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A Note on Optimal Stopping
in Models with Delay

P.V. Gapeev and M. Reiß∗

We consider an optimal stopping problem in a certain model de-
scribed by a stochastic delay differential equation. We reduce the ini-
tial problem to a free-boundary problem of parabolic type and prove
the corresponding verification assertion. We also give an example of
such an optimal stopping problem related to mathematical finance.

1 Introduction

It is known that optimal stopping problems form an important class of opti-
mal control problems having applications in stochastic calculus (maximal in-
equalities), statistics (sequential analysis) and mathematical finance (Amer-
ican options). The results about the relationship between optimal stopping
problems for Markov processes and free-boundary problems for partial dif-
ferential equations often give an opportunity to obtain explicit solutions in
some particular cases (see e.g. Shiryaev [11] or [12]). In the present paper we
consider some optimal stopping problems in a model with processes solving
stochastic delay differential equations.

In recent years several stochastic control problems for models described
by stochastic delay differential equations were studied. Øksendal and Sulem
[7] proved maximum principles for certain classes of such models and applied
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them to solving some problems related to finance. Elsanosi, Øksendal and
Sulem [2] proved a verification theorem of variational inequality type and
applied it to finding explicit solutions for some classes of optimal harvesting
delay problems. Larssen and Risebro [4] proved that under certain conditions
the value function of such optimal control problems turns out to be the unique
viscosity solution of the Hamilton-Jacobi-Bellman equation. The aim of this
paper is to show the way of solving optimal stopping problems in some specific
models described by stochastic delay differential equations.

The paper is organized as follows. In Section 2 we formulate an opti-
mal stopping problem in a model described by a stochastic delay differential
equation with an exponential delay measure on an infinite interval, which is
equivalent to a model with two-dimensional Markov process. In Section 3 we
derive an associated free-boundary problem of parabolic type and prove the
verification assertion showing that the solution of the free-boundary problem
turns out to be a solution of the initial optimal stopping problem. In Section 4
we consider some special cases of the problem where the two-dimensional
problem is reduced to a one-dimensional one and give an example of such an
optimal stopping problem related to mathematical finance.

2 Formulation of the problem

2.1. Suppose that on some filtered probability space (Ω,F , (Ft)t≥0, P ) there
exists a standard Wiener process W = (Wt)t≥0 and a continuous process
X = (Xt)t≥0 solving the stochastic differential equation:

dXt = β(Xt, Yt) dt + γ(Xt, Yt) dWt, X0 = x, (2.1)

where the process Y = (Yt)t≥0 is defined by

Yt =

∫ 0

−∞
eλsXt+s ds, Xt = X0

t for t ≤ 0, (2.2)

for some constant λ > 0 and a deterministic (continuous) function X0 =
(X0

t )t≤0 . It is further assumed that the functions β(x, y) and γ(x, y), (x, y) ∈
R2 , satisfy a Lipschitz condition, that is, there exists a constant C > 0 such
that

[β(x, y)− β(x′, y′)]2 + [γ(x, y)− γ(x′, y′)]2 ≤ C[(x− x′)2 + (y − y′)2] (2.3)
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for all (x, y), (x′, y′) ∈ R2 . Our goal is to compute the value

V = sup
τ

E

[
e−rτh(Xτ , Yτ )−

∫ τ

0

e−rta(Xt, Yt) dt

]
(2.4)

where the supremum is taken over all stopping times τ with respect to the
filtration (FX

t )t≥0 generated by the process X , i.e. FX
t = σ{Xs | 0 ≤ s ≤ t}

for t ≥ 0, such that

E

[∫ τ

0

e−rta(Xt, Yt) dt

]
< ∞ (2.5)

and to determine an optimal stopping time τ∗ at which the supremum in
(2.4) is attained. Here r ≥ 0 is a constant discount rate, a(x, y) ≥ 0 is a
continuous bounded cost function, and h(x, y) ≥ 0 is a continuous bounded
gain function for all (x, y) ∈ R2 .

2.2. Let us introduce the process Z = (Zt)t≥0 defined by:

Zt = Xt − λYt (2.6)

which, by means of Itô’s formula (see e.g. [5; Theorem 4.4] or [3; Chapter I,
Theorem 4.57]), solves the stochastic differential equation:

dZt = µ(Zt, Yt) dt + σ(Zt, Yt) dWt, Z0 = z, (2.7)

with µ(z, y) = β(z + λy, y)− λz and σ(z, y) = γ(z + λy, y) for (z, y) ∈ R2 .
Then equation (2.2) and simple calculations yield that the process Y =
(Yt)t≥0 admits the representation:

dYt = Zt dt, Y0 = y, (2.8)

for some (z, y) ∈ R2 . Note that from (2.2) and (2.6) it follows that Z0 = z
in (2.7) and Y0 = y in (2.8) can be straightforwardly expressed by means of
X0

t , t ≤ 0.
Observe that since the functions β(x, y) and γ(x, y), (x, y) ∈ R2 , are

assumed to satisfy the Lipschitz condition (2.3), it easily follows that the
functions µ(z, y) and σ(z, y), (z, y) ∈ R2 , also satisfy a Lipschitz condi-
tion. Hence, by remark to [5; Theorem 4.6] or [6; Theorem 5.2.1] we may
conclude that the process (Zt, Yt)t≥0 is the unique strong solution of the
(two-dimensional) stochastic differential equation (2.7) - (2.8), and thus, by
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virtue of [3; Chapter III, Theorem 2.34] or [6; Theorem 7.2.4], it is a (strong)
Markov process with respect to its natural filtration, which due to the one-
to-one correspondence (2.6) between the processes (Xt, Yt)t≥0 and (Zt, Yt)t≥0

coincides with (FX
t )t≥0 . From now on we assume that the state space of the

process (Zt, Yt)t≥0 is R2 .

2.3. We can thus reduce the stopping problem (2.4) for the process with
time delay to the following optimal stopping problem for a two-dimensional
diffusion process:

V (z, y) = sup
τ

Ez,y

[
e−rτg(Zτ , Yτ )−

∫ τ

0

e−rtc(Zt, Yt) dt

]
(2.9)

where Pz,y denotes the law of the diffusion process (Zt, Yt)t≥0 starting at the
point (z, y) and solving equation (2.7) - (2.8), τ denotes any stopping time
of (Zt, Yt)t≥0 such that

E

[∫ τ

0

e−rta(Xt, Yt) dt

]
< ∞ (2.10)

and where we have set c(z, y) = a(z + λy, y), g(z, y) = h(z + λy, y) for all
(z, y) ∈ R2 .

3 The free-boundary problem

3.1. It follows from the general optimal stopping theory (cf. [11; Chap-
ter III]) that the continuation region C and the stopping region D for the
optimal stopping problem (2.9) are given by:

C = {(z, y) ∈ R2 |V (z, y) > g(z, y)} (3.1)

and
D = {(z, y) ∈ R2 |V (z, y) = g(z, y)} (3.2)

respectively. We will further assume that the functions c and g satisfy some
regularity conditions which imply the existence of a function of bounded
variation b such that the stopping time:

τ∗ = inf{t ≥ 0 |Zt ≤ b(Yt)} (3.3)
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turns out to be optimal in (2.9) whenever it satisfies (2.10), so that the
regions (3.1) and (3.2) take the form:

C = {(z, y) ∈ R2 | z > b(y)} (3.4)

and
D = {(z, y) ∈ R2 | z ≤ b(y)} (3.5)

respectively.
Standard arguments based on the application of Itô’s formula imply that

the infinitesimal operator L of the process (Zt, Yt)t≥0 acts on a function
f ∈ C2,1(R2) like:

(Lf)(z, y) =

(
µ(z, y)

∂f

∂z
+

σ2(z, y)

2

∂2f

∂z2
+ z

∂f

∂y

)
(z, y) (3.6)

for all (z, y) ∈ R2 .
Assuming that g is C2,1 in R2 and based on the results about the re-

lationship between optimal stopping problems and free-boundary problems
for partial differential equations (see e.g. [11; Chapter III, Section 8]), in
order to find analyic expressions for the value function V from (2.9) and
the boundary b from (3.3) we may formulate the following free-boundary
problem for the parabolic type operator L acting like in (3.6):

[−rV + (LV )](z, y) = c(z, y) for z > b(y) (3.7)

V (z, y)
∣∣
z=b(y)+

= g(b(y), y) (3.8)

∂V

∂z
(z, y)

∣∣
z=b(y)+

=
∂g

∂z
(z, y)

∣∣
z=b(y)− (3.9)

V (z, y) > g(z, y) for z > b(y) (3.10)

V (z, y) = g(z, y) for z < b(y) (3.11)

[−rV + (LV )](z, y) < c(z, y) for z < b(y) (3.12)

where the instantaneous stopping equation (3.8) and the smooth fit equation
(3.9) are satisfied for all y ∈ R . It follows by the superharmonic characteri-
zation of the value function (see [1] or [11; Chapter III]) that V from (2.9)
is the smallest function satisfying (3.7) - (3.8) and (3.10) - (3.12).

3.2. Let us verify that system (3.7) - (3.12) implies a solution of the optimal
stopping problem (2.9). For the proof of the following verification assertion
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we use the same stucture as in the proofs of the corresponding assertions
from [11; Chapter IV], [6; Chapter X], [9] and [8].

Theorem 3.1. Suppose that the function V∗ and the boundary b is
the unique solution of the free-boundary problem (3.7) - (3.12). Then V∗
coincides with the value function V from (2.9) and the stopping time τ∗
from (3.3) is optimal in (2.9) whenever is satisfies (2.10).

Proof. Using the fact that the smooth fit condition (3.9) implies that
z 7→ V∗(z, y) is C1 at b(y) for all y ∈ R , we obtain by Itô’s formula for any
(z, y) ∈ R2 :

e−rtV∗(Zt, Yt) = V∗(z, y) +

∫ t

0

e−rs[−rV∗ + (LV∗)](Zs, Ys) ds + Mt (3.13)

where M = (Mt)t≥0 defined by

Mt =

∫ t

0

e−rsσ(Zs, Ys)
∂V∗
∂z

(Zs, Ys) dWs (3.14)

is a continuous local martingale.
Since (3.7) and (3.12) imply that [−rV∗ + (LV∗)](z, y) ≤ c(z, y) for all

(z, y) ∈ R2 , using the fact that the values (LV∗)(z, y) for z = b(y) can be
set arbitrarily, from (3.13) we get:

e−rτV∗(Zτ , Yτ )−
∫ τ

0

e−rsc(Zs, Ys) ds ≤ V∗(z, y) + Mτ (3.15)

for any stopping time τ of the process (Zt, Yt)t≥0 . Moreover, using that
(3.10) - (3.11) yield V∗(z, y) ≥ g(z, y) for all (z, y) ∈ R2 , from (3.15) it
follows that:

e−rτg(Zτ , Yτ )−
∫ τ

0

e−rsc(Zs, Ys) ds ≤ V∗(z, y) + Mτ (3.16)

for any stopping time τ of (Zt, Yt)t≥0 .
Let us choose a sequence (σn)n∈N of bounded stopping times for M =

(Mt)t≥0 . Then taking in (3.16) expectation with respect to the measure
Pz,y , by means of the optional sampling theorem (see e.g. [3; Chapter I,
Theorem 1.39] or [10; Chapter II, Theorem 3.2]) we get:

Ez,y

[
e−r(τ∧σn)g(Zτ∧σn , Yτ∧σn)−

∫ τ∧σn

0

e−rsc(Zs, Ys) ds

]
(3.17)

≤ V∗(z, y) + Ez,y[Mτ∧σn ] = V∗(z, y).
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Thus, letting n →∞ and using Fatou’s lemma, we obtain:

Ez,y

[
e−rτg(Zτ , Yτ )−

∫ τ

0

e−rsc(Zs, Ys) ds

]
≤ V∗(z, y) (3.18)

for any (z, y) ∈ R2 .
On the other hand, in order to show that the equality in (3.18) is attained

at τ∗ from (3.3) we observe that from (3.7), (3.8), (3.11), and (3.13) with t
replaced by τ∗ it follows that:

e−rτ∗g(Zτ∗ , Yτ∗)−
∫ τ∗

0

e−rsc(Zs, Ys) ds = V∗(z, y) + Mτ∗ . (3.19)

Thus, the assumption that g is bounded implies that the process (Mτ∗∧t)t≥0

turns out to be an (FX
t , Pz,y)-uniformly integrable martingale whenever τ∗

satisfies (2.10). Therefore, taking in (3.19) expectation with respect to the
measure Pz,y , we obtain:

Ez,y

[
e−rτ∗g(Zτ∗ , Yτ∗)−

∫ τ∗

0

e−rsc(Zs, Ys) ds

]
= V∗(z, y), (3.20)

which yields the desired assertion. ¤
Remark 3.2. In particular cases the system (3.7) - (3.12) can be solved

by numerical methods.

4 Some special cases

4.1. Let us now assume that in (2.1) we have β(x, y) = η(x − λy) and
γ(x, y) = θ(x − λy), so that the process X = (Xt)t≥0 solves the stochastic
differential equation:

dXt = η(Xt − λYt) dt + θ(Xt − λYt) dWt, X0 = x, (4.1)

where the process Y = (Yt)t≥0 is defined in (2.2). In this case from the
arguments of Subsection 2.2 it follows that the process Z = (Zt)t≥0 defined
in (2.6) solves the stochastic differential equation:

dZt = [η(Zt)− λZt] dt + θ(Zt) dWt, Z0 = z, (4.2)

and thus, turns out to be an (FX
t , P )-(strong) Markov process.
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Let us further assume that c(z, y) = p(z)eνy and g(z, y) = q(z)eνy for
some functions p(z) and q(z) and a constant ν ∈ R . In this case by means
of easy calculations from (2.8) we infer that the value function (2.9) takes
the form V (z, y) = eνyU(z) with:

U(z) = sup
τ

Ez

[
e−

R τ
0 (r−νZt) dtq(Zτ )−

∫ τ

0

e−
R t
0 (r−νZs) dsp(Zt) dt

]
(4.3)

where Pz denotes the law of the diffusion process Z = (Zt)t≥0 starting at the
point z and solving equation (4.2) for all z ∈ R and τ denotes any stopping
time of Z . In the case when ν > 0 we will assume that the state space of
the process Z is (−∞, r/ν).

Based on the same arguments as in Subsection 3.1 we may formulate the
following (one-dimensional) free-boundary problem for the value function U
from (4.3) and the boundary b from (3.3) which turns out to be constant in
this case:

−(r − νz)U(z) + (η(z)− νz)U ′(z) +
θ2(z)

2
U ′′(z) = p(z), z > b, (4.4)

U(z)
∣∣
z=b+

= q(b), (4.5)

U ′(z)
∣∣
z=b+

= q′(z)
∣∣
z=b−, (4.6)

U(z) > q(z), z > b, (4.7)

U(z) = q(z), z < b, (4.8)

−(r − νz)U(z) + (η(z)− νz)U ′(z) +
θ2(z)

2
U ′′(z) < p(z), z < b. (4.9)

4.2. Let us finally consider a particular case of the optimal stopping problem
(2.4) which is related to mathematical finance. For this we suppose that
X = (Xt)t≥0 solving (4.1) describes the logarithm of the price of some risky
asset (e.g. stock) on a financial market so that Z = (Zt)t≥0 defined in (2.6)
and solving (4.2) expresses the deviation of the logarithm of the present price
from its exponentially weighted average. It is seen that if in (4.1) we have
η(z) = −θ2(z)/2 for all z ∈ R , then the initial measure P turns out to be
a martingale measure for the discounted price process S = (St)t≥0 given by
St = e−rt+Xt for all t ≥ 0.

More specifically, let us consider the problem of pricing the following
special perpetual average put option of American type:

V = sup
τ

E
[
e−rτ (KeλYτ − eXτ )+

]
. (4.10)
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Standard arguments show that the related optimal stopping problem of the
type (2.9) is given by:

V (z, y) = sup
τ

Ez,y

[
e−rτ+λYτ (K − eZτ )+

]
= eλyU(z) (4.11)

with
U(z) = sup

τ
Ez

[
e−

R τ
0 (r−λZt) dt(K − eZτ )+

]
(4.12)

so that in the related free-boundary problem (4.4) - (4.9) we have p(z) = 0,
q(z) = (K − ez)+ and ν = λ > 0.

Remark 4.1. The model introduced in this section reflects the empirical
evidence that the financial markets are more volatile whenever the actual
prices deviate significantly from their past values.
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