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Abstract,

Various inflation forecasting models are compared using a simulated out-of-sample forecasting
framework. We focus on the question of whether monetary aggregates are useful for forecasting
inflation, but unlike previous work we examine a wide range of forecast horizons and allow for
estimated as well as theoretically specified cointegrating relationships in some of our models. Qur
findings indicate that there are forecasting gains from allowing monetary aggregates to enter into
prediction models via cointegrating restrictions among money, prices, and output derived from a
simple version of the quantity theory, but only when the cointegrating relations are specified a
priori based on economic theory. When estimated cointegrating relations are used in a vector error
correction (VEC) model, a vector autoregression (VAR) model in differences predicts better. These
results hold, even during the 1990s, and evidence is presented suggesting that previous findings of
a breakdown in the cointegrating relationship among prices, money, and output is the result of a
failure of M2 as a measure of the money stock, and is not due to money demand instabilities. Two
Monte Carlo experiments that lend credence to our findings are also reported on. The first shows
that cointegration vector parameter estimation error is crucial when using VEC models for fore-
casting, and helps to explain previous findings of the failure of VEC models to forecast better than
VAR models. The second shows that random walk and other atheoretical models routinely forecast
better than correctly specified alternative models, due to parameter estimation error, indicating
that caution needs to be exercised when interpreting the results of such comparisons, particularly
when making statements concerning the usefulness of empirical models for use in policy-setting.
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1 Introduction

Inflation forecasting has played a key role in recent U.S. monetary policy, and this has led to a
renewed search for variables which serve as good indicators of future inflation. One frequently
used indicator, based on the “Phillips curve,” is the unemployment rate or a similar measure of
the output gap (see e.g. Gerlach and Svensson (2003), Clark and McCracken (2003), Mankiw
(2001), Gali and Gertler (1999), and the references contained therein). The Phillips curve is
believed by many to be the preferred tool for forecasting inflation (see e.g. Mankiw (2001), Stock
and Watson (1999a) and Blinder (1997)), although its use in formulating monetary policy is not
without controversy (see e.g. Sargent (2000)). Another approach, based on the quantity theory of
money, uses monetary aggregates to predict inflation. Despite the strong theoretical motivation for
this approach, though, there is little evidence that measures of the nominal money supply are useful
for predicting inflation relative to a conventional unemployment rate Phillips curve model (see e.g.
Stock and Watson (1999a)). Stock and Watson’s results indicate that even simple univariate time
series models generally forecast about as well as models which include measures of the money
supply, so that it is hard to make the case that nominal money supply data have any predictive
content for inflation.!

This paper evaluates inflation forecasts made by models which allow for prices, money, and
output to be cointegrated, and in the process re-examines the question of whether monetary ag-
gregates have marginal predictive content for inflation. Our work is motivated in part by economic
theory, as the presence of a cointegrating relationship among the series we look at corresponds to
an implicit assumption that prices, the money supply, and output “hang together” in the long run,
an implicit feature of most analyses based on the quantity theory.

From a statistical point of view, a system with cointegrated regressors does not have a finite-
order VAR representation, so that a VAR in differences will be misspecified and may not forecast
well regardless of the relevance of the included variables. Our analysis is therefore focused on

the questions, ‘Are there gains, in terms of forecast accuracy, from imposing the restriction that

!Similar evidence can be found in Leeper and Roush (2002, 2003). Inflation forecasts using many other variables,
such as commodity prices, interest rates, exchange rates, and wages have also been studied in the literature (see e.g.
Stock and Watson (1999a, 2003) and the references contained therein.) This paper does not consider forecasts made

using these other variables. We also do not consider the quality of forecasts made by the private sector (see e.g.
Croushore (1998)).



prices, money, and output are cointegrated?’, ‘Does it matter whether cointegrating restrictions are
imposed a prior: based on economic theory, or can they be estimated?’, and ‘Do models imposing
cointegration among prices, money, and output forecast inflation as well as the Phillips curve and
other alternative models?’

The econometric framework that we employ is similar to that of Stock and Watson (1999a), but
differs from theirs in two ways. First, Stock and Watson (1999a) consider 1-year horizon inflation
forecasts, while we consider forecast horizons of up to 10 years. This is potentially important in
our context, as we include versions of the quantity theory of money in our analysis, a theory which
arguably may not yield substantive gains to forecasting in the “short-run”. Additionally, future
inflation at many horizons is in general of interest to policymakers (even if the weight attached to
inflation at different horizons is a matter of individual preference), so that “long-run” predictions
are only unuseful if and when they fail to have marginal predictive content for inflation.2 A second
difference between our work and that of Stock and Watson (1999a) is that some of our models
differ from theirs, including those which impose quantity theory based cointegrating restrictions,
for example. In these types of models we: (i) impose a cointegration restriction derived from the
assumption of stationary velocity, and (ii) estimate cointegrating restrictions. We also examine
a fairly broad variety of (linear) models, including: simple autoregressive models in price levels
and differences; conventional unemployment rate Phillips curve models; and VAR models in levels
and differences with money, prices, and output. As a strawman model with which to compare our
“best” models, we use various random walk models, and all models are evaluated using standard
loss criteria such as mean square forecast error as well as via Diebold and Mariano (1995) tests of
equal predictive accurcy.

Our approach is to consider alternative h-quarter ahead inflation predictions from the models
mentioned above. We analyze two different periods, one from 1979:4-1992:4, and one from 1989:4-
1999:4. These periods are analyzed separately because, as is shown below, Johansen (1988,1991)
trace tests based on the full sample find cointegrating ranks of at least one through 1993 and zero

thereafter, so that it is reasonable to allow for the possibility of a structural break around 1993.3

“The argument that short run inflation stabilization is not a feasible objective, and therefore that monetary policy
should primarily be concerned with inflation at long horizons, goes back at least to Friedman (1959). See Amato and

Laubach (2000) for one approach to determining the forecast horizon(s) of interest to a central bank.

*For a comprehensive and interesting discussion of the cointegration properties of our data in the 1990s, see

Carlson, Hoffman, Keen, and Rasche (2000).



Sequences of 1-quarter to 5-year ahead predictions are made for the period 1979:4-1992:4, with
one sequence of predictions constructed for each model and for each forecast horizon. This is done
by re-estimating each model in a recursive fashion, using observations through 1979:4-h for the
first forecast and observations through 1992:4-h for the last forecast, for h =1, ..., 20 quarters. By
focusing part of our attention on the period 1979-1992, we are able to assess whether predictions
made using cointegrating restrictions estimated over a period for which it is well accepted that
cointegration was present dominate prediction made without imposing cointegration. Furthermore,
if estimated cointegrating restrictions over this period fail to yield predictive performance improve-
ments, while restrictions imposed a priori based on economic theory do yield improvements, then
we have direct evidence that the lack of success of cointegration type models in forecasting noted
widely in the literature may be due in large part to parameter estimation error. We also carry
out a more extensive version of the above exercise for the period from 1989:4-1999:4. Here, we
consider predictions of up to 10 years ahead. Before describing our findings, it is worth stressing
that there is much evidence that pre-existing cointegrating relations broke down in the 1990’s (see
e.g. Carlson et al. (2000)). However, we are interested in a wide range of forecast horizons, and
cointegration tests are implicitly based on one-step ahead forecasting models. Thus, the failure
of empirical cointegration tests does not imply that there are not long-run restrictions among the
variables which will not yield improved long-run predictions (for more on this see Christoffersen
and Diebold (1998)).

Our findings are clear-cut and can be summarized as follows. First, by allowing for prices,
money, and output to be cointegrated, and by considering a variety of forecast horizons, there is
evidence that M2 has marginal predictive content for inflation, and this holds true even during the
1990s, when cointegration tests are unable to find cointegration. In fact, for the longest horizons,
the forecasts of our benchmark VEC model continue to dominate the forecasts from a VAR in
differences over the entire 1989:4-1999:4 period. Further analysis reveals that the only time the
VAR in differences forecasts inflation better than the VEC model is when data observed after 1993

are used in the construction of the predictions.* This is consistent with the hypothesis that M2 is not

“Thus, long-run predictions of inflation for the 1990s based on VEC models are better than those made with VARs
in differences, even though the 1990s is supposed to be a period where cointegrating relations break down. The reason

that the long-run VEC predictions remain the “best” is that data beyond 1993 are not used in their construction.



a good measure of the nominal money stock after 1993, and if it had remained an accurate measure
of the nominal money stock, there would have been no observed breakdown in the relationship
among prices, money and output. Thus, while much of the evidence in the literature points to
a breakdown of cointegrating relationships during the 1990s as evidence of “unstable” money
demand, our results indicate that this may not be the case. However, even though we instead
argue in favor of defining an appropriate monetary aggregate, this task is by no means trivial (see
e.g. Feldstein and Stock (1996) and Barnett and Serletis (2000)).

Second, our findings supporting the usefulness of imposing cointegration are limited to the case
where velocity is restricted to be stationary. For the period 1979:4-1992:4, we find that: (i) a VEC
model that imposes stationary velocity typically forecasts better than a VAR in differences; (ii)
forecasts from the VEC with stationary velocity also dominate, at all forecast horizons, those made
using a VEC for which the cointegrating rank and vectors are estimated; and (iii) forecasts from
a VAR in differences dominate the forecasts, at all horizons, made using a VEC with estimated
cointegrating rank and vectors. These findings are suggestive. For example, we thus have evidence
that when the cointegrating restriction(s) are estimated, we do better by simply using a VAR in
differences. This corresponds to the common finding in the applied econometrics literature that
VEC models do not usually predict better than VAR models (see e.g. Clements and Hendry
(1996), Hoffman and Rasche (1996), and Lin and Tsay (1996)). What is interesting, though, is
that when we impose the parameter (cointegration) restriction directly, based on theory, the VEC
model does outperform the VAR model. This in turn suggests that one reason for VEC failure in
practical applications may be imprecise estimation of cointegration vector(s) and/or cointegration
space ranks, rather than incorrect model specification. Put another way, theory is important, and
should be incorporated whenever possible. Given this finding, we perform a series of Monte Carlo
experiments to investigate the importance of cointegration vector rank and parameter estimation
error on VEC model forecasts. Using simulated data calibrated to be consistent with the historical
U.S. record, we find that, for some configurations, the impact of cointegration vector rank and
parameter estimation error on VEC model forecasts is substantial.

A second set of Monte Carlo experiments is also run because we find that a random walk model

®See e.g. Barnett and Serletis (2000), Estrella and Mishkin (1997), and Feldstein and Stock (1996) for further

discussion of these alternative reasons for the breakdown in the cointegrating relation connecting prices, money and

ouput.



is the only model (including the Phillips curve model) which the VEC model does not dominate
at long horizons. Although such a finding is not important for our analysis, as we are interested
in determining which variables have marginal predictive content for inflation, and comparison with
the random walk model cannot answer this question, it is common to use a random walk model
as a benchmark in out-of-sample forecast comparisons. A common interpretation of the failure
of a model based on economic theory to forecast better than a random walk model is that the
theory-based model is incorrectly specified. This interpretation is investigated using simulated
data, calibrated to be consistent with the historical U.S. data, for two data generating processes,
a second-order autoregressive (AR(2)) model, and a VAR model. We show that, for samples as
large as 500, it is difficult to reject the null hypothesis that an AR(1) model forecasts as well as an
AR(2) model, even when the data are generated according to an AR(2) process, and a random walk
model usually forecasts better than a VAR model, even when the data are generated according to a
VAR model. This serves to point out that one needs to be cautious when interpreting the results of
out-of-sample forecast comparisons with atheoretical time series models, as parameter estimation
eITor can cause correctly specified econometric models to forecast poorly. In particular, results
from this experiment suggest that failure of an estimated version of a particular theoretical model
to outperform a strawman random walk model in forecasting should not be taken as evidence that
the theoretical model is not useful.

The remainder of the paper is organized as follows. Section 2 discusses the data used in our
empirical investigation, while Section 3 outlines the methodology used. Quantitative findings are

presented in Section 4, and Section 5 discusses the results of our Monte Carlo experiments. In

Section 6, concluding remarks and directions for future research are given.

2 The Data

All data were downloaded from the Federal Reserve Economic Database on the Federal Reserve
Bank of St. Louis web site. All data are quarterly U.S. figures for the period 1959:1 to 1999:4.
For the price level, P, we use the gross domestic product implicit price deflator. In accordance
with this choice of price index, we also use gross domestic product, ()¢, in chained 1996 dollars as
our measure of real output. The money supply, M;, data which we use are seasonally adjusted

M2 figures. This choice of monetary aggregate is obviously not without its drawbacks. Barnett



and Serletis (2000), for example, contains a number of contributions which show the importance
of using a monetary services index rather than simple sum M2. While the points made in these
papers are important and valid, Diewert (2000) points out that divisia money supply measures
require arbitrary choices in their construction, and these arbitrary choices can have a significant
impact on empirical analysis. It is therefore natural to expect policy makers, at least in principle,

to be interested in findings based on simple sum M2 measures®. Finally, unemployment, Uy, is the

seasonally adjusted civilian unemployment rate.

3 Methodology

'To begin, consider the equation of exchange, namely

MiVy = BQy (1)

where Py, My, and @ are defined above, and V; is the velocity of money with respect to nominal
output. Now, assume that P;, My, and Q¢ are I(1), using the terminology of Engle and Granger
(1987). This assumption is standard in the literature testing for a cointegrating relationship between
prices, money, and output, although there has been some debate as to whether prices are I(1) or
I(2), (see e.g. Culver and Papell (1997) and the references contained therein). Unit root tests show
that a unit root can be rejected for the first difference, but not the level, or the logged level for all
three series.” In addition, for the time being, assume that v; = log(V;) is I(0) (see e.g. Feldstein and
Stock (1994) or Estrella and Mishkin (1997) for a discussion of this assumption). Now, rearranging
1),

Uy = Py — My + Gy, (2)

where lowercase letters signify the use of natural logarithms. Assuming that there exists a vector
autoregressive (VAR) representation of p;, m;, and ¢;, the assumption of stationary velocity implies:

(i) that there exists a cointegrating restriction among p:, My, and q; and (ii) that the cointegrating

51t should in general be of interest to carry out empirical investigations with both varieties of monetary aggregates.
Swanson (1998), for example, does this and finds little difference between empirical findings based on the two different

types of aggregates, when using monetary services index data available on the St. Louis Federal Reserve Bank website.
" Augmented Dickey Fuller unit root tests with covariates, according to the procedure outlined in Elliot and Janssen

(2003), were run on the natural logarithms of all variables, with lags selected according to the approach outlined in

Ng and Perron (1995), and all were found to be I(1).



vector linking the variables is (1,—1,1), up to a scalar multiple. The Granger Representation
Theorem (Engle and Granger (1987)) then states that the VAR in levels can be written as a vector

error correction (VEC) model with price equation:

! I !
Apy = Bo + Zi:l BpiApe—i + Zi:l Bms Ay + 21:1 BeiAGi—i + P21 + &4,

where 2,1 = o/ (pi—1, my—1, ¢—1)’, @ is a 3x1 vector of constants (i.e. the cointegration vector),
€¢ is an error term, and ! denotes the number of lags included in the VEC model. This is our
benchmark model, is used to predict inflation, where we assume that o = (1,-1,1), and is referred
to as the “quantity theory VEC model”. Alternatively, rather than fixing o (and assuming that
vy is stationary), we estimate o using the methodology of Johansen (1988,1991), allowing for the
possibility that there may be no cointegration, so that o = 0, and z_; is not included in the above
model® This model is referred to as our “estimated VEC model”.?

The above two models, as well as all of our other models, can be written as restricted versions

of the following VEC model:

yt+h = /80 + B(L)xt + ¢)Zt -+ €t+h7 h = 1’ --->hmam> (3)

where y; ., is a scalar equal to either p,,p, or Aptip, Bo is a constant, (L) is a matrix polynomial
in the lag operator L, z; is a vector of explanatory variables, hpq, = 20 for 1979:4-1992:4, and
hmaz = 40 for 1989:4-1999:4, When computing forecasts for the VEC models, we set Yith = ApPiin
and xy = (Aps, Amy, Ag:)'. Note also that ¢ is restricted to be equal to zero for models specified
in levels or models specified in differences which do not allow for cointegration. For a given value
of h, (3) is re-estimated recursively (i.e. re-estimated before each new forecast is constructed) in
order to yield a sequence of 53 real-time rolling inflation forecasts for 1979:4-1992:4 and 41 rolling
real-time inflation forecasts for 1989:4-1999:4. This procedure is then carried out again for a new

value of h, and is repeated until h,pq, sequences of real-time h—step ahead forecasts are constructed.

8The approach of estimating the cointegrating restriction is standard in the literatures on stable money demand
and on money income causality, for example.

%It is also standard in this literature to include a nominal interest rate among the variables in the cointegrating
relationship. We do not include an interest rate variable because a strong theoretical argument can be made that
real interest rates should be stationary (see e.g. Watson (1994)). Given our assumption that inflation is stationary,
this implies that nominal interest rates are stationary. Experimentation revealed that our results are affected very

little by the inclusion of an interest rate variable in the cointegrating relationship.



All estimation in this paper is based on the principle of maximum likelihood, and all lags (1) are
re-estimated at each point in time (i.e. before each new prediction is constructed) and for each h,
using the Schwarz (1978) Information Criterion (SIC), which is widely known to dominate other
lag selection criteria (such as the Akaike (1973,1974) Information Criterion) when the objective is
to produce optimal forecasting models (see e.g. Engle and Brown (1986) and Swanson and White
(1995,1997)). Based on the above model, we define our prediction of cumulative inflation at period
t+h as Typp = Zzzl APyt kjt, which implies that Ptsnit = Pt + Tyyn, where in all cases the “[¢”
symbol denotes conditioning on information available at time t.

It remains to specify the rest of the models that will serve as “competitors” for the quantity the-
ory VEC model.'® One clear candidate is a VAR model with Ytrh = Apyin, Tt = (Ape, Amy, Agy),
and ¢ = 0, which is the same as the above VEC model except for the restriction that ¢ = 0. This
model, thus, does not allow for prices, money and output to be cointegrated. It is henceforth called
our “VAR in differences model”. An alternative to the VAR in differences model shall be called the
“VAR in levels” model, and sets yiy), = piyn, T = (pt,me,q:), and ¢ = 0. As this model involves
regression with I(1) variables, inference based on the estimated coefficients is not standard (see e.g.
Sims, Stock and Watson (1990)). However, as our objective is prediction and not inference, this
does not pose a problem for us. In addition, note that by estimating the VAR model in levels, we
are allowing for cointegration among the variables, although the model is inefficient in the sense
that we are not imposing the cointegrating restriction.

In addition to the VEC and VAR models, we estimate a conventional unemployment rate
Phillips curve, which is shown in Stock and Watson (1999a) to be quite robust and is seldom
beaten in their forecasting experiments except when their new index of aggregate activity based on
168 economic indicators is used. This model is called our “differences Phillips curve model’, and
sets Yrin = Apiyn, Tt = (Apy, Up)', and ¢ = 0. A levels version of this model, for which y;1p = pyin,
ze = (pt,Ur)’, and ¢ = 0, is called the “levels Phillips curve model’. We follow Stock and Watson
(1999a) in assuming the NAIRU is constant and omitting supply shock variables, and therefore
use just the unemployment rate when making Phillips curve forecasts. Finally, we also estimate
differences and levels versions of a “simple autoregressive model’, with ¥4, = Apyin, 24 = Apy,

and ¢ = 0 for the differences version and y;,, = Pt+h, Tt = pt, and ¢ = 0 for the levels version, and

1Talle 1 presents a summary of the alternative models.



various random walk models including: Apiyp = Apy +etn, h =1, ..., g (“differences random
walk model’) and pein = Bo + pt + €14hy h =1, ..., honaz (“random walk with drift model’).

Given forecast and actual inflation values, we are able to formally compare the predictive
accuracy of the models. This is done by first forming real-time prediction errors as Ettnlt =
Te+h — Te+n, for each model, and for each value of h, t + h = 1979:4-1992:4 for the first period
and ¢t + h =1989:4-1999:4 for the second time period.}! Then, predictions from the alternative
models are compared using forecast mean square error (MSE), forecast mean absolute deviation
(MAD), and forecast mean absolute percentage error (MAPE) criteria (see e.g. Swanson and
White (1995,1997) for a discussion of these criteria). As these criteria are only point estimates,
we additionally construct predictive accuracy tests based on each of the above three loss functions,
along the lines of Diebold and Mariano (DM: 1995). These tests allow us to statistically assess
whether our benchmark model outperforms each of the other models.!? To illustrate, consider the
following example. Let [(e1;) denote the loss associated with the model 1 forecast at time ¢, and
l{eat) denote the loss associated with the model 2 forecast at time ¢, say. If the two models have
equal predictive accuracy, then I(ey;) = I(eg). For the MSE loss function, we are interested in
testing Hy : E[dy] = Ele?, — €3,] = 0 against its negation, where d; = e?, — e2,. When model 1 and
model 2 are nonnested, d; is an asymptotically N(0,1) random variable. Thus, the DM test can be
constructed, for example, by simply regressing d; on an intercept and forming the heteroskedasticity
and autocorrelation consistent t-statistic associated with the intercept. In our context, however,
the models are sometimes nested, and McCracken (1999, 2000) shows that the usual DM ¢-statistic
has a nonstandard distribution, for which he tabulates appropriate critical values. In summary,
if d; is significantly greater than zero, model 2 is “preferred”, while model 1 is “preferred” if it
is significantly less than zero. Otherwise, there is nothing to choose between the models. As our

benchmark model is the quantity theory VEC model, we compare it against each of the other models

to find out which one “wins” our prediction contest.

"'Given that we have 10 different models, hmaz = 20 for 1979:4-1992:4, and hmas = 40 for 1989:4-1999:4, a total
of 27,000 different predictions and prediction errors are calculated.

2For a discussion of DM type tests in the context of multiple alternative models see Corradi, Swanson and Olivetti
(2001) and White (2000).



4 Quantitative Findings

4.1 Lag length estimates and cointegration tests

Panel (a) of Figure 1 is a graph of the average number of lags chosen by the SIC for the differences
autoregressive model at each forecast horizon for the period 1989:4-1999:4. The wide range of lag
lengths chosen suggests that it is preferable to estimate the lag length each time a forecast is made,
as opposed to holding the lag length fixed through time and across horizons, and underscores the
difficulty in finding stable VAR and VEC models using standard estimation strategies (see e.g.
Boivin (1999)). Panel (b) shows recursive estimates of the cointegration rank among ps, my, and g.
The cointegrating rank is estimated to be one or two until 1994, then falls to zero and remains there
through the end of the sample, consistent with the recent literature (see e.g. Estrella and Mishkin
(1997)). Panels (c) and (d) show the estimated coefficients on M2 and real GDP, respectively, for
the cointegration vector associated with the largest eigenvalue in the model. In 1975 the estimated
coefficient on M2 begins to fluctuate (even though the cointegration vector remains statistically
significant), but by 1978 the estimated coefficient is again close to -1. The coefficient on output
does not fluctuate as much as the coefficient on M2, though it does show large fluctuations in
1975, 1976 and 1982. Overall, all large deviations of the estimated coefficients from the restriction

assoclated with the quantity theory VEC model appear to have been transitory.

4.2 Forecast evaluation results for 1979:4-1992:4

Figure 2 shows results from comparison of the quantity theory VEC and the VAR in differences
model for the period 1979:4-1992:4, and answers our first question, namely, ‘Are there gains, in terms
of forecast accuracy, from imposing the restriction that prices, money, and output are cointegrated?’
Panels (a)-(c) are graphs of MSE, MAD and MAPE for the two models at each of the 20 different
forecast horizons, with the quantity theory VEC model performing better at all horizons regardless
of the loss function. Panels (d)-(f) in Figure 2 are graphs of the DM statistics for tests of the
null hypothesis that the two models predict equally well, according to MSE, MAD, and MAPE loss
functions, respectively, for each of the 20 different horizons. In this case the only difference between
the two models is that the quantity theory VEC model includes an error correction term, so that
the two models are nested. A significantly positive DM statistic implies that imposing cointegration

improves forecasts relative to a VAR in differences model, while a significantly negative DM statistic

10



implies the opposite. Notice that the DM statistics are almost always positive, and are often
significant (using critical values which are in the 1-2 range in our framework - see McCracken
(1999)). Thus, our benchmark model, in which the quantity theory restriction is imposed without
estimating a cointegrating vector, performs better than the VAR in differences.

Nevertheless, estimation of the cointegration rank and vector has two advantages. Namely,
it allows for cases in which the cointegrating relationship cannot be identified a priori, and it
allows for the possibility that the system is evolving over time. Panel (a) of Figure 3 shows DM
statistics for the comparison of the estimated VEC model and quantity theory VEC model, with
positive statistics implying the superiority of the quantity theory VEC model at a particular forecast
horizon. The quantity theory VEC model dominates at all horizons, meaning that cointegration
vector parameter and/or cointegrating rank estimation error is very important for forecasts in
samples of the size we have. Notice also that the quantity theory VEC does increasingly better
as the horizon increases, suggesting that the quantity theory is particularly useful for long-run
prediction. Furthermore, note that in panel (b) of Figure 3, the VAR in differences dominates
the estimated VEC model at all horizons, and by a sizable amount (in this panel, a significantly
positive statistic implies that the estimated VEC forecasts better than the VAR in differences).
In other words, if we had estimated the cointegration vector and rank each time a forecast was
made, rather than imposing stationary velocity and a cointegrating rank of unity, we would have
reached a conclusion that the quantity theory VEC was not useful, and would have concluded that
imposing cointegration never improves out-of-sample prediction in our context! These findings
at least partially explain previous findings that imposing cointegration often does not result in
improvement over forecasts constructed using VAR models. In short, we find that there can be
large gains from a priori knowledge of the cointegrating vector and rank, and that economic theory
plays an important role, at least when our objective is prediction. One reason why this is the case
appears to be that parameter and cointegration rank estimation error is large in our framework, as
is shown via a series of Monte Carlo experiments in the next section.

Figure 4 presents graphs of the DM statistics from comparison of the quantity theory VEC
model with various other alternative models under the assumption of MSE loss. The dashed lines
in each graph are 90% and 95% critical values, so that a DM statistic above the lower dashed line
indicates that the quantity theory VEC model forecasts better for that horizon at a significance

level of 10%, and a DM statistic above both dashed lines indicates that the quantity theory VEC
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model forecast better at a significance level of 5%. When the models are nested, the critical values
depend on the length of the out-of-sample prediction period, the number of observations used to
estimate the model parameters, and the number of additional parameters in the larger model, and
therefore vary across horizons, and reported critical values are again taken from McCracken (1999).
Comparison with the VAR in levels (Panel (b)) is of some interest here, as this model allows for
cointegration of unknown form (see e.g. Sims, Stock and Watson (1990)). Note that in this case,
the quantity theory VEC model dominates at all horizons, so that failure to impose the correct
cointegrating restriction, which leads to estimation inefficiency in the levels VAR model, also leads
to poorer predictions. Similar results are obtained for the other levels models. As noted in the
introduction, Phillips curve models are generally believed to provide the best inflation forecasts.
As might be expected, Panel (e) shows that the differences Phillips curve forecasts better at short
horizons, while the quantity theory VEC model forecasts better at the longer horizons. It is
interesting to note that the quantity theory VEC begins to dominate the Phillips curve model after
around three years, suggesting that the long-run (at which time the quantity theory begins to be
useful) is perhaps not very long! Similar results are obtained when comparing the quantity theory
VEC model with the differences autoregressive model. At horizons of two through ten quarters,
a simple autoregressive model forecasts about as well as the quantity theory VEC model, a result
consistent with the findings of Stock and Watson (1999a). For the longer horizons, though, the
quantity theory VEC model performs much better, and we have evidence that the variables in the
quantity theory VEC model, including M2, have marginal predictive content for inflation beyond
that in the autoregressive model.

Figure 4 also shows the results of comparing the quantity theory VEC model with the differences
random walk model, and we observe that even at the longest forecast horizons, the differences
random walk model forecasts about as well as the quantity theory VEC. There are several reasons,
though, that this is not evidence that the quantity theory VEC model is useless, at least for
purposes of monetary policy. First, the differences random walk model is not a reasonable policy
model, because it contains no control variables, and merely summarizes the historical time series
properties of the inflation series. Further, the relevant question for policy is whether the variables
in the quantity theory VEC model contain information about future inflation, and comparison with
the differences random walk model cannot answer this question. Finally, failure of the quantity

theory VEC model to forecast better than the differences random walk model does not necessarily
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imply that the quantity theory VEC model is incorrectly specified. In fact, the Monte Carlo
experiments discussed in the next section show that a parsimonious, but misspecified, time series

model may forecast better than a correctly specified model due to parameter estimation error.

4.3 Forecast evaluation results for 1989:4-1999:4

Panels (a)-(c) in Figure 5 show MSE, MAD and MAPE for the quantity theory VEC and the VAR
in differences models for the period 1989:4-1999:4. For low horizons (less than 5 years), the loss
associated with the quantity theory VEC model is greater than that for the VAR in differences,
regardless of loss function. The test statistics in panels (d)-(f) confirm that the quantity theory
VEC model generally forecasts much worse than the VAR in differences model at low horizons.
Figure 6 shows that the estimated VEC model does even worse than the quantity theory VEC
model, and Figure 7 shows that the alternative models typically also outperform the quantity
theory VEC model at low horizons. Imposing cointegration on low-horizon forecasts in the 1990’s
would have been harmful, which is not surprising given the previous literature documenting the
breakdown in the stability of M2 demand. Surprisingly, though, the quantity theory VEC model
generally forecasts much better than the VAR in differences model and the alternative models at
longer horizons. This result suggests that failure to find cointegration after 1993 may not be due to
the fact that “money demand became unstable”, as is the usual interpretation, since in that case
the VEC model would be misspecified, and this would affect inflation forecasts at all horizons.

To make our argument concrete, assume that the inflation series is generated as
-1 -1 -1
Apein=Po+) . Bpildpr—i + > BmilAme s + > o BailAgei + b2 + ey, (4)

where 21 = o/(p—1,m1-1,q:-1)', and o = (1,-1,1) is the cointegration vector. Consider a
permanent money demand shock which causes the cointegrating relationship to break down. Once
the cointegrating relationship has broken down, the coefficient on 2y changes (to zero), and this
will cause the quantity theory VEC model to be misspecified, at least until there are enough new
observations to enable our recursive estimation methodology to account for the change in ¢. Now
consider the case where there are no money demand instabilities and M2 is initially an accurate
measure of the money stock, m;, but at some point in time M2 begins to underestimate the nominal
money stock, so that M2, = m; + 14. This would be classified as a measurement error problem

and would, of course, only affect forecasts made using data affected by the measurement error,
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hence allowing for our finding that longer horizons predictions are always better when formed
with the quantity theory restriction, even in the 1990s. The above discussion also suggests a
test for distinguishing between different explanations for the breakdown in cointegrating relations
during the 1990s. If the breakdown is due to instabilities in money demand, a VEC model will be
misspecified and all forecasts made after the breakdown will be affected. If, however, the breakdown
is the result of measurement error, the VEC model should forecast poorly only for those periods
where the M2 data used to make the forecasts were observed after the instabilities began.

Table 2 breaks down the mean absolute forecast errors into three time periods. “Period 1”
refers to forecasts from 1989:4-1992:4, “period 2” refers to forecasts after 1993:1 which did not use
M2 data from 1993:1 or later,'3 and “period 3” refers to the remaining forecasts. Table 2 shows
that the mean absolute forecast error for the quantity theory VEC model is slightly higher for time
period 2 than time period 1, but is substantially higher for time period 3 than for either time period
L or time period 2. The five-year forecast horizon MAE is almost five times higher for time period
3 than for time period 2. This indicates that the breakdown of cointegrating relationships was
likely not a result of what has conventionally been termed an “unstable money demand function”.
Rather, it seems that M2 needs to be redefined, as done for instance in Feldstein and Stock (1996).
Carlson, et al (2000), for instance, have argued that by allowing for a one-time structural change
in the early 1990’s, an M2 cointegrating relation continues to have relevance in the context of a
nominal income policy rule. In that sense, it is possible that the quantity theory VEC model may
still be relevant in spite of the problems with M2, but it is too early to test this possibility in a

framework consistent with the real-time forecasting methodology employed in this paperl4.

4.4 Additional Issues

This section evaluates the robustness of our findings to the criticism made by a number of authors
(see e.g. Woodford (1994)) that indicator variables, when used correctly by policymakers, will fail

to be useful for reduced-form forecasting purposes. Woodford (1994) illustrates the point with the

13For instance, “period 2” covers 1993:1-1993:4 for one-year horizon forecasts, 1993:1-1994:4 for two-year horizon
forecasts, and so on.

1A question we do not address in this paper is detection of the instabilities in practice, but there are reasons to
believe it would not have been difficult. First, Johansen's (1988,1991) cointegration test finds a cointegrating rank of

zero after 1993:4. Second, Greenspan (1993) states that policymakers knew about the problems with M2 in the first
half of 1993.
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following simple example. Assume that inflation is determined by
Mgyl = St + Ug +€t+1,

where m; is the inflation rate at time ¢, s; is an information variable, u; is a control variable, and €,
cannot be forecast at time ¢. If the goal is to minimize the variance of inflation, the optimal policy
will be to set u; = —s;, meaning 741 = €¢4.1, and s; will then not be useful for forecasting time t+1
inflation in a reduced-form VAR model. Admittedly, this result requires strong assumptions, but
it is plausible that money supply data have been used as indicator variables in the past, and if the
corresponding policy led to changes in M2, it would weaken the evidence that monetary aggregates
are useful for forecasting inflation.!® This section provides some evidence on the importance of
the criticism, with a thorough analysis of the issue left to future research. We compare forecasts
over the earlier period, 1979:4-1992:4, for the “simple autoregressive model” in differences and the
quantity theory VEC model, with an additional term included in the latter model to account for

growth in m; between period ¢ and period t+k The benchmark model is the autoregressive model

I~1
Apean = Bo+ D BpildPr—s + Erpn,

where all variables are defined as before. This autoregressive model is compared to the following

modified version of the quantity theory VEC model

-1 -1 -1
Apeyn = Bo + Zi:O Bpi Apt—; + Zi:O BmiAmy_; + Zz’:O BqiAqs—i + ¢z + YAMyyp + 14n, (5)

where Amyyp, = myyp —my is the change in M2 from period ¢ to period t+h, and all other variables
defined as before. Inclusion of Amy,, accounts for the possibility that M2 was used by the Fed as
an indicator variable for future inflation, and that the corresponding monetary policy influenced
the path of M2. As v cannot be estimated consistently due to the potential that it is endogenous,
we present results for values of v = (0,0.25,0.5,1), a range that includes all reasonable values of
7. Recall that we found in Section 4 that the quantity theory VEC model did not forecast better

at low horizons than the autoregressive model in differences, implying that lagged values of m; did

not help forecast inflation.

"Romer and Romer (2000) and Bernanke and Boivin (2003) find that Federal Reserve Greenbook forecasts are
very accurate relative to other forecasts, and Bernanke and Boivin (2003) suggest that this may result from the fact

that Greenbook forecasts are made conditional on future policy actions.
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Figure 8 shows the DM statistics at horizons of 1 through 20 quarters associated with the
comparison of the above modified quantity theory VEC model with the autoregressive model, for
different values of 7. As before, positive DM statistics imply that the quantity theory VEC is
preferred. Figure 8 shows that forecasts from the quantity theory VEC model tend to be slightly
worse when a correction is made for the possibility that M2 has been used as an indicator variable
in the past, implying that this explanation cannot explain the lack of marginal predictive content
of M2 for inflation at low horizons.

It should be noted that we have presented only a crude estimate of the potential effects of the
Fed (correctly) using monetary aggregates as indicator variables in the past, and a more thorough
analysis would require the work in this section to be extended to include formal structural policy
models, including identified VAR models. Such an analysis of identified VAR models would also
be of independent interest, as the results of structural VAR analysis based on different identifying
assumptions often leads to markedly different conclusions, yet there is typically no way to dis-
tinguish among the various identifying assumptions. Asymptotically, a correctly identified VAR
model should be expected to forecast better than any other identified VAR model, but verifying

this would require a formal analysis of the properties of such a comparison, which is left to future

research.

5 Monte Carlo Experiments

In this section, we investigate the importance of parameter estimation error for the forecasts of
several of the models considered above.

The first set of comparisons is designed to study the importance of cointegration vector rank
and parameter estimation error on forecasts from VEC models. In particular, 5000 samples of data

were generated using the following data generating process (DGP):
AY; = a3 +b3AY: 1 + 321 + €3, (6)

where Y, = (pi,m¢,q;)’, with py, my, and ¢; defined as above, A is the first difference operator,
€3t ~ IN(0,23), with X3 a 323 matrix, and Z;_ = dY;_1, with d is an 723 matrix of cointegration
vectors, r is the rank of the cointegrating space (which is either 0, 1, or 2), and as, b3, c3, and I3

are parameters estimated using historical U.S. data. In all of our comparisons, data are generated
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with one lag of Y; and cointegrating rank, r, equal to unity, and d either estimated from the
historical U.S. data or set equal to (1,—1,1). We estimate the parameters of (6) using four different
sample periods: the entire sample, covering 1959:1-1999:4; the period prior to the well known
“monetarist experiment”, covering 1959:1-1979:3; the period 1979:4-1989:3; and the period 1989:4-
1999:4, which corresponds to the empirical work in the previous section.® Given data generated
according to (6), 2 prediction models are estimated, including: (i) versions of (6) where r and d
are estimated, corresponding to the “estimated VEC” model; (iii) versions of (6) where r=0 is
imposed, corresponding to the “VAR in differences” model. Note that we have generated the data
according to a VEC model in all cases, so that we should expect the estimated VEC prediction
model to perform well, assuming that coefficients are estimated with sufficiently little parameter
estimation error, for example. Results from this experiment are gathered in Table 3. The results
vary across the different DGP’s, but two patterns emerge. First, for small samples (T" = 100),
imprecise estimates of the cointegrating vector parameters and rank generally prevent the VEC
model forecasts from dominating the VAR in differences forecasts, and in many cases the VAR
in differences model even forecasts more accurately. Second, as the sample size grows, the VEC
model forecasts begin to dominate more often, and for some DGP’s the VEC model almost always
forecasts better for T = 500.

Our second Monte Carlo experiment is designed to show that parsimonious time series models
will often forecast better than more heavily parameterized, but correctly specified rival models,
likely due to parameter estimation error. Specifically, we generate data according to two DGP’s.

The first DGP is a second-order autoregressive (AR(2)) process:
Apy = a1 +b1Aps 1 + 1 Apy_ + €y, (7)

where p; and A are defined as above, so that Ap; is the percentage change in the price level
from period t-1 to period t, €;; ~ IN(0,0%), and a4, by, c1, and o? are parameters estimated

using historical U.S. data for the period 1959:1-1999:4. The second DGP is a first-order vector
autoregressive (VAR(1)) process:

AY; = as + b AY;_ 1 + €2t (8)

'63ee Section 2 for a description of the historical U.S. data used to estimate the parameters of the DGP’s in this

section.
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where Yy = (pg, my,q¢), with pt, my, ¢ and A defined as above, €g; ~ IN(0,%5), with X9 a 323
matrix, and asg, bz, and Yo are parameters estimated using historical U.S. data for the period 1959:1-
1999:4. Given these data generating processes, 5000 samples of varying lengths (7' = 164, which
corresponds to the actual sample size used in the empirical work above, and T' = 300, 500) were
generated. For each sample generated from the DGP given in equation (7), both AR(1) and AR(2)
models were fitted, and one-step ahead forecasts were compared using the DM test. Although the
AR(2) model is correctly specified, it requires the estimation of an additional parameter beyond that
of the AR(1) model, so that it is not clear which model will forecast better, out-of-sample. For each
sample generated according to DGP (8), one-step ahead forecasts are compared for the “differences
random walk” and “VAR in differences” models analyzed in the previous section. Again, even
though the VAR in differences model is correctly specified, there is no reason to expect that it
will forecast better than the differences random walk model, as the lag length and several other
parameters need to be estimated for the VAR in differences model. As a final metric for assessing the
importance of parameter estimation error, “true” model forecasts, for which the model parameters
are imposed a priori to be equal to their true values, rather than estimated, are also included for
all of the comparisons.

Table 4 shows the percentage of times the DM test was able to reject the null hypothesis that
the AR(1) and AR(2) models forecast equally well, given that the data generating process is an
AR(2) model. The figure shows results for two comparisons, where the AR(1) model forecasts are
compared to those of an AR(2) model for which the coefficients are estimated (the “AR(2) Model”
comparisons), and also where the AR(1) model forecasts are compared to those of an AR(2) model
where the true coefficients are imposed rather than estimated (the “True Model”) comparisons.
We see that for samples of size 164, which is the sample size used in the empirical work, the power
is never more than 20%. This means that in practice we would have mistakenly concluded that
an AR(1) model is the correct specification 80% of the time. As expected, the power of the test
increases with the sample size, but is never more than 51% when the AR(2) model parameters are
estimated, even for samples of size 500.

Table 5 has related results for two comparisons. In the first (the “VAR Model” comparisons),
differences random walk model forecasts are compared to VAR in differences forecasts, with es-
timated lag lengths and coefficients. In the second (the “True Model” comparisons), differences

random walk model forecasts are compared to forecasts from a first-order VAR model where the
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coeflicients are imposed to be equal to their true values rather than estimated. The results depend
on the specification, but when the VAR parameters are estimated, the random walk model almost
always does better. In fact, for all of the configurations, the DM statistics are never greater than
1.96, but are often less than -1.96, with negative DM statistics implying that the random walk
model forecasts better. On the other hand, for the “True Model” comparisons, very few of the DM
statistics are negative, and the percentage of DM statistics greater than 1.96 is greater than 80%
for all but three cases. In nearly all cases, then, a VAR model where the lag length and coefficients
are known a priori will forecast better than a random walk model, but when the lag length and

coefficients need to be estimated, the random walk model forecasts better.

6 Concluding Remarks

In this paper, we show that M2 has marginal predictive content for inflation, and that imposing a
cointegrating restriction among prices, money and output that is implied by the quantity theory
yields predictions that are superior to those from a variety of other models, including a VAR
in differences and a version of the Phillips curve. This result is seen to be particularly robust at
longer forecast horizons, and at longer horizons even holds throughout the 1990s, when cointegrating
relationships are believed to have broken down. We additionally provide some evidence suggesting
that the reported breakdown in the money demand cointegrating relationship may be the result
of a failure of M2 as a measure of the money stock, and not the result of an actual breakdown in
cointegrating relations, a result that agrees with Carlson, et al (2000).

Our finding that imposing cointegration is useful for forecasting inflation is, however, limited to
the case where the cointegration vector is imposed rather than estimated. When the cointegration
vector is estimated, the corresponding VEC model always forecasts much worse than a VAR in
differences model. This suggests that previous work which has found that VEC models do not
forecast better than VAR models may be in some part due to the presence of cointegration vector
parameter estimation error. We support this notion by presenting Monte Carlo evidence showing
that the effect of parameter estimation error on VEC model forecasts is so substantive that it results
in many cases to VAR models forecast-dominating VEC models, even the true model is a VEC,
and when the cointegrating rank is known. We additionally present evidence that failure to beat

a random walk model is not in itself a useful yardstick for measuring the validity of a theoretical
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model, at least if the objective is forecasting. This is done in part by using data simulated to be
consistent with the historical U.S. record over the 1959:1-1999:4 period, and showing that a random
walk model usually forecasts better than a VAR model for which the lag length and coefficients
are estimated, even when the true data generating process is a first-order VAR model. Given this
result, and other related arguments, we conclude that use of a random walk as a strawman model
in analyses such as ours is not warranted.

Some limitations of the current paper and directions for future research are the following. First,
all of the forecasting models in this paper are simple linear models. Nonlinear models may offer
forecasting gains (see e.g. Stock and Watson (1999b)). Second, although we have considered only
one long-run relationship, it might be of interest to consider some of the many other cointegrating
relationships that have been proposed in the literature, both domestic (see e.g. Ahmed and Rogers
(2000)) and international (see e.g. Ahmed, et al (1993)). Third, the analysis of Section 4.4 should be
extended to include identified structural VAR’s and other models which take account of the effects
of actual monetary policy actions. Finally, more work needs to be done on the definition of an
appropriate monetary aggregate. Attempts to exploit forecasting relationships between monetary
aggregates and policy objectives have been subject to criticism, because in practice it takes too
long to detect flaws in the monetary aggregate or parameter instability. Although there has been
important work done that deals with the problem of instability (see e.g. Carlson, et al (2000)),

much remains to be done in this area, particularly in the area of ex ante analysis of instability.
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Table 1: Summary of Forecasting Models

Benchmark Model
1. Quantity Theory VEC model:

-1 -1 -1
Apiyr = Bo + Zi:O BpiApt—i + Zi:O BmiAmy_; + Zi:O BeiAqi—i + ¢z + €t ph-

Alternative Models

2. VAR in differences model:

-1 -1 I-1
Apiyn = Bo + Zi:O BpiAps—; + Zz’:O BmiAms_; + Zi:O BiAGt—i + 4 h-

3. VAR in levels model:
-1 -1 -1
Pt+h = Po+ Zi:() Bpipt—i + Zz’:O Bmimy—; + Zi:o BqiGt—i + Eth.
4. Simple autoregressive model (differences):
-1
Apesn = Po+ D . Boildpi—s + Erpn.
5. Simple autoregressive model (levels):

-1
Pe+h = Bo + Zz’:o BpiPt—i + Etqh.-

6. Differences Phillips curve model:

-1 -1
Apyin = Bo + Zi:O BpiApt—i + Zi:O Builli—i + €11 h-

7. Levels Phillips curve model:

-1 -1
Prvh=PBo+ ) . Bpibe—i + > g Builii +€rpn.

8. Differences random walk model:

Appyn = Apr + Et+h-

9. Random walk with drift model:

Pith = B0+ Pt + €tpn.

10. Estimated VEC model:

-1 -1 -1 -
Apren=PBo+ ) _ Bpildpri + Do BmilAme_ + > Bl + 62 + rn
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Table 2: Mean absolute forecast errors for the quantity theory VEC model

Horizon Period 1 Period 2 Period 3

1 Year 0.51 0.63 0.61
2 Years 1.21 1.33 2.34
3 Years 1.60 2.31 6.33
4 Years 2.22 3.10 11.41
5 Years 2.63 3.07 14.12

Notes: “Period 1” forecasts were for the period 1989:4-1992:4, “period 2" forecasts were those from 1993:1
and later which only used M2 data from 1992:4 and earlier, and “period 3” forecasts were those from 1993:1
and later which used M2 data from 1993:1 or later.
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Table 3: Monte Carlo Results

DM Statistics for Comparison of Estimated VEC and Differences VAR,

L. Cointegration Vector (1, -1, 1) Used In True DGP
P=(1/3)T P=(1/2)T P=(2/3)T
Sample A B C A B C A B C
1959:1-1999:4 T=100 0.11 0.34 0.68 0.10 0.33 0.68 0.09 032 0.68
T=250 0.01 008 036 001 0.06 0.29 0.01 006 0727
T=500 0.00 0.01 0.11 0.00 0.00 0.05 0.00 0.00 0.03
1959:1-1979:3 T=100 0.15 0.47 0.80 0.15 0.46 0.80 0.13 0.44 0.79
T=250 0.12 046 0.83 0.10 0.46 083 0.09 044 0.83
T=500 0.11 049 084 0.10 049 0.84 0.10 049 0.85
1979:4-1989:3 T=100 0.16 044 0.7 0.14 043 078 0.12 0.41 0.77
T=250 0.12 046 0.82 0.11 044 081 0.10 0.43 0.81
T=500 0.10 0.46 0.83 0.09 0.45 0.82 0.09 0.44 0.8
1989:4-1999:4 T=100 0.21 0.54 0.83 021 055 085 021 057 0.87
T=250 0.16 0.44 0.77 0.14 043 0.77 0.12 0.44 0.79
T=500 0.13 0.37 0.67 0.11 0.35 067 009 0.34 0.66

I1. Estimated Cointegration Vector Used In True DGP
P=(1/3)T P:(1/2)T P=(2/3)T
Sample A B C A B C A B C

1959:1-1999:4 T=100 0.07 0.26 0.60 0.07 0.25 0.59 0.07 0.24 0.59

T=250 0.00 0.04 0.26 0.00 0.03 0.18 0.00 0.02 0.14

T=500 0.00 0.01 0.09 0.00 0.00 0.04 0.00 0.00 0.02

1959:1-1979:3 T=100 0.04 0.16 0.45 0.03 0.13 041 0.03 0.12 041

T=250 0.01 0.06 0.21 0.01 0.03 0.12 0.00 001 0.07

T=500 0.06 0.16 0.31 0.03 0.09 023 0.0l 0.04 0.13

1979:4-1989:3 T=100 0.20 0.52 0.81 0.18 051 0.81 0.16 0.49 0.81

T=250 0.17 0.54 0.84 0.18 0.54 085 0.17 0.56 0.86

T=500 0.15 048 0.82 0.14 0.51 0.83 0.13 051 0.84

1989:4-1999:4 T=100 0.26 0.68 0.94 029 0.73 0.95 0.34 0.77 0.97

T=250 0.19 0.61 091 021 065 093 023 0.71 0.96

T=500 0.18 0.53 0.84 0.17 0.55 0.86 0.18 0.60 0.89
Notes: “A” refers to percentage of cases in 5000 replications where the DM statistic was less than or equal
to -1, assuming an MSE loss function. “B” refers to percentage of cases where the DM statistic was less

than or equal to 0. “C” refers to the percentage of cases where the DM statistic was less than or equal to 1.
A negative DM statistic implies the VAR in differences model performed better.
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Table 4: Monte Carlo Results
Power of test of Ho:AR(1) model forecasts as well as AR(2) model

(DGP is an AR(2) model)
Comparison ~ OOS Period Sample Size Power
AR(2) Model P = (2/3)T T =164  0.20

T =300 0.34
T = 500 0.51
True Model T =164 0.38
T = 300 0.47
T =500 0.60
AR(2) Model P=(1/2)T T=164 018
T = 300 0.29
T =500 0.42
True Model T =164 0.31
T =300 0.38
T =500 0.50
AR(2) Model P = (1/3)T T =164 0.20
T =300 0.28
T =500 0.38
True Model T =164 0.29
T =300 0.34
T = 500 0.43

Notes: The last column of numerical entries shows the power of the Diebold and Mariano (1995) predictive
ability test to determine whether an AR(2) model forecasts significantly better, one-step ahead, than an
AR(1) model, under MSE loss. The data generating process is an AR(2) model, with parameters estimated
using historical US data for the period 1959:1-1999:4. Power of the test indicates the percentage of times in
5000 replications that the predictive ability test rejected equal forecast accuracy of AR(1) and AR(2) models
at a significance level of 95 percent, where critical values are taken from McCracken (1999). “AR(2) Model”
refers to comparison of the AR(1) model forecasts with AR(2) model forecasts, where the parameters of both
models are estimated. “True Model” refers to comparison of the AR(1) model forecasts with AR(2) model
forecasts, where the parameters of the AR(2) model are imposed to be equal to their true values.
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Table 5: Monte Carlo Results
Forecast comparison of VAR and random walk models

(DGP is a VAR model)

Comparison OOS Period Sample Size DM < —1.96 DM <0 DM<1.96

VAR Model P = (2/3)T T =164 0.60 0.98 1.00
T =300 0.86 1.00 1.00
T =500 0.97 1.00 1.00
True Model T =164 0.00 0.00 0.17
T = 300 0.00 0.00 0.03
T =500 0.00 0.00 0.00
VAR Model P =(1/2)T T =164 0.47 0.97 1.00
T =300 0.76 1.00 1.00
T =500 0.93 1.00 1.00
True Model T =164 0.00 0.00 0.32
T =300 0.00 0.00 0.08
T =500 0.00 0.00 0.01
VAR Model P =(1/3)T T=164 0.36 0.95 1.00
T =300 0.57 0.99 1.00
T =500 0.82 1.00 1.00
True Model T =164 0.00 0.01 0.47
T =300 0.00 0.00 0.24
T =500 0.00 0.00 0.06

Notes: See notes to Table 4.
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Figure 1: Lag and Cointegration Estimates

a: Average lags by horizon b: Estimated CI rank
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Notes: (a) Average number of lags for the autoregressive model of the inflation rate at each forecast
horizon, chosen by the SIC. (b) Recursive cointegrating rank estimates. (c) Recursive estimates of
the coefficient on M2 in the cointegration vector with largest eigenvalue. (d) Recursive estimates of

the coefficient on real GDP in the cointegration vector with largest eigenvalue, using the method of
Johansen (1988, 1991).

31



Figure 2: Inflation Forecasts for 1979:4-1992:4
Forecast comparison of quantity theory VEC and VAR in differences models
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Notes: (a)-(c) contain plots of mean squared error, mean absolute deviation, and mean absolute
percentage error, respectively, for each forecast horizon. (d)-(f) show test statistics for the Diebold and
Mariano (1995) predictive accuracy test. Positive statistics imply that the quantity theory VEC model
performs better at a particular horizon. The horizontal axis is the forecast horizon, in quarters.
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Figure 3: Inflation Forecasts for 1979:4-1992:4
Effects of Estimating the Cointegration Vector and Rank

a: QT VEC/Estimated VEC b: Estimated VEC/VAR Comparison
Comparison
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Notes: (a) Test statistics for the Diebold and Mariano (1995) test of the null hypothesis that
the quantity theory VEC and estimated VEC models have equal forecast accuracy at a
particular forecast horizon, assuming MSE loss. Positive statistics imply the quantity theory
VEC model dominates at a particular horizon. (b) Test statistics for the Diebold and Mariano
(1995) test of the null hypothesis that the estimated VEC and the VAR in differences models
have equal forecast accuracy at a particular horizon, assuming MSE loss. Positive statistics
imply that the quantity theory VEC model dominates at a particular horizon. The horizontal
axis in both graphs is the forecast horizon, in quarters.
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Figure 4: Inflation Forecasts for 1979:4-1992:4
Comparison of Quantity Theory VEC and Alternative Model Forecasts
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Notes: Figures show test statistics and 95% and 90% critical values for the Diebold and Mariano
(1995) test of the null hypothesis that the quantity theory VEC model and alternative model have
equal forecast accuracy at that horizon, assuming an MSE loss function. Positive statistics imply
the quantity theory VEC model forecast better at that horizon. The horizontal axis is the forecast
horizon, in quarters.
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Figure 5: Inflation Forecasts for 1989:4-1999:4

Forecast comparison of quantity theory VEC and VAR in differences models
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Notes: See notes to Figure 2.
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Figure 6: Inflation Forecasts for 1989:4-1999:4
Effects of Estimating the Cointegration Vector and Rank
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Notes: See notes to Figure 3.
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Figure 7: Inflation Forecasts for 1989:4-1999:4
Comparison of Quantity Theory VEC and Alternative Model Forecasts
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Figure 8: Inflation Forecasts for 1979:4-1992:4
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Notes: Plots are of Diebold and Mariano (1995) test statistics for the null hypothesis that the
differences autoregressive model and the model given by equation (5) above have equal
predictive accuracy, under MSE loss, for different values of gamma. Negative statistics imply
that the autoregressive model forecasts better at a particular horizon. The horizontal axis is the
forecast horizon, in quarters.
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