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Abstract

We take as a starting point the existence of a joint distribution implied by different dynamic stochas-
tic general equilibrium (DSGE) models, all of which are potentially misspecified. Our objective is
to compare “true” joint distributions with ones generated by given DSGEs. This is accomplished
via the construction of a new tool for comparing the empirical joint distribution of historical time
series with the empirical distribution of simulated time series. The tool draws on recent advances
in the theory of the bootstrap, Kolmogorov type testing, and other work on the evaluation of DS-
GEs, aimed at comparing the second order properties of historical and simulated time series. We
begin by fixing a given model as the “benchmark” model, against which all “alternative” mod-
els are to be compared. Our comparison is done using a distributional generalization of White’s
(2000) reality check. In particular, we test whether at least one of the alternative models provides
a more “accurate” approximation to the true cumulative distribution than does the benchmark
model. Accuracy is measured in terms of distributional square error. As the data are simulated
using estimated parameters (as well as previously calibrated parameters), the limiting distribution
of the test statistic is a Gaussian process with a covariance kernel that reflects the contribution
of parameter estimation error. Thus, the limiting distribution is not nuisance parameter free, and
critical values cannot be tabulated. In order to address this issue, we show the validity of two
versions of the block bootstrap in our context. An illustrative example is also given, in which the
testing approach is applied to a real business cycle model. It is shown that alternative versions of
the model in which calibrated parameters are “allowed to vary slightly perform equally well. On
the other hand, there are stark differences between models when the shocks driving the models are
assigned non-plausible variances and/or distributional assumptions.
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1 Introduction

In this paper, we merge recent econometric advances in bootstrapping time series and Kol-
mogorov type testing with recent developments in the evaluation of dynamic stochastic
general equilibrium (DSGE) models. This is accomplished via the construction of a new tool
for comparing the empirical joint distribution of historical time series with the empirical
distribution of simulated time series.

Since the seminal papers by Kydland and Prescott (1982), Long and Plosser (1983) and
King, Plosser and Rebelo (KPR: 1988a,b), there has been substantial attention given to the
problem of reconciling the dynamic properties of data simulated from real business cycle
(RBC) models with the historical record. A partial list of advances in this area includes:
(i) the examination of how RBC simulated data reproduce the covariance and autocorrela-
tion functions of actual time series (see e.g. Watson (1993)); (i) the comparison of RBC
and historical spectral densities (see e.g. Diebold, Ohanian and Berkowitz (1998)); (iii)
the evaluation of the difference between the second order time series properties of vector
autoregression (VAR) predictions and out-of-sample predictions from RBC models (see e.g.
Schmitt-Grohe (2000)); (iv) the construction of Bayesian odds ratios for comparing RBC
models with unrestricted VAR models (see e.g. Chang, Gomes and Schorfheide (2002), and
Fernandez-Villaverde (2002)); (v) the comparison of historical and simulated data impulse
response functions (see e.g. Cogley and Nason (1995)); and (vi) the formulation of “reality”
bounds for measuring how close the density of an RBC model is to the density associated
with an unrestricted VAR model (see e.g. Bierens and Swanson (2000)). The papers listed
above are mainly concerned with the issue of model evaluation. Another strand of the lit-
erature is instead mainly concerned with providing alternatives to calibration (see e.g. De
Jong, Ingram and Whiteman (2000) for a Bayesian perspective in which prior distributions
are constructed around calibrated structural parameters). In most of the above papers, the
issue of singularity (i.e. when the number of variables in the model is larger than the number
of shocks) is circumvented by considering only a subset. of variables, for which a nondegen-

erate distribution exists.! Our work is closest to the first strand of literature. In particular,

'A novel alternative to calibration is proposed by Bierens (2003). He solves the singularity problem
via convolution of the singular distribution of an RBC model with a non singular distribution. The same
convolution is also applied to the associated non singular distribution of the econometric model, which is an



our paper attempts to add to the model evaluation literature by introducing a measure of the
“goodness of fit” of RBC models that is based on applying standard notions of Kolmogorov
distance and drawing on advances in the theory of the bootstrap.?

The papers cited above primarily address the case in which the ob jective is to test for the
correct specification of some aspects of a given candidate model. In the case of RBC models,
however, it is usually crucial to account for the fact that all models are approximations, and
so are misspecified. This is the reason why the testing procedure that we develop allows
us to evaluate the relative degree of misspecification of a given group of competing models
based on the comparison of empirical distribution functions of historical data with those
of RBC simulated data. The RBC models of interest in our context are simulated using
both calibrated parameters (with calibrated values suggested by KPR, for example), and
parameters estimated by using actual data, along the lines of Christiano (1988) and Chris-
tiano and Eichenbaum (1992). One important feature of our approach is that we begin by
fixing a given RBC model as the “benchmark” model, against which all “alternative” mod-
els are compared. The comparison is done using a distributional generalization of White’s
(2000) reality check, which assesses whether at least one of the alternative models provides
a more “accurate” approximation to the true cumulative distribution than does the bench-
mark model. One key element of our approach is that we measure “accuracy” in terms of
square error, as in Corradi and Swanson (2002). We also outline the relationship between our
measure of accuracy and the Kullback-Leibler Information Criterion (KLIC). DSGE model
evaluation based on KLIC measures of accuracy is considered by Fernandez-Villaverde and
Rubio-Ramirez (2001), and Chan, Gomes and Schorfheide (2002).

As mentioned above, our statistic is based on comparison of historical and simulated dis-
tribufions. The limiting distribution of the statistic is a functional over a Gaussian process
with covariance kernel that reflects the contribution of parameter estimation error. This

limiting distribution is thus not nuisance parameter free, and critical values cannot be tab-

unrestricted VAR, Parameters are then estimated via the maximization of an information criterion which
gives the probability that the distribution of the convoluted VAR model is generated by the distribution of
the convoluted RBC model, conditional on the data.

%In recent years, Kolmogorov type distance measures for testing distributional equality have been extended
to the case of dependent observations and/or parameter estimation error (see e.g. Andrews (1997), Bai
(2003)). Tests of this sort generally have limiting distributions that are not nuisance parameter free, and
critical values cannot be tabulated. Papers addressing this issue in the bootstrap literature include Andrews

(2002), Goncalves and White (2002), Hall and Horowitz (1996), Horowitz (2002), Inoue and Shintani (2003),
Naik-Nimbalkar and Rajarshi (1994).



ulated. In order to obtain valid asymptotic critical values, we suggest two block bootstrap
procedures, each of which depends on the relative rate of growth of the actual and simulated
samuple size. In addition, we circumvent the issue of singularity by considering a subset of
variables (and their lagged values) for which a non singular distribution exists.

Our testing framework can be used to address questions of the following sort: (i) For a
given RBC model, what is the relative usefulness of different sets of calibrated parameters for
mimicking different dynamic features of output growth? (ii) Given a fixed set of calibrated
parameters, what is the relative performance of RBC models driven by shocks with a different
marginal distribution?

In order to illustrate how the proposed testing framework, we consider the RBC model
of Christiano (1988)), characterized by flexible labor supply, capital depreciation, and two
shocks - a permanent shock affecting technology and a transitory shock affecting preferences.
Data are then simulated and various versions of the model are compared, in terms of their
ability to reproduce the joint distribution of current output, lagged output, current hours
worked, and lagged hours worked. The illustrations suggest that the methodology outlined
in this paper provides a useful additional tool for examining the relevance of different RBC
models vis a vis how well competing models capture the dynamic structural characteristics
of the historical record.

The rest of the paper is organized as follows. Section 2 outlines the testing framework,
describes the test statistic, and shows that the limiting distribution of the statistic is a
zero mean Gaussian process with a covariance kernel that reflects both the contribution
of parameter estimation error and the time series structure of the data. This is all done
under the assumption that all models may be misspecified. In Section 3, the construction
of bootstrap critical values is outlined, and the first order validity of the block bootstrap
is established under two different assumptions with respect to the limit of the ratio of the
actual sample size and the simulated sample period. An empirical illustration is given in

Section 4, and concluding remarks are gathered in Section 5. All proofs are collected in the

appendix.



2 Testing Framework

Our objective is to compare the joint distribution of historical variables with the joint dis-
tribution of the simulated variables. Hereafter, for sake of simplicity, but without loss of
generality, we limit our attention to the joint empirical distribution of (actual and model-
based) current and previous period output. In principle, if we have a model driven by
k shocks, then we can consider the joint CDF of k variables plus an arbitrary (but fi-
nite) number of lags. Consider m RBC models, and set model 1 as the benchmark model.
Let Alog X;, t = 1,...,T denote actual historical output (growth rates) and let Alog X; ,,
j=1,..,mand n = 1,..., 5, denote the output series simulated under model j, where S
denotes the simulated sample length. As mentioned above, some parameters are assumed
to be kept fixed (at their calibrated values), while other parameters are estimated. Along
these lines, denote Alog ijn(éij), n=1..,8 j=1,.,m to be a sample of length S
drawn (simulated) from model j and evaluated at the parameters estimated under model
J, where parameter estimation is done using the T available historical observations.® Now,
let Y, = (Alog X;,Alog X, ;) and Y;,(0,7) = (Alog X;,(0,7), Alog X; . 1(0;7)). Also,
let Fo(u;fp) denote the distribution of Y; evaluated at uw and Fj(u; 9;) denote the distri-
bution of Y]n(Qj), where 9} is the probability limit of éij, taken as T — oo, and where
u € U C R?, possibly unbounded. Accuracy is measured in terms of the squared (approxi-
mation) error associated with model j, j = 1,...,m, defined as a (weighted) average over U

of ((Fj(u; 9;) — Fy(u; 90))2>. Thus, the rule is to choose Model 1 over Model 2, say, if

/U <<F1(U; 07) — Fy(u; 90)>2> Hlu)du < /U ((FQ(U; 05) — Fo(u; 90)>2) b(u)du,

where [;; ¢(u)du = 1 and ¢(u) > 0 for all u € U C R?. For any evaluation point, this measure
defines a norm and is a typical goodness of fit measure.

Another measure of distributional accuracy available in the literature (see e.g. Vuong

(1989)), is the KLIC, according to which we should choose Model 1 over Model 2 if E(log f,(Y5; 6.

log f2(Y3; 9;)) > 0. The KLIC thus chooses the model which on average gives higher proba-

3The reason why we use differences in the above is that the RBC model in our empirical illustration is
characterized by permanent shocks to technology. In general, we require both the actual and the simulated
series to be (strictly) stationary and mixing, and hence differencing may or may not be appropriate.

4Recently, Giacomini (2002) proposes an extension which uses a weighted (over Y;) version of the KLIC,

and Kitamura (2002) suggests a generalization for choosing among models that satisfy some conditional
moment restrictions.



bility to events which have actually occurred. Also, it leads to simple Likelihood Ratio tests.
Our approach is an alternative to the KLIC that should be viewed as complementary in
some cases, and preferred in others. For example, if we are interested in measuring accuracy
for a given confidence interval, this cannot be done in an obvious manner using the KLIC,
while it can easily done using our measure. Furthermore, we often do not have an explicit
form for the density implied by the various models we are comparing. Of course, model
comparison could then be done using kernel density estimators, at the cost of nonparametric

convergence rates.

Turning again to our main discussion, note that within our context, the hypotheses of

interest are:

Hy - ;max /U <(F0(u;00) — Fi(y; 9{))2 — (Fo(u) — Fi(u; 9;))2) d(u)du <0

~~~~~

: _ oMY Z (Fof) — F (00
e o [ ((Fotw) = A 0)” = (Ro(w) = F(u:0))”) d(u)du >0
Thus, under Hy, no model can provide a better approximation than model 1. If interest
focuses on confidence intervals or on testing the null of equal accuracy of two distribution

models (analogous to the pairwise conditional mean comparison setup of Diebold and Mar-

iano (1995)), then analogous hypotheses can be constructed by replacing terms of the type
2
Ju <(F0(u; 0o) — Fi(u; HI)) ) ¢(u)du with terms such a

2
((Fl(ﬂ; 0}) — Fy(u; 0{)) — (Fo(w; 6) — Folu; 90))) or by simply removing max;-s _, from
the statement of the hypotheses, respectively. In order to test Hy versus Hy, the relevant
test statistic is VT Zr g, where:

Zp,s = max Zj7f1|,5(u)¢(u)du, (1)

and

1 13 - ’

Zurst) = 33 (1050} = 5 1K) <) )
t=1 n=1

1 ?

s R
-7 tz <1{Yt <uj - % Zl HYjn(l)r) < “}> !

=1

with (%\T an estimator of 9; that satisfies Assumption 2 below. From equation (1), it is

immediate to see that the computational burden of our procedure increases with the di-

(24



mensionality of U (i.e. as the number of variables and their lags increases).> Unfortunately,
Monte Carlo integration techniques, such as importance sampling or one of its accelerated
versions (see e.g. Danielsson and Richard (1993)) are not applicable in our context. This
is because Z;rs(u)¢(u) is not a joint density and can be either negative or positive. An
alternative possibility would be to compute the statistic ZT7 § = MaX;—2 _m % Z?: k 25T, s(Yi),
where k denotes the highest lag order. If Y; were an iid vector-valued process, then VT Zrs
and VT Zr ¢ would be asymptotically equivalent, as shown in Andrews (1997). However, in
our case, Y; is a dependent process. Thus, the argument used in Andrews’ proof (based on
his Lemma A6) does not apply. Nevertheless, as T gets large, (Y, Yiy1,...Y7) will become
a dense subset in U, and so we conjecture that /T Zrg and VT ZT75 are asymptotically
equivalent even in the dependent case. In the sequel, we require the following assumptions:
Assumption A1l: Y, is stationary-ergodic f—mixing processes with size —4, for j =1, ..., m.
6
Assumption A2: For j = 1,..,m : \/T(@T «9}-) = Aﬂ@})ﬁ >T, qj(Yt,Qj») + op(1),
where % S, q(Y, 9;) satisfies a central limit theorem and Aj(QJT-) is positive definite.”
Assumption A3: For j = 1,..,m : (i) V§; € O,, with ©; a compact set in P/ and
Y;n(6;) is a strictly stationary ergodic F—mixing process with size —4, where p; is the
number of estimated parameters in model j; (ii) Y;,(6;) is continuously differentiable in the
interior of Oy, for n = 1,...,.5; (iii) Vg,Y;n(0;) is 2r—dominated in O, uniformly in n for
r > 2% (iv) Fj(u;H;) is twice continuously differentiable in u; and (v) for at least one j,
Fi(u; 9;) + Fy(u;0}) for u € U, where U is a subset of U of non-zero Lebesgue measure.
A2 requires that VT (5ij ~ 9;) is asymptotically normal with a positive definite covari-
ance matrix. Thus, given the size condition in A1, A2 is satisfied by OLS, NLS, and QMLE,

under mild conditions, such as finite (4 4+ 6)th moments and unique identifiability. It is satis-

SFor example, if U is a two-dimensional subset of ®2, and ¢ is uniform on U, then

1 NI Ny
Zrs = max Z; Ui 5).
TS = N e E 1,5(ui ;)
14¥2 i=1 =1

63-mixing is a memory requirement stronger than a—mixing, but weaker than (uniform) ¢—mixing,.
"Given the size condition in Al, A2 is satisfied by the LS, NLS, QMLE estimator, under mild conditions,
such as finite (4 + §)th moments and unique identifiability.

8This means that Vo, Y;,(0;)] < Djn, with sup, E(Dj’n) < o (see e.g. Gallant and White (1988),
p-33).



fied for the GMM-type estimator of Christiano and Eichenbaum (1992) and the estimator of
Bierens (2003). With regard to A3(i), whenever the production function is a Cobb-Douglas
type, and the shock to technology follows a unit root process in logs, then output follows a
unit root process in logs, and the growth rate is stationary. This is not necessarily true in
the case of more general CES production functions. A3(ii) need only hold for estimated pa-
rameters. When solving RBC models, we often obtain a (linear) ARMA representations for
the variables of interest, in terms of final (or reduced form) parameters. Therefore, because
of linearity, A3(ii) holds straightforwardly for the final parameters. Hence, if the structural
(deep) parameters are smooth functions of the final parameters, as is often the case A3(ii)
is satisfied. A3(iii) is a standard assumption (see e.g. Duffie and Singleton (1993)), and
A3(iv) is always satisfied for linearized solutions of RBC models. Finally, A3(v) ensures
that at least one competing model is nonnested with the benchmark model. This in turn
ensures that the covariance matrix of the statistic is positive semi-definite. Hereafter, for
notational simplicity, let F;(u) = F;(u; 9;)

Proposition 1: Let Assumptions A1-A3 hold. (i) Assume that as 7,5 — oo : T/S — 6,
0 < 6 < oo, then:

.....

where Z;(u) is a zero mean Gaussian process with covariance kernel:

Kj(u,1') = 4 (Fi(u) = F5(w) Cyy(u, ) (FL(W) = Fy(u)) + dgugs, (w8 Cyy (0, Y, (o)

Hpr, (w)6Cyy (w0 ) i, (W) + dpup (u)pg, g1 (w) A(G})Cry AO]) o, (u Wiy, g (u)

Fdper, () o1 () A Cig A}, ()1, g1 () + 8, ()6Cy () (Fu(w) — ()

=8, (u)6Cy,y, (u, ) (Frfw) = F5(u)) + 8par (wpry, g1 (W) A(B])Cy 1 () (FL(W) ~ F ()
B, (Wi, 1 (W) A(O])Cos () (Fi(u) = Fy(u)) = 81, ()62l (0,10 s, (o)
811r, (0)8C,,, (WA, (W), g1 () = 8pa, (w)SC,, 5 (u )A(Qi)upj(U’)uijg;(u’)
841, (u)oC,y,  (w) A0 pr, (u ’)uijg;(U’)—8qu(u)6Cyj,1(u)A(HI)um(U’)uﬁ,g;(U’)

—8pp (U)Nflﬂi (U)A(QI)CUA(QDMFJ- (u,)ﬂflyg; (v)



with Cpy(u,v') = F (Z;’i_oo(l{Yg <up — Fo(u)(1{Yo,, < W'} — Fo(u’))> , and where Fj de-
notes the “true” joint distribution of Y;. Also,

Copy (- 0') = B (2o (Y52 < u} = B () (1{Y; 2 < '} = Fow))),

Coy (1) = B (32 _o(HY2 < u} = Fo(w))(1{Y 24s < '} — F())) , and

Cii = B (S5 e V2,05 (Y215,0))) , Gy, () = B (5320 (¥, < 0} — F())a5 (Vs 1)
Finally, pr, (u) = E(1{Y, < u} — F;(u)) and ufjﬂ]f_(u) = (f]( u)Vo,Yn (0] )) where f; is
the density of F;.

(ii) Assume that as T,.S — 0o : S/T? — 0 and T/S — 0, then:

max VT | (Zims(w) = ((Folu) = F(w)* = (Fou) — Fy(u))?)) g(u)du

7777

where Zj(u) is a zero mean Gaussian process with covariance kernel:

Ey(u ) = 4(Fy(w) ~ F(u)) Cyy 1) (Fu(ad) - Fy(u))
i (), o () AL Cos A, (0 i, gy (o) + () gy () A(OT) oy ACO e (Y ()
8p (W, o (DA () (Fu() = By (W) = Bp (w1 (u) AB))C () (B (W) — Fy(u))
~8jm, ()11, g () AB]) 1, A, (o '>uﬁﬂ;<u’>.

Notice that when T/S — 0, then ‘/—_ ( {Yin(6)) <u} — F](u)> % 0, uniformly in u,
so that the covariance kernel of the hnntlng distribution does not reflect the contribution of
the error term due to the fact we replace the “true” distribution of the simulated series with
its empirical counterpart (i.e. simulation error vanishes). From Proposition 1, we see that
when all competing models provide an approximation to the true joint distribution that is as
accurate as the benchmark, then the limiting distribution is a zero mean Gaussian process
with a covariance kernel that reflects the contribution of parameter estimation error, the

time series structure of the data and, for § > 0, the contribution of simulation error. This is

the case when

/U (Fo(w) = Fi(w))* ~ (Fo(u) ~ F;(w))?) ¢(u)du = 0, for all j.

It follows that in this case, the limiting distribution of

Jmax VT | (250 s(w) = ((Folu) = Fi(w)” = (Fo(u) — Fy(w))*)) ¢(u)du

.....



is the same as that of VT Zr, and so the critical values of the limiting distribution on the
RHS of equation (2) provide valid asymptotic critical values for v/T Zr s. On the other hand,
when [ ((Fo(u) — Fi(u)? = (Fy(u) - F](u))Q) ¢(u)du < 0 some j, so that at least one alter-
native model is less accurate than the benchmark, then these critical values can be viewed
as upper bounds for critical values from the distribution of \/TZT’ s. Note also that when all
competing models are less accurate than the benchmark model, the statistic diverges to minus
infinity. Finally, under the alternative, f;, ((Fo(u) — Fi(u)® = (Fy(u) — Fj(u))Q) ¢(u)du >0
for some j, so that /T Zrs diverges to infinity. Therefore, the test has correct asymptotic
size if all models are equally good, is conservative when some model is strictly dominated by
the benchmark, and has unit power under the alternative. It should perhaps also be noted

that our approach can in principle be modified to allow for the evaluation of predictive

densities (see e.g. Corradi and Swanson (2003a)).
3 Bootstrap Critical Values

In this subsection we outline how to obtain valid critical values for the asymptotic distribution

empirical process version of the block bootstrap that properly captures the contribution of
parameter estimation error, simulation error, and the time series dynamics to the covariance
kernel given in Proposition 1. In order to show the first order validity of the bootstrap,
we derive the limiting distributions of appropriately formed bootstrap statistics and show
that they coincide with the limiting distribution given in Proposition 1, recalling that as
all candidate models are potentially misspecified under both hypotheses. the parametric
bootstrap is not generally applicable in our context. We begin by resampling b blocks
of length [, bl = T — 1. Let Y;* = (Alog X}, Alog X7 )) be the resampled series, such
that Y, ..., YL Y, Y7 o Y7 equals Yy, 4, o Yt Yipet, o Y00, o, Y40, where
I;; i =1,...,b are independent, discrete uniform random variates on 1,..,T =1+ 1. That is,
Iy = 4,4 =1,..,T — | with probability 1/(T — I). Then, use Y," to compute é}‘T and plug
in 0}1 in order to simulate a sample under model j, j = 1,...,m. Let Y}n(g;T), n=2,..8
denote the series simulated in this manner. At this point, we need to distinguish between the

case where 6 = 0 (vanishing simulation error) and § > 0 (non vanishing simulation error). In



the former case, we do not need to resample the simulated series, as there is no need to mimic
the contribution of simulation error to the covariance kernel. On the other hand, in the latter
case we draw b blocks of length I, with b = S — 1, and let Y;*n(QAjT), Jj=1..mn=2 .8
denote the resampled series under model j. Notice that Y;*Q(HA;‘T), Y H(é;f’T), - YJ*S(@*T)
is equal to YJTI(QA;‘T), ...,inﬂ(é;j), "'7}/;',;};«4-1(5;,71)7 where I, i = 1, .., b are independent
discrete uniform random variates on 1,.... S — I. Also, notice that for each of the m models,
and for each bootstrap replication, we draw b discrete uniform random variates (the 1:;) on
1,...,5 - lN, and that draws are independent across models. Thus, in our use of notation, we
have suppressed the dependence of I; on 9.

As discussed above, we consider two different bootstrap versions of Z7 g, the first of which
is valid when T'/S — ¢ > 0 and the second of which is valid when T/S — 0, so that Y;*n(g;T)
in the first statistic is replaced with Y]n(éj*T), in the second version. In particular, define
Zrs = max; o o [y Z37 s(u)g(u)du, where 23 s(u) =

7777

FEL (M0 <0k = IS0 0,00 <)) = (1< ) - LR 1) < o))
~ L (WY < ub = 4S5 105,050 < 0’ - (1Y < ) — § 55 1Y) < ub)’).

Also, define Z7 ¢ =: max;—y [y Z; r,s(w)p(u)du, where Z7 ;. o(u) =

P (M0 S 0k = EEL 000 < u)) = (10 < )~ £ 201000 < up)’)

—5 T ((1{1@* <u} = A5 WY@ <ud) — (1Y S ud - LS5 1{Y,(0,0) < u})2> -
Now, let Qg be the probability space underlying the historical variables, 2, the proba-
bility space underlying the series simulated under model j (i.e. the space from which we
make random draws in order to form Y;n(é\j']“), where the draws are independent of @T, by
construction). Then, define the enlarged probability space, Q, as = Qy x Q; X ... x Q.
Also, let Py be the probability law governing the actual sample, and P; be the probability
law of the samples simulated under model J. That is, P; is the probability law governing
Y]n(HJT) Now, define P = Py x P, x ... x P,,.” Analogously, define P to be the probability law
governing the resampled series, Y;*, conditional on the historical sample, Y;, and define P to

be the probability law governing the resampled series, YJ*H(QJT), conditional on the simulated

series, }/l;"”(e;[). Now, define P* = Py x Py x ... x P . Finally, let w denote a draw from 2, and

9Note that although we generate the simulated series using @’T, P; denotes the probability law of the
series simulated under 0}, which is the probability limit of QA]',T.
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let Ir and lg denote the block length of the resampled series from the actual and simulated

samples, respectively. Note that when constructing Z Trg, 6 =0s0that P* = F}.

Proposition 2: Let Assumptions A1-A3 hold. Also, assume that as Ir,ls — 00t lp/TV? —
0 and I5/SY? — 0. (i) Assume that as T, S — oo : T/S —6,0< 6 < oo, then:

P (w sup | P <j max VT | Zisu)(u)du < v)
-P (ji%%??m VT [ (Zirs(w) = ((Fofu) = Fi(w)? ~ (Folu) — Fy(w)*)) ¢(w)du < U) > 5) =0
(i) Assume that as T, S — 0o : $/T? — 0 and T/S — 0, then:

P (w sup | P* <]. max VT | Zig s(u)(u)du < v)
= (s, VT [ (Zons) = ((B3(0) = i) = (Fofo) — £ ()?)) oo < )| > <) =0,

Thus, for any bootstrap replication, compute the bootstrap statistic, v/7T s (\/T Zr S) :
Perform B bootstrap replications (B large) and compute the quantiles of the resultant em-
pirical distribution. Reject Hy if T Zr,s is greater than the (1 — a)th-quantile. Otherwise,
do not reject. Now, for all samples except. a set with probability measure approaching zero,
VT Z1 s has the same limiting distribution as the corresponding bootstrapped statistic, when
Jur ((Fo(u) — Fi(w)? = (Fy(u) — Fj(u))2> ¢(u)du = 0 for all j = 2,...,m. In this case, the
above approach ensures that the test has asymptotic size equal to «. On the other hand,
when one (or more) competing models is (are) strictly dominated by the benchmark, the
approach ensures that the test has an asymptotic size between () and a. Finally, under the
alternative, Zr g diverges to (plus) infinity, while the corresponding bootstrap statistic has
a well defined limiting distribution. This ensures unit asymptotic power. As our bootstrap
mimics the limiting distribution of the statistics in the least favorable case for the null, in-
ference is conservative (Hansen (2001) suggests recentering the bootstrap statistics using the

sample mean, when the latter is larger than (minus) a bound of order /2T loglog T).

4 Empirical Illustration

Consider a stochastic growth model characterized by flexible labor supply, non-zero capital

depreciation, and two shocks. The first is the usual permanent shock to technology, and
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the second is a transitory preference (or taste) shock. The model is exactly that considered
by Christiano (1988) and the accompanying appendix (i.e. Christiano (1987)), except that,
we use a Cobb-Douglas production function (i.e. we set ¢ = 0 in his equation (2)), so that
inventories do not play a role in production. Assume that the representative agent, chooses
a contingent plan for consumption and labor supply which maximizes
o0
Ey Zﬁt (exp(ut) log Cy — vHy), (3)
=0
where C; and H, are per capita consumption and hours worked, respectively. Additionally,

uy is a transitory taste shock defined in (6) below. The maximization above is subject to the

production constraint,
1-6
Ky, 4
Ko (4)

where X; is per capita output, K, per capita capital stock, n is the rate of growth of

G <Xy — K+

population (assumed constant), § is the depreciation rate. Additionally,
Xy = (Zth)l_OKtB_p (5>

where z; is a permanent technological shock, defined as z, = 2,1 exp(t;), and where 6 denotes

the capital share. Now, assume that

U 0 A 0 Us_ €
e _ n 11 =1 1t ’ (6)
tt az 0 AQQ tt—l €9
where —1 < ay1, Ayy < 1. The structural parameters in this model are: 5,6,n,0,7,as, A1,

and Aj;. As we cannot find explicit solution of (3) subject to (4), we instead solve the

following quadratic approximation:
max Ey Z B (cidy + chs; + 5, Rsy + d;Qd; + 2s,Fd,) (7)
¢ t=0

subject to 51 = o+ 5.+ Bd,+€,, where st = (ki_y, s, ty,ue,te ) and df = (kf, hy) ,with
ki =log(K:/z 1) and h} = log(H,); and where ¢;, ¢, R,Q, F, ¢, ¢1, B are parameters con-
structed using functions of first and second derivatives. (For complete details, see Appendix
B of Corradi and Swanson (2003b).) Assume that our objective is to find the dynamics of

X and H,, as given by the constrained maximization problem above. The optimal policy

function governing the dynamics of dy are given by,
di = Ko+ K5}, (8)
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where Ky = —%@*161, K, = —@_1F/, Kpisa2x1vector and K is a 2 x 5 matrix. In this

framework,it follows from Christiano (1988) that

¢ = ¢y + VB + 28¢, VB, (9)
Q =Q+BB'V,yB, and (10)
F =F +p3¢,VoB. (11)

In order to determine (8), we need to construct Ky and K, by solving 2 Riccati equations
for Vo and V; based on (9), (10), and (11). We begin with the determination of Vo Vo is

the solution of the following Riccati equation:

Vor = R4B\Vg101— (B8 Vo1 B + F) x (Q + 5B,VQ¢+1B)M1 (BB Vg 11 + F') (12)

An explicit closed-form solution to this Riccati equation does not exist. However we can find
an arbitrarily accurate solution via the iteration method discussed in MacGrattan (1990). In
particular, starting with an initial value, say Vi, (typically set equal to the identity matrix

time a small number), at the n + 1-th iteration, we have
n r1/n Iy n - non -1 n;n /
Ve = R+ B0\ Vio — (BV"B+ F) x (Q+ BBVEB) ™ (BB'Vyey + F).  (13)

The stopping point occurs at that value of V3 +! for WhichHVéhLl — V3|l < e, where ||.||

denotes the euclidean norm, and where we set ¢ = 0.0000001. Now, in much the same

manner, and by using Vg“ we can obtain an (approximate) solution for the Riccati equation

describing V;. Namely,

VI = (= BUGB 4 60) 7 (K (e +28B'VE Y 00) + 0+ 206 V5 ). (14)
Now,
ki
Ut
k¥ . k Wi ki ki ki k
di=| " | =Ko+ Kysp=[ "0 | M M2 Mis M R b, (15)
h; ko2 ko1 Koo ks koa ks
Ut—1
ti1
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where K and K are defined as above. Thus,
K} _ ko1 + kizag . k11 - FioAn + k1a kisAos + ki Up_q
hy Koo + kogas ko - koo Arr + kog  kogAag + kos ti—q

4 kg ki3 €1t (16)
koo ka3 €2t
Finally, recalling that &} = log(K,/z,_1) and h} = log(H,), and recalling (6), we can simulate

capital and hours using:
log K, log z,_ kop + kysa. k
g hy _ g 2t—1 i 01 1342 i 11 (log Ky 1 —1log Zt_g)
log H, 0 koo + kozas ko
n kioAn + kia kiAo + ks Up_1 . k12 ki3 €1t
koo Ar1 + koa  kozAgg + kog ti—1 Koy kog

Note that all of the parameters in (17) are explicit functions of the structural parameters

B,6,mn,8,v,ay, A1 andAss. Note also that for

(17)

€t

k| < 1,log K;—log z; 1 is I(0), and therefore,
for |ka| < 1, log Hy is I(0) too. Also, as log z,_; is I(1), log K, is I(1), so that both capital
and output (see (18) below) follow unit root processes in logs. Finally, from the production

function in (5), upon taking logs,
log Xy = (1 — 0)log z, — @logn + (1 — 0)log H, + 0log K,_, (18)

In the sequel, we take values for structural parameters 3, 8, n,0,7v,as, Ay, and Asy from
King, Plosser and Rebelo (1988a,b) and Christiano (1988). In particular, and unless oth-
erwise stated, we set 3 = 0.99, n = 1.012, § = 0.025, 6 = 0.50, v = 0.0028, a; = 0.0044,
Azp = —0.10, Ay, = 0.95. Furthermore, and unless otherwise stated, we estimate o and o2,
by simply constructing simulations with various values for these variances and minimizing
the difference between the simulated and actual variance of per capita output and hours
growth.'> ! Given this setup, we evaluate the joint distribution of Y; = (log AX,,log AH;)
as well as Y; = (Alog X;, Alog H;, Alog X,_1, Alog Hy_1)).

O Throughout, and for simplicity, we assume that the covariance between the shocks is zero. This assump-
tion is not nconsistent with some of the empirical findings in the literature.

"Note that as we are interested in matching the covariance structure between historical and simulated
data, we can use different specifications of the marginal distribution of the shocks. In the current context, the
variance estimators we use depend also the simulated sample size S. Call these estimators &7 5. If S/T — 0,

then simulation error is negligible and Assumption A2 is satisfied as £ATY s is asymptotically equivalent to
GMM. In the case where S/T — § > 0, then we also require that the scaled difference between the simulated
and actual sample moments is asymptotically normal. This is in general the case, provided that Assumption

A3 holds.
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Some illustrative results are given in Tables 1 and 2. The first column of numerical entries
reports T Zr s for T'= 70 (corresponding to the 70 annual U.S. per capita output growth
observations used for the period 1933-2002), and for S = {T, 2T, 5T, 107'}.12 All statistics
are based on use of 20 uniformly distributed values for u across the range of the actual data.
The next four columns of entries contain 5% and 10% bootstrap critical values constructed
using both \/TZ}’,‘S and \/TZ;“,S (ie. T/S— > 6> 0and T/S— > 0, respectively). For the
case where S =T, we set. the bootstrap block length equal to I1 = 2,12=5and [3 = T.
For all other cases, where S = aT, say, we set, li equal to “a” times the corresponding value
of li when S = T, for i = 1,2,3. Thus, “a” takes the values 2,5, and 10, depending on
the magnitude of S. Bootstrap empirical distributions are constructed using 100 bootstrap
replications (i.e. B = 100). Even though hours and output are examined, for the sake
of brevity we only discuss output in the sequel. Various summary statistics (including %
<0, min, maz, and standard error) constructed using the simulated data are given in the
remaining columns of the tables. Corresponding values based on the actual data are: %<0
= 0.215; min = -0.128; maz = 0.158; mean = 0.027 and standard error — 0.044. Of
course, the Zr ¢ statistics are based on the joint evaluation of all variables in Y}, including
output and hours. We consider four different scenarios: Part I - Compare 3 models using
Y = (log AX;,log AH,). Set 8= {0.95,0.90,0.99}. All shocks are normally distributed with
variance estimated as discussed above. The model with 3 = 0.99 is the benchmark. Part II
- Compare 3 models using Y, = (log AX;, log AH;). The benchmark has shocks draun from
a 1/3ts distribution. One alternative assumes normality and uses estimated variances while
the other assumes normality and sets 6% = 0.039 and 02, = 0.077 (as in Christiano (1988)).
Part III - As Part I, except that Y, = (Alog Xy, Alog Hy, Alog X,_,, Alog H;_y)). Part IV -
As Part 11, except that Y; = (Alog X,, Alog H,, Alog X,_y,Alog H; 1)).

Turning to our results, notice in Part I of Table 1 that the null hypothesis fails to reject
n almost all cases, and never rejects when the simulation sample is 5 or 10 times as large as
the sample size. This suggests that the discount rate can equally take values between 0.90
and 0.99, at least when the objective is to match the joint dynamics of simulated output and

hours as closely as possible with the historical record. However, notice in Part II of Table

2Note that in all case S/T > 0, however, when for example T' = 70 and S = 700, then simulation error is
likely to be negligible with respect to parameter estimation error.
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1 that the benchmark where shocks follow Student’s t-distributions is soundly rejected in
every case. Purthermore, the dynamics of output are clearly far from reasonable under
the benchmark as well as under the first alternative model (see Siml and Sim2 summary
statistics), corresponding to the t-distribution assumption (Siml) and the case where we
assume normality and fix 62} = 0.039 and o2, = 0.077 (Sim2). This supports the use of our
simple simulated GMM type scheme for estimating the shock variances (see Sim3 results).
Table 2 contains results for experiments analogous to those reported in Table 1, except that
the joint dynamics of four variables are examined. The results of these experiments are
the same as those reported on in Table 1, suggesting that generalizing our approach to the

assessment of more variables does not affect test performance.
5 Concluding Remarks

In this paper we propose a test for comparing the joint distributions of historical time
series with those simulated under a given DSGE model via a distributional generalization
of the reality check of White (2000) in which we assess whether competing models are more
accurate approximations to the “true” distribution than a given benchmark model, in a
squared error sense. Two empirical versions of the block bootstrap are used to construct
valid asymptotic critical values. Finally, an illustrative example is given in which the testing
approach is applied to an RBC model, and it is found that RBC models are quite sensitive
to distributional and error variance magnitude assumptions, but are less sensitive to small

changes in primitive parameter values.
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6 Appendix

Hereafter, P, P*,Q), P;, P* and §;, i = 0,1, ..., m are defined above the statement of Propo-
sition 2. Also, op«(1) Pr —P and op:(1) Pr —P denote terms approaching zero in probability
P*, Vw € Q and PF, Vw; € Q,, respectively. Furthermore, Ep- and Varp. are mean and

variance operators with respect to P*, with Ep:, and Varp. defined analogouly. Finally,

czp is meant to mean “conditional on the sample and for all samples except a set of zero
probability measure”, while cszp is the same, except applies to all samples, simulated and

empirical.

Proof of Proposition 1: (i) We begin by examining the limiting distribution, pointwise

in u. Now,

VT Z,1.5(u) fj( (Y <u} - Fi(u ( Zl{Yln ) Su— (Via(frq) — Yy, (60))

t=1

%l**

B = YViaOir) = Yi00D)) = (Flu = (YialBi2) = ¥ia(6]) - Fi(w))’
1
T

SN

S
(LY < uf = Bw) = 5 3 (WY5a(0)) < v = (Y(05r) - Y (0)}

~

—Fi(u = (YVju(0,r) = Yi(6))))) - % 3 (B~ (Vullyr) ~ Y;0(6)) - f}(u))><19>

Given A3(1), oz S0_, (1 {Y]n(QJT) < u} — Fj(u)) is stochastic equicontinuous in u € U, from
Theorem 1 (Application 1) of Doukhan, Massart and Rio (1995). Also, given A2 and A3(ii),

1 _
ﬁijY},n(ej,T)OP (1> ) '

with 6,7 € (@y,@}). Now, given the domination conditions in A3(iii), by Chebyshev’s
inequality,

Vin(0i0) = Y;u(0)) = Vo, Y;n@sr) (9,0 — 61) =
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as S/T* — 0, given that S/T — 6 > 0. Thus,

i (1{Ym Su - (Yln(91 T) — Yln(gl))} - (Fl(u - ()/l,n(gl,T) - Yln(@D)) - Fl(“)))

T1 3
_ Eﬁz(l{yln( D) <ul— Fi(w) +op(1),

n=1

with the op(1) term holding uniformly in u. Noticing that Fi(u— (Y;n(QA]T) —Y,.(00)) =
filu—(Y;n(0;7)— Y}-,n(ﬁj)))v(;j Yin(01) (éij — 0;) , where f; is the density associated with

Fj, after some elementary manipulations, the right hand side (RHS) of (19) can be written
as:

72 (10— R - R - i (3310400 < 01 - R )
5 0= i) Vi) Tin B (51 - o)

1 T
—ﬁz@msm—m»-(m) Fo(u)) ( Zl{Ym ) <up - FU)

=1
2
1Z _
5 3l (VnlBi) = Y5 0V, Y30 () (B - 9;‘-)) +op(1),
n=1
where the op(1) term holds uniformly in u. Now,
5 2
(75- S~ (= Vin B) = Y0V Ys00,0 (B - 9;)) —op(l),  (20)
uniformly in u, as (5] T — 9-) Op(T~Y2). Given Al and A3, uniformly in wu,
2
T
VI (§ S 105.0) <) - B 0) =0n () = ortr, @1
and
L i ¢ y i 3 NJT (3 i
g Zl (1{Y 0 < U} F ) E Z: ]n 0 T) - Yj,n(gj)))VQjY;yn(gj,T) ﬁ (eij - 0]'
= op(l).

(22)

18



Now, let pp (u) = E(1{Y; <u} — Fj(u)), and py gt (u) = (fj( u)Vp,Y;n (0] )) where f; is
the density associated with Fj. Given Al and A2, by the uniform law of large numbers for

mixing processes,

VT

N

T,

0

() = VT (((Folw) ~ Fi(w))? ~ (Fo(uw) — Fy(w))?))

(1{Y: < u} = Fo(w)) (Fi(u) ~ Fy(w))

}

Tyl
T

1

! i( Y;0(0]) < u} = F(u))

n:l

~2pp, (u Z(l{m ) <u}— Fi(u ))+2MF
—2uF1<u>ufhef(u>ﬁ(el,T~91)+2uF< Wiy, g1 (u (]T 0]) + op(1).

Therefore, pointwise in u, \/—< Zirs(u) — ((Fo(u) — Fi(w))? — (Fylu) — F](u))Q)) satisfies

a CLT, and the asymptotic variance is as given in the statement of the proposition. Con-

CQ

vergence of the finite dimensional distribution follows immediately upon application of
the Cramer Wold device. Finally, given Al and A3, \/—Z,  ({Y; <u} — Fy(u)) and

\/— D (1{ 2(01) < u} — Fj(u )) are stochastic equicontimious in u (e.g. by Theorem 1,
Application 1 in Doukhan, Massart and Del Rio (1995)). The desired result follows by the

continuous mapping theorem.

(ii) The proof follows using the same argument as in part (i), and when the expression for
Kj(u,v') in part (i) is adjusted by setting § = 0.
Proof of Proposition 2: (i) Note that:

2

T S
VT Zg(u) = 'T%Z (( 1Y, < u} — Fi(u Z Y (05 1) < u} = Fi(u )))

- ((1{3@ <)~ Fyw) — &

i
M-

(1{Y1n(91T) <up -~ Fi(u ))) )

2

T1/22<<1{y*<u}—p (u) i Y7, (0 0) < u} - F()))

S
—
——
=
IA
I
Ny’
ﬁj

HMJ}

T) < u}— Fj(u ))) ) (23)

Now, we begin by considering the first term on the RHS of (23), which can be rewritten as,

i 3 (M7 < b= )~ 3 (12,00) < - 07,01) - Vi (01}

n=1
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= 05 ) =V 0DD) = 3 (Al 05,03) = 0 - £ 1(“>>>2
ﬁi(l{wu} Fi(u 12(1% ) < = (Fan(Bur) =Y (61))
Ry~ ()~ V(D) — ém“_ YVinOrr) ~ mw{)))—Fl(u)))Q
géﬁ( — (V) ~ Y;tnwD))vem*tn@iﬂﬁ(éi‘m~91))2
%é < 1Y, < u} — Fy(u)) - %z: (Y10 (0]) < u} = Fi(w)
%i fi (= (Van@r2) = Yin0)) Vo, Y7 (Br0)VT @T—@D)Q-

The second term on the RHS of (23) can be treated in the same way, by replacing 1 with j.

Therefore, after some elementary manipulations, Z*% ¢(u) can be written as:

Ziisl) = == S (Y )~ 1, <)) (Fy(w) — Fyu)

’ﬂ

>~ (LY (60]) < uh = Fi(w) + oy

s
-
e
]
%l

S
Z(l{m 61) < u} - Fi(u)

3
i
—

iy
-
TN TN M‘Q

({an(eT)<u} Fi(u ﬁfz 1{Y]n ) <u} - F())

= (Vi) = Yi(0)) Vo Yo @ o)VT (0 — 61)

3
Il
—

[]=
s

<

|
<
3
=
2
=<
3

: (91))) Vo, Y1 (0170)VT (51,T - 91)

3
u

1
S

3
wol
—

(0= 070 Fr) = Y(60)) Vo, Y @0 VT (8 — 01)
(

]
s
<
<
3
|
}7.
3
l-<
=
=
<
e

Yin(0;0)VT (éj,T - 9;) ,

i
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where d; , = %Zthl ({Yy <u} — F,(u)) and do, = %Z;le (Y <u} - F(u), s =1,5.
Now, conditional on the sample, Y;*, Yo, Y, s did uniform, for t = 2,...T — [. Anal-
ogously, Y, Y1, .. - Y1, conditional on the (simulated) sample, is also #id uniform.
Thus, given A1-A3, and by the basic properties of the block bootstrap (Kiinsch (1989),

theorem 3.5), we also have that pointwise in u :

T Z I{Y* < u} F 1 E_Yi 1{)/; S u} - F‘](U)) + Opg(l), PI‘—P(), (24)

and as lp/TY? - 0,

7 2 (Y < 0} = () = iy ) 55 (1), Pr—F (25)

Uniform convergence on U follows because of the stochastic equicontinuity of the left hand
side of (24) and (25). Also, by the same argument used in Lemma A4 of Goncalves and
White (2002: GW), and recalling A3(iv), it follows that for j=1..m

Py (snp sup |—= Zf]( Y>r.(0;) - Y (9T>)> Vo, Y7 (0;) — Ky, 9*( u)

0;€0; uel

> 6> — 0, Pr—F;,
(26)

Thus, given (24)-(26), and using arguments similar to those used in the proof of Proposition

1, we see that after some elementary manipulations T Z 7 g(u) can be written as:

J

’ﬂ

VIZ () = == 5 (Y S u— 1% < u) () - Bw)

[

~2ur, (w)6—= 3 (Y7, (01) < u} — 1{¥i(6]) < u})

I

i

+24up ()8 (1{Y-?‘n<0}> < ub— HYja(0]) < u})

o1 )\F T (07, - Orr) — 24, (u)p 0! (VT (057 — 0;r) + 0p-(1), Pr—P.

i

1; %IH Sl
M

+2/'LF] ( )

By Theorem 2.2 in GW, \/T' (éjT — gj,T) has the same limiting distribution as v/T' (@‘T - 9;)
czp. Thus, by Theorem 3.5 in Kiinsch (1989), we see that pointwise in u, Z37 s(u) has the

?

same limiting distribution as Z; 7 ¢(u), cszp Py and P, j = 1,...,m probability measure,

respectively. By the Cramer Wold device, the same holds for any finite set of points in U.

21



Finally, by the empirical version of the block bootstrap (see e.g. Naik-Nimbalkar and Ra-
jarshi (1994, Theorem 2.1)), it follows that = Yoo (Y < u} — 1{Y, < u}) has the same
limiting distribution as % S (HY, <u) - Fy(u)), as a process on U, czp Py—probability
measure. Also, % ¥ (1{}/]*71(9;) <wu}— 1{}/'3”(9;) < u}) has the same limiting distribu-
tion as ﬁ Sy (Y, <u}l—F j(u)), as a process on U, conditional on the simulated sam-
ple and for all simulated samples except a set. of zero Pj—probability measure, j =1, ..., m.
The statement in part (i) of the theorem then follows as a straightforward consequence of

the continuous mapping theorem.

(ii) The proof follows as a special case of part (i).
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