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Optimal Dynamic Choice of Durable and Perishable Goods †

By Peter Bank, Humboldt University of Berlin, and Frank Riedel, Bonn University

Abstract

We analyze the life cycle consumption choice model for multiple goods, focusing
on the distinction between durables and perishables. As an approximation of the fact
that rather high transaction costs and market imperfections prevail in markets for used
durables, we assume that investment in durables is irreversible. In contrast to the ad-
ditive model with one perishable good, the optimal consumption plan is not myopic.
Instead, it depends on past as well as on (expected) future prices. The optimal stock
level of the durable good is obtained by tracking a certain shadow level : The household
purchases just enough durables to keep the stock always above this shadow level. It
is shown that this shadow level is given by a backward integral equation that replaces
the Euler equation. For the perishable good, the ‘usual’ Euler equation determines the
optimal choice in terms of the optimal stock of durables. Since the optimal stock level
aggregates past as well as future prices, the consumption of perishables ceases to be my-
opic as well. The solutions show that durables play an important part in intertemporal
consumption decisions. In fact, major purchases of durables are being made early in
life, whereas no durables are bought in the retirement years. Through substitution and
complementarity effects, this has a significant impact on the consumption of perishable
goods. On the technical side, the paper provides a new approach to singular control
problems that might be widely applicable in other contexts like irreversible investment,
price rigidities etc. We present a numerical algorithm that allows one to calculate the
shadow level for arbitrary period utility functions and time horizons. Explicit solutions
are given for the case of a homogeneous Markov setup with infinite time horizon and
Cobb–Douglas type period utilities. This setup includes prices driven by Brownian
motion and/or Poisson processes.
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Introduction

Households face a complex intertemporal allocation problem. Uncertain of their future and

confronted with a wide array of commodities, they are to choose a contingent consumption

and investment plan for a long time horizon of, typically, about 30 years. A challenging

part of the problem is the choice between perishable and durable goods. While perishables

usually form the basis of daily survival and are thus purchased day by day, durables provide

service over extended time periods and are renewed or repaired only when necessary. So,

with current prices for perishable and durable goods and future expectations about those

prices in mind, households balance the long term effects of durables and their immediate

needs for perishable goods.

This interesting trade–off is rather rarely addressed in the literature. In fact, due to the

considerable complexity created already by time and uncertainty, most models of intertempo-

ral consumption choice do not distinguish between durable and perishable goods and assume

instead that there is only one (aggregate) good for consumption at each point in time. This

makes it impossible to analyze the important tradeoff between consumption decisions across

goods. However, as documented by, e.g., the Survey of Consumer Expenditures (provided by

the US Dept of Labor, http://www.bls.gov/cex/csxreprt.htm), up to 30% of expenditures

can be attributed to purchases of durable goods. It thus becomes an issue to analyze the

utility maximization problem of a household who can consume both perishable goods as well

as durables at the same time. This is the aim of the present paper.

Markets for used durables often suffer from rather high transaction costs. These costs are

due to prevalent market imperfections, ranging from asymmetry of information and adverse

selection, as illustrated nicely by Akerlof’s (1970) celebrated lemons’ model, to search and

opportunity costs due to inefficient market organization. For a large number of durable

goods such as apparel, footwear, furniture, and appliances, these transaction costs are so

high as compared to the achievable resale price that owners refrain from trying to sell the

good and prefer disposing of it altogether. Therefore, it is important to have transaction

costs for durable goods in the model. In the spirit of a simplifying approach started by Arrow

(1968), we assume that investments in such durables are irreversible. Note that this rules

out durables with well established secondary markets such as houses for which an approach

as proposed by Grossman and Laroque (1990) is more compelling. Taking a different point

of view, one may also argue that in fact many commodities do not vanish immediately after
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purchase. Instead, even as perishable groceries as milk do provide utility over some period

of time, leaving electricity as a notable exception. In this interpretation, the good’s service

flow is to be seen as the level of satisfaction provided by the recent past consumption of

the good — and such a satisfaction level is not traded, of course. The latter interpretation

corresponds to the Hindy, Huang, Kreps (1992) approach.

We obtain the following results. The household consumes perishables in such a way that

marginal period utility in the perishable good is proportional to its price. Stated differently,

an Euler equation holds true, similar to the case without durables. However, marginal utility

in the perishable good directly depends on the current stock of the durables. The slope of

indifference curves between consumption of the perishable today and tomorrow thus depends

on the stock level of the durable, and so considerable cross effects occur. For example, in a

deterministic world, if the subjective discount factor is equal to the interest rate, consumption

of the perishable good is constant over time when durables are not taken into account. With

durables, however, hump–shaped patterns of consumption of the perishable good can emerge

due to the cross effects.

Purchases of the durable involve more complex considerations by the household since

it provides service flow over extended periods of time. The decision whether to buy some

amount of the durable good depends on the current stock level and on future expectations

about prices and wealth. In order to describe the optimal purchasing behavior, we introduce

an auxiliary concept, the minimal shadow stock level which gives an optimal lower bound

for the stock of durables to be held at each point in time. The minimal shadow stock level

solves a generalized Euler equation. In a Markov framework with Cobb–Douglas period

utility, the minimal shadow level solves indeed the ’usual’ Euler equation one obtains in the

frictionless model without any transaction costs. Hence, the minimal shadow level is, in this

case, the stock level a household (with a suitably adjusted wealth level) would entertain with

a perfect resale market. The optimal stock can be derived from the minimal shadow level in

a straightforward manner: The household purchases just enough to keep the stock level at

or above the minimal shadow level.

This type of purchasing behavior has important implications for comparative statics.

Although the shadow level reacts directly when there are exogenous price shocks or new

information is released, this does not necessarily imply a change in purchasing behavior.

Indeed, if the current stock level is way above the optimal shadow level then small changes

in prices do not affect the purchasing behavior at all: We thus have an explanation for ‘sticky’
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behavior by households. If the current stock level is directly at the optimal shadow level,

changes in prices do have an impact on purchasing behavior. A higher price of the durable,

e.g., leads to an immediate stop of purchases—we have some kind of infinite downward

elasticity here. Good news, like a lower price for the durable, lead to more purchases in the

‘standard’ way— the upward impact is less drastic, therefore.

The same kind of stickiness carries over to the cross effects. We illustrate this for the

case when durables and perishables are complements. In that case, purchases of the durable

are always accompanied by purchases of the perishable good. However, purchases of the

perishable, due to, e.g., lower perishable prices, do not entail purchases of the durable if the

current stock of durables is sufficiently high.

For perishable goods and time–separable utility functions, the first order conditions imply

that properly discounted marginal period utility is a martingale. If it is suitable to approx-

imate marginal period utility in a linear way, one concludes that discounted consumption

is also a martingale. This is Hall’s (1978) Random Walk Theorem. Mankiw (1982) extends

Hall’s analysis to durable goods, and concludes that durable good expenditure should follow

an ARMA(1,1) process. The data reject this hypothesis. Our model predicts that prop-

erly discounted marginal period utility in the perishable good is a martingale, whereas the

stock of durables is governed by the running maximum of a stochastic process. Under some

parametric assumptions, that stochastic process is a semimartingale. Therefore, purchases

of durable goods should be related to all time highs in some index process. This could be a

weighted average of perishable and durable prices, or a stock index, e.g. It might be tempting

to test this hypothesis empirically.

In the remaining part of this introduction, we discuss the more technical contributions

of our approach in more detail.

To start with, let us describe the mathematical model. At each point in time, utility is

obtained both from the consumption of perishables and the service flow generated by the

stock of durables. We assume that the service flow from durables is proportional to the

stock held. This stock decays over time with some exponential rate. We consider general

concave period utilities which are not necessarily separable and thus allow us to account

for cross effects between durable and perishable goods. These cross effects are illustrated

by the marginal utilities with respect to additional perishable and durable consumption. In

fact, at a given point in time, marginal utility in the perishable good is a function both

of current consumption of the perishable good and of the current stock of durables. The
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marginal utility with respect to durable consumption is more complex. Additional purchases

of the durable affect future marginal utilities since they not only yield a higher service flow

today, but also in any future point in time. As a consequence, the marginal utility in the

durable aggregates the properly discounted future marginal period utilities. In particular,

the marginal rate of substitution for durables between two periods is directly affected by the

consumption decision in other periods.

We use a Lagrangian first order approach to address the household’s utility maximization

problem. This allows for essentially arbitrary price processes; in particular, we do not need

the usual Markovian assumptions which are necessary for an approach by dynamic program-

ming. The non-separability of our utility function entails that the first order conditions for

optimal consumption of perishable and durable goods are interdependent. Yet, the purely

local form of the utility gradient for consumption of perishables allows us to disentangle

these two conditions: We can describe explicitly the optimal plan for perishables in terms

of the plan for durables. Plugging this description into the first order condition for durable

consumption, we are left with a transformed first order condition only involving the durable

consumption plan. The main complication arises then from the fact that the first order

condition for the durable good need not (and typically will not) be binding because durables

cannot be sold. As a consequence, determining the optimal consumption plan for durables

is rather involved and relies on a new key concept which we call the minimal shadow level of

durable stock. This shadow level describes the evolution of the minimal stock of durables the

agent would feel comfortable with at each point in time and in each scenario. The optimal

consumption plan for durables can be recovered from this process following the simple rule

to always purchase just enough of the durable good to keep the stock of durables above

the minimal shadow level. We provide a stochastic backward equation which characterizes

this minimal level process. This equation may be viewed as a substitute for the Hamilton–

Jacobi–Bellman equation in our non–Markovian setting, and it explicitly relates the level

process with the prices of durable and perishable goods, with the agent’s preference struc-

ture, and with the economy’s information flow. This kind of backward equations is studied

in Bank and ElKaroui (2002) and, using some of their results, we characterize the solution

of the minimal level equation in terms of an non–standard optimal stopping problem.

With an infinite time horizon and a Cobb-Douglas-utility, the method yields closed–form

solutions for a wide range of price dynamics, including Brownian motion, Poisson processes

and, in fact, general Lévy processes as driving factors. As mentioned above, it turns out
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that in such a setting the minimal shadow stock level is proportional to the optimal level

which would be chosen in a world where the durable good trades without frictions. This

explicit solution reveals a remarkable asymmetry in consumption behavior during booms

and crashes in the durable good market. In fact, at times when prices for durables soar, our

model predicts that this leaves the consumption rate for perishables essentially unaffected.

By contrast, when prices for durables plummet this not only triggers additional consumption

of durables but has also a direct impact on the agent’s purchases of perishables.

We also discuss some algorithmic aspects of the choice problem. In a first step, we

show how our approach has a natural counterpart in discrete time models. Therefore, we

solve both the continuous–time as well as the discrete time model. Moreover, we show that

the discrete time solutions converge to the continuous time solution. Of course, this is an

important robustness property of the model. For the minimal level equation in discrete time,

we provide an efficient algorithm that allows to calculate the minimal shadow level for all

utility functions and time horizons.

We conclude the introduction by reviewing some related literature. Hindy and Huang

(1993) study a model with one durable good in a Brownian framework with constant coef-

ficients. They provide explicit solutions for power utility functions. Their model is comple-

mented by our previous work (Bank and Riedel (2001)), where we develop the level equation

approach and extend Hindy and Huang’s explicit solutions to the class of Lévy processes.

Cuoco and Liu (2000) study a model with one durable good which can be resold with trans-

action costs. They work in a Brownian framework with power utilities, and show that the

optimal policy keeps the fraction of stock and wealth in between two constant bounds. Gross-

man and Laroque (1990) develop a model with one durable good which can be resold only

as a whole, incurring transaction costs. They show that a so–called (s, S)–policy is opti-

mal. Damgaard, Fuglsbjerg, and Munk (2003) generalize their model to a two good model

including a perishable good. Detemple and Giannikos (1996) analyze a two good model in

which one good is perishable and the other good provides ’status’ as well as ’service’. Status

is interpreted as being a perishable good, whereas service is modelled as durable, as in our

model. Moreover, status and service are perfect substitutes. The assumption that status is

perishable ensures that the (quasi–)durable good is purchased at every point in time (under

appropriate conditions). Technically, this avoids the problems created by non-binding first

order conditions. The optimal solution is found by solving a backward stochastic differen-

tial equation. Dunn and Singleton (1986) derive testable restrictions for bond returns from
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the first order conditions of a Cobb–Douglas separable utility function over perishable and

durable goods; they assume that the durable good can be resold without transaction costs.

Mamaysky (2001) discusses implications for the term structure of interest rates. Last not

least we note that the present paper bears relation to the literature on irreversible investment

as started by Arrow (1968); see Pindyck (1991) for an overview. In fact, the methodology

presented here is bound to have applications for these problems, as future work will hopefully

show.

The paper is organized as follows. The next section formulates the problem. Section 2

characterizes the optimal consumption choices, and Section 3 provides the numerical algo-

rithm as well as explicit solutions.

1 Statement of the Problem

The consumer chooses a contingent consumption plan for one perishable and one durable

good over his time horizon T ∈ (0,∞]. Uncertainty is described by a filtered probability

space (Ω,F , (Ft)0≤t≤T ,P), where Ω is the set of states of nature, F a σ–field on Ω containing

all possible events, Ft the information available at time t, and P a probability measure on

the measurable space (Ω,F). The information flow (Ft)0≤t≤T is assumed to satisfy the usual

conditions of right continuity and completeness.

Consumption of the perishable good occurs in rates, and we let ct(ω) describe the period

consumption rate of the perishable good at time t in state ω. As usual, we will omit the state

variable ω in the following. Of course, the consumption choice ct cannot depend on future

information. Therefore, the process c = (ct)0≤t≤T is taken to be a nonnegative, optional

process.

In contrast to the perishable good, the durable provides utility over longer periods of

time. We let Dt denote the cumulative purchases of the durable good up to time t. Resale

of the durable is not possible in our model, and the choice of durable consumption also has

to be based on the available information. Therefore, D is a nondecreasing, right continuous,

optional process. We set D0−
∆
= 0 which means nothing has been bought before time 0. Note

that we allow for jumps as well as for singular increases in D. This allows for purchases of

durables in bulks (houses, cars, etc. ), as well as in a singular way which may obtain when

purchases are related to singular events such as ‘the Dow Jones reaches a new all–time–high’.

Of course, the more ‘standard’ way of purchases in rates is allowed for as well. Formally, the
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consumption set is thus given by

X+
∆
= {(c,D) :optional stochastic processes

c nonnegative

D nondecreasing, right continuous with D0− = 0}

Markets are complete in our model. At time 0, the consumer can buy one unit of the per-

ishable good for contingent delivery at time t and state ω at (forward) price φt(ω). Similarly,

the contingent state–price for the durable good is given by ψt(ω). Both processes φ and ψ

are assumed to be strictly positive and optional. The (forward) price of the consumption

plan (c,D) is therefore

Π(c,D)
∆
=E

∫ T

0

φtct dt + E
∫ T

0

ψt dDt .

The consumer has initial wealth w > 0, and so his budget set is

B(w)
∆
= {(c,D) ∈ X+ : Π(c,D) ≤ w} .

The stock yD of the durable good depreciates at rate β > 0 as described by the evolution

equation

dyD
t = dDt − βyD

t dt, t ≥ 0, , yD
0− = η ,(1)

where the nonnegative constant η accounts for the possibility that the consumer starts with

a positive stock at time 0. Hence,

yD
t = e−βtη +

∫ t

0

e−β(t−s) dDs (t ≥ 0) .

Consumer’s preferences are given by the von Neumann–Morgenstern utility functional

U(c,D)
∆
=E

∫ T

0

u
(
t, ct, y

D
t

)
dt .

The felicity function u = u(t, c, y) is assumed to be jointly continuous in (t, c, y) and strictly

increasing, strictly concave in (c, y) for fixed t. Moreover, we assume that u is continuously

differentiable on the open cone {(c, y) : c, y > 0} and satisfies the Inada conditions

∂cu(t, 0+, y) = ∂yu(t, i(t, φ, 0+), 0+) = +∞(2)

∂cu(t, +∞, y) = ∂yu(t, i(t, φ, +∞), +∞) = 0
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for all t, φ, y > 0, where i(t, ., y) denotes the inverse of ∂cu(t, ., y).1

In the sequel, we study the utility maximization problem:

(3) Maximize U(c,D) subject to (c,D) ∈ B(w)

under the standing assumption of well–posedness

sup
(c,D)∈B(w)

U(c,D) < +∞ .

In order to ensure existence of a solution, we furthermore assume the (weak) integrability

conditions E sup0≤t≤T ψt < +∞ and E
∫ T

0
∂yu(t, i(t, φ, y), y)e−βt dt < +∞, as well as the

regularity condition that ψ is lower-semicontinuous in expectation, i.e., that lim infn EψT n ≥
EψT 0 for any monotone sequence of stopping times T n taking values in [0, T ] and converging

to T 0.

2 Optimal Consumption Plans

In this section, we are going to show how the utility gradient approach can be used in order to

construct optimal consumption plans for the utility maximization problem (3). The starting

point for this approach is the well–known principle that at optimum marginal utility from

consumption does never exceed a certain fixed multiple of the costs of consumption, and

that equality holds true between these quantities whenever consumption actually occurs.

Formally, this means that for some Lagrange parameter λ > 0 an optimal plan (c∗, D∗)

satisfies the first–order conditions

(4) ∇cU(c∗, D∗)t ≤ λφt with ‘=’ whenever ct > 0 (0 ≤ t ≤ T )

and

(5) ∇DU(c∗, D∗)t ≤ λψt with ‘=’ whenever dD∗
t > 0 (0 ≤ t ≤ T ) ,

where ‘dD∗
t > 0’ is short hand for ‘t is a time of increase for the non–decreasing process D∗’.

1It follows from concavity of u(t, ., .) that ∂yu(t, i(t, φ, y), y) is decreasing in y. As a consequence, the

limits for y ↓ 0 and y ↑ +∞ occurring in (2) do in fact exist.
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Of course, in order to make use of these first order conditions, we have to compute the

utility gradients ∇cU and ∇DU explicitly. This is particularly easy for the gradient with

respect to consumption of the perishable good c. Indeed, since additional consumption of the

perishable good affects marginal felicity only at those times where additional consumption

actually occurs, marginal utility in the perishable good is given by the marginal period

felicity, just like in the additive model with a single perishable good:

(6) ∇cU(c, D)t = ∂cu(t, ct, y
D
t ) .

In contrast, additional purchases of durables at a certain point in time affect all future

marginal felicities since such purchases increase the stock of durables at any time afterwards.

Clearly, as the durable good depreciates at rate β ≥ 0 this effect will decline accordingly and

therefore we have to discount the future marginal felicities in the durable good. This leads

us to the expression

(7) ∇DU(c,D)t = E
[∫ T

t

∂yu(s, cs, y
D
s )e−β(s−t) ds

∣∣∣∣Ft

]

for the marginal utility of additional purchases of the durable good at time t when otherwise

following the consumption plan (c,D). The following lemma records this reasoning. It is the

usual Kuhn–Tucker or saddle point theorem for the setup at hand.

Lemma 2.1 A consumption plan (c∗, D∗) which exhausts the initial wealth, Π(c∗, D∗) = w,

and satisfies the first–order conditions (4) and (5) solves the utility maximization problem

(3).

The next step in the utility gradient approach is to employ the explicit formulae for the

utility gradients in order to determine the optimal consumption plan from the first order

conditions (4) and (5). Again, this is particularly easy for the consumption plan for the

perishable good: The Inada condition ∂cu(t, 0, y) = +∞ ensures that marginal utility is

infinite whenever the agent does not consume the perishable good. By our formula for the

utility gradient ∇cU this is compatible with the first order condition (4) only if consumption

of the perishable is made at every point time. Thus, an optimum (c∗, D∗) will satisfy

(8) ∂cu(t, c∗t , y
D∗
t ) = λφt
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for every t ∈ [0, T ]. This equation determines the consumption plan for perishable goods c∗

as a function of time t, instantaneous state–price φt, and current stock level yD∗
t :

(9) c∗t = i
(
t, λφt, y

D∗
t

)
,

where i(t, ., y) = (∂cu(t, ., y))−1 is the inverse of marginal felicity with respect to the perish-

able good.

Finding an optimal plan for the durable good is more involved since the Inada condition

∂yu(t, c, 0+) = +∞ does not ensure that marginal utility in the durable good ∇DU is

infinite in periods where no durables are consumed. In fact, as we shall see, the optimal

plan typically includes extended periods of time where no durables are purchased and where

we have strict inequality ‘<’ in the first order condition (5). The economic reason for this

is that purchases of durable goods are irreversible and, thus, the agent cannot disinvest his

stock of durables in order to benefit from ‘high’ prices for these goods in periods where the

marginal utility from his stock of durables is comparably ‘low’. As a technical consequence

this entails that trying to proceed as for the perishable good, i.e., assuming equality in (5)

and solving then for D∗, will not only be difficult but even impossible in general. Nevertheless

it is possible to systematically deduce the optimal consumption plan D∗ from an equality

associated with the first order conditions (4) and (5). Instead of describing D∗ directly, this

equality characterizes an auxiliary process L = (Lt)0≤t≤T which we call the minimal stock

level. This adapted process describes a time–varying lower bound for the optimal stock of

durables to be held by the agent at each point in time. More precisely, the agent’s optimal

plan for durables is to track the minimal stock level L, i.e., to refrain from any purchases

of durables whenever the current stock yD∗
t is strictly above the time varying lower bound

L = (Lt)0≤t≤T , and to purchase otherwise ‘just enough’ to ensure that yD∗
t = Lt. Formally,

this amounts to choose D∗ as in the following definition.

Definition 2.2 Let L be a progressively measurable process with upper–right continuous

paths2. A plan D is said to track the process L if the associated stock level yD takes the

form

yD∗
t = e−βt max{η, sup

0≤v≤t
Lve

βv} (t ∈ [0, T ]) .

2Progressive measurability and upper–right continuity of L ensure that the running supremum

sup0≤v≤t{Lveβv} is a right continuous, adapted process.
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The process D which tracks a given level L is unique, as one can easily see from (1).

The next theorem shows that the optimal minimal stock level is characterized by a

stochastic backward equation. This minimal level equation is specified in terms of the aux-

iliary function

(10) v(t, φ, l)
∆
= ∂yu(t, i(t, φ, e−βtl), e−βtl)e−βt (t ∈ [0, T ], φ, l ∈ [0, +∞)) .

Theorem 2.3 Suppose L ≥ 0 is a progressively measurable process with upper–right contin-

uous paths and L(T ) = 0 which solves the ‘minimal level equation’

(11) E
[∫ T

s

v(t, λφt, sup
s≤v≤t

{L(v)eβv}) dt

∣∣∣∣Fs

]
= λψse

−βs for all s ∈ [0, T )

where the function v is determined from agent’s preferences via (10). Denote by D∗ the

process which tracks the level L, and let c∗ be given by (9). Then the consumption plan

(c∗, D∗) solves the first–order conditions for optimality (4) and (5).

Proof : The process c∗ satisfies the first order condition (4) by definition. To establish

the other first order condition (5) at time t ∈ [0, T ), we note first that by definition of D∗

we have for any s ∈ [t, T ]

(12) yD∗
s ≥ L̄t,s

∆
= e−βs sup

t≤v≤s
{Lve

βv} .

Concavity of the felicity function u implies that the function v(t, φ, l) is decreasing in l ∈
[0, +∞) for fixed (t, φ). Therefore, the preceding estimate yields

∂yu(s, c∗s, y
D∗
s )e−βs = v(s, φs, y

D∗
s ) ≤ v(s, φs, L̄t,s) .

From this we obtain upon integration over s ∈ [t, T ] that

(13) ∇DU(c∗, D∗)t ≤ E
[∫ T

t

v(s, φs, L̄t,s) ds

∣∣∣∣Ft

]
eβt = λψt

where the second equality follows from equation (11). This proves∇DU(c∗, D∗) ≤ λψ. More-

over, we know from the construction of D∗ that whenever additional durables are purchased

this is done so that yD∗
t = Lt holds true. Since this implies that equality holds true in (12)

for any s ≥ t, we infer that equality also holds true in (13) whenever dD∗
t > 0. Hence, D∗

satisfies the first order condition (5). 2
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Theorem 2.3 establishes the usefulness of the concept of a minimal stock level of durables.

The characterization of this process provided by the minimal level equation (11) can readily

be used to check whether a given candidate actually is such a minimal level process (cf.

Section 3 below). The theorem leaves open, however, how one can systematically construct

such a minimal level L. In order to gain more insight into the structure of the minimal level

process L, let us assume our agent enters the economy at some stopping time S < T . He

then has to choose his consumption plan (cS, DS) = (cS
t , DS

t )t∈[S,T ] for the remaining time

period [S, T ]. Suppose he has zero initial stock of durables at time S, yDS

S− = 0, and, finding

this unsatisfactory, decides to immediately raise his stock to some state dependent, FS–

measurable level l > 0. Suppose furthermore that after time S he refrains from any further

purchases until at time S ′ > S either the time horizon has elapsed, S ′ = T , or he again

wishes to raise his stock of durables, S ′ < T . Between time S and S ′, his stock of durables

will then evolve according to yDS

t = le−β(t−S), t ∈ [S, S ′). We can therefore easily relate his

marginal utility from purchasing durables at time S with the corresponding marginal utility

at time S ′:

∇DU(cS, DS)S =E

[∫ S′

S

∂yu(t, cS
t , le−β(t−S))e−β(t−S) dt

∣∣∣∣∣FS

]
(14)

+ E
[
e−β(S′−S)∇DU(cS, DS)S′

∣∣∣FS

]
.

Now, assume that the chosen consumption plan (cS, DS) is in fact optimal with Lagrange

parameter λ, say. Then it follows from the first order condition (4) that

(15) cS
t = i(t, λφt, y

DS

t ) (t ∈ [S, T ]) .

Moreover, the first order condition (5) yields that

(16) ∇DU(cS, DS)S = λψS and ∇DU(cS, DS)S′ = λψS′1{S′<T} ,

where the indicator function in the last term accounts for the possibility that in some states

of the world S may already be the last time for purchases of durables (whence S ′ = T and

∇DU(cS, DS)S′ = ∇DU(cS, DS)T = 0). Plugging Eqs. (15) and (16) into (14) yields the

relation

E

[∫ S′

S

v(t, λφt, le
βS) dt

∣∣∣∣∣ FS

]
(17)

= E
[
λψSe−βS − λψS′e

−βS′1{S′<T}
∣∣∣FS

]
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where v denotes the auxiliary function defined in (10).

Plainly, for any stopping time S < T there may be many pairs (l, S ′) of FS–measurable

random variables l and stopping times S ′ > S which satisfy (17). In fact, it follows from the

Inada conditions (2) that for any S ′ > S in the class S ′(S) of stopping times for which the

right hand side in (17) is nonnegative, there exists an almost surely unique FS–measurable

random variable l = lS,S′ such that (17) holds true. Our preceding considerations suggest

that all these random variables lS,S′ are reasonable candidates for the optimal stock level our

agent should choose when entering the economy at time S. Since we are interested in the

minimal level of durable stock to hold at time S, it is natural to consider minimum or more

precisely the essential infimum of all these random variables. In fact, in conjunction with

Theorem 2.3 the following Theorem 2.4 shows that this infimum actually yields the optimal

initial stock level to be chosen at time S:

Theorem 2.4 There exists a progressively measurable process L = (Lt)0≤t≤T ≥ 0 with

upper–right continuous paths and LT = 0 which solves the minimal level equation (11).

At any stopping time S < T this process is uniquely determined by

(18) LS = ess inf
S′∈S′(S)

lS,S′ ,

with S ′(S) =
{
S ′stopping time : S ′ > S,E

[
λψSe−βS − λψS′e

−βS′1{S′<T}
∣∣FS

]
> 0

}
.

The proof is given in the appendix.

3 Explicit Solutions

In this section, we are going to show how explicit solutions to our minimal level equation can

be obtained. In the first part, we are going to focus on computational aspects of this problem.

We prove consistency of suitable discrete time approximations to the utility maximization

problem, and we provide an efficient and easy to implement algorithm which computes the

minimal level process in such a discrete time framework. In the second part, we are going to

work in a ‘homogeneous’ continuous-time framework where the minimal level equation (11)

can be verified directly for a suitable candidate. This allows us to determine the minimal level

process in closed form and to describe explicitly the implied optimal consumption behavior.
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3.1 Discrete Time and Numerical Solutions

In this section, we present an algorithm that calculates the optimal consumption plans for

the corresponding utility maximization problem in discrete time. Moreover, we show that

these discrete–time solutions converge to the continuous–time solution as the mesh of the grid

vanishes. This is important in two regards. From a theoretical perspective, it is important

to know that the discrete–time model converges to the continuous–time model; if that was

not the case, the continuous–time model would be of limited value since our observations

are clearly finite. From a computational perspective, it is very useful to have an algorithm

that computes the optimal plans for arbitrary utility functions and underlying stochastics.

3.1.1 The Discrete–Time Model

Let us assume that the market for durable goods allows for purchases only at a finite number

of times 0 = t0 < t1 < . . . < tn < tn+1 = T . Then our agent’s problem is to maximize his

utility U(c,D) not only subject to the budget constraint Π(c,D) ≤ w, but also subject to

the feasibility constraint that dDt > 0 only for t ∈ τ
∆
= {t0, . . . , tn+1}. A nice feature of the

present utility model is that allows for a simple proof of consistency with respect to such

time discretizations if the state–price deflators ψ takes the form ψt = exp
(
− ∫ t

0
rs ds

)
Mt

for some integrable interest rate process r ≥ 0 and a martingale M . This is the usual form

for state–price deflators in financial economics.

Theorem 3.1 As the mesh ‖τ‖ = maxi |ti− ti+1| of the partition τ tends to zero, the utility

which is obtained by the optimal plan for the discrete time problem tends to the utility obtained

in the continuous time problem.

The proof is given in the appendix.

It is easy to see that in the present discrete–time setting the first order condition for

optimality (4) remains unchanged, and therefore, given a plan D∗ for purchases of durables,

the corresponding optimal consumption plan for perishable goods is described by (14). Also

the first order condition (5) carries over to the present discrete–time setting with the only

modification that ∇DU(c∗, D∗) ≤ λψ merely must hold true on τ ⊂ [0, T ]. As a consequence,

the ‘level principle’ describing optimal consumption rules as in Theorem 2.3 still holds true:

there is an adapted process L = (Lt)t∈τ with LT = 0 such that the optimal purchase plan
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for durables at some time t ∈ τ is to refrain from further purchases if the current stock of

durables satisfies yD∗
t− ≥ ψt, and to buy otherwise just enough to ensure that yD∗

t = Lt. The

process L is characterized as the unique adapted solution to the discrete–time minimal level

equation

(19) E
[∫ T

s

v(t, λφt, max
v∈τ∩[s,t]

{L(v)eβv}) dt

∣∣∣∣Fs

]
= λψse

−βs for all s ∈ τ ∩ [0, T ) .

3.1.2 Numerical Solution

There are several possibilities to compute the minimal level process L characterized by (19).

The most obvious way is to solve successively for Ltn , Ltn−1 , . . . , Lt0 in (19). This, however,

would involve the calculation of increasingly complex conditional expectations and would

thus result in a rather tedious, time–consuming task. On the other hand, one could use

the discrete–time analogue of (18) and compute for each S ∈ τ the essential infimum of all

the random variables lS,S′ where S ′ varies over the stopping times with values in τ ∩ (S, T ]

for which the right side in (17) is positive. These random variables are comparably easy to

determine. However, the set of all stopping times S ′ to be considered can be huge so that the

performance of such a naive approach would be pretty poor. It is therefore interesting to note

that the number of stopping times S ′ to be taken into account to determine LS from (17)

can be reduced considerably. Indeed, as proved in Bank and Föllmer (2003), it suffices to

consider for S = ti ∈ τ the increasing sequence of stopping times S ′0
∆
= ti+1 ≤ S ′1 ≤ . . . where

S ′n+1 is obtained from S ′n by letting

S ′n+1
∆
= inf{t ∈ τ ∩ (S ′n, T ] : Lte

βt ≥ LS′neβS′n} ∧ T

on {FS– ess inf LS′neβS′n = LS′neβS′n < lS,S′neβS′n}, provided this set has positive probability. 3

As soon as this is not the case, one can put LS = lS,S′n and continue with the calculation of

LS for S = ti−1.

As an example, we study the importance of the retirement effect for both the stock level

of the durable and the consumption of perishable goods. With a finite time horizon, the

3Here lS,S′n is defined as the unique FS–measurable solution l to (17) with S′ ∆= S′n on the set where

the right side in (17) is positive, and as +∞ on the complement of this set; FS– ess inf LS′neβS′n denotes

the conditional essential infimum of LS′neβS′n , i.e., the smallest FS–measurable random variable dominating

LS′neβS′n .
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minimal shadow level converges to zero as the horizon approaches. This implies that durables

are not purchased after a certain age has been reached. In the example with deterministic

prices for both goods considered in Figure 1, the horizon is 40 years, the expected lifetime of

the durable is 20 years. The household stops buying after 24.5 years. The parameters in the

model are chosen such that the consumption rate for perishable goods would be constant if

there were no durables. However, as Figure 2 shows, the presence of the durable leads here

to a time–varying consumption rate. It rises first, and drops later in life, as perishables and

durables are complements in that model. The same effect can be observed in a model where

prices fluctuate randomly, see Figure 3.

3.2 Cobb–Douglas Utility and log–Lévy Prices

We study now Cobb–Douglas preferences in a homogenous setting. Specifically, we assume

that the time horizon is infinite, T = ∞. For simplicity, we set the initial stock level to

η = 04. The investor’s felicity function is given by

u(t, c, y)
∆
= e−δt cAyB

A + B

= e−δt

(
cθy1−θ

)1−α

1− α
,

for constants α, δ > 0, 0 < θ < 1, and A = θ(1 − α), B = (1 − θ)(1 − α). The parameters

in the utility function may be interpreted in different ways. In one–period models, θ corre-

sponds to the fraction of wealth a Cobb–Douglas agent spends for the perishable good. The

parameter α describes in one–good models the inverse intertemporal elasticity of substitution

as well as the degree of constant relative risk aversion. For our setting, α will describe the

complementarity or substitutability between durable and perishable goods. The parameter

δ measures the impatience of the investor.

We assume that price processes can be written as

φt = e−Xt , ψt = e−Yt(20)

for a Lévy process (X, Y ) with X0 = Y0 = 0. This covers a range of models. From finance

models that date back at least to Merton (1971), we are familiar with the case of X and Y

4The results for general η are easily obtained and available from the authors upon request.
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being Brownian motion with drift. The class of Lévy5 processes includes also (compound)

Poisson processes. The deterministic case, with Xt = rpt and Yt = rdt, belongs to it as well,

and analyzed in detail below.

Before we present the general explicit solution in this case, one might want to recall that

in the homothetic framework, it is enough to exhibit an optimal plan (c∗, D∗) for one specific

wealth level w∗ because the optimal plans for general wealth w are just constant multiples
w
w∗ (c

∗, D∗) of this one reference solution. To find this reference solution, let us introduce the

minimal level

L∗t =

(
e−δt

φA
t ψ1−A

t

) 1
1−A−B

=

(
e−δt

φ
θ(1−α)
t ψ

1−θ(1−α)
t

) 1
α

.(21)

Set

m∗ ∆
=E

[∫ ∞

0

e−
δ

1−A
t φ

− A
1−A

t

{(
sup
u≤t

L∗ue
βu

)
e−βt

}− 1−A−B
1−A

e−βt dt

]
.

We will show below that L∗ solves the minimal level equation (11) for the Lagrange multiplier

λ∗ ∆
=

AA B1−A

A + B
(m∗)1−A .

The corresponding optimal stock level is given by

y∗t
∆
=

(
sup
u≤t

L∗ue
βu

)
e−βt ,

from which one obtains the corresponding plan D∗ for durables via (1), that is

(22) D∗
t

∆
= y∗t +

∫ t

0

βy∗sds .

The corresponding optimal plan for perishables is, as we shall show,

(23) c∗t
∆
=

A

Bm∗ e−
δ

1−A
t φ

− 1
1−A

t (y∗t )
B

1−A .

Finally, denote by w∗ ∆
= Ψ (c∗, D∗) the price of the candidate solution. We assume w∗ < ∞.

Theorem 3.2 The consumption plan
(

w
w∗ c∗, w

w∗ D∗) is optimal for initial wealth w, where

D∗ is given by (22) and c∗ by (23).

5For a reference on Lévy processes, we suggest Bertoin (1996).
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Proof : Since the utility function is homothetic, it suffices to prove optimality for the

specific wealth level w∗. In light of Theorem (2.3), we just have to show, therefore, that L∗

solves the minimal level equation (11) for Lagrange multiplier λ∗.

A straightforward calculation shows that the minimal level equation reduces to

E

[∫ ∞

t

e−
δ

1−A
s− Bβ

1−A
sφ
− A

1−A
s

(
sup

t≤u≤s
L∗ue

βu

)− 1−A−B
1−A

∣∣∣∣∣Ft

]
= λ

1
1−A

(A + B)
1

1−A

A
A

1−A B
ψte

−βt .

Write LS for the left side of the equation, l∗t
∆
= log

(
L∗t e

βt
)
, and set Z1

t
∆
= 1

1−A
δt + B

1−A
βt +

A
1−A

Xt. With these definitions, we have

(24) LS = E
[∫ ∞

t

e−Z1
s−supt≤u≤s

1−A−B
1−A

l∗uds

∣∣∣∣Ft

]
,

As a linear combination of Lévy processes, (Z1, l) is a Lévy process. We may therefore apply

the strong Markov property and get

LS =

(
E

∫ ∞

0

e−Z1
s−sup0≤u≤s

1−A−B
1−A

l∗uds

)
e−Z1

t− 1−A−B
1−A

l∗t = m∗ψte
−βt

Therefore, L∗ solves indeed the minimal level equation for the appropriate choice of λ, which

is

λ∗ =
AA B1−A

A + B
(m∗)1−A .

2

The optimal shadow stock level depends on the ratio of personal discount factor e−δt

and a geometric weighted average of prices. Higher impatience implies a lower optimal

shadow level, as the investor transfers wealth to the present. Naturally, the shadow level

is decreasing in the durable’s price. Depending on the sign of A, durable and perishable

goods are substitutes or complements. If A < 0 (or α > 1), the shadow level for the durable

good increases in the perishable’s price, and the goods are substitutes. For A > 0 or α < 1,

they are complements. Thus, in addition to the familiar interpretation of α as relative risk

aversion or inverse intertemporal elasticity of substitution, a third interpretation arises here:

The value of α triggers complementarity or substitutability.

It is important to stress, however, that a local change in the shadow level need not

influence the observed purchasing behavior. This occurs only when the change in the shadow

level is positive, and this positive that the corresponding process (Lte
βt) reaches a new
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running maximum. In contrast to time–separable models, the purchasing behavior is not

myopic. Instead, current prices and the history of prices as summarized by the running

maximum of the process (Lte
βt) form a sufficient statistic for consumption decisions. The

depreciation rate β determines the frequency of new durable purchases, as the following

consideration shows. New durables are bought whenever the process (Lte
βt) reaches a new

maximum. With a higher β, this occurs more frequently. At the same time, the purchased

amount of durables has to be smaller, of course; we have a higher frequency and a lower

amplitude of purchases when the depreciation rate increases.

Graphic Illustrations As an illustration, we consider the following case. The price of the

perishable good is deterministic, φt = e−rpt with rp = 3%. The price of the durable good

is an exponential Brownian motion of the type ψt = e−ζWt−ζ2t/2−rdt for a Brownian motion

W , volatility ζ = 8% and interest rate rd = 5%. For the case of complements (α = 0.5),

Figure 5 shows the positive correlation of the consumption rate of the perishable good and

the stock level of the durable. In particular, good news on the durable market, resulting

in new purchases of the good, have a considerable impact on the consumption rate of the

perishable good. On the other hand, the picture changes dramatically if perishables are a

substitute for durables (α = 3.5), as one can see from Figure 6.

The Figures 7 and 8 illustrate the impact of the expected lifetime of the durable good

on optimal plans. Of course, a higher lifetime leads to less frequent purchases. In the case

of substitutes, the corresponding impact on the consumption rate of the perishable good is

dramatic.

The Figures 9 and 10 illustrate the role of the parameter θ. When θ is close to 1, the

perishable’s consumption rate is determined almost entirely by the perishable’s price. For

small θ, the stock of the durable has an impact.

The Deterministic Case A study of the deterministic case might improve one’s under-

standing of the optimal consumption behavior. Assume that there is a constant own in-

terest rate for the perishable good rp as well as an own interest rate rd for the durable,

that is Xt = rpt, Yt = rdt. Then the optimal shadow level satisfies log L∗t = const +
1

1−A−B

(
Arp + (1− A)rd − δ

)
t. Thus, the convex combination r̄

∆
= Arp + (1 − A)rd of in-

terest rates and the time preference rate δ govern the optimal shadow stock level. Patient

investors (δ ≤ r̄) exhibit an increasing L, and thus the actual stock level coincides with the
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shadow level: The investor buys a bulk of a certain size at time 0 and increases the stock

continuously at rate β + r̄−δ
1−A−B

afterwards in order to keep track of the increasing shadow

level. This is, by the way, the solution one obtains in the frictionless world where the stock

can be resold without any transaction costs. Impatient investors (δ > r̄) also buy a bulk

at time 0; however, their optimal shadow level is decreasing. When the durable depreciates

slowly (β < δ−r̄
1−A−B

), the investor’s stock level remains always above the optimal shadow level

after the initial purchase, and he never buys the durable again. For relatively short–lived

durables (β > δ−r̄
1−A−B

), the investor has to compensate the large losses due to depreciation

by purchasing continuously at rate β − δ−r̄
1−A−B

in order to keep the actual stock equal to the

optimal shadow level. The reader is referred to Bank and Riedel (2000) for comparison with

the case of one durable good.

Appendix

Proof of Theorem 2.4 : The proof consists essentially in an application of the results

in Bank and ElKaroui (2002). To see this, put X
∆
= λψ1[0,T ) and define

f(ω, t, l)
∆
=





v(t, λφt(ω),−1/l) if l < 0 ,

−e−tl if l ≥ 0 .

By our assumptions on ψ, φ, and u, these choices of X and f satisfy the assumptions made in

Bank and ElKaroui (2002). Indeed, ψ is lower–semi continuous in expectation and dominated

by an integrable random variable, thus of ‘class (D)’. Moreover, f(., ., l) is progressively

measurable (even optional) and P ⊗ dt–integrable for fixed l; for fixed (ω, t), f(ω, t, .) is

strictly decreasing from +∞ to −∞ over R since v is strictly decreasing by strict concavity

of u(t, ., .) with v(t, φ, 0+) = +∞ and v(t, φ, +∞) = 0 for any (t, φ) by assumption. Hence,

we may apply Theorem 2 in Bank and ElKaroui (2002) to obtain existence of a progressively

measurable process L̃ with upper–right continuous paths such that

(25) XS = E
[∫ T

S

f(t, sup
S≤v≤t

L̃v) dt

∣∣∣∣FS

]

for any stopping time S < T . Theorem 1 in the same paper yields a characterization of this

process: L̃S = ess infS′ l̃S,S′ where S ′ varies over all stopping times taking values in (S, T ]
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and where l̃S,S′ is the unique FS–measurable solution to

(26) E
[∫ T

S

f(t, l̃S,S′) dt

∣∣∣∣FS

]
= E [XS −XT | FS] .

Since X > 0 on [0, T ), it follows that L̃ < 0 almost surely. Hence, putting Lt
∆
= − e−βt/L̃t

allows us to transform equation (25) into our minimal level equation (11). Similarly, the

characterization (18) is obtained from (26) by noting that lS,S′ = −e−βS/l̃S,S′ satisfies (17)

if the right side in (26) (or equivalently (17)) is non-negative. 2

Proof of Theorem 3.1 : Let (cτ , Dτ ) ∈ B(w) denote the optimal consumption plan

in the constrained economy where the market for the durable good opens only at the dates

t ∈ τ . It is clear that U(cτ , Dτ ) ≤ U(c∗, D∗) where (c∗, D∗) denotes the optimal plan

(c∗, D∗) ∈ B(w) in the unconstrained economy. To prove that U(cτ , Dτ ) → U(c∗, D∗) for

‖τ‖ → 0, define the constraint plan for durables D∗,τ ∆
=

∑n
i=0 D∗

ti
1[ti,ti+1) and consider the

rescaled plan (kτc∗, kτD∗,τ ) with kτ ∆
= w/Π(c∗, D∗,τ ). This plan is budget feasible in the

constrained economy and its utility is therefore less than or equal to U(cτ , Dτ ). Hence, it

suffices to prove lim inf‖τ‖→0 U(kτc∗, kτD∗,τ ) ≥ U(c∗, D∗). As ‖τ‖ → 0, the plan D∗,τ almost

surely tends to D∗ in every point t of continuity of D∗. This implies that almost surely
∫ T

0

e−
∫ t
0 rs ds dD∗,τ

t = e−
∫ T
0 rs dsD∗,τ

T +

∫ T

0

D∗,τ
t rte

− ∫ t
0 rs ds dt

converges to
∫ T

0
e−

∫ t
0 rs ds dD∗

t from below. Hence, the costs E
∫ T

0
ψt dD∗,τ

t =

E
∫ T

0
e−

∫ t
0 rs ds dD∗,τ

t for D∗,τ tend to the costs of D∗ by monotone convergence. This en-

tails kτ → 1 for ‖τ‖ → 0. Hence, we also have kτD∗,τ → D∗ almost surely in every point

of continuity of D∗. This yields u(t, kτc∗t , y
kτ D∗,τ

t ) → u(t, c∗t , y
D∗
t ) P⊗ dt–almost everywhere,

and so we have indeed lim inf‖τ‖→0 U(kτc∗, kτD∗,τ ) ≥ U(c∗, D∗) by Fatou’s lemma. 2
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Figure 1: This picture illustrates the retirement effect for the optimal shadow and actual

stock level of the durable in a deterministic setting. The horizon of the agent is 40

years. The consumer accumulates durables until a certain age (24), and afterwards, no

further purchases of durables are made. The expected lifetime of the durable is 1/β = 20.

Parameters of the utility function are θ = .8, α = .5, δ = 0.02. The price of the perishable

follows φt = exp(−rpt) with rp = 0.02. The price of the durable good is ψt = exp(−rdt),

with rd = 0.03.
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Figure 2: This picture illustrates the retirement effect for the optimal consumption rate of

the perishable good for the same setting as Figure 1. Without durables, the consumption

rate would be flat. The presence of durables induces a hump due to complementarity

effects.
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Figure 3: This picture illustrates the retirement effect for the durable good in a setting

with stochastic prices. We use the same parameters as in Figure 1 and add volatiliy

parameters ξ = .05 and ζ = .08 to account for random price fluctuations from independent

shocks. Please note that this is a discrete time example. Adjustments of the stock can be

made at integer times only. Therefore, the shadow level should be plotted as a sequence

of points, as we have done for the actual level. We think that the interpolated continuous

polygon plot makes the picture more comprehensible. The same comment applies to the

other illustrations, of course.
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Figure 4: This picture illustrates the retirement effect for the perishable good in a

setting with stochastic prices. We use the same parameters as in Figure 3. Due to

favorable shocks, the perishable consumption rate does not decrease as early as in the

deterministic example (Figure 1) where the retirement effect sets in in period 24. In this

example, the retirement effect dominates after period 33.
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Figure 5: This picture illustrates the dynamics of durables and perishables when they

are complements. Optimal shadow and actual stock level of the durable. Parameters

are θ = .3, α = .5, β = .01, δ = 0.03. The price of the perishable has Xt = −rpt with

rp = 0.03. The price of the durable good has Yt = ζWt − ζ2

2 t − rdt, with ζ = 0.08 and

rd = 0.05. W is a Brownian motion.
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Figure 6: This picture illustrates the dynamics of durables and perishables when they

are substitutes. Optimal shadow and actual stock level of the durable. Parameters are

θ = .3, α = 3.5, β = .01, δ = 0.03. The price of the perishable has Xt = −rpt with

rp = 0.04. The price of the durable good has Yt = ζWt − ζ2

2 t − rdt, with ζ = 0.08 and

rd = 0.05. W is a Brownian motion.
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Figure 7: This picture illustrates the impact of expected lifetime of the durable good

on consumption plans. Expected lifetime is 100 months. Optimal shadow and actual

stock level of the durable. Parameters are θ = .3, α = 3.5, β = .01, δ = 0.03. The price

of the perishable has Xt = −rpt with rp = 0.04. The price of the durable good has

Yt = ζWt − ζ2

2 t− rdt, with ζ = 0.08 and rd = 0.05. W is a Brownian motion.
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Figure 8: This picture illustrates the impact of expected lifetime of the durable good on

consumption plans. Here, expected lifetime is 33 months. Optimal shadow and actual

stock level of the durable. Parameters are θ = .3, α = 3.5, β = .03, δ = 0.03. The price

of the perishable has Xt = −rpt with rp = 0.04. The price of the durable good has

Yt = ζWt − ζ2

2 t− rdt, with ζ = 0.08 and rd = 0.05. W is a Brownian motion.
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Figure 9: This picture illustrates the impact of the parameter θ. Parameters are θ =

.9, α = 0.5, β = .03, δ = 0.03. The price of the perishable has Xt = −rpt with rp = 0.04.

The price of the durable good has Yt = ζWt− ζ2

2 t− rdt, with ζ = 0.08 and rd = 0.05. W

is a Brownian motion.
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Figure 10: This picture illustrates the impact of the parameter θ. Parameters are θ =

.5, α = 0.5, β = .03, δ = 0.03. The price of the perishable has Xt = −rpt with rp = 0.04.

The price of the durable good has Yt = ζWt− ζ2

2 t− rdt, with ζ = 0.08 and rd = 0.05. W

is a Brownian motion.


