
Kranz, Sebastian

Working Paper

Moral Norms in a Partly Compliant Society

Bonn Econ Discussion Papers, No. 11/2006

Provided in Cooperation with:
Bonn Graduate School of Economics (BGSE), University of Bonn

Suggested Citation: Kranz, Sebastian (2006) : Moral Norms in a Partly Compliant Society, Bonn Econ
Discussion Papers, No. 11/2006, University of Bonn, Bonn Graduate School of Economics (BGSE),
Bonn

This Version is available at:
https://hdl.handle.net/10419/22956

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/22956
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Bonn Eon Disussion Papers
Discussion Paper 11/2006

Moral Norms in a Partly Compliant Society

by

Sebastian Kranz

May 2006

Bonn Graduate Shool of EonomisDepartment of EonomisUniversity of BonnAdenauerallee 24 - 42D-53113 Bonn



                                     The Bonn Graduate School of  Economics is
                                                             sponsored by the



Moral Norms in a Partly Compliant Society

Sebastian Kranz∗

University of Bonn

May 2006

Abstract

This paper analyses competition of moral norms and institutions in a society

where a fixed share of people unconditionally complies with norms and the remain-

ing people act selfishly. Whether a person is a norm-complier or selfish is private

knowledge. A model of voting-by-feet shows that those norms and institutions

arise that maximize expected utility of norm-compliers, taken into account self-

ish players’ behavior. Such complier optimal norms lead to a simple behavioral

model that, when combined with preferences for equitable outcomes, is in line

with the relevant stylized facts from a wide range of economic experiments, like

reciprocal behavior, costly punishment, the role of intentions, giving in dictator

games and concerns for social efficiency. The paper contributes to the literature

on voting-by-feet, institutional design, ethics and social preferences.

Keywords: moral norms, social preferences, reciprocity, fairness, rule utilitarian-

ism, voting-by-feet, cultural evolution, golden rule, social norms

JEL Classifications: A13, C7, D02, D63, D64, D71, D8, Z13

∗Adress: Bonn Graduate School of Economics, University of Bonn, Adenaueralle 24-26, 53113
Bonn, Germany; e-mail: skranz@uni-bonn.de. For extremely valuable discussions and sugges-

tions I am especially grateful to Paul Heidhues, Georg Nöldeke and Susanne Ohlendorf. Further,

I would like to thank many fellow PhD students from the BGSE, as well as Armin Falk, Thomas

Gall, Werner Güth, Frank Riedel, Karl Schlag, Reinhard Selten, Urs Schweizer and participants

of the BGSE workshop in Bonn and the EDP Jamboree 2005 in Florence for very helpful com-

ments. Special thanks also to my family, friends and neighbours, who endured endless questioning

of how they would act in this or that situation.



1 Introduction

All human societies have certain institutions that structure the way how people

interact with each other. These interactions are usually governed by moral- or

social norms, which are explicit or implicit rules describing how members of a

community are supposed to act (see Elster 1989 for a survey). The traditional

economists’ approach claims that people only comply with such norms, when it

is in their selfish best interest. Experimental evidence shows, however, that not

all people always act selfishly: For example, many people perform costly punish-

ment in one-shot interactions, or contribute to a public good in the absence of

punishment (see e.g. Fehr and Gaechter, 2000).

We analyse which moral norms and institutions develop in societies inhabited

by two types of people: compliers, who unconditionally comply with moral norms

by intrinsic motivation, and selfish people, who break norms whenever this is

individually rational.

In our model, a community (e.g. a religious group or a city) is populated by a

continuum of inhabitants who randomly meet and interact with each other. Social

interaction is described by a normal- or extensive-form game1 (the institution),

and a community’s moral norm is a fixed, commonly known strategy profile of

this game. Whether a player is a complier or selfish is private knowledge but the

share of compliers in a community is commonly known. Hence, selfish players

maximize expected payoffs taking into account other selfish players’ behavior, the

norm and the compliers’ share in a community. A norm is complier optimal if

it maximizes expected utility of all compliers, taking into account the induced

equilibrium strategies of selfish players (see Section 2).2

Complier optimal norms can be analyzed for any preferences people may have

over material payoffs, like risk-aversion, loss-aversion, envy, altruism, spitefulness,

etc. We illustrate them for linear utility in own payoffs and for a simple envy-

augmented utility function. Our clear predictions capture the relevant stylized

facts from a wide range of economic experiments, e.g. costly punishment, condi-

tional cooperation, the role of intentions, giving in dictator games and concerns

1Our examples in Section 3 include simultaneous and sequential prisoners’ dilemma games,

public goods games with punishment option, ultimatum games (also a version with non-

intentional offers), dictator games and a general result for two-player zero-sum games.
2The reader may think of a distant resemblance to a Stackelberg model: First a norm is fixed,

then selfish players account for it in their Nash equilibrium strategies. Note, however, that there

is no strategic value of commitment for an individual complier, since types are private knowledge.

Thus, in terms of expected utility, a selfish player is weakly better off than a complier.
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for social efficiency, with no more than 2 parameters for the entire model (see

Sections 3-4, where we also discuss the relation to models of social-preferences).

In Sections 5-6, we show that complier optimal norms and institutions arise

from competition of norms and institutions via voting-by-feet. In our model, a

society consists of a set of communities, each with its own institution and norm.

Inhabitants vote by feet and migrate to communities that grant higher expected

utility. Expected utility depends on an inhabitant’s type, the institution and moral

norm, as well as the share of compliers in a community. After having migrated, a

complier follows the norm of her new community and selfish players adapt their

equilibrium strategies to the new situation. No person can be prevented from

migration, especially, compliers are not able to exclude selfish migrants from a

community. We define an open migration-proof equilibrium for this migration

process. It is based on stability against farsighted coalitional deviations, in the

spirit of a concepts by Chwe (1994) and Conley & Konishi (2002).

We show first that (under some regularity conditions) every society, in which

the entire population is located in a single community that has a complier optimal

institution and norm constitutes an open migration-proof equilibrium. Second,

in every open migration-proof equilibrium compliers’ expected utility will be the

same as in the society above.

Our approach differs frommodels that analyse development of pro-social behav-

ior and culture from evolutionary perspectives, and from typical learning models

(see Ostrom, 2000 or Bergstrom, 2002 for surveys). This is because in our model

compliers, although voting-by-feet on norms and institutions, do neither face evo-

lutionary selection pressures when having lower payoffs than selfish players, nor

do they become selfish when learning that selfish players are better off.

This is in line with recent experimental results by Gürerk et. al. (2006) who

allow individuals to vote-by-feet between a public goods game with costly punish-

ment and one without. Virtually the whole population migrates to the community

with the institution that allows for punishment. There, over 40% of subjects com-

ply with the norm to punish non-contributors, although those subjects who do

not punish get higher payoffs (example 3.3 illustrates that punishment of non-

contributors is a complier optimal norm).

Our model takes the share of compliers in a society’s total population as ex-

ogenously given. One explanation for norm-compliance can be a complier’s desire

for consistency - after having promised or being expected to follow a community’s
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moral norm.1

The existence of compliers and selfish people is also in line with Lawrence

Kohlberg’s (e.g. 1984) famous work on the psychology of moral development.

He distinguishes three levels (split into six stages) of moral thinking. At the pre-

conventional level, people follow norms only when this serves their own interests or

avoids punishment - like the selfish inhabitants in our model. At the conventional

level, people follow the existing norms in their society by a sense of duty or a

desire for social approval - like compliers. At the post-conventional level, actions

are guided by universal principles and a genuine interest in the welfare of others.

Such people comply only to sensible norms, like complier optimal norms, and may

be the ones that initiate change of inappropriate norms and institutions - like an

initial group of migrants in our voting-by-feet model.

The question of which moral norms people should follow has of course been

long discussed in ethics - see Binmore (1994) for an overview from a game the-

oretic perspective and, as one famous example, note Rawls’ (1973) “Theory of

Justice”. John Harsanyi (e.g. 1992) strongly advocated the conception of rule

utilitarianism.2 In his own words, Harsanyi (1985, p.44) describes the crux of rule

utilitarianism as follows:

“In fact, the very purpose of rule utilitarianism is to identify the moral code

that would maximize expected social utility if it became the accepted moral code of

society, that is, if

1. it were followed by all rational and morally motivated people (obviously we

cannot expect it to be followed by people committed to an irrational nonutilitarian

moral code or by people having no concern for morality at all), and if

2. all members of society knew that this was the moral code followed by all

rational and morally motivated people.”

Our assumptions are similar to Harsanyi’s conditions: Compliers correspond to

the morally motivated people and selfish players to people that have no concern for

morality at all.3 As in Harsanyi’s second condition, the moral norm is commonly

known in our model. Harsanyi postulates that from an ethical perspective one

should select a moral code that maximizes expected social utility, i.e. expected

1People’s desire for consistency has long been analyzed in psycholgy, see e.g. Heider (1946),

Newcomb (1953), Festinger (1957) or Cialdini (1993). For recent economic models see e.g.

Ellingsen & Johannesson (2004) and Charness & Dufwenberg (2005).
2For a recent application of rule utilitarianism see Feddersen’s and Sandroni’s (2002) model

of participation in elections.
3Irrational behaviour should be incorporated in the game that describes social interaction,

e.g. by allowing that actions are mis-implemented (see example 3.3).
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sum of utility of all inhabitants.

In contrast, complier optimal norms, which arise from our voting-by-feet model,

correspond to the following ethical principle: “If people are ex-ante identical -

except for the fact that some comply with norms and others are selfish - and

selfish people are in expectation never worse off than compliers1, then follow a

norm which maximizes compliers’ expected utility.” This can be expressed more

compactly in a form related to the golden rule or Kant’s categorical imperative:

“Follow a norm that you want to be followed by all norm-compliers, in a society

where some people act selfishly.”

The remaining paper is structured as follows. In Section 2 we present our

framework for a single community with a given norm and institution. We define the

concept of a norm equilibrium and complier optimal norms. Section 3 illustrates

complier optimal norms for different games and we show that predicted behavior

is in line with the experimental findings. In Section 4 we compare our approach

with existing models of social preferences. Section 5 describes the model of voting-

by-feet for competition of moral norms and presents the results. In Section 6 we

extend the model to competition of institutions, and make one further extension.

Section 7 briefly concludes.

2 Analysing a single community

2.1 Basic Definitions

A community has a continuum of inhabitants. A share κ of inhabitants are

compliers and the others are selfish. Inhabitants randomly meet each other in

groups of two or more persons and play a game with normal-form representation

G = (N,S, u), which describes the institution for social interaction in the com-

munity. Note that G may be the normal-form representation of an extensive-form

game. N = {1, ..., n} describes the set of players, S = S1× ...×Sn is the strategy
space (containing mixed strategies), and u : S → Rn is the tuple of utility func-

tions. Each role in the social interaction is equally likely for each inhabitant, i.e.

each inhabitant is equally likely to be drawn as i’th player of the game G.

A community has a commonly known moral norm r = (r1, ..., rn) ∈ S, which
is a strategy-profile of the game G. The norm fixes behavior for compliers, i.e. if

1In our model selfish players are not worse off than compliers because types are private

information.
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player i is a complier, she must play the strategy ri ∈ Si.1 For the inhabitants of a
community the norm is fixed and exogenously given (in the voting-by-feet model,

see Section 5, people will endogenously select norms via migration).

For selfish players, the presence of compliers changes the game G. We assume

that a player’s type is private knowledge. Let θ = (θ1, ..., θn) denote the actually

drawn vector of players’ types, where θi = 0 means that player i is selfish and

θi = 1 means that player i is a complier. Types are independently drawn. The

probability to draw a complier is κ and to draw a selfish player is 1 − κ, with κ

being common knowledge.

Let s = (s1, ..., sn) denote the strategy profile played by selfish types in this

game of incomplete information and define sθ(s, r) by

sθi (s, r) :=

(
si if θi = 0

ri if θi = 1
. (1)

Thus, sθ describes the strategies that are actually played, when the vector of selfish

and compliant types θ is drawn. Let θ−i and sθ−i(s, r) denote the types and played

strategies of all players except for player i. For a given norm r and compliers’ share

κ, expected payoff of a selfish player i is then given by

uκ,ri (s) :=
X
θ−i

Pr(θ−i|κ)ui(si, sθ−i(s, r)) (2)

where Pr(θ−i|κ) =
Q
j 6=i κ

θj(1−κ)1−θj . Since selfish players act individually ratio-

nal they must play a Nash equilibrium of the induced game with payoff function

uκ,r(s). We denote this induced game by Gκ,r = (N,S, uκ,r) and formally define

Definition 1 A triple of compliers’ share, norm and selfish strategy profile (κ, r, s)
is a norm equilibrium for a game G if s is a Nash equilibrium of the induced

game Gκ,r.2

We will refer to the strategy profile s, which is played by selfish players in a

norm equilibrium, as the selfish (Nash) equilibrium.

1One can specify a guilt-augmented utility function that rationalizes compliers’ behaviour.

The utility loss from feelings of guilt when violating a norm must be sufficiently big, such that

compliers always prefer to follow the norm.
2Note that the norm r is not endogenously determined in a norm equilibrium. Endogenous

in a norm equilibrium are only the selfish equilibrium strategies, which are induced by the given

norm and compliers’ share.
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2.2 Existence of norm equilibria

Can we be sure that for a given game a norm equilibrium exists for all κ and

r? Under fairly general conditions the answer is yes, as the following proposition

states:

Proposition 1 If G = (N,S, u) fulfills the following three conditions

1. Si is nonempty, compact and convex,

2. ui(s) is continuous in (s1, ..., sn),

3. ui(s) is concave in si

then for every κ ∈ [0, 1] and every r ∈ S a norm equilibrium exists.

Proof. We need to show that for every r ∈ S and every κ ∈ [0, 1] the game Gκ,r

has a Nash equilibrium. We note that when G fulfills the three stated conditions,

also Gκ,r fulfills these conditions. For condition 1 this is clear, since Gκ,r has the

same strategy space as G. For conditions 2 and 3 this holds true, because the

payoff function of Gκ,r, i.e. uκ,r(s), is a linear combination of payoffs described by

u(s) and thus continuity / concavity of u implies continuity / concavity of uκ,r(s).

The last step is to note, that conditions 1-3 are sufficient conditions for existence

of a Nash equilibrium using the standard Nash-existence proof (see e.g. Mas-Colell

et. al. 1995, p. 260-261).

In the usual Nash existence proof, only quasi-concavity of ui(s) in si instead of

concavity is necessary.1 Although concavity is a slightly stronger condition, it is

nevertheless usually fulfilled, e.g. if S is the set of mixed strategies over a finite

action space.

2.3 Equilibrium selection and refinements

The game Gκ,r may have multiple Nash equilibria, i.e. multiple norm equilibria

for a given norm and compliers’ share may exist. A selfish equilibrium selection

function ψ : [0; 1] × S → S, which selects for every compliers’ share and norm

a unique selfish Nash equilibrium of the game Gκ,r, facilitates welfare compar-

isons between norms.2 Further, ψ can impose refinements on the class of selected
1We need concavity because linear combinations of quasi-concave functions are not neces-

sarily quasi-concave.
2To find the rule-utilitarian moral code, Harsanyi (1992 p. 693) proposes a “predictor func-

tion”, which is similar to our selection function. A selection function guaranties a complete

ordering of moral norms with respect to total- or compliers’ expected utility.
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equilibria. Especially, if G is derived from an extensive form game, selfish Nash

equilibria that are not sequentially rational in the corresponding extensive-form

game should be ruled out.1

In Section 6.1 we show how selfish equilibrium selection can be endogenized

by the voting-by-feet process. Until then, we assume that a global equilibrium

selection function ψ is given. We denote the selected selfish Nash equilibrium by

s(κ, r) ≡ ψ(κ, r).

2.4 Selfish players’ and compliers’ expected utility

For a given selfish equilibrium selection function, we can write down the expected

payoffs of a selfish player and a complier as a function of κ and r. For a selfish

player i expected utility is given by

Ui(κ, r) := u
κ,r
i (s(κ, r)) =

X
θ−i

Pr(θ−i|κ)ui(si(κ, r), sθ−i(s(κ, r), r)). (3)

A compliant player i plays ri and therefore her expected utility is given by

Vi(κ, r) := u
κ,r
i (ri, s−i(κ, r)) =

X
θ−i

Pr(θ−i|κ)ui(ri, sθ−i(s(κ, r), r)). (4)

Since we assumed that each position is equally likely for every inhabitant, expected

utility from one social interaction is given for selfish inhabitants by U(κ, r) :=
1
n

Pn
i=1 Ui(κ, r) and for compliers by V (κ, r) :=

1
n

Pn
i=1 Vi(κ, r).

Note that in expectations compliers can never be better off than selfish players,

i.e.

Vi(κ, r) ≤ Ui(κ, r) ∀i and V (κ, r) ≤ U(κ, r). (5)

These inequalities must hold because types are private information and therefore

a selfish player i can guarantee himself the expected payoff of a compliant player

i by simply playing ri himself.

2.5 Complier optimal norms and other moral principles

We now formally define complier optimal norms. A norm is complier optimal for

compliers’ share κ if it maximizes expected utility of a compliant inhabitant. Let

Ro(κ) denote the set of complier optimal norms for compliers’ share κ and let

ro(κ) denote an element of Ro(κ). Formally:

ro(κ) ∈ Ro(κ) := argmax
r∈S

{V (κ, r)} . (6)

1Examples 3.2 and 3.5 illustrate how to deal with extensive form games.
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One can construct cases where a complier optimal norm does not exist, i.e. V (κ, r)

has no maximum with respect to r, but only a supremum. Non-existence seems,

however, not to be a severe problem, as existence is usually ensured by an ap-

propriate selfish equilibrium selection function (see the examples in Section 3 for

illustration). We call a norm equilibrium with a complier optimal norm, i.e. (κ,

ro(κ), s(κ, ro(κ))), a complier optimal norm equilibrium (CONE). Recall that self-

ish players’ expected utility can never fall below compliers’ expected utility. This

provides an ethical justification for complier optimal norms, as pointed out in the

introduction.

It is helpful to compare complier optimal norms with alternative moral princi-

ples. An utilitarian norm maximizes expected sum of utility (including utility of

selfish players), i.e.

rutilitarian(κ) ∈ argmax
r∈S

{κV (κ, r) + (1− κ)U(κ, r)} . (7)

Another principle is to act in a way that would maximize total welfare if everyone

acted this way, i.e. if one naively assumed that everyone were a complier. Such

norms are given independently of the actual compliers’ share by

rnaive ∈ argmax
r∈S

V (κ = 1, r). (8)

3 Examples

3.1 A Prisoners’ Dilemma game

Suppose social interaction is described by a two player Prisoners’ Dilemma game

(PD game), where players can either cooperate C or defect D. We normalize the

payoff matrix as follows
C D

C 1, 1 c, d

D d, c 0, 0

with c < 0 < 1 < d and c + d < 2. Note that defection is a strictly dominant

strategy and hence selfish players will always defect, i.e. s(κ, r) = D ∀κ, r.1 For
a given compliers’ share κ, what is the complier optimal norm ro(κ)? Compliers’

expected utility from cooperation is given by V (κ, C) = κ + (1 − κ)c and from

1We abbreviate symmetric selfish equilibrium strategies and norms by the strategy of one

player, i.e. we write s(κ, r) = D, instead of s(κ, r) = (D,D).
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defection by V (κ, D) = 0. Thus, the complier optimal norm depends on the share

of compliers κ in a community. One has,

ro(κ) =


C if κ > |c|

1+|c|
D if κ < |c|

1+|c|
C or D if κ = |c|

1+|c|

.

The intuition behind this result is that when there are only few compliers, i.e. a

small κ, compliers are very likely to meet selfish players and would be exploited

in the PD game if the norm were cooperation. Thus, only if the probability

to meet other compliers is sufficiently high, the complier optimal norm becomes

cooperation.

How does the utilitarian norm rutilitarian look like? Let us assume for sim-

plicity that the measure of the total population in the community is normal-

ized to 1. If compliers cooperate, expected sum of utility is given by κV (κ, C)+

(1−κ)U(κ, C) = κ(κ+(1−κ)c)+(1−κ)(κd) and if compliers defect the expected

sum of utility is given by 0. This yields

rutilitarian(κ) =


C if κ > |c|−d

1+|c|−d
D if κ < |c|−d

1+|c|−d
C or D if κ = |c|−d

1+|c|−d

.

The share of compliers needed to make cooperation the utilitarian norm, is smaller

than the share needed to make cooperation the complier optimal norm, since
|c|−d
1+|c|−d <

|c|
1+|c| . This is because compliers who cooperate create a positive payoff

externality for selfish players. Indeed, the utilitarian norm can be defection only

in games with c + d < 0, i.e. sum of utility is lower when one player defects and

the other cooperates than if both defect. Finally, it is clear that the naive norm

is given by the social optimal solution that both players cooperate, i.e.

rnaive = C.

3.2 A sequential Prisoners’ Dilemma

We want to illustrate now the effects of a small institutional change in our setting.

Modify the PD game such that player 1 moves first and player 2 can condition his

decision on the observed behavior of player 1.

We summarize the results for complier optimal norm equilibria. A sequential

rational selfish player 2 always defects. For κ < |c|
2+|c| there are multiple complier

9



optimal norm equilibria but on the equilibrium path there is always mutual defec-

tion. For κ > |c|
2+|c| the unique complier optimal norm is that a compliant player

1 cooperates and a compliant player 2 plays the following Tit-for-Tat strategy:

cooperate when player 1 cooperated and defect when player 1 defected. A selfish

player 1 cooperates in the resulting norm equilibrium if κ > |c|
1+|c| and defects if

κ < |c|
1+|c| .

1

These predictions are in line with experimental studies of sequential Prisoners’

Dilemma games (see Bolle & Ockenfels 1990 or Clark & Sefton 2001), which show

that unconditional cooperation is practically never observed.

Note that compliers’ expected utility can never decrease when changing from a

simultaneous-move to a sequential PD game but there can be substantial increases,

especially when κ is slightly above |c|
1+|c| . This is illustrated on the left graph of

figure 1 for PD games with c = −1. The right graph of figure 1 shows that expected

Compliers' share κ

0 0.3 0.5 0.7 1

-0
.3

0
0.

3
0.

7
1

V(κ,ro(κ)) seq. PD
V(κ,r

o
(κ)) sim. PD

Compliers' share κ

0 0.3 0.5 0.7 1

-0
.3

0
0.

3
0.

7
1

V1(κ,ro(κ)) seq. PD
V2(κ,r

o
(κ)) seq. PD

Figure 1: Left: Compliers’ expected utility in a sequential PD game compared to a

simultaneous-move PD game, with c = −1. Right: Expected utility of a compliant
player 1 vs a compliant player 2 in the sequential PD game.

utility differs, however, between compliant player 1 and 2. Compliant player 1 gets

substantially lower expected utility, which for κ ∈ (1
3
, 1
2
) becomes even negative. In

this interval, a compliant player 1 accepts excessive exploitation by a selfish player

2, because the own decision to cooperate benefits a compliant player 2. Although

our model assumes that an inhabitant does not know ex-ante which player she will

1For κ = |c|
1+|c| every mix between C and D is an equilibrium strategy for a selfish player

1. In this case, compliers’ expected utility depends on the selfish equilibrium selection function

(but the compliers’ optimal norm does not).
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be, we recommend to augment utility functions over monetary payoffs by some

explicit equity concerns, as illustrated in example 3.5 and Section 4.

3.3 A public goods game with costly and imprecise pun-

ishment

This example analyses a two-player public goods game with a quite flexible speci-

fication of punishment technologies. There are two players who each own one unit

of money. A player can either keep his money for himself, increasing own payoff by

1, or contribute it to a common project, which increases both players’ payoff each

by β
2
, where β is an exogenous parameter describing the efficiency of the common

project. Assume 1 < β < 2, i.e. we have a public goods dilemma situation where

it is socially optimal if both players contribute, but individually rational to keep

the money (assume, in this example, that utility in monetary payoffs π is simply

given by ui(πi,πj) = πi).

Further, players have the opportunity to costly punish non-contributors. A

player i decides over a punishment level xi ≥ 0 and in case the partner did not
contribute, the partner’s payoff is reduced by xi. Punishment entails two kinds

of costs for the punisher. First, there are direct costs of punishment φxi with

φ > 0, which only must be paid if punishment is indeed carried out. Second, there

are control costs γxi with γ ≥ 0, which have to be paid even if punishment is

not carried out. To simplify the game, we allow a player to punish only if she

contributed to the public project, otherwise she must set xi = 0.

Additionally, we allow for the case that punishment is not completely precise in

the sense that with a probability η (0 ≤ η ≤ 1) also if the partner has contributed,
punishment is erroneously carried out. This extension illustrates how mistakes

can be easily implemented into a game. We think that analysing the effects of

possible mistakes is especially important in games of punishment and deterrence.

The reason to analyse control costs, as well as, imprecise punishment is that

imprecise punishment causes negative externalities for other contributors, whereas

control costs cause no such externalities. This distinction becomes relevant in the

context of Sections 5-6.

To sum up, a players strategy si = (ai, xi) consists of an action ai ∈ (C,D),
where C stands for ‘contribute’ and D for ‘do not contribute’ and a level of pun-

ishment xi ∈ R+0 . Final payoffs are summarized in table 1.
If there is some imprecision, i.e. η > 0 (and φ > 0) or some control costs, i.e.

γ > 0, selfish players will never punish in equilibrium. Therefore, if there are no
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Payoffs for player 1 (row) C (Contribute) D (Do not contribute)

C (Contribute) β − η(φx1 + x2)− γx1
β
2
− (φ+ γ)x1

D (Do not contribute) 2+β
2
− x2 1

Table 1: Payoffs for player 1 (row) from the public goods game with costly and

imprecise punishment. Payoffs for player 2 (column) are symmetrical.

compliers around, the unique selfish Nash equilibrium is that both player do not

contribute and do not punish, i.e. s1 = s2 = (D, 0). For compliers, punishment can

be beneficial only if the threat of punishment is sufficiently high to make selfish

players contribute. We first want to examine the minimal level of punishment

x∗ compliers must choose to make selfish players contribute. When we assume

that a selfish player 2 plays a mixed strategy s2 = ((1 − δ, δ), x = 0), i.e. he

contributes with probability (1 − δ), and that the norm is given by r1 = r2 =

(C, x), then a selfish player’s 1 expected payoff from contributing is given by

κ(β−ηx)+(1−κ)((1− δ)β+ δ β
2
) and from not contributing by κ(2+β

2
−x)+ (1−

κ)((1− δ)2+β
2
+ δ). Setting both equal and solving for x gives the minimal level of

punishment necessary to induce contribution as

x∗(κ) =
2− β

2κ (1− η)
.

Note that a selfish player’s 1 decision to contribute is independent of the strategy

of selfish player 2, since δ canceled out. We find the same for selfish player 2 and

thus have as selfish equilibrium strategies:

si(κ, r = (C, x)) =


(C, 0) if x > x∗(κ)

(D, 0) if x < x∗(κ)

(C, 0) , (D, 0) or any mix if x = x∗(κ)

for i = 1, 2.

In order to have a well defined complier optimal norm, assume that for x = x∗(κ)

selfish players will contribute. Since punishment is costly, the complier optimal

norm postulates either contribution and punishment with x∗(κ), contribution with-

out punishment or non-contribution. Compliers’ expected utilities from these three

norms are given by

V (κ, r = (C, x∗(κ)) = β − η(φ+ κ)x∗ − γx∗

V (κ, r = (C, 0)) = κβ + (1− κ)
β

2
V (κ, r = (D, 0)) = 1

If there are no control costs and no imprecision in punishment, i.e. γ = η = 0

then always the complier optimal norm is to punish with at least x∗(κ). This

12



is simply because with exact punishment, there arises no cost from a successful

punishment threat, which has never to be carried out, because selfish people will

contribute in equilibrium. Hence, as long as players are able to punish up to an

unlimited level, even a tiny share of compliers is sufficient to deter selfish players

from non-contributing.1

Let us assume there are some control costs, i.e. γ > 0, or some imprecision

of punishment, i.e. η > 0. Then looking at the limit κ → 0, shows that for a

sufficiently small compliers’ share κ the complier optimal norm is to not contribute.

On the other hand, by looking at the limit κ→ 1, we find that for a very high share

of compliers, the complier optimal norm is contribution without punishment. This

is because it is simply cheaper for compliers to encounter from time to time a selfish

player who defects than to suffer the costs of control and damage from imprecision.

For intermediate κ, however, a norm with punishment, i.e. r = (C, x∗(κ)), can be

optimal for compliers if punishment is not too expensive and not too imprecise.
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Figure 2: Selfish and compliant players’ expected utility under complier optimal

norms for a public goods game with imprecise punishment with β = 1.5, φ = 1,

γ = 0 and η = 0.2.

Figure 2 illustrates this result for β = 1.5, φ = 1, γ = 0 and η = 0.2. The

thick lines show selfish players’ and compliers’ expected utility when applying

1For the case γ = η = 0 it would also be a Nash equilibrium strategy for selfish players

to punish at a level high enough to deter from non-contribution. If we have an extensive form

game with punishment decision after contribution decision, those strategies are, however, not

sequential rational.
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the complier optimal norm in a community with compliers’ share κ. Note the

discontinuous jump in selfish players’ expected utility at those levels of κ where

complier optimal norm changes from (D, 0) to (C, x∗(κ)) at κ ≈ 0.14 and then to
(C, 0) at κ ≈ 0.81.

3.4 Two player zero-sum games

Consider a two player zero-sum game G = ({1, 2}, S, u), with u1(s) + u2(s) = 0
for all s ∈ S. A general zero-sum theorem states that s∗ is a Nash equilibrium of

G if and only if s∗i is a maxmin strategy, i.e. s
∗
i ∈ argmaxsi∈Si minsj∈Sj ui(si, sj).

Further, all Nash equilibria give the same expected payoff for player i , denoted by

umaxmini . We show that also in every complier optimal norm equilibrium expected

payoff for both a complier and selfish player i is given by umaxmini .

Proposition 2 Assume κ < 1. A norm ro is complier optimal in a two player

zero-sum game G if and only if Vi(κ, ro) = Ui(κ, ro) = umaxmini ∀i.1

Proof. Define ∆i := Ui(κ, r)− Vi(κ, r) and note that ∆i ≥ 0 (see Section 2.4).
Expected utility in a zero-sum game is 0, i.e. κV (κ, r) + (1− κ)U(κ, r) = 0. This

can be written as κV (κ, r) + (1 − κ)
£
V (κ, r) + 1

2

P
∆i

¤
= 0, yielding V (κ, r) =

−(1−κ)1
2

P
∆i. If for some complier Vj(κ, r) 6= umaxminj at least one complier i gets

lower expected utility than umaxmini . Since a selfish player i can guaranty himself

expected payoff of at least umaxmini , by playing a maxmin strategy, this leads to

∆i > 0, implying V (κ, r) < 0. This cannot be complier optimal, since compliers’

expected utility is 0 when the norm equals a profile of maxmin strategies.

Consider a dictator game where player 1 splits 1 unit of money between him

and player 2. Assume both players have identical linear utility in own monetary

payoff (using ui(πi) = πi − 0.5 this yields a zero-sum game). By our result, the

unique complier optimal norm is that player 1 keeps all money for himself. For

intuition, note that with with probability (1−κ) transferred money would be given
to a selfish player, which would reduce expected monetary payoff of compliers.

1Usually, this means that ro must be profile of maxmin strategies itself. For a counterexample

consider, however, a matching pennies game with u(H,H) = u(T, T ) = (1, 0) and u(H,T ) =

u(T,H) = (0, 1). The only maxmin strategy is an equal mix between H and T. For κ = 0.5, there

exists, however, a complier optimal norm equilibrium with norm (H,H) and selfish equilibrium

strategies (T, T ), i.e. randomization takes place via a player’s type.
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3.5 Envy in dictator, ultimatum and other games

Note that the concept of complier optimal norms says nothing about players’ utility

function over monetary payoffs. Players can be expected payoff maximizers, be

risk- or loss-averse, or may feel envious when other players have higher payoffs.

We illustrate the interplay between complier optimal norms and emotions using

the following utility function over monetary payoffs

ui(πi,πj) = πi − αmax{πj − πi, 0} with α > 0.

The interpretation is that a player feels envy when he has a lower monetary payoff

than the other player. The degree of envy α is assumed to be equal for all players,

irrespective whether a player is selfish or a complier. This utility function is

a simplified version of inequity aversion by Fehr & Schmidt (1999). Simplified,

because we do not incorporate a term that explicitly models “guilt”, felt by a

player who has a higher payoff than the other. For a rough approximation of

experimental evidence, we suggest α ≈ 1
3
(or a bit lower) and κ ≈ 0.6.

Dictator game

In a dictator game player 1 splits an amount of money between him and player

2. Let the total amount of money be normalized to 1 and let x denote the share

offered to player 2. Clearly, a selfish player 1 will give nothing to player 2. When

a compliant player 1 gives an amount xo ≤ 0.5 to player 2, compliers’ expected
utility is given by V (κ, xo) = 1

2
((1− xo) + κ(xo − α(1− xo − xo)). Maximization

of this term implies that under a complier optimal norm compliers offer

xo ∈


0 if κ < 1

1+2α

[0, 0.5] if κ = 1
1+2α

0.5 if κ > 1
1+2α

.

The condition κ Q 1
1+2α

illustrates two factors that determine how much a compli-

ant player 1 should give to player 2. On the one hand, an equal split is beneficial

because it reduces envy of a compliant player 2. On the other hand, transferring

money has a negative effect because with probability 1− κ it is given to a selfish

player 2. For κ = 1
1+2α

both effects balance out. For example, if α = 1
3
an equal

split would be complier optimal in a dictator game whenever κ ≥ 0.6. To model
offers in between 0 and 0.5 we need a non-linear formulation of envy (see Fehr &

Schmidt, 1999, p. 847-848, for discussion of a similar problem).
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Andreoni and Miller (2002) perform dictator experiments where transfers were

multiplied by an efficiency factor f , i.e. monetary payoffs are given by (1−x, fx).
They show that average transfers increase in the efficiency factor. As should be

intuitively clear, our model matches this stylized fact.1

Ultimatum game

In an ultimatum game player 2 has the opportunity to reject the offer x by player

1 in which case both get paid zero. We assume that a selfish player 1 chooses

the highest offer when he is indifferent between more than one offer and that a

selfish player 2 acts sequential rational and furthermore accepts an offer when he

is indifferent between accepting or rejecting.

We summarize the results that hold for all complier optimal norm equilibria

(see appendix A for the derivations). A selfish player 2 accepts only offers that are

weakly higher than x∗ := α
1+2α

< 0.5 and for a compliant player 2 the acceptance

threshold is given by

xo := min{κ+ (1− κ)x∗, 0.5} ≥ x∗.

Both selfish and compliant players 1 will always offer xo. Note that

lim
α→0

xo = min{κ, 0.5}.

Thus in contrast to a dictator game, an infinitesimally small amount of envy

suffices to find substantial offers in an ultimatum game.2

The stylized facts from ultimatum experiments (see for example the overviews

by Güth, 1995, Camerer and Thaler, 1995 or Roth, 1995), can be summarized

as follows: The vast majority of offers lie between 0.4 and 0.5, virtually no offer

exceeds 0.5 and offers below 0.2 are very rare. Offers near 0.5 are practically

never rejected, whereas the rejection rate for offers below 0.2 is very high. Can

our model match these stylized facts? For α = 1
3
we find x∗ = 0.2. Thus in

line with the stylized facts, all offers below 0.2 are rejected. Further we find

xo = min{0.2 + 0.8κ, 0.5}. This means that already for κ ≥ 1
4
observed offers xo

should lie between 0.4 and 0.5.

1In the set-up of Andreoni and Miller, compliers should offer xo = 0 if κ < 1
f+(1+f)α , x

o = 0.5

if 1
f+(1+f)α < κ < 1+(1+f)α

f and xo = 1 if κ > 1+(1+f)α
f .

2The same result can be derived if players are infinitesimal loss-averse with reference level

0.5 or risk averse under equal initial wealth. When players are perfect payoff maximizers, offers

between 0 and κ can be found in different complier optimal norm equilibria.
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Ultimatum game with non-intentional offers

Blount (1995) performed an experimental treatment where the offer was not se-

lected by the proposer but randomly chosen by a computer. She showed that

minimal acceptance levels are significantly lower when the offer was randomly se-

lected, but that still some offers were rejected. Blount’s finding can be explained

by our model (see appendix A for details). For α < κ, a compliant player 2

will accept all random offers (for α > κ very unequal offers may be rejected). A

compliant player 2 still feels envy, but weighs the monetary payoff of a compliant

player 1 higher than her envy. The difference to the intentional treatment arises

because for random offers a norm has no strategic impact on the behavior of player

1. An envious selfish player 2, however, still rejects every offer below x∗, since it

does not matter for him how the offers were selected.

Other games

Our model also captures the stylized facts from other experiments, like mutual

giving in trust games (e.g. Berg et. al., 1995) or behavior in best-shot games (see

Harrison & Hirshleifer 1989, Prasnikar & Roth 1992 and also Falk et. al., 2003).1

Including envy into the prisoners’ dilemma games and the public goods game

with punishment (examples 3.1-3.3) does not qualitatively change our results.

Quantitatively, the identified thresholds for κ increase, which means that compliers

are more reluctant to cooperate and more likely to defect, when envy is included.

4 Comparison to social preferences and more

4.1 Comparison to existing models of social-preferences

In order to explain the behavior that is observed in economic experiments, a set

of models, with so called social-preferences, have been brought forward (see Sobel,

2005 for a detailed survey).

For a comparison of some of these theories consider the ultimatum game from

example 3.5. In inequity aversion theories, as Fehr & Schmidt (1999) or Bolton &

Ockenfels (2000), players do not like inequalities in monetary outcomes, which can

explain rejection of low offers. These models have the advantage to be analytically

convenient, do, however, not account for the role of intentions, e.g. they do not

1A formal analysis of these games is available on request from the author.
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explain the change in rejection behavior in the treatment with non-intentional

offers by Blount (1995).

In Gul & Pesendorfer (2005) (a generalization of Levine, 1998) perceived good-

ness of others’ types matters for own payoff. Rejection can occur in the ultimatum

game when own payoff decreases in the payoff of “unkind” types. This model is

able to explain Blount’s findings. It predicts, however, that unkind types reject

more often than kind types. This is somewhat at odds with other experimental

results showing that nice types more strongly punish unfair behavior, see e.g. Falk

et. al. (2005).

Another set of social-preference models, starting with Rabin’s (1993) fairness

theory for normal form games, builds on a psychological game framework (Geanako-

plos et. al., 1989) where players can get utility from beliefs. The reciprocity mod-

els by Dufwenberg & Kirchsteiger (2004) or Falk & Fischbacher (2006) extend the

framework to extensive form games. Unequal offers are considered as a sign for

unkind intentions and punishing these actions gives emotional satisfaction. These

two models can explain reciprocal behavior and the role of intentions very well,

neglect, however, concerns for social efficiency, e.g. they cannot explain the above

mentioned findings in the dictator experiments by Andreoni and Miller (2002).

Another reciprocity model is given in the appendix of Charness & Rabin (2002).

It can account for the role of intentions and social-efficiency concerns, but is quite

complex.1

Note the principle difference between complier optimal norms and the models

described above. In these models of social-preferences offers are rejected solely

because players get emotional satisfaction when punishing “unfair” behavior or

when changing “unfair” outcomes. The fact that this “commitment-by-emotions”

can induce player 1 to make high offers is an implication, but not a reason for

rejection. Complier optimal norms, on the other hand, prescribe rejection of offers

below xo, exactly because a selfish player 1 can thereby be induced to offer xo

(selfish players’ rejections of offers below x∗ are, however, still due to negative

emotions).

Models of social preferences often assume a distribution of more than two types,

each type being described by one or more parameters. A finer type space allows

1For alternative approaches see Cox et. al. (2004) or Segal & Sobel (2006). There is also a

recent norm-based approach by López-Pérez (2005), which, however, substantially differs from

our model. His E-norms resemble our naive norms (see Section 2.5) combined with equity

concerns. In his model, punishment is not part of a norm but arises from anger against norm-

violators.
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to better capture behavioral heterogeneity, but comes at the cost of increased

analytical complexity. The combination of complier optimal norms with a single

envy parameter explains the stylized facts from a wide range of economic experi-

ments with only two parameters for the entire model (κ and α). We offer therefore

a novel, tractable and empirically consistent approach to incorporate non-selfish

behavior into economic models.

4.2 More types, more emotions

Although a simple model with constant envy for all persons matches the stylized

facts of economic experiments quite well, complier optimal norms can be combined

with other emotions, like kindness, anger, guilt, shame, etc. This allows for in-

teresting formal statements concerning the interplay between emotions and moral

norms. For example, players could feel kindness towards all, including selfish,

players, but nevertheless punish selfish actions under a complier optimal norm.

Additional to the distinction of being selfish or compliant, players can be het-

erogeneous in their emotional attitudes and in other aspects of preferences. In

our framework this can be formalized by letting a game start with a move of na-

ture that determines these additional aspects of a player’s type. Complier optimal

norms then maximize compliers’ ex-ante expected utility over this type distribu-

tion. Note that norms then may allow compliers to condition their action on their

complete type, e.g. very altruistic compliers may be allowed to punish less than

very envious compliers.

Such additional aspects of players’ types can be distributed differently for selfish

and compliant players, e.g. selfish players may on average be more spiteful than

compliers. Note, however, that the condition U(κ, r) ≥ V (κ, r) could then be

violated and the findings from our voting-by-feet model in Sections 5-6 may not

hold.1

Emotions can also depend on the norm, e.g. players may feel angry towards

norm violators. Further, selfish players may feel to some degree guilty when vi-

olating a norm, which allows to relax the strict distinction between players who

always comply with a norm and others who feel not committed at all.

1In general, the interpretation of our voting-by-feet result becomes more difficult under

additional heterogeneity in types, since our model makes the strong assumption that only the

moral type (compliant or selfish) is known before moving to a community. In principle, the

voting-by-feet model can, however, also be adapted to analyse the case where players know

ex-ante more about their type.
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Compliers’ equity concerns can also be modelled by letting complier optimal

norms maximize some transformed version eV (κ, r) of compliers’ expected utility,
like eV (κ, r) :=X

i

Vi(κ, r)
β with 0 < β < 1.

Here, norms leading to more equal expected utility between players are preferred,

i.e. players care about equality in chances. One could also consider only the

worst-off player by setting

eV (κ, r) := V + βmin
i
{Vi} with β > 0.

One can also include a factor that compliers dislike when selfish players are on av-

erage better off. A linear formulation of such exploitation aversion is incorporated

by setting eV (κ, r) := V − γ(U(κ, r)− V (κ, r)) with γ > 0.

Exploitation aversion can also be defined non-linear and player dependent, like

eVi(κ, r) := ( Vi(κ, r) if Ui(κ, r)− Vi(κ, r) < ∆max

−∞ otherwise
and eV (κ, r) := 1

n

XeVi(κ, r).
This is a convenient formulation to capture the idea that a compliant player i

is in principle willing to follow the norm ri, but only if the temptation to act

selfishly (measured by the difference in expected utility) does not exceed some

level ∆max. Note that with this formulation of exploitation aversion, our results

from the voting-by-feet model in Section 5-6 will carry over without problems.

4.3 Communication and associations

Ellingsen & Johannesson (2004) and Charness & Dufwenberg (2005) are two re-

cent examples that analyse how communicated promises and threats can create

commitment effects.1 Moral norms can be seen as a promise made by all members

of a community to act in a certain way. Thus, complier optimal norms offer a the-

ory about which promises the committed compliers should make in the presence

of a certain share of uncommitted selfish players. Analysing the actual process of

how people discuss and agree about norms, offers a lot of interesting connected

research questions. Especially, because selfish players may prefer different norms

1See also Gneezy (2005) and the surveys by Kerr & Kaufman-Gilliand (1994) and Sally

(1995), which summarize earlier work on the relation between communication, commitment and

cooperation.
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than compliers and because of the fact that behavior in pre-game communica-

tion and “norm-bargaining” may allow inferences about a player’s type. A further

question is, what are the effects of discussing norms in an interim-state, where sub-

jects already know their role in the experiment, compared to a symmetric ex-ante

state.

Finally, we want to briefly discuss the possibility that - especially in experiments

without pre-game communication - experimental subjects in the lab may simply

apply known norms from associated real world situations.

For example, Hoffman et. al. (1994) showed that labeling an ultimatum game

as a buyer-seller interaction, i.e. the seller sets a price and the buyer can either buy

or not at this price, reduced the offers by almost 10% with no increase in rejection

rate, compared to a traditional labeling of the ultimatum game. A simple request

to split some exogenously given prize may remind of equal-split norms, as e.g.

known from childhood experience when parents demanded to share sweets equally

with your siblings. Market interactions, however, may be less associated with

equal-split norms.

Another example are cross-cultural differences. Henrich et. al. (2001) found

substantial differences in behavior in the ultimatum game by comparing 15 small

scale societies, which substantially differed in their set of norms and customs.

One explanation for the different behavior is that participants apply a norm that

is used for typical interactions in their society to the ultimatum game.

Although complier optimal norms do not describe a theory of mental associa-

tions, a norm-based approach, in general, is likely to facilitate formalizations of

such labeling and cultural effects.

5 Competition of norms via voting by feet

5.1 Overview

In this section we illustrate that complier optimal norms arise from a model of

voting-by-feet. A society consists of communities with different norms. There is

free migration, and inhabitants can move to communities that offer higher ex-

pected utility. Voting-by-feet is much analysed in a branch of literature emerging

from Tiebout (1956), who analysed local provision of public goods. Different equi-

librium concepts have been proposed. Under Nash concepts, e.g. Westhoff (1977),

usually too many equilibria exist, some of which trap players in suboptimal states

that could be Pareto-improved if coalitional deviations were allowed. Alternative

21



models consider stability against all possible coalitional deviations, e.g. Greenberg

and Weber (1986). Here, the problem is that equilibria often do not exist. Conley

and Konishi (2002) discuss these problems and resolve some of them by defining a

“migration-proof Tiebout equilibrium”, which requires stability only against those

coalitions deviations that can be successful when accounting for possibly induced

future migration. Concepts of far-sighted stability, e.g. Chwe (1994), are based

on a related idea. None of these solution concepts can be directly applied to our

model, which has a continuum of inhabitants with privately known types, but we

use the basic idea to propose our open migration-proof equilibrium as a reasonable

stability concept.

This section proceeds with a formal definition of a society. Afterwards we de-

fine a Nash-stable equilibrium as a society where no individual inhabitant wants

to migrate to another populated community. We then account for stability against

farsighted-successful coalitional deviations. This leads to the concept of amigration-

proof equilibrium. To illustrate robustness of our uniqueness result, we furthermore

define a weak migration-proof equilibrium. Finally, a (weak) open migration-proof

equilibrium, allows arbitrary empty communities with new norms to enter the

society. We then discuss five regularity conditions, before we formally derive the

results. In Section 6.1 we extend the results to joint competition of norms and

institutions.1

5.2 Formal definition of a society

A society consists of a finite number of communities {Cj}j∈J indexed by a set J.
Each community Cj is characterized by its norm rj. A society’s total population is

given by a continuum denoted by µt = (µtc, µ
t
s), where µ

t
c is the measure of compli-

ers and µts the measure of selfish inhabitants. The compliers’ share in a society’s

total population is thus given by κt := µtc
µtc+µ

t
s
. An allocation α = {(µjs, µjc)}j∈J

describes how the total population is distributed over the different communities.

Relevant characteristics of an allocation are, first, which communities are popu-

lated at all and, second, what is the compliers’ share κj in a populated community

Cj.

In this section we take the game G and the selfish equilibrium selection function

ψ to be given and equal in all communities. A society is thus completely described

by the collection of the norms in its communities and the allocation of the total

1Note that there are other concepts of institutions. For example in Caplin’s and Nalebuff’s

(1997) model of competition among institutions, institutions are not defined as a game.
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population over the different communities: ({rj}j∈J ,α, µt).
Note that a community’s norm is a fixed strategy profile, which is not allowed

to change with the share of compliers in that community.1 A framework where

norms are allowed to change with the compliers’ share in a community will be

explored in section 6.2.

5.3 Nash-stable equilibrium

Our first requirement for a stable society, i.e. a society without migration pres-

sures, is that there are no two populated communities where inhabitants of the

same type get different expected utility. We say a single selfish / compliant inhab-

itant prefers to move from his origin community Co to a populated destination

community Cd if selfish / compliant inhabitants’ expected utility in Cd is strictly

higher than in Co. We formally define:

Definition 2 A society ({rj}j∈J ,α, µt) constitutes a Nash-stable equilibrium
if no inhabitant prefers to move to another populated community.

Note that every society with a single populated community constitutes a Nash-

stable equilibrium, since individuals cannot deviate to empty communities.

5.4 Migration-proof equilibrium

Our concept of a migration-proof equilibrium allows for migration by coalitions. A

coalitional migration is described by a finite collection m = {(µk, θk, Cok , Cdk)}Kk=1
where one entry (µk, θk, C

o
k , C

d
k)means: a group with measure µk (µk > 0) of inhab-

itants of type θk migrates from origin community Cok to a destination community

Cdk . Important for migration-proof stability will be the concept of uncoordinated

migration:

Definition 3 A coalition performs uncoordinated migration if every individ-
ual member of the coalition prefers to move from her origin community to the

(previously non-empty) destination community (evaluating expected utilities under

the pre-migration allocation).

1The notation ro(κ0), which we will often use below, thus denotes a norm that is complier

optimal for a fixed share of compliers κ0, but it does not mean that a norm is a function, which

is allowed to change with the compliers’ share in a community.
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Uncoordinated migration resembles monotone dynamics in evolutionary mod-

els. As long as a society does not constitute a Nash-stable equilibrium, inhabitants

migrate to communities that offer higher expected utility for their type.

The idea of a farsighted successful coalitional migration is that the process of

uncoordinated migration is anticipated and all members of the farsighted coalition

see a chance to end up in a Nash-stable society where they are strictly better off

than initially. Formally:

Definition 4 Migration by a coalition m is farsighted successful if there exists
a (possibly empty) sequence of uncoordinated migrations that starts after the mi-

gration of m and ends in a Nash-stable equilibrium where all members of m are

strictly better off than initially.

This directly leads to the definition of a migration-proof equilibrium:

Definition 5 A society ({rj}j∈J ,α, µt) constitutes a migration-proof equilib-
rium if it is a Nash-stable equilibrium and there exists no farsighted coalitional

migration.

Let us reflect for a moment on the informational assumptions behind a farsighted-

successful migration. Is it necessary for our results that a farsighted coalition is

able to exclude members of certain types? The answer is no. If some inhabitants

prefer to be in some destination community of a farsighted coalition, they can just

immediately follow to this community by uncoordinated migration. This leads to

the same allocation as if they were members of the coalition. Thus, in principle

it suffices that a farsighted migration is publicly announced and members then

sort themselves into the coalition. To keep the model simple, we do, however, not

explicitly model such a public announcement process.

For an illustration of farsighted migration, let G be a PD game and consider a

society with two communities: CC, with ‘cooperation’ as norm, i.e. rC = (C,C),

and CD with rD = (D,D). Let the entire population initially live in CD. First

assume ro(κt) = (C,C). Then, there exist many farsighted-successful migrations

from CD to CC , e.g. a coalition of all inhabitants, or a coalition of some compliers,

followed by uncoordinated migration of the remaining inhabitants of CD. Now

assume ro(κt) = (D,D). Then no farsighted successful migration exists. Although,

a coalition of some compliers could immediately benefit from moving to CC , this

situation is not stable, since as long as some selfish inhabitants are left over in CD

they prefer to move to CC. When all selfish inhabitants migrated to CD compliers

are, however, worse off than initially.
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5.5 Weak migration-proof equilibrium

One may criticize migration-proof equilibria by arguing that too many coalitional

deviations are allowed. Shouldn’t coalitional deviations also be immediately ben-

eficial? Shouldn’t one finally end up in a migration-proof equilibrium instead of

only a Nash-stable equilibrium? We formalize these concerns by defining strongly-

successful migrations and a corresponding weak migration-proof equilibrium:

Definition 6 Migration by a coalition m is strongly successful if it is imme-
diately beneficial and there exists a (possibly empty) sequence of uncoordinated

migrations that starts after the migration of m and ends in a migration-proof

equilibrium where all members of m are strictly better off than initially.

Definition 7 A society ({rj}j∈J ,α, µt) constitutes aweak migration-proof equi-
librium if it is a Nash-stable equilibrium and there exists no strongly successful

coalitional migration.

Obviously, every migration-proof equilibrium is a weak migration-proof equilib-

rium but the opposite may not hold. Our results are very robust in the sense that

they hold for both open migration-proof equilibria and weak open migration-proof

equilibria.

5.6 (Weak) open migration-proof equilibrium

For a fixed set of communities there is no possibility that new norms arise, which

could challenge the existing ones. For example, every society with only one com-

munity constitutes a migration-proof equilibrium. Hence, we need an opportunity

for new empty communities to enter the society to analyse which norms will de-

velop.

Consider an original society ({rj}j∈J ,α, µt) and let {re}e∈E be a collection of
norms of new empty communities that enter the society. We call the society

({rj}j∈J × {re}e∈E,α0, µt) an augmented society, and define by α0 = (α, 0) an

allocation of the augmented society where the newly entered communities are

empty and the allocation within the original communities is the same than in the

original society. We define a (weak) open migration-proof equilibrium by

Definition 8 A society ({rj}j∈J ,α, µt) constitutes a (weak) open migration-
proof equilibrium, if for every possible collection of entering empty communities
{re}e∈E the augmented society ({rj}j∈J×{re}e∈E, (α, 0), µt) is a (weak) migration-
proof equilibrium.
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5.7 Regularity conditions

Some regularity conditions are required for our results.

Condition 1 (C1) A complier optimal norm ro(κ) exists for all κ.1

Condition 2 (C2) There are at least some compliers in the society, i.e. κt > 0.

Condition 2 is relevant because we can obviously say nothing interesting about

moral norms when it is common knowledge that there are no compliers at all.

For the next condition, let us define the highest payoff that selfish inhabitants

can achieve, under the given selfish equilibrium selection function, when no com-

pliers are around by

Uκ=0 := max
r∈S

U(0, r). (9)

Condition 3 (C3) For every κ compliers can be least as well off as inhabitants

of a purely selfish community, i.e. V (κ, ro(κ)) ≥ Uκ=0 ∀κ.

Condition 4 (C4) Compliers cannot achieve higher expected utility for some κ <
κt than they can maximally achieve for κt, i.e. V (κ, ro(κ)) ≤ V (κt, ro(κt)) for

κ < κt.

Conditions C3 and C4 could only be violated when there are multiple selfish Nash

equilibria. To illustrate a violation consider a game G with payoff-matrix

A B

A 1,1 0,1

B 1,0 0,0

The unique complier optimal norm is (A,A), but every strategy-profile is a selfish

Nash equilibrium. Problems arise, for example, with a selfish equilibrium selection

function that selects (B,B) when in a community κ ≥ κt and (A,A) when κ < κt.

Then conditions C3 and C4 are violated and one can easily show that no open

migration-proof equilibrium exists, i.e. inhabitants are doomed to never ending

migration.

Conditions C3 and C4 are, however, always fulfilled for “well-behaved” selfish

equilibrium selection functions, e.g. when those selfish Nash equilibria are selected

that are best for compliers. Conditions C1-C4 are fulfilled for all examples in

Section 3.
1Condition 1 can be relaxed such that a complier optimal norm has to exist just for κt. This

requires a more complicated formulation of conditions C3, C4 in this section and of ρo and C5

in section 6.2.
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Condition 5 (C5) There exists a ro(κt) ∈ Ro(κt) such that for all κ > κt it holds

true that V (κ, ro(κt)) ≥ V (κt, ro(κt))

Condition C5 says that at least for some complier optimal norm ro(κt) compliers’

expected utility is not reduced, when the compliers’ share is higher than κt. This

is important for our uniqueness-result where the proof is based on a coalition of

compliers that migrates to a community that applies ro(κt). In example 3.3 (the

public goods game with costly and imprecise punishment) C5 holds if and only

if ro(κt) includes no punishment or η = 0 (which means punishment is precise).

For all other examples C5 always holds. In Section 6.2 we allow the selected norm

to depend on the actual compliers’ share in a community and can thus replace

condition C5 by a weaker condition, which also holds in all cases of example 3.3.

5.8 Characterization of equilibria

We now formally characterize open migration-proof equilibria. We first show that

a society ({rk}k,α, µt) in which the entire population lives in a single community
that applies a complier optimal norm ro(κt) is an open migration-proof equilib-

rium. Then we show that in every (weak) open migration-proof equilibrium com-

pliers’ expected utility is given by V (κt, ro(κt)), since otherwise, compliers could

perform a strongly-successful migration to an empty community with norm ro(κt).

We start with a helpful lemma that characterizes Nash-stable equilibria:

Lemma 1 There can be no Nash-stable equilibrium that gives some compliers a

strictly higher expected utility than V (κt, ro(κt)).

Proof. In every society there is at least one populated community Ca with a
compliers’ share κa ≤ κt. By C4 compliers’ expected utility in community Ca can-

not exceed V (κt, ro(κt)). In a Nash-stable equilibrium compliers’ expected utility

must be equal in every populated community and therefore no complier can have

expected utility higher than V (κt, ro(κt)).

We can proceed to our first result:
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Proposition 3 Every society ({rk}k,α, µt) in which the entire population lives in
a single community Co that applies a complier optimal norm ro(κt) that satisfies

C5 constitutes an open migration-proof equilibrium.

Proof. It directly follows from the definition of an open migration-proof

equilibrium that if every society with the entire population in Co constitutes

a migration-proof equilibrium then also every such society constitutes an open

migration-proof equilibrium. A society with the entire population in a single com-

munity is a Nash-stable equilibrium. It remains to show that there exists no

farsighted-successful coalitional deviation.

By Lemma 1, compliers’ expected utility in a Nash-stable equilibrium is bounded

from above by V (κt, ro(κt)). Therefore, no coalitional deviation exists that can

be farsighted-successful for compliers. When a coalition consisting only of selfish

inhabitants deviates by moving to some previously empty communities, in those

communities selfish inhabitants’ and compliers’ expected utility is bounded from

above by Uκ=0. Further, compliers’ share in Co cannot decrease when only selfish

inhabitants moved away and therefore, by C5, expected utility in Co can not fall

below V (κt, ro(κt)), which is weakly higher than Uκ=0 by C3. Thus no complier

prefers to leave Co and selfish inhabitants have no chance to attain expected utility

higher than in the initial situation, because Uκ=0 ≤ V (κt, ro(κt)) ≤ U(κt, ro(κt)).
Hence, no farsighted-successful coalitional deviation exists.

We continue with the second result, which says that all weak open migration-

proof equilibria (and thus also all open migration-proof equilibria) must be com-

plier optimal:

Proposition 4 In every weak open migration-proof equilibrium compliers’ ex-

pected utility equals V (κt, ro(κt)) in all populated communities.

Proof. By Lemma 1 there exists no Nash-stable equilibrium and thus also

no weak open migration-proof equilibrium where compliers’ expected utility ex-

ceeds V (κt, ro(κt)). Thus it remains to check that there can exist no weak open

migration-proof equilibriumwhere compliers’ expected utility is smaller than V (κt,

ro(κt)).

Denote compliers’ expected utility in the original society by Vorig. Suppose that

this society is a weak open migration-proof equilibrium with Vorig < V (κt, ro(κt)).

ByC5 there exists a complier optimal norm ro(κt)with V (κ, ro(κt))≥ V (κt, ro(κt))
> Vorig for all κ ≥ κt. Augment the society by a community Co applying such

a complier optimal norm ro(κt). We show that the immediately beneficial coali-

tional migration of all compliers to Co is also always strongly successful, which
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contradicts the assumption that the original society is a weak open migration-proof

equilibrium.

To show this, we must distinct two cases:

Case 1: Assume U(1, ro(κt)) > Uκ=0. Then a coalition of all selfish inhabitants

follows to Co by uncoordinated migration. The society with the entire population

in Co is an open migration-proof equilibrium by Proposition 3.

Case 2: Assume U(1, ro(κt)) = Uκ=0. (Note that by C3 and C5 this implies

that V (κ, ro(κt)) = U(κ, ro(κt)) = Uκ=0 for all κ ≥ κt). Let a coalition of all

selfish inhabitants that live in communities with expected utility lower than Uκ=0

move to Co by uncoordinated migration. In case that all selfish inhabitants moved

to Co, we have an open migration-proof equilibrium by Proposition 3.

Otherwise, we have a Nash-stable society where some selfish inhabitants live

outside Co and every member of the society has expected utility of Uκ=0. We

confirm that such a society constitutes a migration-proof equilibrium. Since com-

pliers can never get expected utility higher than V (κt, ro(κt)) = Uκ=0, they will

not participate in a farsighted migration. By the same reason, compliers will also

never emigrate by uncoordinated migration from Co to a community that is pop-

ulated only by selfish inhabitants. Selfish inhabitants could get expected utility

above Uκ=0, however, only in a community with a positive compliers’ share. Since

selfish inhabitants can never induce compliers to leave Co, no farsighted-successful

migration exists by a coalition of selfish members only.

6 Competition of institutions and more

In this section we present two different extensions of the basic voting-by-feet model.

We present each extension separately, but it is also straightforward to combine the

two.

6.1 Competition of institutions

We first present an extension of the basic model where communities not only differ

in the norm, but also in the game that describes social interaction and additionally

by the selected Nash equilibria.

Let there be a set Γ of possible games1 and let each community Cj select a

game out of Γ with normal form representation Gj = (N j, uj, Sj) that describes

1Except for requiring that the modified versions of conditions C1-C5 (see in the text below

and Section 5) hold, we need no additional restriction on the set of games.
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the institution of social interaction in the community. Further, each community

has a norm rj which is a strategy profile of Gj. Finally, each community has a

selfish equilibrium selection function ψj : [0; 1] × Sj → Sj that selects for every

compliers’ share and norm a single selfish Nash equilibrium strategy profile of

the induced game Gj,κ,r. By defining a set Ψ(G) of allowed equilibrium selection

functions for a game G and requiring ψj ∈ Ψ(Gj), one can impose refinements on

the class of possibly selected selfish Nash equilibria (see Section 2 for details). Let

us denote the selected selfish Nash equilibrium conditional on a selection function ψ

by s(κ, r,ψ) ≡ ψ(κ, r).We denote the tuple of game, norm, and selfish equilibrium

selection function by λj = (Gj, rj,ψj) and call it a norm-institution. Similar to

the definition in Section 2.4, expected utilities of selfish and compliant inhabitants

in a community with norm-institution λj are given by

U(κj,λj) :=
1

n

nX
i=1

X
θ−i

Pr(θ−i|κj)uji (s(κj, rj,ψj), sθ−i(s(κj, rj,ψj), rj))

V (κj,λj) :=
1

n

nX
i=1

X
θ−i

Pr(θ−i|κj)uji (rji , sθ−i(s(κj, rj,ψj), rj)). (10)

An norm-institution that maximizes compliers’ expected payoff in a community

with compliers’ share κ is defined by

λo(κ) ∈ Λo(κ) := argmax
λ
V (κ,λ). (11)

A society is completely characterized by the norm-institutions of its communities

and the allocation of the total population, i.e. by ({λj}j∈J ,α, µt). It turns out
that the same definitions, which we used to model competition of norms, can be

used to model competition of norm-institutions and that we get equivalent results.

Simply, every norm that appears in a definition, condition, proposition or proof

of Section 5 has to be replaced by the corresponding norm-institution λ.

The same results that hold in equilibrium for norms hold for norm-institutions.

To sum up, this implies, first that there is always an open migration proof equilib-

rium with the entire population in a community Co that has a complier optimal

norm-institutions λo(κt) and second that in all weak open migration-proof equilib-

ria compliers’ utility is given by V (κt,λo(κt)). In other words: A complier optimal

combination of institution, norm, and selfish equilibrium strategies arise.
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6.2 Allowing norms to vary with the compliers’ share in a

community

In this extension of the basic model we allow communities to adapt their norm to

the actual compliers’ share. Let ρ : [0, 1] → S be a so called norm-function that

selects for every compliers’ share a norm. A complier optimal norm-function ρo

selects for every possible compliers’ share a complier optimal norm ro(κ). Formally,

ρo ∈ {ρ | ρo(κ) ∈ Ro(κ) for all κ ∈ [0, 1]} (12)

Note that the following identity holds V (κ, ρo(κ)) ≡ V (κ, ro(κ)).1 We assume

now that each community has a norm-function instead of a fixed norm. Thus a

society is formalized by a collection of norm-functions for each community and the

allocation of the population over the communities ({ρj}j∈J ,α, µt). We can easily
adapt the framework of Section 5 to this modified approach. The definitions

remain unchanged except for the fact that we use the new definition of a society.

Conditions C1-C4 will not be changed, but we can relax C5 as follows:

Condition C5 (modified version). V (κ, ro(κ)) ≥ V (κt, ro(κt)) for κ > κt.

Being symmetric to C4 this version of C5 means that the maximal expected utility

compliers can achieve shall not be lower for compliers’ shares above κt than it is

for κt. All examples in Section 3 fulfill this modified version of C5. The following

modified version of Proposition 3 holds:

Proposition 3 (modified version). Every society ({ρk}k,α, µt) in which the
entire population lives in a single community Co that applies a complier optimal

norm function ρo constitutes an open migration-proof equilibrium.

The proof is identical to the original proof of Proposition 3 in Section 5. Further,

Proposition 4 carries over with exactly the same wording and only a small modifi-

cation in the proof.2 Thus when allowing norms to adapt to the compliers’ share

in a community, we find also for the public goods game with imprecise punishment

that always an open migration-proof equilibrium exists and that in every (weak)

open migration-proof equilibrium compliers’ expected utility equals V (κt, ro(κt)).

1Do not get confused by the notation: ρo(κ) denotes a function value of the norm function

ρo, whereas ro(κ) is simply a label for a norm that is complier optimal for a compliers’ share κ.
2Substitute in the original proof of proposition 4 sentences 5-6 by: ”Augment the society by

a community Co applying a complier optimal norm function ρo.”.
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7 Conclusions

We explored moral norms and institutions in a society inhabited by a fixed share

of norm-compliers and selfish players under the assumption that types are private

knowledge. We showed that in a model of voting-by-feet, where communities with

different norms and institutions compete over inhabitants, complier optimal norms

and institutions arise.

The concept of complier optimal norms can be combined with all sorts of emo-

tions or preferences over material outcomes that players may have. We illustrated

this for a simple envy-augmented utility function. With a total of just 2 parame-

ters - compliers’ share and degree of envy (equal for all players) - this behavioural

model makes clear predictions that capture the stylized facts from a wide range of

economic experiments, like conditional cooperation, costly punishment, giving in

dictator games and concerns for social efficiency, as well as the role of intentions

in variations of ultimatum and best-shot games.

Complier optimal norms have an ethical foundation related to rule utilitarian-

ism. Following a complier optimal norm can be interpreted as a form of social

rationality in societies where inhabitants’ desire for honest commitment is private

information.

As mentioned before, the idea that some people follow norms by a desire for

consistency has long been analysed in social-psychology and also became the focus

of some recent models and experiments in economics. Under this premise, the

explicit design of rules of conduct, i.e. norms, becomes an important element

of institutional design. The result of our voting-by-feet model suggests complier

optimality as a stability criterion in this context.

Related to this, we analyse in our research in progress how traditional methods

of mechanism design can be extended to joint norm-mechanism design. We show,

for example, how this can be done for the revelation principle. The basic idea of

a direct norm-mechanism is to make truth-telling the norm for compliers and to

provide incentives that selfish players truthfully reveal that they are selfish.

Complier optimal norms are derived from a symmetric ex-ante situation, where

inhabitants are ignorant about their role in later social interactions (except for

knowing the own moral motivation). An exciting topic for future research is to

analyse how development and acceptance to norms is influenced by the amount

of knowledge people have about their likely position in later social interactions.

This is also connected to the general role of communication in the formation

of norms. Communication became the focus of a number of interesting recent
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economic experiments and, concerning these questions, we expect many insightful

future studies for to come.
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Appendix A

In this appendix we proof the results that we stated in Example 3.4.

Ultimatum Game

Note that the results are based on the selfish equilibrium selection function from

Example 3.4, i.e. player 2 accepts an offer when he is indifferent between accepting

or rejecting. Further, if player 1 is indifferent between two offers he selects the

higher offer. These assumptions imply that selfish players do not play mixed

strategies.

Lemma 2 A selfish player 2 accepts an offer x if and only if x ≥ x∗ := α
1+2α

.

Proof. A selfish player 2 will obviously accept all offers x ≥ 0.5. When he
accepts an offer x < 0.5 his utility is given by x− α((1− x)− x) when he rejects
the offer his utility is given by 0. This implies that an offer is accepted if and only

if x ≥ α
1+2α

= x∗.

Proposition 5 In every complier optimal norm equilibrium player 1 always offers

xo := min{0.5,κ+ (1− κ)x∗} and all offers are accepted on the equilibrium path.

(Note that x∗ ≤ xo ≤ 0.5.)

Proof. Take a norm ro where a compliant player 1 offers xo and a compliant

player 2 accepts xo for sure and rejects all other offers.

I. In the first part of the proof we show that in the norm equilibrium with ro a

selfish player 1 also offers xo. When a selfish player 1 offers x, his expected utility

is given by

uκ,r
o

1 (x) =


0 if x < x∗

(1− κ)(1− x) if x∗ ≤ x < xo
1− x if xo ≤ x ≤ 0.5

1− x− α(2x− 1) if 0.5 < x

.

There are only two candidates for maxima: x∗ and xo. The selfish player offers xo

if and only if (1− κ)(1− x∗) ≤ 1− xo ⇔ xo ≤ κ+ (1− κ)x∗, which is fulfilled by

the definition of xo.
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II. In the second part of the proof we show that every norm equilibrium with

a different equilibrium outcome than under ro yields a strictly lower compliers’

expected utility.

We start by discussing some upper bounds on compliers’ expected utility. The

expected sum of utility of player 1 and 2 is given by T := 2 [(1− κ)U + κV ]. We

call T total utility. Since V1 ≤ U1 and V2 ≤ U2 has to hold, compliers’ expected
utility is bounded from above by 1

2
T. If we know that a compliant player 1 has

strictly lower expect utility than a selfish player 1, i.e. ∆1 ≡ U1 − V1 > 0, the

upper bound decreases to 1
2
(T − ∆1), because V2 ≤ U2 must still hold. For a

given norm equilibrium, let A denote the expected total disutility caused by envy

and let R be the expected share of rejected offers. Total utility is then given by

T = 1 − A − R. This implies 1
2
(1 − A − R −∆1) as upper bound for compliers’

expected utility.

Consider first the case xo = 0.5. Under ro no player ever feels envious and

therefore total utility is given by 1 and compliers’ expected utility reaches its

upper bound of 0.5. In any other equilibrium outcome there would either be some

envy or rejected offers, which would lead to a strictly lower compliers’ expected

utility.

Consider now the case xo < 0.5. Compliers’ expected utility under ro is then

given by V o = 1
2
(1 − Ao), where Ao=α((1 − xo) − xo) = α(1 − 2xo) is the total

disutility by envy (experienced by player 2). In the following 5 steps we show that

norms with different behavior on the equilibrium path must lead to strictly lower

compliers’ expected utility than ro.

1. Let r0 be a norm that differs from ro such that with positive probability

offers below xo are made and accepted. Since there are lower offers under r0, total

envy A0 under r0 is strictly higher than under ro. This means compliers’ utility is

bounded from above by 1
2
(1−A0) < V o.

2. Consider a norm r0 that differs from ro such that with positive probability an

offer of xo is rejected on the equilibrium path. Rejecting an offer of xo reduces total

envy by α(1 − 2xo) but also reduces total monetary payoff by 1. This reduction
in monetary payoff reduces the total utility by more than the reduction of envy
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increases it. This is most easily seen by observing that xo > x∗ and that therefore

a player 2 considers the decrease in monetary payoff (already of his share) to be

more severe than the positive effects of the reduction in envy (recall the proof of

Lemma 2). Hence, under r0 total utility is bounded by a level strictly below V o.

3. Consider a norm r0 that differs from ro such that with positive probability

offers below xo are made and accepted and offers of xo are rejected on the equilib-

rium path. It is also straightforward to show that such a norm yields compliers’

expected utility strictly below V o (we omit the steps that are very similar to 1.

and 2.).

4. Note that there exists no norm where a selfish player 1 makes offers above xo

(in the actual case with xo < 0.5). To see this, assume compliers want to induce a

selfish player to offer some xs > xo. The best way to achieve this is to accept only

offers of xs and to reject all other offers. Using similar calculations than in the

first part of the proof, we find, however, that a selfish player 1 offers x∗ instead of

xs whenever (1− κ)(1− x∗) > 1− xs ⇔ xs > κ+ (1− κ)x∗ = xo.

5. Finally, we show that there is no complier optimal norm r0 where compliers

make offers above xo with positive probability. Note that it cannot be complier

optimal to make offers above 0.5, since total envy is minimized by offering 0.5.

Further, a compliant player 2 should accept all offers x ≥ xo, since it is obviously
not complier optimal to reject an offer in between xo and 0.5.

Let F (x) denote the distribution function of compliant player 1’s offers under

r0. The difference in expected utility of a selfish player 1 to that of a compliant

player 1 is given by ∆0
1 =

R 0.5
xo
(x− xo)dF (x). The difference in total envy between

ro and r0 is given by Ao−A0 = 2κα R 0.5
xo
(x−xo)dF (x). Compliers’ expected utility

under r0 is bounded from above by 1
2
(1−A0−∆1) =

1
2
(1−Ao)+ 1

2
(Ao−A0)−∆1),

which, therefore, can be written as V o+ 1
2
[2κα− 1] R 0.5

xo
(x− xo)dF (x). This upper

bound is greater or equal than V o only if 2κα − 1 ≥ 0, i.e. α ≥ 1
2κ
. For α ≥ 1

2κ

we find, however, x∗ ≥ 1
2(1+κ)

, which implies κ + (1 − κ)x∗ ≥ 0.5 + κ2

1+κ
and thus

xo = 0.5. This contradicts the assumption, made for this case, that xo < 0.5.
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Ultimatum game with non-intentional offers

The following proposition and corollary characterize complier optimal norms in

Blount’s treatment with non-intentional random offers by player 1.

Proposition 6 A compliant player 2 will accept an offer x in a complier optimal

norm equilibrium if and only if α−κ
1+2α−κ ≤ x ≤

¯̄̄
(1+α)κ

2κα−(1−κ)

¯̄̄
.

Proof. First note that the strategies of player 2 have no influence on how the

offers are randomly selected. We can therefore analyse separately for any given

offer x, whether this offer should be accepted or rejected in a complier optimal

norm equilibrium.

For x < 0.5 an offer may be rejected when player 2 feels too envious. Since a

compliant player 2 also values the utility of a compliant player 1, she clearly accepts

all offers that a selfish player 2 would accept. Hence, we only have to analyse which

offers x < x∗ should be accepted. If a compliant player 2 accepts an offer x < x∗

then compliers’ expected utility is given by 1
2
[κ(1− x)] + 1

2
[x− α(1− 2x)] and

otherwise it is 0. This implies that a complier rejects offers x < 0.5 if and only if

x < α−κ
1+2α−κ .

It is interesting that under a huge degree of envy also very high offers could

be rejected by player 2. This is because for x > 0.5 player 1 feels envy and if

this envy is strong enough, a compliant player 2 could decide to reject the offer.

This would lead to an outcome where both earned nothing and can therefore not

envy each other. When there is an offer x > 0.5 and a compliant player 2 would

accept it, compliers’ expected utility is given by 1
2
[(1− x)− α(2x− 1)] + 1

2
[x]. If

a complier rejects the offer, compliers’ expected utility is given by 1
2
[(1− κ)((1−

x)−α(2x− 1))]+0. This implies that a complier rejects offers x > 0.5 if and only
if x >

¯̄̄
(1+α)κ

2κα−(1−κ)

¯̄̄
.

Corollary 1 If ακ ≤ 1 no offers above 0.5 and if α ≤ κ no offers at all will ever

be rejected by a compliant player 2 in a complier optimal norm equilibrium.

Proof. For ακ ≤ 1 or α ≤ κ we find
¯̄̄

(1+α)κ
2κα−(1−κ)

¯̄̄
≥ 1 and for α ≤ κ we find

α−κ
1+2α−κ ≤ 0. The rest follows from Proposition 6.
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