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Abstract

This paper proposes using realized range-based estimators to draw inference about the quadratic

variation of jump-diffusion processes. We also construct a range-based test of the hypothesis that

an asset price has a continuous sample path. Simulated data shows that our approach is efficient,

the test is well-sized and more powerful than a return-based t-statistic for sampling frequencies

normally used in empirical work. Applied to equity data, we show that the intensity of the jump

process is not as high as previously reported.
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1. Introduction

Modern financial econometrics has largely been developed from the presumption that return-generating

processes have continuous sample paths. The workhorse of both applied and theoretical papers is the

continuous time stochastic volatility model. These models, however, are contrasted by the many abrupt

changes found in empirical data, and a series of recent papers has therefore estimated jump-diffusion

processes and/or proposed jump detection tests using i) low-frequency data (e.g., Aït-Sahalia (2002),

Andersen, Benzoni & Lund (2002), Pan (2002), Chernov, Gallant, Ghysels & Tauchen (2003), Eraker,

Johannes & Polson (2003), Johannes (2004)), or ii) high-frequency data (e.g., Barndorff-Nielsen &

Shephard (2004, 2006), henceforth BN-S, Huang & Tauchen (2005), Jiang & Oomen (2005), Andersen,

Bollerslev & Diebold (2006)).

Information in high-frequency data, in particular, has provided strong support for jumps in asset

prices. The jump component appears to account for a significant proportion of quadratic variation. An

asymptotic distribution theory for the preferred test was derived in BN-S (2006), which is based on the

ratio of realized variance and bipower variation, suitably normalized. In the presence of microstructure

noise, these return-based statistics are often sampled at a moderate frequency to reduce the impact of

the noise (e.g., sampling 5-minute returns). This principle, of course, entails a loss of information and

much research has been devoted to develop estimators that are more robust to microstructure noise

(e.g., Zhang, Mykland & Aït-Sahalia (2004) or Barndorff-Nielsen, Hansen, Lunde & Shephard (2006),

among others).

In this paper, we propose a framework using realized range-based estimators to draw inference about

the quadratic variation, and we construct a new non-parametric test for jump detection. The motivation

for using the range is that intraday range-based estimation of integrated variance is very efficient (see,

e.g., Parkinson (1980), Christensen & Podolskij (2006) or Dijk & Martens (2006)). By replacing returns

with ranges, we can extract most of the information contained in the data not used by a sparsely sampled

realized variance and bipower variation, but without inducing more microstructure noise or relying on

complicated corrections to reduce its impact. Hence, we would expect that range-based inference about

the jump component is powerful. The properties of the high-low has, however, been neglected in the

context of jump-diffusion processes.

Our paper makes several contributions. First, we extend the asymptotic results on the realized

range-based variance in Christensen & Podolskij (2006) to cover the jump-diffusion setting. It turns out

that this estimator is inconsistent for the quadratic variation of these processes. Second, we introduce

range-based bipower variation, derive its probability limit, and asymptotic distribution under the null

of a continuous sample path. Third, we use range-based bipower variation to modify the realized range-
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based variance and restore consistency for the quadratic variation. Fourth, we develop a range-based

test of the hypothesis of no jump component.

The paper proceeds as follows. In section 2, we set notation and invoke a standard arbitrage-free

continuous time semimartingale framework. We review the theory of realized variance within jump-

diffusion models and then switch to realized range-based variance. In section 3, we conduct a Monte

Carlo study to inspect the finite sample properties of range-based bipower variation and the new jump

detection test. In section 4, we progress with some empirical results using high-frequency data from

New York Stock Exchange (NYSE). In section 5, we conclude and offer directions for future research.

An appendix contains the derivations of our results.

2. A Jump-Diffusion Semimartingale

In this section, we propose a non-parametric method based on the price range for consistently estimating

the components of quadratic variation. Moreover, we introduce a new test for drawing inference about

the jump part. The theory is developed for a univariate log-price, say p = (pt)t≥0, defined on a filtered

probability space
(
Ω,F , (Ft)t≥0 ,P

)
. p evolves in continuous time and is adapted to the filtration (Ft)t≥0,

i.e. a collection of σ-fields with Fu ⊆ Ft ⊆ F for all u ≤ t < ∞.

Throughout the paper, we assume that p is a member of the class of jump-diffusion semimartingales

that satisfy the generic representation:1

pt = p0 +
∫ t

0

µudu +
∫ t

0

σudWu +
Nt∑

i=1

Ji, (2.1)

where µ = (µt)t≥0 is locally bounded and predictable, σ = (σt)t≥0 is càdlàg, W = (Wt)t≥0 a standard

Brownian motion, N = (Nt)t≥0 a finite-activity simple counting process, and J = {Ji}i=1,...,Nt
is a

sequence of non-zero random variables.2 Equation (2.1) with N = 0 is called a Brownian semimartingale

and we write p ∈ BSM to reflect this in the following.

We assume that high-frequency data are available through [0, t], which is the sampling period and is

thought of as being a trading day. At sampling times ti−1 and ti, such that 0 ≤ ti−1 ≤ ti ≤ t, we define

the intraday return of p over [ti−1, ti] by:

rti,∆i = pti − pti−1 , (2.2)

where ∆i = ti − ti−1.
1Asset prices must be semimartingales under rather weak conditions (e.g., Back (1991)).
2A simple counting process, N , is of finite-activity provided that Nt < ∞ for t ≥ 0, almost surely. In this paper, we

do not explore infinite-activity processes, although these models have been studied in the context of realized multipower

variation (e.g., Barndorff-Nielsen, Shephard & Winkel (2006) or Woerner (2004a, 2004b)).
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With this notation, we can introduce the object of interest; the quadratic variation. The theory of

stochastic integration states that this process exists for all semimartingales. Its relevance to financial

economics is stressed in several papers (e.g., Andersen, Bollerslev & Diebold (2002)). The definition of

quadratic variation is given by:

〈 p 〉t = p-lim
n→∞

n∑

i=1

r2
ti,∆i

, (2.3)

for any sequence of partitions 0 = t0 < t1 < . . . < tn = t such that max1≤i≤n {∆i} → 0 as n →∞ (e.g.,

Protter (2004, pp. 66-77)). In our setting, 〈 p 〉t reduces to:

〈 p 〉t =
∫ t

0

σ2
udu +

Nt∑

i=1

J2
i , (2.4)

the integrated variance and squared jumps.

The econometric problem is that 〈 p 〉t is latent. We will estimate 〈 p 〉t, its two components and test

H0 : p ∈ BSM against Ha : p /∈ BSM from discrete high-frequency data. The basis for our analysis

is an equidistant grid ti = i/mn, i = 0, 1, . . . , [mnt], where n is the sampling frequency and [x] is the

integer part of x.3 We then construct intraday returns and ranges:

ri∆,∆ = pi/n − p(i−1)/n, (2.5)

spi∆,∆,m = max {pt − ps}
(i−1)/n≤s,t≤i/n

, (2.6)

for i = 1, . . . , [nt]. Below, we also use the range of a standard Brownian motion, which is denoted by

sWi∆,∆,m, simply replacing p with W in Equation (2.6).

Our assumptions on the data imply that each interval [(i− 1) /n, i/n] contains m + 1 ultra high-

frequency recordings of p at time points t(i−1)/n+j/mn, j = 0, 1, . . . , m. Of course, the notation spi∆,∆,m

reflects that each range is based on the corresponding m returns. Note that ri∆,∆ is not exhausting

the data, which motivates our approach. This is related to market microstructure noise and will be

discussed below. We do not explicitly model the noise in this paper. Instead, we assume that n is

chosen such that potential biases from the noise can be ignored.4

3In practice, high-frequency data are irregularly spaced and equidistant prices are imputed from the observed ones.

Two approaches are linear interpolation (e.g., Andersen & Bollerslev (1997)) or the previous-tick method suggested by

Wasserfallen & Zimmermann (1985). The former has an unfortunate property in connection with quadratic variation, see

Hansen & Lunde (2006, Lemma 1).
4A short remark about the setup is appropriate. In the appendix, we start by assuming that m is infinity. In that

setting, we suppress dependence on m to write spi∆,∆ = sup {pt − ps}
(i−1)/n≤s,t≤i/n

, using the same convention for sWi∆,∆ . We then

relax this to finite m. Moreover, we only assume that [0, t] is divided into [nt] equidistant subintervals [(i− 1) /n, i/n],

i = 1, . . . , [nt], for simplicity. The asymptotic results for irregular [ti−1, ti] can be derived as in Christensen & Podolskij

(2006). Under suitable conditions, we can also allow for varying number of points and positions in the subintervals. Finally,

m can be a function of n, but this dependence is also dropped for notational ease.
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2.1. Realized Variance and Bipower Variation

The availability of high-frequency data in financial economics has inspired the development of a powerful

toolkit for measuring the variation of asset price processes. Under the heading realized multipower

variation, this framework builds on powers of absolute returns over non-overlapping intervals (e.g.,

BN-S (2007)).

More formally, we define realized multipower variation by setting:

MPV n
(r1,...,rk),t = nr+/2−1

[nt]−k+1∑

i=1

k∏

j=1

1
µrj

|r(i+j−1)∆,∆|rj , (2.7)

with k ∈ N, rj ≥ 0 for all j, r+ =
∑k

j=1 rj , µrj = E (|φ |rj ), and φ ∼ N(0, 1).5

Equation (2.7) boils down to many econometric estimators for suitable choices of k and the rk’s.

The most popular is realized variance (k = 1 and r1 = 2):

RV n
t =

[nt]∑

i=1

r2
i∆,∆. (2.8)

RV n
t is the sum of squared returns and by definition consistent for 〈 p 〉t of all semimartingales as n →∞.

It follows from Equation (2.4) that:

RV n
t

p→
∫ t

0

σ2
udu +

Nt∑

i=1

J2
i . (2.9)

RV n
t measures the total variation induced by the diffusive and jump component. BN-S (2004) introduced

(realized) bipower variation that can be used to separate these parts. The estimator was extended in

Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006) to weaker conditions. The (first-

order) bipower variation is defined as (k = 2, rk = 1):

BV n
t =

1
µ2

1

[nt]−1∑

i=1

|ri∆,∆||r(i+1)∆,∆|. (2.10)

Then it holds that:

BV n
t

p→
∫ t

0

σ2
udu. (2.11)

Intuitively, the boundedness of N ensures that the probability of jumps in consecutive returns goes to

zero as n →∞. Thus, for n sufficiently large, all returns with a jump are paired with continuous returns.

The latter converges in probability to zero, so the limit is unaffected by the product.
5In the simulation study and empirical application, a small sample correction n/(n− k + 1) is applied to the realized

range- and return-based estimators. We omit it in this section to ease notation.
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2.1.1. A Return-Based Theory for Jump Detection

BN-S (2004) coupled the stochastic convergence in (2.11) with a central limit theorem (CLT) for

(RV n
t , BV n

t ), computed under the null of a continuous sample path:

√
n




RV n
t −

∫ t

0

σ2
udu

BV n
t −

∫ t

0

σ2
udu




d→ MN


0,

∫ t

0

σ4
udu




2 2

2 2 + ν1





 , (2.12)

where ν1 =
(
π2/4

)
+ π − 5 ' 0.6091 and

∫ t

0
σ4

udu is the integrated quarticity. Note that RV n
t is more

efficient than BV n
t . Applying the delta-method to the joint asymptotic distribution of (RV n

t , BV n
t ), we

can construct a non-parametric test of H0 as:

√
n (RV n

t −BV n
t )√

ν1

∫ t

0

σ4
udu

d→ N(0, 1). (2.13)

The CLT in (2.13) is infeasible, however, because it depends on
∫ t

0
σ4

udu. To implement a feasible test,

we replace
∫ t

0
σ4

udu with a consistent estimator computed directly from the data. In order not to erode

the power of the test, it is important to use an estimator that is robust to the jump component under

Ha. One such statistic is quad-power quarticity (k = 4; rk = 1):

QQn
t =

1
µ4

1

[nt]−3∑

i=1

|ri∆,∆||r(i+1)∆,∆||r(i+2)∆,∆||r(i+3)∆,∆|. (2.14)

Now, it holds both under H0 and Ha that QQn
t

p→ ∫ t

0
σ4

udu as n →∞. Hence, this allows us to construct

a feasible test:

zRV n
t ,BV n

t ,QQn
t

=
√

n (RV n
t −BV n

t )√
ν1QQn

t

d→ N(0, 1). (2.15)

The linear t-statistic in Equation (2.15) can be interpreted as a Hausman (1978) test. Under Ha,

RV n
t −BV n

t
p→ ∑

i=1,...,Nt
J2

i ≥ 0, so the test is one-sided and positive outcomes go against H0.6 Thus,

we reject H0 if zRV n
t ,BV n

t ,QQn
t
exceeds some critical value, z1−α, in the right-hand tail of the N(0, 1)

(α is the significance level). Simulation studies in Huang & Tauchen (2005) and BN-S (2006), however,

show that (2.15) is a poor description for sampling frequencies used in practice. BN-S (2006) suggested

a modified ratio-statistic to improve the asymptotic approximation:

zar
RV n

t ,BV n
t ,QQn

t
=

√
n (1−BV n

t /RV n
t )√

ν1 max
{

QQn
t / (BV n

t )2 , 1/t
}

d→ N(0, 1), (2.16)

6Recently, Jiang & Oomen (2005) proposed a two-sided swap-variance test that exploits information in the higher-order

moments of asset returns.
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where the maximum correction is based on the inequality:

QQn
t

(BV n
t )2

p→

∫ t

0

σ4
udu

(∫ t

0

σ2
udu

)2 ≥ 1/t, (2.17)

2.2. Realized Range-Based Variance and Bipower Variation

In theory, the efficient return-based estimators exhaust the data, so we should compute RV nm
t , BV nm

t

and QQnm
t . It is well-known that RV nm

t is the maximum likelihood estimator of the quadratic variation

in the parametric version of this problem. Notwithstanding this result, RV nm
t is probably the worst

estimator in practice, as microstructure noise corrupts high-frequency data, which leads to bad inference

about 〈 p 〉t if n is too high.

There are some non-parametric estimators that are consistent under various assumptions on the noise

process (including the case of endogenous noise), e.g., the subsampler of Zhang et al. (2004) or multiscale

estimator of Zhang (2004). This is related to the kernel-based framework studied in Barndorff-Nielsen,

Hansen, Lunde & Shephard (2006). The sparsely sampled RV n
t is, however, still the most widely used

volatility statistic in empirical work.

In an earlier paper, we proposed an estimator of the integrated variance, which is based on high-

frequency price ranges, see Christensen & Podolskij (2006) and also Dijk & Martens (2006) for related

work. This estimator is more efficient than RV n
t , when microstructure noise is not too severe. Intuitively,

a range extracts some of the information about volatility in data interior to RV n
t . Range-based volatility,

of course, has deep roots in finance and traces back to Parkinson (1980), who studied the scaled Brownian

motion, pt = σWt.7 Realized range-based variance is the high-frequency version of his estimator, though

we were able to handle, essentially, all Brownian semimartingales and discretely sampled high-frequency

data. A drawback of the analysis was that we excluded the jump component of Equation (2.1). We

close that gap here, among other things.

Realized range-based variance is defined as:

RRV n,m
b,t =

1
λ2,m

[nt]∑

i=1

s2
pi∆,∆,m, (2.18)

where λr,m = E
(
sr

W,m

)
and sW,m = max

0≤s,t≤m

{
Wt/m −Ws/m

}
is the range of a Brownian motion based

on m equidistant increments over [0, 1]. λr,m removes the bias from discrete data and are related to the

work of Garman & Klass (1980) and Rogers & Satchell (1991). Note that λr,m is not necessarily finite

for all r ∈ R and m ∈ N ∪ {∞}. Lemma 1 presents a sufficient condition to ensure this property.
7Further readings on range-based volatility estimation can be found in, e.g., Feller (1951), Garman & Klass (1980),

Rogers & Satchell (1991) or Alizadeh, Brandt & Diebold (2002).
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Lemma 1 With r > −m, it holds that

λr,m < ∞. (2.19)

It is worth pointing out that λr ≡ λr,∞ is finite for all r ∈ R and λr,1 = µr is not. This result follows,

because for m = 1 the range equals the absolute return.

Now, we review the asymptotic results developed for RRV n,m
b,t and extend these in a number of ways.

To prove a CLT, we impose some regularity conditions on the σ process:

(V) σ is everywhere invertible (V1) and satisfies:

σt = σ0 +
∫ t

0

µ′udu +
∫ t

0

σ′udWu +
∫ t

0

v′udB′
u, (V2)

where µ′ = (µ′t)t≥0, σ′ = (σ′t)t≥0, v′ = (v′t)t≥0 are adapted càdlàg processes with µ′ also predictable and

locally bounded, and B′ = (B′
t)t≥0 is a Brownian motion independent of W .

Assumption V1 is a rather technical condition required in the proofs, but it is satisfied for almost

all Brownian semimartingales. V2 is sufficient, but not necessary, and could be weakened to include a

jump process in σ.

The next proposition is adapted from Christensen & Podolskij (2006).

Proposition 1 Assume that p ∈ BSM . Then, as n →∞

RRV n,m
b,t

p→
∫ t

0

σ2
udu, (2.20)

where the convergence holds locally uniform in t and uniformly in m. Moreover, if condition (V) holds

and m → c ∈ N ∪ {∞}:
√

n

(
RRV n,m

b,t −
∫ t

0

σ2
udu

)
d→ MN

(
0, ΛR

c

∫ t

0

σ4
udu

)
, (2.21)

where MN(·, ·) denotes a mixed Gaussian distribution and ΛR
c =

(
λ4,c − λ2

2,c

)
/λ2

2,c.

Note that c affects the asymptotic variance of RRV n,m
b,t , and so its efficiency relative to RV n

t . If

m → 1 as n → ∞, ΛR
m → 2. If m → ∞ as n → ∞, ΛR

m → 0.4073 (roughly), so RRV n,m
b,t is up to five

times more accurate than RV n
t , which is an extension of Parkinson (1980).

Maintaining the assumption that p ∈ BSM , a consistent estimator of
∫ t

0
σ4

udu is given by the realized

range-based quarticity :

RRQn,m
t =

n

λ4,m

[nt]∑

i=1

s4
pi∆,∆,m

p→
∫ t

0

σ4
udu, (2.22)

so
√

n

(
RRV n,m

b,t −
∫ t

0

σ2
udu

)

√
ΛR

mRRQn,m
t

d→ N(0, 1). (2.23)

7
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With this result, we can construct confidence intervals for
∫ t

0
σ2

udu. It will be clear, however, that neither

RRV n,m
t,b nor RRQn,m

t are appropriate choices, if p exhibits discontinuities.

2.2.1. Extension to Jump-Diffusion Processes

To the best of our knowledge, there is no theory for estimating quadratic variation of jump-diffusion

processes with the price range. This raises the question of whether the convergence in probability

extends to that situation. The answer, unfortunately, is negative. In fact, RRV n,m
b,t is downward biased

if N 6= 0 (and m 6= 1), as the subscript b indicates.

Theorem 1 If p satisfies (2.1), then as n →∞:

RRV n,m
b,t

p→
∫ t

0

σ2
udu +

1
λ2,m

Nt∑

i=1

J2
i , (2.24)

where the convergence holds locally uniform in t and uniformly in m.

Theorem 1 shows that RRV n,m
b,t is inconsistent, except for Brownian semimartingales or m = 1. Nonethe-

less, the structure of the problem opens the route for a modified intraday high-low statistic that is also

consistent for the quadratic variation of the jump component.

Inspired by bipower variation, we might exploit the corollary:

BV n
t + λ2,m

(
RRV n,m

b,t −BV n
t

)
p→ 〈 p 〉t . (2.25)

This defies the nature of our approach, however, so we opt for other ways of correcting RRV n,m
b,t . In

particular, we introduce the idea of (realized) range-based bipower variation.

Definition 1 Range-based bipower variation with parameter (r, s) ∈ R2
+ is defined as:

RBV n,m
(r,s),t = n(r+s)/2−1 1

λr,m

1
λs,m

[nt]−1∑

i=1

sr
pi∆,∆,mss

p(i+1)∆,∆,m, (2.26)

Remark 1 In the definition, (i + 1) may be replaced with (i + q), for any finite positive integer q. Such

"staggering" has been suggested for BV n
t in Andersen et al. (2006) and BN-S (2006). Moreover, Huang

& Tauchen (2005) show that extra lagging can alleviate the impact of microstructure noise by breaking

the serial correlation in returns.

RBV n,m
(r,s),t is composed of range-based cross-terms raised to the powers (r, s) and constitutes a direct

analogue to the general definition of bipower variation from BN-S (2004). The parameter sets n(r+s)/2−1,

which is required to balance the order of the estimator and produce non-trivial limits.

8
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Theorem 2 If p ∈ BSM , then as n →∞

RBV n,m
(r,s),t

p→
∫ t

0

|σu|r+sdu, (2.27)

where the convergence holds locally uniform in t and uniformly in m.

Corollary 1 Set r = 0:

RPV n,m
(s),t

p→
∫ t

0

|σu|sdu, (2.28)

with the convention RPV n,m
(s),t ≡ RBV n,m

(0,s),t. This estimator is called realized range-based power variation

with parameter s ∈ R+.

Theorem 2 implies that for r ∈ (0, 2)

RBV n,m
(r, 2−r),t

p→
∫ t

0

σ2
udu, (2.29)

so RBV n,m
(r, 2−r),t provides an alternative way of drawing inference about

∫ t

0
σ2

udu. Moreover, it will be

shown below that RBV n,m
(r, 2−r),t continues to estimate

∫ t

0
σ2

udu under Ha.

In this paper, we mainly focus on the first-order range-based bipower variation, defined as RBV n,m
(1,1),t ≡

RBV n,m
t . Obviously:

RBV n,m
t

p→
∫ t

0

σ2
udu. (2.30)

This subsection is closed by introducing a new range-based estimator that is consistent for 〈 p 〉t of the

jump-diffusion semimartingale in (2.1):

RRV n,m
t ≡ λ2,mRRV n,m

b,t + (1− λ2,m)RBV n,m
t

p→ 〈 p 〉t , (2.31)

i.e. we combine RRV n,m
b,t and RBV n,m

t using the weights λ2,m and 1 − λ2,m. This estimator is used

below to compare with RV n
t .

2.2.2. Asymptotic Distribution Theory

The consistency of RBV n,m
(r,s),t does not offer any information about the rate of convergence. Moreover, in

practice market microstructure noise effectively puts a bound on n (e.g., at the 5-minute frequency) and

it is therefore of interest to know more about the sampling errors. Theorem 3 extends the convergence

in probability of RBV n,m
(r,s),t to a CLT.8

8To prove the CLT, we use the concept of stable convergence. A sequence of random variables, (Xn)n∈N, converges

stably in law with limit X, defined on an extension of (Ω,F , (Ft)t≥0 ,P), if and only if for every F-measurable, bounded

random variable Y and any bounded, continuous function g, the convergence limn→∞ E [Y g (Xn)] = E [Y g (X)] holds.

Throughout the paper, Xn
ds→ X is used to denote stable convergence. Note that it implies weak convergence in distribution

by setting Y = 1 (see, e.g., Rényi (1963) or Aldous & Eagleson (1978) for more details).

9
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Theorem 3 Given p ∈ BSM and (V) are satisfied, then as n →∞ and m → c ∈ N ∪ {∞}

√
n

(
RBV n,m

(r,s),t −
∫ t

0

|σu|r+sdu

)
ds→

√
ΛBr,s

c

∫ t

0

|σu|r+sdBu, (2.32)

where B = (Bt)t≥0 is a standard Brownian motion, defined on an extension of
(
Ω,F , (Ft)t≥0 ,P

)
, that

is independent from the σ-field F , and

ΛBr,s
c =

λ2r,cλ2s,c + 2λr,cλs,cλr+s,c − 3λ2
r,cλ

2
s,c

λ2
r,cλ

2
s,c

. (2.33)

Remark 2 Note that the rate of convergence is not influenced by m and no assumptions on the ratio

n/m are required.

Remark 3 Suppose that pt =
∫ t

0
σudWu, where σ is independent of W and bounded away from zero. If

we have slightly more data than the moment condition in Lemma 1 requires (e.g., r, s > −m + 1), then

Theorem 2 and 3 allows for negative values of (r, s). In principle, this means RBV n,m
(r,s),t can estimate

integrals with negative powers of σ, e.g.,
∫ t

0
σ−2

u du. Unfortunately, it does not seem possible for general

processes without further assumptions. Nevertheless, it is an intriguing feature of RBV n,m
(r,s),t, as bipower

variation cannot estimate such quantities.

The critical feature of Theorem 3 is that B is independent of σ. This implies that the limit process in

Equation (2.32) has a mixed normal distribution:

√
n

(
RBV n,m

(r,s),t −
∫ t

0

|σu|r+sdu

)
d→ MN

(
0, ΛBr,s

c

∫ t

0

|σu|2(r+s)du

)
. (2.34)

[ INSERT FIGURE 1 ABOUT HERE ]

ΛB
m ≡ ΛB1,1

m is plotted in Figure 1 for all values of m that integer divide 23,400. As m increases, there

is less sampling variation, as spi∆,∆,m, i = 1, . . . , [nt], is based on more increments. A striking result is

that ΛB
m → (

λ2
2 + 2λ2

1λ2 − 3λ4
1

)
/λ4

1 ' 0.3631 as m → ∞, which is lower than the asymptote of ΛR
m of

about 0.4073. The break-even point, ΛR
m ' ΛB

m, is a stunning low m = 3. This means that RBV n,m
t is

more efficient than RRV n,m
b,t for almost every m under H0, which contradicts both the comparison of

(RV n
t , BV n

t ) and our intuition. Note that ΛB
1 = 2.6091 is the constant appearing in the CLT of BV n

t .

Hence, RBV n,m
t is up to 7.2 times more efficient than BV n

t (as m →∞).

2.2.3. A Range-Based Theory for Jump Detection

Now, the univariate convergence in distribution from Proposition 1 and Theorem 3 is extended to the

bivariate distribution of
(
RRV n,m

b,t , RBV n,m
t

)
. This result is used to propose a new test of H0.

10
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Theorem 4 If p ∈ BSM and (V) holds, then as n →∞ and m → c ∈ N ∪ {∞}

√
n




RRV n,m
b,t −

∫ t

0

σ2
udu

RBV n,m
t −

∫ t

0

σ2
udu




d→MN


0,

∫ t

0

σ4
udu




ΛR
c ΛRB

c

ΛRB
c ΛB

c





 , (2.35)

with

ΛRB
c =

2λ3,cλ1,c − 2λ2,cλ
2
1,c

λ2,cλ2
1,c

. (2.36)

The proof of Theorem 4 is a simple extension of Equation (2.21) and (2.34), so we omit it. By the

delta-method, it follows that under H0 (note the subscripting):

√
n (RRV n,m

t −RBV n,m
t )√

νm

∫ t

0

σ4
udu

d→ N(0, 1), (2.37)

where νm = λ2
2,m

(
ΛR

m + ΛB
m − 2ΛRB

m

)
.

We noticed in Equation (2.31) that RRV n,m
t

p→ 〈 p 〉t. The next theorem shows that, under Ha,

RBV n,m
t

p→ ∫ t

0
σ2

uds. Thus, to implement a feasible range-based test, we need only to substitute
∫ t

0
σ4

uds

with a consistent estimator that is robust to jumps. As noted RRQn,m
t is not a suitable choice, because

it explodes under Ha.

Theorem 5 If p satisfies (2.1), then:

RBV n,m
(r,s),t

p→





∫ t

0

|σu|r+sdu, max (r, s) < 2,

X∗
t , max (r, s) = 2,

∞, max (r, s) > 2,

(2.38)

where X∗
t is some stochastic process.

The proof follows the logic of Theorem 5 in BN-S (2004) and is omitted. Note that RRQn,m
t

p→ ∞ as

n → ∞ under Ha and RBV n,m
(r,s),t fails to estimate

∫ t

0
σ4

udu, as max (r, s) < 2 restricts that r + s < 4.

It is straightforward, however, to define range-based multipower variation analogous to Equation (2.7).

Provided that max (r1, . . . , rk) < 2, such estimators are robust to the jump component and can estimate

higher-order integrated power variation. We postpone an in-depth treatment of these concepts to later

work. In this paper, we only introduce range-based quad-power quarticity :

RQQn,m
t =

n

λ4
1,m

[nt]−3∑

i=1

spi∆,∆,msp(i+1)∆,∆,msp(i+2)∆,∆,msp(i+3)∆,∆,m. (2.39)

11
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Now, both under H0 and Ha: RQQn,m
t

p→ ∫ t

0
σ4

udu, so

zRRV n,m
t ,RBV n,m

t ,RQQn,m
t

=
√

n (RRV n,m
t −RBV n,m

t )√
νmRQQn,m

t

d→ N(0, 1). (2.40)

This constitutes our new jump detection test. The intuition is exactly as for realized multipower

variation. Based on the above, we would expect a transformation of the t-statistic to improve the size

properties in finite samples.9 Here we adopt the modified ratio-statistic:

zar
RRV n,m

t ,RBV n,m
t ,RQQn,m

t
=

√
n (1−RBV n,m

t /RRV n,m
t )√

νm max
{

RQQn,m
t / (RBV n,m

t )2 , 1/t
}

d→ N(0, 1). (2.41)

3. Monte Carlo Simulation

In this section, a Monte Carlo simulation is used to inspect the small sample properties of the asymp-

totic results. We untangle the two parts of 〈 p 〉t with RBV n,m
t and evaluate the new t-statistic for

jump detection, zar
RRV n,m

t ,RBV n,m
t ,RQQn,m

t
. We also compare our test with the return-based t-statistic

zar
RV n

t ,BV n
t ,QQn

t
. The simulated Brownian semimartingale is given by:

dpu = σudWu

d ln σ2
u = θ(ω − ln σ2

u)du + ηdBu,
(3.1)

where W and B are independent Brownian motions. In this model, the log-variance evolves as a mean

reverting Orstein-Uhlenbeck process with parameters (θ, ω, η). We use estimates from Andersen, Benzoni

& Lund (2002), setting (θ, ω, η) = (0.032,−0.631, 0.374).

To produce a discontinuous sample path for p, we follow BN-S (2006) and allocate j jumps uniformly

in each unit of time, j = 1, 2. Hence, the reported power is the conditional probability of rejecting

the null, given j jumps. We generate jump sizes by drawing independent N(0, σ2
J) variables and set

σ2
J = 0.05, 0.10, . . . , 0.25 to uncover the impact on power of varying this parameter.

The remaining settings are: T = 100, 000 replications of (3.1) are made for all σ2
J . The proportion

of trading each day amounts to 6.5 hours, or 23,400 seconds. This choice reflects the length of regular

trading at NYSE, from which our empirical data are collected. We set p0 = 0, ln σ2
0 = ω and generate

a realization of (3.1) such that a new observation of p is recorded every 20th second (mn = 1170).

Again, this is calibrated to match our real data. RRV n,m
t , RBV n,m

t and RQQn,m
t are then computed

for n = 39, 78, 390 (m = 30, 15, 3), corresponding to 10-, 5-, and 1-minute sampling.
9In unreported simulations, we found that the t-statistic is Equation (2.40) is highly oversized for sampling frequencies

that are common in applied work.
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3.1. Simulation Results

In the first row of Figure 2, we plot RBV n,m
t and the integrated variance for 200 iterations of the model

with j = 1 and σ2
J = 0.10. The second row shows (RRV n,m

t −RBV n,m
t )+ against the squared jump,

where (x)+ = max (0, x). The maximum correction applied to RRV n,m
t − RBV n,m

t was suggested by

BN-S (2004) in the context of realized variance, and as

RRV n,m
t −RBV n,m

t
p→

Nt∑

i=1

J2
i ≥ 0, (3.2)

we also expect a better finite sample behavior here, although the modified estimator has the disadvantage

of being biased.

[ INSERT FIGURE 2 ABOUT HERE ]

As n increases, both statistics converge to their population counterparts. At n = 78, they are usually

quite accurate, although RBV n,m
t has a larger RMSE relative to (RRV n,m

t −RBV n,m
t )+. According

to the CLT, the conditional variance of RBV n,m
t is ΛB

m

∫ t

0
σ4

udu for Brownian semimartingales. There

is some indication that the errors bounds of RBV n,m
t increase with σ - most pronounced at n = 390 -

but, of course, in our setting jumps are interacting.

[ INSERT FIGURE 3 ABOUT HERE ]

The distribution of zar
RRV n,m

t ,RBV n,m
t ,RQQn,m

t
is plotted in Figure 3 with σ2

J = 0.00. From Equation

(2.41), the t-statistic then converges to the N(0, 1) as n →∞, which the kernel-based densities confirm.

The approximation is not impressive for moderate n, but the focal point is the right-hand tail, where

the rejection region is located. Testing at a nominal level of α = 0.01 with critical value z1−α = 2.326,

for example, yields actual sizes of 2.236, 1.856 and 1.292 percent, respectively. At α = 0.05 - or

z1−α = 1.645 - the type I errors are 6.497, 6.071 and 5.504 percent, in both situations leading to a

modest over-rejection. This finding is consistent with the Monte Carlo studies on zar
RV n

t ,BV n
t ,QQn

t
in

Huang & Tauchen (2005) and BN-S (2006).

[ INSERT TABLE 1 ABOUT HERE ]

The bottom part of Table 1 shows the power of zar
RRV n,m

t ,RBV n,m
t ,RQQn,m

t
across the jump variances

σ2
J = 0.00, 0.05, . . . , 0.25 with j = 1 and j = 2. The numbers reflect the proportion of t-statistics that

exceeded z1−α = 2.326 (i.e. no size-correction).

There is a substantial type II error for j = 1 and small σ2
J , but it diminishes as we depart from the

null. At σ2
J = 0.10, the rejection rates are 0.234, 0.321 and 0.490 for n = 39, 78, 390. The power improves

13
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more quickly for j = 2, reflecting the increase in the jump variation. Consistent with BN-S (2006), we

find that power is roughly equal for σ2
J = x and j = 1 compared to σ2

J = x/2 and j = 2, showing that

the main constituent affecting the properties of zar
RRV n,m

t ,RBV n,m
t ,RQQn,m

t
under the alternative is the

variance of the jump process: jσ2
J . As an example, consider j = 2 and σ2

J = 0.05; here the fraction of

t-statistics above z1−α = 2.326 is 0.218, 0.340 and 0.585.

Note that the relationship is much weaker at n = 390. Across simulations, there is a pronounced

pattern that - keeping jσ2
J fixed - the t-statistic tends to prefer a higher value of σ2

J at the expense of

j for low n, while the opposite holds for large n. Intuitively, at higher sampling frequencies two small

breaks in p appear more abrupt, while they are drowned by the variation of the continuous part for

infrequent sampling.

As the simulation is designed, m is greater than 1. Hence, the range-based t-statistic ought to be

more powerful than the return-based version. We construct RV n
t , BV n

t , QQn
t and report zar

RV n
t ,BV n

t ,QQn
t

in the right-hand side of Table 1. In general, the range-based t-statistic is more powerful, in particular,

has a much higher probability of detecting small jumps at lower sampling frequencies. Interestingly,

though, the size of zar
RV n

t ,BV n
t ,QQn

t
is slightly better than the size of zar

RRV n,m
t ,RBV n,m

t ,RQQn,m
t

.

4. Empirical Application

We illustrate some features of the theory for a component of the Dow Jones Industrial Average as of

April 8, 2004. Our exposition is based on Merck (MRK).

High-frequency data for Merck was extracted from the Trade and Quote (TAQ) database for the

sample period January 3, 2000 to December 31, 2004. A total of 1,253 trading days. We restrict

attention to midquote data from NYSE.10 The raw data were filtered for outliers and we discarded

updates outside the regular trading session from 9:30AM to 4:00PM EST.

[ INSERT TABLE 2 ABOUT HERE ]

Table 2 reports the amount of tick data. We exclude zero returns - rτi = 0 - and non-zero returns

that are reversals - rτi 6= 0 but ∆rτi = 0 - when computing mn. Here rτi = pτi − pτi−1 and τi is the

arrival time of the ith tick. There is a lot of empirical support for adopting this convention, because

counting such returns induce an upward bias in mn - due to transaction price/midquote repetitions and

bounces - thus a downward bias in the range-based estimates. Hence, for price changes to affect mn,

we require that both rτi 6= 0 and ∆rτi 6= 0. On average, this reduces the mn numbers by one-third

(one-half) for the quote (trade) data relative to using rτi 6= 0.
10The analysis based on transaction data is available at request.
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To account for the irregular spacing of high-frequency data, we use tick-time sampling (e.g., Hansen

& Lunde (2006)). We set the sampling times ti at every 15th new quotation (m = 15), which corresponds

to 5-minute sampling on average for our sample and stock. This procedure has the advantage, apart from

end effects, of fixing the number of returns in each interval [ti−1, ti]. Tick-time sampling is irregular in

calendar-time, but this is not a problem provided that we also use a tick-time estimator of the conditional

variance. Finally, following the recommendation of Huang & Tauchen (2005), we calculate the jump

robust estimators by staggering ranges and returns using a "skip-one" approach.

[ INSERT TABLE 3 ABOUT HERE ]

In Table 3, we report some sample statistics of the time series used here. The variance of the

realized range-based estimators are smaller compared to the return-based statistics. The reduction is

most pronounced for the robust RBV n,m
t and RQQn,m

t . There is a high positive correlation between

(RRV n,m
t , RV n

t ), (RBV n,m
t , BV n

t ) and (RQQn,m
t , QQn

t ), which reflects that they are estimating the

same part of p. Note the large differences in the mean and variance of RQQn,m
t and QQn

t . The

maximum QQn
t is twice that of RQQn,m

t . We return to this below.

[ INSERT FIGURE 4 ABOUT HERE ]

Figure 4 plots RRV n,m
t (RBV n,m

t ) against the left (right) y-axis. Both series are reported as annu-

alized standard deviations. The correlation coefficient of the two series is a high 0.901. Moreover, they

exhibit a strong own serial dependence, reflecting the volatility clustering in the data. The first five

autocorrelations of RRV n,m
t are 0.523, 0.461, 0.383, 0.361 and 0.383, compared to 0.722, 0.644, 0.564,

0.539 and 0.563 for RBV n,m
t . Intuitively, RBV n,m

t is the most persistent process, because it is robust

against the (less persistent) jump component. The most important feature of this graph is that some

of the spikes appearing in RRV n,m
t are not matched by RBV n,m

t . Here the estimators associate a large

proportion of 〈 p 〉t to the jump process, which we now review in more detail.

[ INSERT FIGURE 5 ABOUT HERE ]

In Figure 5, we plot zar
RRV n,m

t ,RBV n,m
t ,RQQn,m

t
and zar

RV n
t ,BV n

t ,QQn
t
. The y-axis is truncated at 0, as

negative outcomes never go against H0. The horizontal line represents a critical value of z1−α = 2.326,

which is the 0.99 quantile of the N(0, 1) density. Figure 5 shows that there is a significant difference

between zar
RRV n,m

t ,RBV n,m
t ,RQQn,m

t
and zar

RV n
t ,BV n

t ,QQn
t
.

[ INSERT TABLE 4 ABOUT HERE ]
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This is underscored in Table 4, where the number of rejections at the 5- and 1% level is shown. We also

compute the fraction of 〈 p 〉t explained by the jump process. At the 5% level, zar
RRV n,m

t ,RBV n,m
t ,RQQn,m

t

rejects H0 141 times, while zar
RV n

t ,BV n
t ,QQn

t
does so 289 times (out of 1,253). Without any jumps at all

in the data, we would expect the t-statistics to reject 63 times. At the 1% level, the numbers are down

to 48 and 151 rejections, as opposed to the 13 expected under H0.

Nonetheless, RRV n,m
t − RBV n,m

t induces a higher proportion of 〈 p 〉t - 16.9% - when all positive,

also insignificant, jump terms are counted. This is because the means of RRV n,m
t and RBV n,m

t differ

more than those of RV n
t and BV n

t . RV n
t −BV n

t explains 10.9% of 〈 p 〉t. Taking sampling variation into

account the numbers are aligned, as the range-based t-statistic regards many more of the small jump

contributions to be insignificant. At the 1% level, RRV n,m
t −RBV n,m

t (RV n
t −BV n

t ) accounts for 5.6%

(6.1%) of 〈 p 〉t.

4.1. Estimation of Integrated Quarticity

How much the jump process induces of 〈 p 〉t empirically is an open question. It is unlikely, though, that

zar
RV n

t ,BV n
t ,QQn

t
picks out so many small jumps zar

RRV n,m
t ,RBV n,m

t ,RQQn,m
t

fails to detect. Our simulations

reveal that the latter has higher power to unearth these. To conclude our paper, we therefore inspect

this finding a little further. In Figure 6, we draw the data for Thursday, August 24, 2000.

[ INSERT FIGURE 6 ABOUT HERE ]

There are several downticks at the beginning of trading, after which the price slopes upward until

trading stops. This day has some rapid changes in p, but there is no jump. Still zar
RV n

t ,BV n
t ,QQn

t
= 3.688,

which is a huge rejection. By contrast, zar
RRV n,m

t ,RBV n,m
t ,RQQn,m

t
= 0.560. Thus, the t-statistics lead to

opposite conclusions about the sample path. We studied Merck’s price at the days in our sample, where

zar
RV n

t ,BV n
t ,QQn

t
rejected at the 1% level. A majority has slides as in Figure 6 and almost none were

falsely rejected by zar
RRV n,m

t ,RBV n,m
t ,RQQn,m

t
, pointing to more robustness here. This feature, of course,

is relevant to empirical work, because specialists at NYSE are charged with maintaining a smooth price

sequence and to avoid large changes between transactions.

We believe that estimation of integrated quarticity is key here. Because of sampling variation, QQn
t

is going to deviate somewhat from
∫ t

0
σ4

udu relative to RQQn,m
t . Notice from Table 3 that, compared to

RQQn,m
t , the variance of QQn

t is three times larger. Indeed, the asymptotic variance of QQn
t is more

than 9.7 times bigger than that of RQQn,m
t (as m → ∞). On days where 1 − BV n

t /RV n
t is small, a

too low QQn
t can still move the t-statistic into the rejection region, although the lower bound 1/t does

provide some protection here. We tried to replace QQn
t with RQQn,m

t in the return-based t-statistic,
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and, in fact, found that the number of jumps were almost equal.

Recently, Barndorff-Nielsen, Hansen, Lunde & Shephard (2006) proposed an estimator of integrated

quarticity that is more robust to microstructure noise, which may enable researchers to further reduce

the sampling errors of such return-based estimators by helping to increase the sampling frequency. But

realized range-based estimation offers a simple, efficient framework for conducting such inference.

5. Conclusions and Directions for Future Research

This paper proposes using realized range-based estimators to conduct inference about the quadratic

variation of asset prices and derives a new test for jump detection. The Monte Carlo study indicates

that these estimators are quite efficient at sampling frequencies normally used in applied work, and our

empirical results confirm this.

The theory developed here casts new light on the properties of the price range, but there are still

several problems left hanging for ongoing and future research. First, the realized range-based estimators

were somewhat informally motivated by appealing to the sparse sampling of realized variance caused

by microstructure noise. It is not clear how severely microstructure noise affects the range, and we are

currently pursuing a paper on this topic. Second, Garman & Klass (1980), among others, construct

estimators of a constant diffusion coefficient by combining the daily range and return. Their procedure

extends to general semimartingales and intraday data, which suggests that further efficiency gains are

waiting. Indeed, other (non-standard) functionals of the sample path could be more informative about

the quadratic variation. Third, it will be interesting to connect non-parametric historical volatility

measurements using the intraday high-low statistics with model-based forecasting. Fourth, it is also

worth considering bootstrap methods to refine the asymptotic normality approximation, as recently

suggested by Gonçalves & Meddahi (2005) in the context of realized variance.
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A. Appendix

Note that as t 7→ σt is càdlàg, all powers of σ are locally integrable with respect to the Lebesgue measure,

so that for any t and s > 0,
∫ t

0
σs

udu < ∞. Moreover, we can restrict the functions µ, σ, µ′, σ′, v′ and

σ−1 to be bounded, without loss of generality (e.g., Barndorff-Nielsen, Graversen, Jacod, Podolskij &

Shephard (2006)).

A.1. Proof of Lemma 1

The assertion is trivial for r ≥ 0 and is a consequence of Burkholder’s inequality (e.g., Revuz & Yor

(1998, pp. 160)). Now, assume −m < r < 0 and note that:

sW,m = max
0≤s,t≤m

{
Wt/m −Ws/m

} ≥ max
1≤i≤m

{|Wi/m −W(i−1)/m|
}

d=
1√
m

max
1≤i≤m

{|φi|} ≡ Mφ,

where φi, i = 1, . . . , m, are IID standard normal random variables. Then, we have the inequality

λr,m ≤ E(
Mr

φ

)
< ∞ (for −m < r < 0). ¥

A.2. Proof of Theorem 1

This theorem is proved by decomposing RRV n,m
b,t into a continuous, jump and mixed part. We adopt

the additional notation:

pb
t = p0 +

∫ t

0

µudu +
∫ t

0

σudWu, pj
t = p0 +

Nt∑

i=1

J2
i .

Then, using the finite-activity property of Nt, it follows that:

[nt]∑

i=1

s2
pj

i∆,∆,m

p→
Nt∑

i=1

J2
i ,

[nt]∑

i=1

s2
pb

i∆,∆,m

p→ λ2,m

∫ t

0

σ2
udu, 2

[nt]∑

i=1

spb
i∆,∆,mspj

i∆,∆,m

p→ 0,

uniformly in m, where the second convergence is from Christensen & Podolskij (2006). ¥

In the upcoming theorems, we first prove the result with m = ∞ and then extend this to m < ∞. To

simplify notation, we make the replacements:

g (x) =
1

λr,m
xr, h (x) =

1
λs,m

xs,

for x ∈ R+. We also fix some notation before proceeding. For the processes Xn and X, we denote by

Xn p→ X, the uniform convergence:

sup
s≤t

|Xn
s −Xs| p→ 0,
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for all t > 0. When Xn has the form:

Xn
t =

[nt]∑

i=1

ζn
i ,

for an array (ζn
i ) and Xn p→ 0, we say that (ζn

i ) is asymptotically negligible (AN). The constants

appearing below are denoted by C, or Cp if they depend on an external parameter p. Finally, to prove

our asymptotic results some technical preliminaries are required.

A.3. Preliminaries I

First, we define:

βn
i =

√
n|σ i−1

n
|sWi∆,∆ , β′ni =

√
n|σ i−1

n
|sW(i+1)∆,∆ , (A.1)

and

ρx (f) = E [f (|x|sW )] ,

where sW = sup {Wt −Ws}
0≤s,t≤1

and f is a real-valued function. Note that

ρx (g) = |x|r.

We consider an adapted càdlàg and bounded process ν, and the function f (x) = xp, for p > 0. Then,

we prove a central limit theorem for the quantities

Un
t =

1√
n

[nt]∑

i=1

ν i−1
n

(
f (βn

i )− ρσ i−1
n

(f)
)

, (A.2)

U ′n
t =

1√
n

[nt]∑

i=1

(
g (βn

i )h (β′ni )− ρσ i−1
n

(g) ρσ i−1
n

(h)
)

. (A.3)

Lemma 2 If p ∈ BSM :

Un
t

ds→ Ut =
√

λ2p − λ2
p

∫ t

0

νuσp
udBu, (A.4)

where B = (Bt)t≥0 is a standard Brownian motion, defined on an extension of the filtered probability

space
(
Ω,F , (Ft)t≥0 ,P

)
and independent from the σ-field F .

Lemma 3 If p ∈ BSM :

U ′n
t

ds→
√

λ2rλ2s + 2λrλsλr+s − 3λ2
rλ

2
s

λ2
rλ

2
s

∫ t

0

|σu|r+sdBu.

Here we prove Lemma 3, leaving Lemma 2 that can be shown with similar techniques. But before doing

so, note that the following estimate holds under p ∈ BSM :

E [|βn
i |q] + E [|β′ni |q] ≤ Cq, (A.5)
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for all q > 0. Lemma 2 and 3 also imply that

1
n

[nt]∑

i=1

ν i−1
n

f (βn
i )

p→
∫ t

0

νuρσu
(f) du, (A.6)

and
1
n

[nt]∑

i=1

g (βn
i ) h (β′ni )

p→
∫ t

0

ρσu (g) ρσu (h) du. (A.7)

Proof of Lemma 3

We decompose U ′n
t into

U ′n
t =

[nt]+1∑

i=2

ζn
i + γn

1 − γn
[nt]+1,

with

ζn
i =

1√
n

(
g

(
βn

i−1

) (
h

(
β′ni−1

)− ρσ i−2
n

(h)
)

+
(

g (βn
i )− ρσ i−1

n

(g)
)

ρσ i−1
n

(h)
)

,

γn
i =

1√
n

(
g (βn

i )− ρσ i−1
n

(g)
)

ρσ i−1
n

(h) .

Now, we set

ρn
i−2,i−1 (g, h) =

∫
g

(
σ i−1

n
x
)

h
(
σ i−2

n
x
)

δ (dx) ,

where

δ (x) = 8
∞∑

j=1

(−1)j+1
j2φ (jx) ,

is the density function of sW (e.g., Feller (1951)), and we note the identity

E
[
|ζn

i |2 | F i−1
n

]
=

1
n

(
g

(
βn

i−1

)2
(

ρσ i−2
n

(
h2

)− ρ2
σ i−2

n

(h)
)

+ ρ2
σ i−1

n

(h)
(

ρσ i−1
n

(
g2

)− ρ2
σ i−1

n

(g)
)

+ 2g
(
βn

i−1

)
ρσ i−1

n

(h)
(

ρn
i−2,i−1 (g, h)− ρσ i−2

n

(h) ρσ i−1
n

(g)
))

.

Since

sup
i≤[nt]+1

∣∣ρn
i−2,i−1 (gh)− ρσ i−2

n

(gh)
∣∣ p→ 0,

it holds by (A.6) that

[nt]+1∑

i=2

E
[
|ζn

i |2 | F i−1
n

]
p→ λ2rλ2s + 2λrλsλr+s − 3λ2

rλ
2
s

λ2
rλ

2
s

∫ t

0

|σu|2(r+s)du,

and

sup
i≤[nt]

|γn
i |

p→ 0,

for any t. Moreover:

E
[
ζn
i | F i−1

n

]
= 0.
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As W
d= −W , we also get

E
[
ζn
i

(
W i

n
−W i−1

n

)
| F i−1

n

]
= 0.

Next, assume that N is a bounded martingale on
(
Ω,F , (Ft)t≥0 ,P

)
, which is orthogonal to W (i.e.

with quadratic covariation 〈W,N〉t = 0, almost surely). As g (βn
i ) is a functional of W times |σ i−1

n
|r, it

follows from Clark’s representation theorem (e.g., Karatzas & Shreve (1998, Appendix E)):

g (βn
i )− ρσ i−1

n

(g) =
1
λr
|σ i−1

n
|r

∫ i
n

i−1
n

Hn
udWu,

for some predictable function Hn
u . This also holds for h

(
β′ni−1

)− ρσ i−2
n

(h). Hence,

E
[(

g (βn
i )− ρσ i−1

n

(g)
) (

N i
n
−N i−1

n

)
| F i−1

n

]
= 0,

E
[(

h
(
β′ni−1

)− ρσ i−2
n

(h)
)(

N i
n
−N i−1

n

)
| F i−1

n

]
= 0,

as N is orthogonal to W . Finally

E
[
ζn
i

(
N i

n
−N i−1

n

)
| F i−1

n

]
= 0. (A.8)

Now, Lemma 3 follows from Theorem IX 7.28 in Jacod & Shiryaev (2002). ¥

A.4. Preliminaries II

We define the process

U (g, h)n
t =

1√
n

[nt]∑

i=1

{
g

(√
nspi∆,∆

)
h

(√
nsp(i+1)∆,∆

)

− E
[
g

(√
nspi∆,∆

)
h

(√
nsp(i+1)∆,∆

) | F i−1
n

]}
, (A.9)

In this subsection, we show that

U (g, h)n
t − U ′n

t
p→ 0, (A.10)

and, therefore,

U (g, h)n
t

ds→
√

λ2rλ2s + 2λrλsλr+s − 3λ2
rλ

2
s

λ2
rλ

2
s

∫ t

0

|σu|r+sdBu.

We begin with:

ξn
i =

√
nspi∆,∆ − βn

i , ξ′ni =
√

nsp(i+1)∆,∆ − β′ni , (A.11)

and note that

ξn
i ≤

√
n

(
sup |

∫ t

s

µudu

(i−1)/n≤s,t≤i/n

|+ sup |
∫ t

s

(
σu−

(i−1)/n≤s,t≤i/n

− σ i−1
n

)
dWu|

)
.

A similar inequality holds for ξ′ni .
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Lemma 4 If p ∈ BSM , it holds that

1
n

[nt]∑

i=1

E
[|ξn

i |2 + |βn
i+1 − β′ni |2

] → 0, (A.12)

for all t > 0.

Proof of Lemma 4

The boundedness of µ and Burkholder’s inequality yield

E
[|ξn

i |2
] ≤ C

(
1
n

+ nE

[∫ i
n

i−1
n

|σu− − σ i−1
n
|2du

])
.

Moreover,

E
[|βn

i+1 − β′ni |2
] ≤ CE

[
|σ i

n
− σ i−1

n
|2

]

≤ CnE

[∫ i
n

i−1
n

(
|σu− − σ i−1

n
|2 + |σu− − σ i

n
|2

)
du

]
.

Hence, the left-hand side of (A.12) is smaller than

C

(
t

n
+

∫ t

0

E
[
|σu− − σ [nu]

n
|2 + |σu− − σ [nu]+1

n
|2

]
du

)
.

As σ is càdlàg, the last expectation converges to 0 for almost all u and is bounded by a constant. Thus,

the assertion follows from Lebesgue’s theorem. ¥

To prove the convergence in Equation (A.10), we need the univariate version of Lemma 6.2 and 4.7 from

Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006). These are reproduced here.

Lemma 5 Let (ζn
i ) be an array of random variables satisfying

[nt]∑

i=1

E
[
|ζn

i |2 | F i−1
n

]
p→ 0, (A.13)

for all t. If further each ζn
i is F i+1

n
-measurable:

[nt]∑

i=1

(
ζn
i − E

[
ζn
i | F i−1

n

])
p→ 0.

Lemma 6 Assume that for all q > 0

1. f and k are functions on R of at most polynomial growth.

2. γn
i , γ′ni , γ′′ni are R-valued random variables.

3. The process

Zn
i = 1 +

∣∣γn
i

∣∣ + |γ′ni |+ |γ′′ni | ,
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satisfies

E [(Zn
i )q] ≤ Cq.

If k is continuous and

1
n

[nt]∑

i=1

E
[
|γ′ni − γ′′ni |2

]
→ 0, (A.14)

then for all t > 0

1
n

[nt]∑

i=1

E
[
f2 (γn

i ) (k (γ′ni )− k (γ′′ni ))2
]
→ 0. (A.15)

Now, we prove (A.10). We define:

ζn
i =

1√
n

(
g

(√
nspi∆,∆

)
h

(√
nsp(i+1)∆,∆

)− g (βn
i )h (β′ni )

)
, (A.16)

and note that ζn
i is F i+1

n
-measurable and

U (g, h)n
t − U ′n

t =
[nt]∑

i=1

(
ζn
i − E

[
ζn
i | F i−1

n

])
.

Appealing to Lemma 5, it is enough to show that:

[nt]∑

i=1

E
[
|ζn

i |2
]
→ 0. (A.17)

Recall the identity:
√

nspi∆,∆ = βn
i + ξn

i ,

and, therefore,

|ζn
i |2 ≤

C

n

(
h2

(√
nsp(i+1)∆,∆

)
(g (βn

i + ξn
i )− g (βn

i ))2

+ g2 (βn
i )

(
h

(
βn

i+1 + ξn
i+1

)− h
(
βn

i+1

))2 + g2 (βn
i )

(
h

(
βn

i+1

)− h (β′ni )
)2

)
.

(A.17) is now a consequence of (A.5), Lemma 4 and 6. ¥

A.5. Proof of Theorem 2

m = ∞: We set

V n
t =

1
n

[nt]∑

i=1

ηn
i ,

V ′n
t =

1
n

[nt]∑

i=1

η′ni ,
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with

ηn
i = E

[
g

(√
nspi∆,∆

)
h

(√
nsp(i+1)∆,∆

) | F i−1
n

]
,

η′ni = ρσ i−1
n

(g) ρσ i−1
n

(h) .

The convergence in (A.10) means that:

RBV n
(r,s),t − V n

t
p→ 0,

and by Riemann integrability:

V ′n
t

p→
∫ t

0

|σu|r+sdu.

Thus, if we can show that:

V n
t − V ′n

t
p→ 0.

the proof is complete. Further, as

ηn
i − η′ni =

√
nE

[
ζn
i | F i−1

n

]
,

a sufficient condition is that:
1√
n

[nt]∑

i=1

E [|ζn
i |] → 0. (A.18)

Using the Cauchy-Schwarz inequality:

1√
n

[nt]∑

i=1

E [|ζn
i |] ≤


t

[nt]∑

i=1

E
[
|ζn

i |2
]



1
2

,

and so (A.18) is implied by (A.17).

m < ∞: We define

βn,m
i =

√
n|σ i−1

n
|sWi∆,∆,m, β′n,m

i =
√

n|σ i−1
n
|sW(i+1)∆,∆,m, (A.19)

which are discrete versions of βn
i and β′ni from (A.1). Also, we set

ρm
x (f) = E [f (|x|sW,m)] ,

where sW,m was defined in (2.2). Note that

ρm
x (g) = |x|r,

We proceed with

RBV n,m
(r,s),t −

∫ t

0

|σu|r+sdu = Un,m
t (1) + Un,m

t (2) + Un,m
t (3) ,
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where Un,m
t (k) are given by:

Un,m
t (1) =

1
n

[nt]∑

i=1

(
g

(√
nspi∆,∆,m

)
h

(√
nsp(i+1)∆,∆,m

)− g (βn,m
i )h

(
β′n,m

i

))
,

Un,m
t (2) =

1
n

[nt]∑

i=1

(
g (βn,m

i ) h
(
β′n,m

i

)− ρm
σ i−1

n

(g) ρm
σ i−1

n

(h)
)

,

Un,m
t (3) =

1
n

[nt]∑

i=1

ρm
σ i−1

n

(g) ρm
σ i−1

n

(h)−
∫ t

0

|σu|r+sdu.

Then

Un,m
t (3) = λr,mλs,m


 1

n

[nt]∑

i=1

|σ i−1
n
|r+s −

∫ t

0

|σu|r+sdu


 .

The boundedness of λr,m (for fixed r) yields the convergence:

Un,m
t (3)

p→ 0 as n →∞,

uniformly in m. From the calculation of the conditional variance in the proof of Lemma 3, we also get

Un,m
t (2)

p→ 0 as n →∞,

uniformly in m. We split Un,m
t (1) further into:

Un,m
t (1) = Un,m

t (1.1) + Un,m
t (1.2) ,

where

Un,m
t (1.1) =

1
n

[nt]∑

i=1

h
(
β′n,m

i

)(
g

(√
nspi∆,∆,m

)− g (βn,m
i )

)
,

Un,m
t (1.2) =

1
n

[nt]∑

i=1

g
(
βn,m

i

)(
h

(√
nsp(i+1)∆,∆,m

)− h
(
β′n,m

i

))
.

Here we show that:

Un,m
t (1.1)

p→ 0,

uniformly in m. The corresponding result for Un,m
t (1.2) can be proved with identical methods. First,

we assume r ≥ 1. Then it follows that

|h (
β′n,m

i

) (
g

(√
nspi∆,∆,m

)− g (βn,m
i )

) | ≤ r

λr,m
h

(
β′n,m

i

) (√
nspi∆,∆,m + βn,m

i

)r−1 |√nspi∆,∆,m − βn,m
i |.

The estimate:

E
[|√nspi∆,∆,m|q + |βn,m

i |q + |β′n,m
i |q] ≤ Cq,
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holds for all q > 0. Thus:

E
[
|Un,m

t (1.1) |
]
≤ C

n

[nt]∑

i=1

(
E

[
|√nspi∆,∆,m − βn,m

i |2
]) 1

2
.

By Hölder’s inequality:

E
[
|Un,m

t (1.1) |
]
≤


Ct

n

[nt]∑

i=1

E
[
|√nspi∆,∆,m − βn,m

i |2
]



1
2

. (A.20)

Note

|√nspi∆,∆,m − βn,m
i | ≤ √

n

(
sup |

∫ t

s

µudu

(i−1)/n≤s,t≤i/n

|+ sup |
∫ t

s

(
σu−

(i−1)/n≤s,t≤i/n

− σ i−1
n

)
dWu|

)
,

with the right-hand side independent of m. Now, from (A.20), (A.5) and Lemma 4:

Un,m
t (1.1)

p→ 0,

uniformly in m. Second, assume r < 1. Then

|g (√
nspi∆,∆,m

)− g (βn,m
i ) | ≤ 1

λr,m
|√nspi∆,∆,m − βn,m

i |r.

We get the inequality:

E [|Un,m
t (1.1) |] ≤


Ct

2
r−1

n

[nt]∑

i=1

E
[|√nspi∆,∆,m − βn,m

i |2]



r
2

.

and therefore

Un,m
t (1.1)

p→ 0,

uniformly in m, which completes the proof. ¥

A.6. Proof of Theorem 3

In light of the previous results, Theorem 3 follows from the convergence

√
n

(
RBV n

(r,s),t −
∫ t

0

|σu|r+sdu

)
− U (g, h)n

t

p→ 0,

which is shown by proving that

ζn
i =

1√
n
E

[
g

(√
nspi∆,∆

)
h

(√
nsp(i+1)∆,∆

) | F i−1
n

]
−√n

∫ i
n

i−1
n

ρσu (g) ρσu (h) du,

is AN. To accomplish this, we split ζn
i into:

ζn
i = ζ ′ni + ζ ′′ni ,
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where

ζ ′ni =
1√
n

(
E

[
g

(√
nspi∆,∆

)
h

(√
nsp(i+1)∆,∆

) | F i−1
n

]
− E

[
g (βn

i ) | F i−1
n

]
E

[
h (β′ni ) | F i−1

n

])
, (A.21)

ζ ′′ni =
√

n

∫ i
n

i−1
n

(
ρσu

(g) ρσu
(h)− ρσ i−1

n

(g) ρσ i−1
n

(h)
)
du. (A.22)

It follows from Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard (2006) that ζ ′′ni is AN. Next,

we prove that the sequence ζ ′ni is AN. Using V2, we introduce the random variables:

ζ (1)n
i =

√
n sup

(∫ t

s

σ i−1
n
d

(i−1)/n≤s,t≤i/n

Wu +
∫ t

s

µ i−1
n
du

+
∫ t

s

{
σ′i−1

n

(
Wu −W i−1

n

)
+ v′i−1

n

(
B′

u −B′
i−1

n

)}
dWu

)
− βn

i , (A.23)

ζ (2)n
i =

√
n

{
sup

(∫ t

s

µudu

(i−1)/n≤s,t≤i/n

+
∫ t

s

σudWu

)
− sup

(∫ t

s

σ i−1
n

(i−1)/n≤s,t≤i/n

dWu +
∫ t

s

µ i−1
n
du

+
∫ t

s

{
σ′i−1

n

(
Wu −W i−1

n

)
+ v′i−1

n

(
B′

u −B′
i−1

n

)}
dWu

)}
. (A.24)

We get that

ξn
i = ζ (1)n

i + ζ (2)n
i ,

and a similar decomposition holds for ξ′ni . The next lemma is shown at the end of this subsection.

Lemma 7 If p ∈ BSM and assumption V2 holds, then for any q > 0

E [|ξn
i |q] ≤ Cn−

q
2 , (A.25)

uniformly in i.

We have

ζ ′ni = E
[
δn
i | F i−1

n

]
,

with δn
i defined by:

δn
i =

1√
n

(
g

(√
nspi∆,∆

)
h

(√
nsp(i+1)∆,∆

)− g (βn
i )h (β′ni )

)
.

Observe that

δn
i =

1√
n

g
(√

nspi∆,∆

) (
h

(√
nsp(i+1)∆,∆

)− h (β′ni )
)

+
1√
n

(
g

(√
nspi∆,∆

)− g (βn
i )

)
h (β′ni )

≡ δ′ni + δ′′ni .
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We show that

E
[
δ′′ni | F i−1

n

]
,

is AN, but the omit the proof for E
[
δ′ni | F i−1

n

]
to save space. We define

An
i =

{
|√nspi∆,∆ − βn

i | >
βn

i

2

}
.

We find that

g
(√

nspi∆,∆

)− g (βn
i ) =

(
g

(√
nspi∆,∆

)− g (βn
i )

)
IAn

i
−∇g (βn

i )
(√

nspi∆,∆ − βn
i

)
IAn

i

+ (∇g (γ̄n
i )−∇g (βn

i ))
(√

nspi∆,∆ − βn
i

)
I(An

i )c +∇g (βn
i )

(√
nspi∆,∆ − βn

i

)

≡ ϑn
i (1) + ϑn

i (2) + ϑn
i (3) + ϑn

i (4) , (A.26)

where γ̄n
i is some random variable located between

√
nspi∆,∆ and βn

i . Then

δ′′ni = δ′′ni (1) + δ′′ni (2) + δ′′ni (3) + δ′′ni (4) ,

with

δ′′ni (k) =
1√
n

h (βn
i )ϑn

i (k) .

To complete the proof, it therefore suffices that

E
[
δ′′ni (k) | F i−1

n

]
,

are AN for k = 1, 2, 3, and 4.

The term E
[
δ′′ni (1) | F i−1

n

]
:

With r ≥ 1:

|ϑn
i (1) | ≤ C|√nspi∆,∆ + βn

i |r−1 |
√

nspi∆,∆ − βn
i |1+s

(βn
i )s ,

for some s ∈ (0, 1). As µ and σ are bounded:

E
[|√nspi∆,∆ |p

] ≤ Cp, (A.27)

for all p > 0. With r < 1:

|ϑn
i (1) | ≤ C

|√nspi∆,∆ − βn
i |1+r/2

(βn
i )1−r/2

. (A.28)

Now

E
[
δ′′ni (1) | F i−1

n

]
=

1√
n

ρσ i−1
n

(h)E
[
ϑn

i (1) | F i−1
n

]
.
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For all r > 0, it follows by (A.5), (A.27), (2.19), Lemma 7 and Hölder’s inequality that:

E [|ϑn
i (1) |] ≤ Cn−

q
2 ,

for some q > 1, so E
[
δ′′ni (1) | F i−1

n

]
is AN.

The term E
[
δ′′ni (2) | F i−1

n

]
:

As before, for some s ∈ (0, 1),

|ϑn
i (2) | ≤ C (βn

i )r−1−s |√nspi∆,∆ − βn
i |1+s, for r ≥ 1,

|ϑn
i (2) | ≤ C (βn

i )r/2−1 |√nspi∆,∆ − βn
i |1+r/2, for r < 1. (A.29)

The AN property of E
[
δ′′ni (2) | F i−1

n

]
is now a consequence of Equation (A.5), (2.19), Lemma 7 and

Hölder’s inequality.

The term E
[
δ′′ni (3) | F i−1

n

]
:

For r ≥ 2:

|ϑn
i (3) | ≤ C|√nspi∆,∆ + βn

i |r−2|√nspi∆,∆ − βn
i |2.

For r < 2:

|ϑn
i (3) | ≤ C (βn

i )r−2 |√nspi∆,∆ − βn
i |2I(An

i )c .

By the definition of An
i :

|ϑn
i (3) | ≤ C (βn

i )r/2−1 |√nspi∆,∆ − βn
i |1+r/2, (A.30)

for r < 2. That E
[
δ′′ni (3) | F i−1

n

]
is AN follows from the above.

The term E
[
δ′′ni (4) | F i−1

n

]
:

First, we find a stochastic expansion for

ξn
i =

√
nspi∆,∆ − βn

i ,

defined in (A.11). Recall that

ξn
i = ζ (1)n

i + ζ (2)n
i ,
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with ζ (1)n
i and ζ (2)n

i defined by (A.23) and (A.24), respectively. Set

fin (s, t) =
√

nσ i−1
n

(Wt −Ws) ,

gin (s, t) = n

∫ t

s

µ i−1
n
du + n

∫ t

s

{
σ′i−1

n

(
Wu −W i−1

n

)
+ v′i−1

n

(
B′

u −B′
i−1

n

)}
dWu

= µ i−1
n

g1
in (s, t) + σ′i−1

n

g2
in (s, t) + v′i−1

n

g3
in (s, t) ,

to achieve the identity:

ζ (1)n
i = sup

(
fin (t, s)

(i−1)/n≤s,t≤i/n

+
1√
n

gin (t, s)
)
− sup fin (t, s)

(i−1)/n≤s,t≤i/n

.

Imposing assumption V1:

(t∗in (W ) , s∗in (W )) = arg sup fin (s, t)
(i−1)/n≤s,t≤i/n

= arg sup
√

n(Wt
(i−1)/n≤s,t≤i/n

−Ws)

d= arg sup
0≤s,t≤1

(Wt −Ws) .

A standard result states that the pair (t∗in (W ) , s∗in (W )) is unique, almost surely (e.g., Revuz & Yor

(1998)). In Lemma 8, a stochastic expansion of ζ(1)n
i is given.

Lemma 8 Given assumption V1

ζ (1)n
i =

1√
n

{
gin (t∗in (W ) , s∗in (W )) + g̃in

}
,

where

E
[|g̃in|p

]
= o (1) , (A.31)

for all p > 0 and uniformly in i.

Note also that

(t∗in (W ) , s∗in (W )) = (s∗in (−W ) , t∗in (−W )) .

As (W,B′) d= − (W,B′) and ∇g (βn
i ) is an even functional of W :

E
[
∇g (βn

i ) gk
in (t∗in (W ) , s∗in (W )) | F i−1

n

]
= 0,

for k = 1, 2, 3. Hence

E
[
∇g (βn

i ) gin (t∗in (W ) , s∗in (W )) | F i−1
n

]
= 0. (A.32)
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For ζ (2)n
i , we get the estimate

ζ (2)n
i ≤

√
n

(∫ i
n

i−1
n

|µu − µ i−1
n
|du (A.33)

+ sup
∫ t

s

{∫ u

i−1
n

(i−1)/n≤s,t≤i/n

µ′rdr +
∫ u

i−1
n

(
σ′r− − σ′i−1

n

)
dWr +

∫ u

i−1
n

(
v′r− − v′i−1

n

)
dB′

r

}
dWu

)
.

Lemma 9 For q ≥ 2, it then holds that

1√
n

[nt]∑

i=1

(
E [|ζ (2)n

i |q]
) 1

q → 0,

for all t > 0.

Using Hölder’s inequality, it follows that

|E
[
δ′′ni (4) | F i−1

n

]
| = 1√

n
ρσ i−1

n

(h) |E
[
∇g (βn

i ) (ζ (1)n
i + ζ (2)n

i ) | F i−1
n

]
|

≤ 1√
n

ρσ i−1
n

(h)
(
|E

[
∇g (βn

i ) ζ (1)n
i | F i−1

n

]
|

+ (E [(∇g (βn
i ))p])

1
p (E [|ζ (2)n

i |q])
1
q

)
, (A.34)

for some p > 1, q ≥ 2 with (r − 1) p > −1 and 1/p + 1/q = 1. Finally, by combining (2.19), (A.31),

(A.32) and Lemma 9, we get the AN property of the sequence E
[
δ′′ni (4) | F i−1

n

]
. Hence, Theorem 3

with m = ∞ has been proven.

m < ∞: To show the theorem with m < ∞, the main structure of the previous proof can be adapted

directly. The difference lies in the moment condition:

λr,m < ∞,

for r > −m. The estimates (A.28), (A.29), (A.30) and (A.34), however, were formulated such that this

condition can be used without changing the proof (for all m ∈ N). ¥

Proof of Lemma 7

Note that:

E [|ζ (1)n
i |q] ≤ Cn

q
2

(
sup |

∫ t

s

µ i−1
n

(i−1)/n≤s,t≤i/n

du|q

+ sup |
∫ t

s

{
σ′i−1

n

(i−1)/n≤s,t≤i/n

(
Wu −W i−1

n

)
+ v′i−1

n

(
B′

u −B′
i−1

n

)}
dWu|q

)
.
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The boundedness of µ, σ′, v′ and Burkholder’s inequality give

E [|ζ (1)n
i |q] ≤ Cn−

q
2 .

ζ (2)n
i is handled equivalently. ¥

Proof of Lemma 8

We need a deterministic version of Lemma 8:

Lemma 10 Given two continuous functions f, g : I → R on a compact set I ⊆ Rn, assume t∗ is the

only point where the maximum of the function f on I is achieved. Then, it holds:

Mε (g) ≡ 1
ε

[
sup
t∈I

{f (t) + εg (t)} − sup
t∈I

{f (t)}
]
→ g (t∗) as ε ↓ 0.

Proof of Lemma 10

Construct the set

Ḡ =
{

h ∈ C (I) | h is constant on Bδ (t∗) ∩ I for some δ > 0
}

.

As usual, C (I) is the set of continuous functions on I and Bδ (t∗) is an open ball of radius δ centered

at t∗. Take ḡ ∈ Ḡ and recall ḡ is bounded on I. Thus, for ε small enough:

sup
t∈I

{f (t) + εḡ (t)} = max

{
sup {f (t) + εḡ (t)}

t∈I∩Bδ(t∗)
, sup {f (t) + εḡ (t)}

t∈I∩Bc
δ(t∗)

}

= sup {f (t) + εḡ (t)}
t∈I∩Bδ(t∗)

= f (t∗) + εḡ (t∗) .

So

Mε (ḡ) → ḡ (t∗) ,

∀ ḡ ∈ Ḡ. Now, let g ∈ C (I). As Ḡ is dense in C (I), ∃ ḡ ∈ Ḡ : ḡ (t∗) = g (t∗) and |ḡ − g|∞ < ε′ (| · |∞ is

the sup-norm). We see that |Mε (ḡ)−Mε (g)| < ε′, and

|Mε (g)− g (t∗)| ≤ |Mε (ḡ)− ḡ (t∗)|+ |Mε (g)−Mε (ḡ)| → 0.

Thus, the assertion is established. ¥

Now, (t∗in (W ) , s∗in (W )) is unique and the functions gin, fin are continuous, both almost surely. Thus,

Lemma 8 is shown by replicating the proof of Lemma 10 for gin and fin. More precisely, the random
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function ḡin ∈ Ḡ that is constant in a neighbourhood of (t∗in (W ) , s∗in (W )) must be constructed. The

rest goes along the lines of Lemma 10. ¥

Proof of Lemma 9

From (A.33) and repeated use of the Hölder and Burkholder inequalities plus the boundedness of µ′, we

get:

E [|ζ (2)n
i |q] ≤ Cqn

q
2

(
n−q+1

∫ i
n

i−1
n

|µu − µ i−1
n
|qdu + n−

3q
2 + n−q+1

∫ i
n

i−1
n

|σ′u− − σ′i−1
n

|qdu

+ n−q+1

∫ i
n

i−1
n

|v′u− − v′i−1
n

|qdu

)
.

Thus,

1√
n

[nt]∑

i=1

(E [|ζ (2)n
i |q])

1
q ≤ Cqt

q−1
q

(
[nt]∑

i=1

E
[∫ i

n

i−1
n

|µu − µ i−1
n
|qdu +

∫ i
n

i−1
n

|σ′u− − σ′i−1
n

|qdu

+
∫ i

n

i−1
n

|v′u− − v′i−1
n

|qdu

]) 1
q

+ o (1)

= Cqt
q−1

q

(
E

[∫ t

0

|µu − µ [nu]
n
|q + |σ′u− − σ′[nu]

n

|q

+ |v′u− − v′[nu]
n

|qdu

]) 1
q

+ o (1) .

As σ′ and v′ are càdlàg, the proof is complete. ¥
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Table 1: Finite sample properties of t-statistics for jump detection.

zar
RRV n,m

t ,RBV n,m
t ,RQQn,m

t
zar
RV n

t ,BV n
t ,QQn

t

Size: n = 39 n = 78 n = 390 n = 39 n = 78 n = 390

α = 0.01 2.236 1.856 1.292 1.417 1.291 1.164
0.05 6.497 6.071 5.504 5.607 5.447 5.114
0.10 10.769 10.673 10.282 10.379 10.186 10.008

Power: j = 1

σ2
J = 0.05 11.982 18.385 33.970 3.805 6.777 23.314

0.10 23.440 32.096 48.995 8.215 15.317 38.592
0.15 31.882 41.576 57.492 12.895 22.694 47.714
0.20 37.890 47.217 62.343 17.144 28.172 53.138
0.25 42.582 51.886 65.832 20.873 32.916 57.572

j = 2

σ2
J = 0.05 21.767 33.971 58.519 6.003 12.673 43.301

0.10 40.940 55.274 75.695 14.091 27.806 63.913
0.15 53.817 66.833 83.029 22.654 39.789 73.940
0.20 61.641 73.426 86.930 29.419 48.280 79.307
0.25 67.074 77.683 89.234 35.410 54.375 82.817

The table reports small sample properties of the jump detection t-statistics at the sampling frequencies
n = 39, 78, 390 (m = 30, 15, 3). We show the actual size of the tests at an α = 0.01, 0.05, 0.10 nominal
level of significance. Power is computed at the α = 0.01 nominal level with j = 1 or j = 2 IID N

(
0, σ2

J

)

jumps added to the continuous process, and we set σ2
J = 0.05, 0.10, . . . , 0.25.
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Table 2: Number of tick data pr. trading day.

Ticker Trades Quotes

All #rτi 6= 0 #∆rτi 6= 0 All #rτi 6= 0 #∆rτi 6= 0

MRK 2891 1314 706 5537 1750 1246

The table contains information about the filtering of the Merck high-frequency data. All numbers are
averages across the 1,253 trading days in our sample from January 3, 2000 through December 31, 2004.
#rτi 6= 0 is the amount of tick data left after skipping transaction price (midquote) repetitions in
consecutive ticks. #∆rτi 6= 0 also ignores reversals.
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Table 3: Sample statistics for estimators of 〈 p 〉t,
∫ t

0
σ2

udu and
∫ t

0
σ4

udu.

Mean Var. Skew. Kurt. Min. Max. Correlation

RRV n,m
t 7.266 64.143 5.554 52.411 0.597 117.679 1.000 0.986 0.901 0.888 0.798 0.727

RV n
t 7.063 67.200 5.271 47.118 0.372 116.096 1.000 0.916 0.927 0.810 0.747

RBV n,m
t 6.077 30.446 3.681 24.774 0.495 61.589 1.000 0.976 0.843 0.759

BV n
t 6.459 48.860 4.353 31.893 0.284 82.273 1.000 0.855 0.796

RQQn,m
t 0.286 0.843 10.751 154.839 0.001 16.114 1.000 0.972

QQn
t 0.381 2.598 13.280 231.051 0.000 33.576 1.000

Sample statistics for the annualized percentage RRV n,m
t , RBV n,m

t , RQQn,m
t , RV n

t , BV n
t and QQn

t of
Merck from January 3, 2000 through December 31, 2004. The table shows the mean, variance, skewness,
kurtosis, minimum and maximum of the various time series, plus the correlation matrix. RQQn,m

t and
QQn

t are further multiplied by 100 to improve the scale.

38



Christensen, K. and M. Podolskij: Range-Based Estimation of Quadratic Variation

Table 4: Proportion of 〈 p 〉t induced by the jump process.

α = 0.05 α = 0.01

%JV #rej %JVs #rej %JVs

RRV n,m
t 16.966 141 7.984 48 5.559

RV n
t 10.938 289 8.012 151 6.091

The proportion of 〈 p 〉t of Merck induced by the jump process is reported using three criteria. %JV =∑T
t=1 (RRV n,m

t −RBV n,m
t )+ /

∑T
t=1 RRV n,m

t is an aggregate measure for the T = 1, 253 trading days
in our sample period from January 3, 2000 to December 31, 2004 (the definition for RV n

t is identical).
%JVs sums only significant terms - at the α = 0.05 or α = 0.01 nominal level - in the numerator of
%JV . #rej is the number of rejections made by zar

RRV n,m
t ,RBV n,m

t ,RQQn,m
t

and zar
RV n

t ,BV n
t ,QQn

t
.
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Figure 1: ΛB
m against m on a log-scale. All estimates are based on a simulation with 1,000,000 repetitions,

and the dashed line represents the asymptotic value.
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Figure 3: The distribution of zar
RRV n,m

t ,RBV n,m
t ,RQQn,m

t
under the null is drawn against the sampling

frequencies n = 39, 78, 390 (m = 30, 15, 3). We compute the coefficient of skewness and kurtosis for
each n and add a standard normal distribution for visual reference (solid line). The figure is based on
a simulation with 100,000 repetitions, as detailed in the main text.
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Figure 4: RRV n,m
t and RBV n,m

t are shown for the period January 3, 2000 through December 31, 2004.
The series are based on tick-time sampled ranges of Merck, setting m = 15, and reported as annualized
standard deviations. RRV n,m

t (RBV n,m
t ) is read off from the left (right) y-axis.
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Figure 5: We plot the jump detection t-statistics zar
RRV n,m

t ,RBV n,m
t ,RQQn,m

t
and zar

RV n
t ,BV n

t ,QQn
t
. The

horizontal dashed line is the 0.99 quantile of the standard normal distribution.
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Figure 6: The midquote data of Merck on August 24, 2000 is shown. In the lower right-hand corner, we
report the outcome of zar

RRV n,m
t ,RBV n,m

t ,RQQn,m
t

and zar
RV n

t ,BV n
t ,QQn

t
.
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