate at which the first-stage coefficient is allowed to shrink toward zero is important only in so

much that it affects rn.
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vector of observations on the instrumental variable is given by wn

(
Ω̃n

)
=

[
PZn − Ω̃nQZn

]
y2n, in the case where

J = 0 and G = 1. Now, under conventional asymptotic theory with strongly identified models, consistency of IV

estimation involves an asymptotic orthogonality condition of the form 1
nwn

(
Ω̃n

)′
un

p→ 0 as n →∞. When the

instruments are weak, however, y′2n

[
PZn −QZnΩ̃n

]
y2n, the “denominator” of the ω−class estimator, will grow at

a rate rn which may be substantially slower than n. As a result, a stronger (asymptotic) orthogonality condition

(OC, henceforth) of the form 1
rn

wn

(
Ω̃n

)′
un =

(
n
rn

)[
1
nwn

(
Ω̃n

)′
un

]
p→ 0 (or 1

nwn

(
Ω̃n

)′
un = op

(
rn

n

)
) is

required for consistency (i.e., 1
nwn

(
Ω̃n

)′
un must not only converge in probability to zero, but must be of an

order lower than rn

n in probability). Moreover, it is clear that restrictions are needed on the choice of the diagonal

matrix Ω̃n in order to ensure that OC is satisfied. Given the other assumptions above, OC holds for ω−class

estimators which satisfy Assumption 4. To see this, note first that, under Assumption 4, Ω̃n can be decomposed

as Ω̃n = Ωn +Ξn, where Ωn = diag (ω1,n, ...., ωn,n) and Ξn = diag (ξ1,n, ξ2,n, ...., ξn,n) . It follows that, after some

algebra, we can write

1
rn

wn

(
Ω̃n

)′
un =

1
rn

y′2n

[
PZn −QZnΩn

]
un − 1

rn
v′nQZnΞnun. (9)

Now, part (d) of Assumption 4 and the Cauchy-Schwartz inequality immediately imply that 1
rn

v′nQZnΞnun
p→ 0

as n →∞. Furthermore, the first term of expression (9) has expectation zero since E
[
y′2n

[
PZn −QZn

Ωn

]
un

]
=

E
(
b−1
n c′nZ ′nun

)
+ E

(
v′n

[
PZn −QZn

Ωn

]
un

)
= E

(
b−1
n c′nZ ′nun

)
+ σvuEZn

[
Kn −

n∑
i=1

ωi,n(1− hi,n)
]

= 0, where

the second equality follows from Assumption 4 (b). Part (c) of Assumption 4 then helps to ensure that

V ar
(

1
rn

y′2n

[
PZn −QZnΩn

]
un

)
→ 0 as n → ∞, so that the first term of expression (9) also converges to

zero asymptotically.

In contrast to ω−class estimators which satisfy Assumption 4, the 2SLS estimator is not as well-centered

in that it does not satisfy OC. Indeed, the 2SLS estimator takes Ω̃n to be the zero matrix; so that, for this

estimator, 1
rn

E

[
wn

(
Ω̃n

)′
un

]
= 1

rn
E [y′2nPZnun] = 1

rn
E [v′nPZnun] =

(
Kn

rn

)
σvu, which grows without bound

when instrument weakness is such that rn grows slower than Kn. This lack of centering, in turn, causes the bias

of the 2SLS estimator to increase as the number of instruments increases; and this bias problem becomes more

severe when the instruments are weak as measured by a slower rate of growth of the concentration parameter. In

consequence, as shown in theorem 2.4 above, the 2SLS estimator is inconsistent and has asymptotic bias equals

to that of the OLS estimator unless rn grows faster than Kn. This analysis is consistent with results reported

in some recent Monte Carlo studies, such as those of Staiger and Stock (1997), Chao and Swanson (2001), and

Hahn and Inoue (2002).

(vi) Within his framework, Bekker (1994) finds that, if Kn

n → α 6= 0 as n →∞, then 2SLS is inconsistent whereas

LIML is consistent. On the other hand, if Kn

n → 0, then both 2SLS and LIML are consistent. These results

7



are special cases of the results provided in Theorem 2.1, Corollary 2.3, and Theorem 2.4 if we assume rn = n, but

analysis from our more general framework shows that some of these results need not hold more generally in the

presence of weak instruments. In particular, the Bekker framework suggests that the 2SLS estimator is consistent

whenever Kn grows at a slower rate than n, but more generally the consistency of the 2SLS estimator depends

on the relative magnitude of rn vis-a-vis Kn, as n →∞, and not so much on the relative orders of magnitude of

n and Kn, unless of course rn = n. Hence, instruments may be sufficiently weak (so that rn is of a lower order

relative to both n and Kn) in which case 2SLS is inconsistent, even though Kn

n → 0 (see Theorem 2.4).

(vii) Interestingly, our analysis shows that ω-class estimators satisfying Assumption 4 may be consistent even

if weakness in the instruments is such that the concentration parameter grows at a rate slower than Kn, so

long as rn grows faster than
√

Kn as n → ∞. Thus, the consistency result given in Theorem 2.1 allows for

weaker instruments, as measured by the order of magnitude of the concentration parameter, than any previous

results establishing consistent estimation of IV estimators. All previous consistency results assume that the

concentration parameter grows at the same rate or at a faster rate than Kn.

(viii) For models that are weakly identified, our results suggest that it might be beneficial to use a lot of in-

struments, since even if each individual instrument is only weakly correlated with the endogenous regressors, the

combined effect of using a lot of them might nevertheless allow the concentration parameter to be sufficiently

large so that the precision with which we estimate is improved.12 However, this advice must be qualified in

two ways. First, it is well-known that the bias of the 2SLS estimator increases as the number of instruments

increases, so that the use of the 2SLS estimator with a large number of instruments is not recommended as a

way of dealing with weak identification. On the other hand, ω−class estimators which satisfy our Assumption

4 are sufficiently well-centered, so that their bias does not increase appreciably with the number of instruments.

Hence, when the instruments are weak, using an estimator such as LIML with a large number of instruments

may represent an empirical researcher’s best chance at reliable point estimation. Secondly, our analysis focuses

only on point estimation, whereas questions of set (or interval) estimation and hypothesis testing using a large

number of weak instruments require further study and are left for future research. With regard to set estimation

and hypothesis testing, a number of procedures have recently been shown by Staiger and Stock (1997), Wang

and Zivot (1998), Kleibergen (2002), and Moreira (2002) to give asymptotically valid confidence region under

both conventional and local-to-zero asymptotics. It would be of interest to also analyze the properties of these

procedures in a many, weak instruments framework such as the one studied here.
12Phillips and Han (2003) give a remarkable result showing that, within a many-instrument framework, totally irrelevant instruments

can be used to provide consistent estimation of the mean of a location model. However, their result does not generalize completely to

the case of an instrumental variables regression model since there is in general no way to consistently estimate the entire structural

coefficient vector, β, with totally irrelevant instruments, even if the number of such instruments is allowed to approach infinity.
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3 Appendix

For the sake of brevity, some proofs are not included, and the reader is referred to the working paper version

of this note (Chao and Swanson (2002)). We begin by providing four lemmas which are used to prove the main

results of the paper.

Lemma A1: Under Assumptions 1-4, suppose that rn →∞ as n →∞ such that
√

Kn

rn
→ 0 . Then, the following

statements are true, for n → ∞ : (a) V ′nMnun

rn

p→ 0; (b) V ′nMnVn

rn

p→ 0; (c) u′nMnun

rn

p→ 0; (d) C′nZ′nQXnun

bnrn

p→ 0; (e)
C′nZ′nQXnVn

bnrn

p→ 0; and (f) V ′nMnZnCn

bnrn

p→ 0, where Mn =
[(

PZn
− PXn

)−QZn
Ω̃nQXn

]
.

Proof of Lemma A1: Since each part of this lemma can be demonstrated by showing mean square convergence,

we will only prove part (a) to give a flavor of the mean square calculations involved. Proofs for parts (b)-(f) are

omitted to avoid redundancy. Details of these proofs can be found in an earlier version of our paper, Chao and

Swanson (2002). To show part (a), it suffices to show that, under the assumptions of the lemma, the gth element

of V ′nMnu
rn

converges in probability to zero, i.e. V (g)′
n Mnun

rn

p→ 0, where V
(g)
n , g ∈ {1, ..., G}, denotes an arbitrary

gth column of Vn. Note first that, given Assumption 4 and n sufficiently large, we can write

V
(g)′
n Mnu

rn
=

V
(g)′
n Mnun

rn
− V

(g)′
n QZn

ΞnQXnun

rn
, (10)

where Mn =
(
PZn

− PXn

)−QZn
ΩnQXn and where Ωn = diag (ω1,n, ω2,n, ...., ωn,n) and Ξn = diag (ξ1,n, ξ2,n, ...., ξn,n).

We will show that both of the terms on the right-hand side of (10) converge in probability to zero. To proceed,

note that to show that V (g)′
n Mnun

rn

p→ 0 as n → ∞, it suffices to show that 1
r2

n
E

(
V

(g)′
n Mnun

)2

→ 0. Next, let

mij,n denote the (i, j)th element of Mn and let vig denote the (i, g)th element of Vn, and we can calculate the

second moment of V (g)′
n Mnun

rn
as follows:

1
r2
n

E
(
V (g)′

n Mnun

)2

=
(

1
r2
n

)
E(v2

igu
2
i )EZn

[
n∑

i=1

m2
ii,n

]
+

(
1
r2
n

)
Σ(g,g)

V V σuuEZn




n∑

i=2

i−1∑

j=1

m2
ij,n +

n∑

j=2

j−1∑

i=1

m2
ij,n


 +

(
2 (σg

V u)2

r2
n

)
EZn




n∑

i=2

i−1∑

j=1

mii,n mjj,n +
n∑

i=2

i−1∑

j=1

mij,n mji,n




= An + Bn + Cn, say, (11)

where EZn
(·) denotes the expectation taken with respect to the probability measure of Zn and where the first

equality above follows from Assumption 3, parts (a) and (b). Dealing first with An, observe that with probability

one

9



(
1
r2
n

)
E(v2

igu
2
i )

[
n∑

i=1

m2
ii,n

]
≤

(
1
r2
n

)
E(v2

igu
2
i )Tr

[
M
′
nMn

]

≤
(

1
r2
n

)
E(v2

igu
2
i )

[
Kn +

∣∣Tr
(
ΩnQZn

ΩnQXn

)∣∣]

≤
(

1
r2
n

)
E(v2

igu
2
i )

[
Kn +

√
Tr

(
ΩnQZn

Ωn

)√
Tr

(
ΩnQXnΩn

)]

≤
(

1
r2
n

)
E(v2

igu
2
i )

[
Kn +

n∑

i=1

ω2
i,n

]
, (12)

where the third inequality above follows from the Cauchy-Schwarz inequality and where the fourth inequality

above follows from the fact that QZn
and QXn

are symmetric, idempotent matrices. To see the argument behind

the fourth inequality, take QZn
as an example, and note that we can write QZn

= BnΛnB′
n, where Bn is an

orthogonal matrix (i.e., BnB′
n = In = B′

nBn) whose columns are the orthonormal eigenvectors of QZn
and Λn

is a diagonal matrix with n − Kn − J one’s and Kn + J zero’s along the main diagonal; hence, it follows that

Tr
(
ΩnQZn

Ωn

)
= Tr

(
ΩnBnΛnB′

nΩn

) ≤ Tr
(
ΩnBnB′

nΩn

)
= Tr

(
Ω

2

n

)
=

∑n
i=1 ω2

i,n. By a similar argument,

Tr
(
ΩnQXnΩn

) ≤ ∑n
i=1 ω2

i,n. Now, note that since the bound given by (12) holds with probability one, we

deduce that

An =
(

1
r2
n

)
E(v2

igu
2
i )EZn

[
n∑

i=1

m2
ii,n

]
≤

(
1
r2
n

)
E(v2

igu
2
i )

[
Kn + EZn

(
n∑

i=1

ω2
i,n

)]
= O

(
Kn/r2

n

)
;

(13)

where the last equality above follows from Assumption 4(c). Hence, An → 0 as n →∞ if
√

Kn

rn
→ 0 as n →∞.

Turning our attention next to the term Bn, we note that similar to the argument given for An above, we have

that with probability one

(
1
r2
n

)
Σ(g,g)

V V σuu




n∑

i=2

i−1∑

j=1

m2
ij,n +

n∑

j=2

j−1∑

i=1

m2
ij,n




≤
(

1
r2
n

)
Σ(g,g)

V V σuuTr
[
M
′
nMn

]
≤

(
1
r2
n

)
σ

(g,g)
V V σuu

[
Kn +

n∑

i=1

ω2
i,n

]
. (14)

It follows again that since the bound given in (14) holds with probability one, we deduce that

Bn =
(

1
r2
n

)
Σ(g,g)

V V σuuEZn




n∑

i=2

i−1∑

j=1

m2
ij,n +

n∑

j=2

j−1∑

i=1

m2
ij,n




≤
(

1
r2
n

)
Σ(g,g)

V V σuu

[
Kn + EZn

(
n∑

i=1

ω2
i,n

)]
= O

(
Kn/r2

n

)
, (15)

so that Bn → 0 as n →∞ if
√

Kn

rn
→ 0 as n →∞.
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Finally, turning to the term Cn, we note that

2
(

1
r2
n

)
(σg

V u)2



n∑

i=2

i−1∑

j=1

mii,n mjj,n +
n∑

i=2

i−1∑

j=1

mij,n mji,n




=
(

σg
V u

rn

)2
{

Tr
[
M

2

n

]
+

(
Tr

[
Mn

])2 − 2
n∑

i=1

m2
ii

}
, (16)

so that with probability one

2
(

σg
V u

rn

)2
∣∣∣∣∣∣




n∑

i=2

i−1∑

j=1

mii,n mjj,n +
n∑

i=2

i−1∑

j=1

mij,n mji,n




∣∣∣∣∣∣

≤
(

σg
V u

rn

)2 [
Kn +

∣∣Tr
(
QZn

ΩnQZn
ΩnQXn

)∣∣] + 2
(

σg
V u

rn

)2
∣∣∣∣∣Kn +

n∑

i=1

ω2
i,n

∣∣∣∣∣

≤
(

σg
V u

rn

)2

Kn +
(

σg
V u

rn

)2

Tr
(
Ω

2

n

)
+ 2

(
σg

V u

rn

)2
∣∣∣∣∣Kn +

n∑

i=1

ω2
i,n

∣∣∣∣∣

= 3
(

σg
V u

rn

)2
[
Kn +

n∑

i=1

ω2
i,n

]
, (17)

where the first equality above makes use of the fact that under Assumption 4(b)

Tr
(
PZn

− PXn −QZn
ΩnQXn

)
= Kn − Tr

(
QZn

Ωn

)
= 0 a.s.In addition, the second inequality in (17) follows in

part from the Cauchy-Schwarz inequality and in part from argument similar to that given subsequent to expression

(12) above. Since the upper bound given in (17) above holds almost surely, it follows that

|Cn| = 2
(

σg
V u

rn

)2
∣∣∣∣∣∣
EZn




n∑

i=2

i−1∑

j=1

mii,n mjj,n +
n∑

i=2

i−1∑

j=1

mij,n mji,n




∣∣∣∣∣∣

≤ 3
(

σg
V u

rn

)2
[
Kn +

n∑

i=1

E
(
ω2

i,n

)
]

= O
(
Kn/r2

n

)
, (18)

so that Cn → 0 as n →∞ if
√

Kn

rn
→ 0 as n →∞. It follows from (13), (15), and (18) that 1

r2
n
E

(
V

(g)′
n Mnun

)2

→ 0,

as n →∞ under the condition that
√

Kn

rn
→ 0 as n →∞,from which it follows immediately as a direct consequence

of Chebyshev’s inequality that V (g)′
n Mnun

rn

p→ 0. Next, we show that, under the assumptions of the lemma,
V (g)′

n QZn
ΞnQXnun

rn

p→ 0. To show this, note that

∣∣∣∣∣
V

(g)′
n QZn

ΞnQXnun

rn

∣∣∣∣∣ ≤
√

V
(g)′
n QZn

V
(g)
n

rn

√
u′nQXnΞ2

nQXnun

rn

≤
[(

n

rn

)
sup

i
|ξi,n|

] √
V

(g)′
n QZn

V
(g)
n

n

√
u′nQXnun

n
, (19)

where the first inequality above follows from Cauchy-Schwarz. Next, note that standard arguments yield u′nQXnun

n

p→
σuu < ∞, and, from part (e) of lemma A2 given below, we obtain

V (g)′
n QZn

V (g)
n

n

p→ Σ(g,g)
V V (1− α) < ∞, where Σ(g,g)

V V

11



denotes the (g, g)th element of ΣV V . Moreover, it follows from assumption 4(d) that
(

n
rn

)
sup

i
|ξi,n| p→ 0. The

Slutsky Theorem then implies that
V (g)′

n QZn
ΞnQXnun

rn

p→ 0, as n, Kn, rn → ∞ such that Kn

n → α and
√

Kn

rn
→ 0.

The desired result follows directly in light of equation (10). ¤

Lemma A2: Under Assumptions 2-3, suppose that rn → ∞ as n → ∞ such that
√

Kn

rn
→ 0. Define M∗

n =
[(

PZn
− PXn

)−
(

Kn

n−Kn−J

)
QZn

]
; then, the following statements are true, as n → ∞ : (a) V ′nM∗

nun

rn

p→ 0; (b)
V ′nM∗

nVn

rn

p→ 0; (c) u′nM∗
nun

rn

p→ 0; (d)
V ′nQZn

un

n

p→ σV u (1− α) ; (e)
V ′nQZn

Vn

n

p→ ΣV V (1− α) ; and (f)
u′nQZn

un

n

p→
σuu (1− α) .

Proof of Lemma A2: For the sake of brevity, the proof of this lemma is omitted. Interested readers are referred

to Chao and Swanson (2002) for a proof of this result.

Lemma A3: Under Assumptions 2-3, the following statements are true, as n →∞ : (a)
V ′n(PZn

−PXn)un

Kn

p→ σV u;

and (b)
V ′n(PZn

−PXn)Vn

Kn

p→ ΣV V .

Proof of Lemma A3: For the sake of brevity, the proof of this lemma is omitted. Interested readers are referred

to Chao and Swanson (2002) for a proof of this result.

Lemma A4 : Under Assumptions 1-3, let λ̂LIML,n be the smallest root of the determinantal equation given by

(6). Suppose that rn →∞, as n →∞, such that
√

Kn

rn
→ 0. Then, λ̂LIML,n = n−J

n−Kn−J + ξn,where ξn = op

(
rn

n

)
.

Proof of Lemma A4: To proceed, define Yn = [y1n, Y2n] and Υ =
(

1 0
−β0 IG

)
, and note that the smallest

root of the determinantal equation (6) is the same as the smallest root of the equation

det
{
Υ′Y ′

nQXnYnΥ− λnΥ′Y ′
nQZn

YnΥ
}

= 0, (20)

where the equivalence follows from the fact that

det
{
Υ′Y ′

nQXnYnΥ− λnΥ′Y ′
nQZn

YnΥ
}

=

= det {Υ}det
{
Y ′

nQXnYn − λnY ′
nQZn

Yn

}
det {Υ}

= det
{
Y ′

nQXnYn − λnY ′
nQZn

Yn

}
,

given that det {Υ} = 1. Note also that the inverses, which appear in the projection matrices QXn and QZn
in

equation (20), are all well-defined with probability one for n sufficiently large in light of Assumption 2. Moreover,

it can be shown, by straightforward but tedious calculations, that λ̂LIML,n, the smallest root of the determinantal

equation (20), can be given the representation λ̂LIML,n = n−J
n−Kn−J + τ̂LIML,n

(
rn

n

)
, where τ̂LIML,n is the smallest

12



root of the determinantal equation

det

{(
u′nM∗

nun

rn

u′nQXnZnCn

bnrn
+ u′nM∗

nVn

rn
C′nZ′nQXnun

bnrn
+ V ′nM∗

nun

rn

C′nZ′nQXnZnCn

b2nrn
+ C′nZ′nQXnVn

bnrn
+ V ′nQXnZnCn

bnrn
+ V ′nM∗

nVn

rn

)

− τn

(
u′nQZn

un

n

u′nQZn
Vn

n
V ′nQZn

un

n

V ′nQZn
Vn

n

)}
= 0, (21)

with M∗
n =

[(
PZn

− PXn

)−
(

Kn

n−Kn−J

)
QZn

]
. It then follows from Assumption 2(c), parts (d) and (e) of lemma

A1 and parts (a)-(f) of Lemma A2 and by continuity that as n → ∞, the difference between τ̂LIML,n and the

smallest root of

det
{(

0 0
0 Ψn

)
− τn

(
σuu (1− α) σ′V u (1− α)
σV u (1− α) ΣV V (1− α)

)}
= 0 (22)

goes to zero in probability as n → ∞. Since the smallest root of (22) is obviously zero, we deduce immediately

that τ̂LIML,n = op(1), from which it follows that λ̂LIML,n = n−J
n−Kn−J + op

(
rn

n

)
, as required. ¤

Proof of Theorem 2.1: To proceed, note first that, given Assumption 2(b), the inverses which appear in

the projection matrices PXn , PZn
, QXn , and QZn

in the expression Mn =
(
PZn

− PXn

) − QZn
Ω̃nQXn are all

well-defined with probability one for n sufficiently large. Hence, for n sufficiently large, we can write

Y ′
2nMnY2n

rn
=

C ′nZ ′nQXnZnCn

b2
nrn

+
C ′nZ ′nQXnVn

bnrn
+

V ′
nMnZnCn

bnrn
+

V ′
nMnVn

rn
, (23)

Now, it follows from Assumption 2(c) and parts (b), (e), and (f) of lemma A1 that Y ′2nMnY2n

rn
= Ψn + op(1),where

Ψn = b−2
n r−1

n C ′nZ ′nQXnZnCn is positive definite almost surely for n sufficiently large given Assumption 2(c).

Moreover, for n sufficiently large, we can write Y ′2Mnun

rn
= C′nZ′nQXnun

bnrn
+ V ′nMnun

rn
, so that Y ′2nMnun

rn

p→ 0, as

n →∞,given parts (a) and (d) of lemma A1. Next, note that we can write

β̂ω,n − β0 =

([
Y ′

2nMnY2n

rn

]+ [
Y ′

2nMnY2n

rn

]
− IG

)
β0 +

[
Y ′

2nMnY2n

rn

]+ [
Y ′

2nMnun

rn

]
. (24)

It follows by Proposition 2.30 of White (1999) and the Slutsky’s theorem that
[

Y ′2nMnY2n

rn

]+ [
Y ′2nMnY2n

rn

]
− IG

p→ 0

and that
[

Y ′2nMnY2n

rn

]+ [
Y ′2nMnun

rn

]
p→ 0,from which we deduce immediately that β̂ω,n

p→ β0, as required. ¤

Proof of Corollary 2.3: To show part (a), we verify that LIML satisfies Assumption 4. To proceed, note that,

for the case of LIML, we have ω̃i,n = ω̃n = λ̂LIML,n − 1 for i = 1, ..., n. Now, set ωi,n = ωn =
(

n−J
n−Kn−J

)
− 1 =

Kn

n−Kn−J , for all i. Observe that lim
n→∞

ln = lim
n→∞

(
sup

1≤i≤n
|ωi,n|

)
= lim

n→∞

(
Kn

n−Kn−J

)
< ∞, since we assume that

Kn

n → α for 0 ≤ α < 1. Hence, Assumption 4(a) is satisfied. Next, observe that, in this case,
n∑

i=1

ωi,n (1− hi,n) =
(

Kn

n−Kn−J

) n∑
i=1

(1− hi,n) =
(

Kn

n−Kn−J

)
(n−Kn − J) = Kn, so that Assumption 4(b) is satisfied. Furthermore,

note that, in this case,
n∑

i=1

E
(
ω2

i,n

)
= Kn

{
Knn

(n−Kn−J)2

}
= O (Kn) ,since we assume that Kn = O(n). Thus,
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Assumption 4(c) is also satisfied. Finally, note that, by construction, ξi,n = ξn = ω̃n − ωn, where we have

dropped the subscript i on the right-hand side because, in the case of LIML, ω does not vary with i. Given that

we have set ωn = Kn

n−Kn−J , Lemma A4 implies that sup
i
|ξi,n| = |ξn| = |ω̃n − ωn| =

∣∣∣λ̂LIML,n − 1− Kn

n−Kn−J

∣∣∣ =
∣∣∣λ̂LIML,n − n−J

n−Kn−J

∣∣∣ = op

(
rn

n

)
,so that Assumption 4(d) is satisfied as well.

To show part (b), we first compare expression (8) with expression (3) or expression (4) and observe that JIV E

can also be obtained as a special case of the ω-class, by setting ωi,n =
(

1
1−hi,n

)
, for i = 1, ..., n or, alternatively, by

setting ω̃i,n =
(

hi,n

1−hi,n

)
, for i = 1, ..., n. Given Assumption J, we can then verify that JIV E satisfies Assumption

4. To proceed, set ωi,n =
[
hi,n − J

n

] (
1

1−hi,n

)
for i = 1, ..., n; so that, by construction, ξi,n = J

n

(
1

1−hi,n

)
. Now,

observe that, in this case with probability one, ln = sup
1≤i≤n

|ωi,n| ≤
[
h + J

n

] (
1

1−h

)
for all n sufficiently large, from

which it follows that lim
n→∞

ln ≤
(

h
1−h

)
< ∞ a.s., so that Assumption 4(a) is satisfied. Next, observe that in

this case,
n∑

i=1

ωi,n (1− hi,n) =
n∑

i=1

[
hi,n − J

n

] (
1

1−hi,n

)
(1− hi,n) =

n∑
i=1

[
hi,n − J

n

]
= Kn, so that Assumption 4(b)

is satisfied. Moreover:

n∑

i=1

E
(
ω2

i,n

) ≤
(

1
1− h

)2

E

{
n∑

i=1

[
h2

i,n − 2hi,n
J

n
+

J2

n2

]}

≤
(

1
1− h

)2 [
Kn + J − 2

(Kn + J)J

n
+

J2

n

]
= O (Kn) , (25)

where the second inequality follows from the fact that, even if we ignore Assumption J, it must be that 0 ≤ hi,n ≤ 1;

and, hence,
n∑

i=1

h2
i,n ≤

n∑
i=1

hi,n = Kn + J. It follows that Assumption 4(c) is also satisfied. Finally, note that

sup
1≤i≤n

|ξi,n| = sup
1≤i≤n

J
n

(
1

1−hi,n

)
≤ J

n

(
1

1−h

)
= O(n−1), where the inequality holds by Assumption J, almost surely.

Hence, Assumption 4(d) is satisfied as well. ¤

Proof of Theorem 2.4: To show part (a), note first that, for n sufficiently large, the inverses which appear in

the projection matrices PZn
, PXn , and QXn are all well-defined with probability one, so we can write

Y ′
2n

(
PZn

− PXn

)
Y2n

Kn
=

(
rn

Kn

)
C ′nZ ′nQXnZnCn

b2
nrn

+
(

rn

Kn

)
C ′nZ ′nQXnVn

bnrn

+
(

rn

Kn

)
V ′

nQXnZnCn

bnrn
+

V ′
n

(
PZn

− PXn

)
Vn

Kn
. (26)

Now, since it is assumed in part (a) that rn

Kn
→ 0 as n → ∞, it follows from Assumption 2(c) and Lemma

A1 part (e) and from Lemma A3 part (b) that
Y ′2n(PZn

−PXn)Y2n

Kn

p→ ΣV V ,where ΣV V is positive definite by

Assumption 3(b) and is, thus, nonsingular. Moreover, for n sufficiently large, we can write
Y ′2n(PZn

−PXn)un

Kn
=

(
rn

Kn

)
C′nZ′nQXnun

bnrn
+

V ′n(PZn
−PXn)un

Kn
, so that

Y ′2n(PZn
−PXn)un

Kn

p→ σV u, as n → ∞, by Lemma A1 part (d) and

14



Lemma A3 part (a). Next, write

β̂2SLS,n − β0 =




[
Y ′

2n

(
PZn

− PXn

)
Y2n

Kn

]+ [
Y ′

2n

(
PZn

− PXn

)
Y2n

Kn

]
− IG


β0

+

[
Y ′

2n

(
PZn

− PXn

)
Y2n

Kn

]+ [
Y ′

2n

(
PZn

− PXn

)
un

Kn

]
, (27)

Since the Slutsky’s theorem implies that
[

Y ′
2n

(
PZn

− PXn

)
Y2n

Kn

]+ [
Y ′

2n

(
PZn

− PXn

)
Y2n

Kn

]
− IG

p→ 0

and [
Y ′

2n

(
PZn

− PXn

)
Y2n

Kn

]+ [
Y ′

2n

(
PZn

− PXn

)
un

Kn

]
p→ Σ−1

V V σV u,

it follows immediately by a further application of the Slutsky’s theorem that β̂2SLS,n
p→ β0+Σ−1

V V σV u, as required.

To show part (b) note that since in this case rn

Kn
→ δ, for some δ ∈ (0,∞), as n →∞ , it follows directly from

Assumption 2(c) and Lemma A1 part (e) and from Lemma A3 part (b) that
Y ′2n(PZn

−PXn)Y2n

Kn
= (δΨn + ΣV V ) +

op(1),where Ψn = b−2
n r−1

n C ′nZ ′nQXnZnCn is positive definite almost surely for n sufficiently large as a result

of Assumption 2(c). In addition, from part (d) of Lemma A1 and part (a) of Lemma A3, we deduce that
Y ′2n(PZn

−PXn)un

Kn

p→ σV u.The desired result, thus, follows from Proposition 2.30 of White (1999).

Part (c) can be shown using arguments similar to parts (a) and (b) above, except that here we standardize

both Y ′
2n

(
PZn

− PXn

)
Y2n and Y ′

2n

(
PZn

− PXn

)
un by rn instead of Kn. In this case, it is easy to show that

Y ′2n(PZn
−PXn)Y2n

rn
= Ψn + op(1),where Ψn is positive definite almost surely for n sufficiently large, and that

Y ′2n(PZn
−PXn)un

rn

p→ 0, as n → ∞. Weak consistency of β̂2SLS,n then follows as a consequence of the Slutsky

Theorem. Please see Chao and Swanson (2002) for details. ¤
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