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Asymptotic theory for M-estimators of bound-
aries

Keith Knight1

Department of Statistics, University of Toronto, Toronto, ON
M5S 3G3

Summary

We consider some asymptotic distribution theory for M-estimators of the
parameters of a linear model whose errors are non-negative; these estimators
are the solutions of constrained optimization problems and their asymptotic
theory is non-standard. Under weak conditions on the distribution of the
errors and on the design, we show that a large class of estimators have
the same asymptotic distributions in the case of i.i.d. errors; however, this
invariance does not hold under non-i.i.d. errors.

Keywords: constrained optimization, epi-convergence, linear program-
ming estimator, M-estimator, point processes.
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1 Introduction

Consider the linear regression model

Yi = xT
i β + Wi (i = 1, · · · , n) (1)

where xi is a vector of covariates (of length p) whose first component is always
1, β is a vector of parameters and W1, · · · ,Wn are independent, identically
distributed (i.i.d.) non-negative random variables whose essential infimum is
0. Thus xT β can be interpreted as the conditional minimum of the response
Y given covariate values x. (The assumption that the model (1) has an
intercept is not always necessary in the sequel but will be assumed throughout
as its inclusion reflects common practice.)

Suppose that the Wi’s have common density

f(w) = exp[−ρ(w)] for w > 0

where ρ(w) → +∞ as w →∞. If ρ is assumed known and is lower semicon-
tinuous (note that a lower semicontinuous version of ρ typically exists) then
the maximum likelihood estimator of β, ̂βn, minimizes

n
∑

i=1

ρ(Yi − xT
i φ) subject to Yi ≥ xT

i φ for i = 1, · · · , n. (2)

This type of estimator seems to have first been considered by Aigner & Chu
(1968) for estimating the so-called “efficient frontier”; they considered ρ(w) =
w2 and ρ(w) = w. In a recent paper, Florens & Simar (2002) comment on the
lack of development of statistical properties of these estimators. An estimator
minimizing (2) seems to be sensible estimator of β generally for non-negative
Wi’s.

In fact, the asymptotics of ̂βn appear to have only been considered in the
case where ρ(w) = w; in this case, ̂βn minimizes

−
n

∑

i=1

xT
i φ subject to Yi ≥ xT

i φ for i = 1, · · · , n, (3)

which is a linear program. This estimator can also be viewed as a mini-
mum regression quantile estimator as defined by Koenker & Bassett (1978).
Limit theory for the estimator minimizing (3) can be derived under weak
assumptions on the behaviour of the distribution of the Wi’s near 0 and the
behaviour of the empirical distribution of the xi’s; see, for example, Smith
(1994), Portnoy & Jurec̆ková (1999) and Knight (2001). A similar estima-
tion method has been studied by (among others) Andĕl (1989), An & Huang
(1993) and Feigen & Resnick (1994) in the context of estimation in station-
ary autoregressive models with non-negative innovations; Feigen & Resnick
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Figure 1: Yearly best men’s outdoor 1500m times (in seconds) from 1957 to
2002 with estimated boundary lines using ρ(w) = w (dotted) and ρ(w) = w2

(solid).

(1994) derive limiting distributions of the estimators using an approach that
relies heavily on point process arguments. For the general first order autore-
gressive model, Nielsen & Shephard (2003) derive the exact distribution of
this estimator when the innovations have an exponential distribution.

In this paper, we will study the dependence of estimators minimizing (2)
on the loss function ρ. Figure 1 shows the yearly best men’s 1500m times
from 1957 to 2002 with lower boundaries (which might be interpreted as the
best possible time for a given year) estimated using ρ(w) = w and ρ(w) = w2;
in both cases, we use a b-spline basis with three knots, which means that the
parameter vector β has five elements (including an intercept). For these data,
the two estimates are quite close although not identical; it is natural to ask
whether this phenomenon occurs more generally. Note that the estimate for
ρ(w) = w is not strictly decreasing; depending on our interpretation of the
lower boundary, it may be more natural to constrain the estimation so the
estimate of the lower boundary is strictly decreasing.

In the i.i.d. setting (i.e. where Yi = θ + Wi), the analysis is straightfor-
ward to do. If ρ(w) is increasing for w ≥ 0 then the estimator is simply
̂θn = min(Y1, · · · , Yn). More generally, suppose that ρ(w) is convex and dif-
ferentiable though not necessarily increasing for w ≥ 0. Then the estimator
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is again min(Y1, · · · , Yn) unless there exists ̂θn < min(Y1, · · · , Yn) such that

n
∑

i=1

ρ′(Yi − ̂θn) = 0.

Suppose that min(Y1, · · · , Yn)
p−→ θ and set Wi = Yi − θ. If E[ρ′(Wi)] > 0

then by convexity of ρ, it follows that E[ρ′(Wi + t)] > 0 for t ≥ 0 and so

1
n

n
∑

i=1

[ρ(Wi + t)− ρ(Wi)] =
∫ t

0

1
n

n
∑

i=1

ρ′(Wi + s) ds

a.s.−→
∫ t

0
E[ρ′(Wi + s)] ds

> 0.

¿From this we can conclude that ̂θn is eventually equal to min(Y1, · · · , Yn) if
E[ρ′(Wi)] > 0.

The purpose of this paper is to extend the equivalence in an asymptotic
sense to the regression case under general conditions on the xi’s and the
distribution of the Wi’s; in particular, we will not assume any relationship
between the density of the Wi’s and the loss function ρ. We will also show
that the asymptotic equivalence does not necessarily hold for non-i.i.d. errors.

2 Asymptotics

As in Knight (2001), the key tools used in deriving the limiting distribution
of ̂βn minimizing (2) are epi-convergence in distribution (Pflug 1994, Pflug
1995, Geyer 1994, Geyer 1996, Knight 1999) and point process convergence
for extreme values (Kallenberg 1983, Leadbetter et al. 1983). Point processes
defined on a space can be characterized by random measures that count the
(random) number of points lying in subsets of the space; point process con-
vergence is characterized by the weak convergence of integrals of bounded
continuous functions with compact support with respect to the random mea-
sures (Kallenberg 1983). Under appropriate regularity conditions (described
below), the configuration of points {(xi, Yi)} generated from (1) lying in a
neighbourhood of the plane xT β can be approximated (in a distributional
sense) by a Poisson process when n is large and the asymptotic behaviour of
̂βn (perhaps not surprisingly) turns out to depend on this Poisson process.

Epi-convergence in distribution gives us an elegant way of proving con-
vergence in distribution of “argmin” (and “argmax”) estimators, and is par-
ticularly useful for constrained estimation procedures. A sequence of ran-
dom lower semicontinuous functions {Zn} epi-converges in distribution to
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Z (Zn
e−d−→ Z) if for any closed rectangles R1, · · · , Rk with open interiors

Ro
1, · · · , Ro

k and any real numbers a1, · · · , ak,

P
{

inf
u∈R1

Z(u) > a1, · · · , inf
u∈Rk

Z(u) > ak

}

≤ lim inf
n→∞

P
{

inf
u∈R1

Zn(u) > a1, · · · , inf
u∈Rk

Zn(u) > ak

}

≤ lim sup
n→∞

P
{

inf
u∈Ro

1

Zn(u) ≥ a1, · · · , inf
u∈Ro

k

Zn(u) ≥ ak

}

≤ P
{

inf
u∈Ro

1

Z(u) ≥ a1, · · · , inf
u∈Ro

k

Z(u) ≥ ak

}

.

For an extended real-valued lower-semicontinuous function g, define

argmin(g) =
{

u0 : g(u0) = inf
u

g(u)
}

ε− argmin(g) =
{

u0 : g(u0) ≤ inf
u

g(u) + ε
}

.

Suppose that Un ∈ argmin(Zn) where Zn
e−d−→ Z and Un = Op(1); then

Un
d−→ U = argmin(Z) provided that argmin(Z) is (with probability 1)

a singleton. (The condition that Un ∈ argmin(Zn) can be weakened to
Un ∈ εn − argmin(Zn) where εn

p−→ 0.) If the Zn’s are convex (as will be
the case here) then epi-convergence is quite simple to prove; finite dimen-

sional convergence in distribution of Zn to Z (Zn
f−d−→ Z) is sufficient for

epi-convergence in distribution provided that Z is finite on an open set. (In
fact, it is sufficient to prove this finite dimensional convergence on a count-
able dense subset.) Moreover, if argmin(Z) is a singleton then Un = Op(1)

is implied by Zn
e−d−→ Z.

In order to consider the asymptotics of estimators minimizing (2), we need
to make some mild assumptions. We will assume that ρ in (2) is a convex
function with

ρ(w) =
∫ w

0
ψ(t) dt (4)

for some non-decreasing function ψ satisfying

|ψ(w + t)− ψ(w)| ≤ M(w)|t|δ (5)

for w > 0 and |t| ≤ ε where δ > 0. In addition, we will make the following
assumptions about the design and the distributions of the Wi’s:

(A0) For ψ defined in (4), E[ψ(Wi)] > 0 and E[ψ2(Wi)] < ∞.
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(A1) For some sequence an →∞, we have

|nP (anWi ≤ t)− tα| ≤ τntα

where α > 0 and τn → 0.

(A2) There exists a sequence of matrices {Cn} and a probability measure µ
on Rp such that for each set B with µ(∂B) = 0,

lim
n→∞

1
n

n
∑

i=1

I(C−1
n xi ∈ B) = µ(B).

(A3)
∫

‖x‖µ(dx) < ∞ with

lim
n→∞

1
n

n
∑

i=1

C−1
n xi =

∫

x µ(dx) = γ,

lim
n→∞

1
n2

n
∑

i=1

‖C−1
n xi‖2 = 0.

(A4) µ(Dγ) = 0 where

Dγ =
{

x : xT c = 0 for some c 6= 0 with γT c = 0
}

where γ is defined in (A3).

(A5) The (closed) set

K =
{

u :
∫

(uT x)α
+ µ(dx) < ∞

}

has an open interior and for each u ∈ int(K),

lim
n→∞

1
n

n
∑

i=1

(uT C−1
n xi)α

+ =
∫

(uT x)α
+ µ(dx)

lim
n→∞

1
n

max
1≤i≤n

(uT C−1
n xi)α

+ = 0

where x+ = max(x, 0) denotes the positive part of x.

(A6) E[M(Wi)] < ∞ and

lim
n→∞

1
aδ

n
max

1≤i≤n
‖C−1

n xi‖δ+1 = 0

where M(·) and δ are defined as in (5).
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It is worth commenting at this point on the raison d’être of these condi-
tions. The first part of condition (A0) is essentially necessary for consistency;
if E[ψ(Wi)] < 0 then ̂βn will not converge to β. Condition (A1) generalizes
the condition on the density of the Wi’s assumed in Smith (1994) and im-
plies that the Wi’s are in the domain of attraction of a type III extreme
value distribution. Condition (A2) is effectively a weak convergence condi-
tion for the empirical distribution of the xi’s; if the xi’s are a random sample
from some distribution then we would have Cn = I and µ equal to the un-
derlying probability measure of the xi’s. Even for fixed designs, (A2) is a
reasonable condition although Cn need not equal I (although it is typically
a diagonal matrix). For example, if xi = (1, i, i2)T for i = 1, · · · , n then the
diagonal elements of Cn are (1, n, n2) and µ is the probability measure of the
random vector (1, U, U2) where U is uniformly distributed on [0, 1]. More
importantly, (A2) implies similar weak convergence results about the empir-
ical distribution of uT C−1

n xi (i = 1, · · · , n) for a given u (or finite number of
u’s). Moreover, if C−1

n xi is bounded then condition (A1) can be replaced by

nP (anWi ≤ t) → tα

for each t > 0. Conditions (A3)–(A5) are used to facilitate the proof of
epi-convergence in distribution of an appropriate sequence of objective func-
tions; for example, (A4) will imply that the limiting objective function has a
unique minimizer (with probability 1) while (A5) will imply that the limiting
objective function is finite on a open set and so finite dimensional weak con-
vergence will imply epi-convergence in distribution. (In fact, condition (A5)
is not necessary and is included only to simplify the proof.) Condition (A6)
together with condition (A3) allows us to approximate the finite part of the
objective function by a linear function.

Note that conditions (A3), (A5), and (A6) are essentially moment con-
ditions on the xi’s (or, more precisely, on the C−1

n xi’s); depending on the
value of α, one of these conditions may imply all or part of the others. The
conditions as stated are certainly far from minimal and can be weakened

THEOREM 1. Assume the model (1) and suppose that ̂βn is minimizes of
(2) where ρ is convex and satisfies (4) and (5). If conditions (A0)–(A6) hold
then

anCn(̂βn − β) d−→ U

where U is the solution of the linear programming problem:

maximize uT γ subject to Γi ≥ uT Xi for i = 1, 2, 3, · · ·

where

(i) Γi = (E1+· · ·+Ei)1/α for unit mean i.i.d. exponential random variables
E1, E2, · · ·;
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(ii) X1,X2, · · · are i.i.d. with distribution P (Xi ∈ A) = µ(A);

(iii) the Xi’s are independent of the Ei’s (and hence of the Γi’s).

Proof. The proof follows much along the lines of the proof of Theorem 1 of
Knight (2001). First of all, note that Un = anCn(̂βn − β) is the solution to
the linear programming problem:

minimize
an

n

n
∑

i=1

[

ρ(Wi − uT C−1
n xi/an)− ρ(Wi)

]

subject to anWi ≥ uT C−1
n xi for i = 1, · · · , n.

Defining φn(u) to be 0 when the constraints above are all satisfied and +∞
otherwise, Un minimizes

Zn(u) =
an

n

n
∑

i=1

[

ρ(Wi − uT C−1
n xi/an)− ρ(Wi)

]

+ φn(u). (6)

Zn is a convex function for each n and so to prove that Un
d−→ U , it suffices

to show that Zn
e−d−→ some Z where U = argmin(Z); we will show that

Z(u) = −E[ψ(W1)]uT γ + φ(u) (7)

where φ(u) = 0 if Γi ≥ uT Xi for all i and φ(u) = +∞ otherwise.

Using the integral representation (4) for ρ and condition (5), we obtain

an

n

n
∑

i=1

[

ρ(Wi − uT C−1
n xi/an)− ρ(Wi)

]

= − 1
n

n
∑

i=1

ψ(Wi)uT C−1
n xi + op(1)

= −E[ψ(W1)]uT γ + op(1)

using condition (A3) to establish the weak law of large numbers and condition

(A6) to establish the asymptotic linearity. ¿From the convexity of Zn, Zn
e−d−→

Z follows from Zn
f−d−→ Z provided that Z is finite on an open set with

probability 1; the latter follows since Γi ∼ i1/α (with probability 1) as i →∞
and so by the first Borel-Cantelli lemma P (uT Xi > Γi infinitely often) = 0
for any u ∈ K (since E[(uT Xi)α

+] < ∞ on K); for u 6∈ K, we also have
P (uT Xi > Γi infinitely often) = 1 (since E[(uT Xi)α

+] = ∞) by the second
Borel-Cantelli lemma. Thus for a given u ∈ K, at most a finite number
of constraints are violated, the rest being trivially satisfied. Since u ∈ K
implies that tu ∈ K for t > 0, taking t sufficiently small guarantees that all



9

the constraints are satisfied. Since int(K) is open (by condition (A5)), it is
possible (with probability 1) to find a finite number of points in K such that
all the constraints are satisfied and the convex hull of these points contains
an open set. Since Z is finite at these points, it is necessarily finite on the
convex hull (since Z is convex).

To show the finite dimensional weak convergence of φn, we first define the
following point process (random measure) on Rp+1:

νn(A×B) =
n

∑

i=1

I(anWi ∈ A,C−1
n xi ∈ B).

It is easy to verify that νn tends in distribution with respect to the vague
topology (Kallenberg 1983) to a Poisson process (random measure) ν whose
mean measure is

E[ν(A×B)] = µ(B)
∫

A∩(0,∞)
αxα−1 dx.

We can represent the points of this Poisson process by {(Γi, Xi) : i ≥ i} where
the Γi’s and Xi’s are as defined above. Thus it suffices to show that

P [φn(u1) = 0, · · · , φn(uk) = 0] → P [φ(u1) = 0, · · · , φ(uk) = 0]

where φ(u) = 0 if Γi ≥ uT Xi for all i and ∞ otherwise. Exploiting the
convergence in distribution of νn to the Poisson random measure ν, we have

P [φn(u1) = 0, · · · , φn(uk) = 0]

= P

{

n
∑

i=1

I
[

0 ≤ anWi < max
1≤j≤k

(uT
j C−1

n xi)+

]

= 0

}

→ exp
[

−
∫

max
1≤j≤k

(uT
j x)α

+ µ(dx)
]

= P [φ(u1) = 0, · · · , φ(uk) = 0] .

Hence for Zn given in (6), we have Zn
f−d−→ Z where Z is defined in (7). Finally,

to show that Z has a unique minimizer (with probability 1), we note that if U
minimizes Z then for some indices i1 < i2 < · · · < ip, we have UT Xik = Γik

with Γj > UT Xj for j /∈ {i1, i2, · · · , ip}. If U and U∗ both minimize Z
then U∗ = U + tc for some vector c with cT γ = 0 and so tcT Xik = 0 for
k = 1, · · · , p. However, condition (A4) says that P (cT Xi = 0) = 0 (when
cT γ = 0) and so Z is a unique minimizer (with probability 1). 2

As mentioned above, the conclusion of Theorem 1 holds even if the set
K defined in condition (A5) does not have an open interior. In this case,
the limiting objective function Z will not be finite on an open set and so
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Zn
e−d−→ Z will not follow immediately from Zn

f−d−→ Z. However, the epi-
convergence in distribution will still hold; we need to establish that the se-
quence of functions {φn} (which describe the constraints) are stochastically
equi-lower-semicontinuous (Knight 1999). For this, we need to show that for
any bounded set B and δ > 0, there exist points u1, · · · , um in B and open
neighbourhoods V (u1), · · · , V (um) of these points such that

B ⊂
m
⋃

i=1

V (ui)

(that is, B is covered by the neighbourhoods) and

lim sup
n→∞

P

{

m
⋃

i=1

[

inf
u∈V (ui)

φn(u) = 0, φn(ui) = ∞
]

}

< δ.

This turns out to be reasonably straightforward to show since

P

{

m
⋃

i=1

[

inf
u∈V (ui)

φn(u) = 0, φn(ui) = ∞
]

}

≤ P

{

m
⋃

i=1

[

inf
u∈V (ui)

φn(u) = 0
]

}

− P

{

m
⋃

i=1

[φn(ui) = 0]

}

.

The right hand side above can be made arbitrarily small by making the
neighbourhoods uniformly small.

In the case where ρ(w) = w, Smith (1994) as well as Portnoy & Jurec̆ková
(1999) determine the limiting distribution by finding the limiting density of
Un = argmin(Zn); however, they need to assume a specific form for the den-
sity of the Wi’s, from which the density of Un can be approximated. The con-
clusion of Theorem 1 holds under a weak assumption (condition (A1)) about
the distribution of the Wi’s, which in particular does not imply the existence
of a density function. Chernozhukov (2000) also uses an epi-convergence
approach to study the asymptotic behaviour of “near extreme” regression
quantile estimators.

In the case where the set K defined in (A5) satisfies K = cl(int(K)),
we can determine the limiting joint density, that is, the density of U =
argmin(Z). Using the Poisson process representation of Z, it follows that the
density of U is

g(u) = κ(u; α, p, µ)
∫

· · ·
∫

|D(x1, · · · , xp)|
p

∏

i=1

{

(uT xi)α−1
+ µ(dxi)

}

(8)

where

κ(u;α, p, µ) =
αp

p!
exp

[

−
∫

(uT x)α
+ µ(dx)

]
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and D(x1, · · · ,xp) is the determinant of the matrix with columns x1, · · · , xp

if γ lies in the convex hull of x1, · · · , xp and D(x1, · · · , xp) = 0 otherwise. (If
there is no intercept in the model (1) then D(x1, · · · , xp) is the determinant
if γ =

∑p
j=1 tjxj for non-negative tj ’s with D(x1, · · · , xp) = 0 otherwise.)

The density g(u) is not easy to evaluate in closed-form (except in special
cases) but can be approximated quite easily using Monte Carlo techniques
(by sampling from the probability measure µ). However, it seems that this
density does not provide as much insight into the limiting distribution as does
the representation of U as the solution of a linear programming problem.

Other estimation problems in which the limiting objective function is re-
lated to a Poisson process are considered by Pflug (1994). Theorem 1 implies
that we obtain the same limiting distribution for any convex ρ satisfying some
mild regularity conditions so that all such estimators differ by op(a−1

n C−1
n ).

However, an examination of the proof of Theorem 1 suggests that this asymp-
totic equivalence is a consequence of the i.i.d. assumption on the Wi’s.

Suppose instead we assume that the Wi’s in (1) are independent with the
distribution of Wi depending on x such that

|nP (anWi ≤ t|x)− λ(x)tα| ≤ τn(x)tα

where
max

1≤i≤n
|τn(xi)| → 0.

Under condition (A2) on the xi’s, it then follows that the point process

νn(A×B) =
n

∑

i=1

I(anWi ∈ A,C−1
n xi ∈ B)

converges in distribution to a point process ν whose mean measure is given
by

E[ν(A×B)] =
∫

A

∫

B
αλ(x)tα−1 µ(dx) dt.

The points of ν can be represented by {(Γi/λ(Xi),Xi) : i = 1, 2, · · ·} where
the Γi’s and Xi’s are defined as in Theorem 1. Assuming that

1
n

n
∑

i=1

ψ(Wi)uT C−1
n xi

p−→
∫

E(ψ(W )|x)uT x µ(dx)

= uT γψ

it will follow (under appropriate modifications of the regularity conditions)
that

anCn(̂βn − β) d−→ U

where U maximizes uT γψ subject to Γi ≥ λ(Xi)uT Xi for all i. Note that
U = U(γψ, ν) where the point process ν does not depend on the loss function
ρ (nor its “derivative” ψ).
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We can extend (8) to obtain the density of U in this case:

g(u) = κλ(u; α, p, µ)
∫

· · ·
∫

|Dλ(x1, · · · ,xp)|
p

∏

i=1

{

[λ(xi)uT xi]α−1
+ µ(dxi)

}

(9)
where

κλ(u;α, p, µ) =
αp

p!
exp

[

−
∫

(λ(x)uT x)α
+ µ(dx)

]

and Dλ(x1, · · · , xp) is the determinant of the matrix whose columns are
λ(x1)x1, · · · , λ(xp)xp if

γψ =
p

∑

j=1

tjλ(xj)xj

for some non-negative t1, · · · , tp and Dλ(x1, · · · ,xp) is 0 otherwise.

EXAMPLE 1. Consider the simple regression model

Yi = β0 + β1xi + Wi (i = 1, · · · , n)

where W1, · · · , Wn are independent (but identically distributed) random vari-
ables with the distribution of Wi depending on xi, and we will assume that
the xi’s are uniformly distributed on the interval [−1, 1], which implies that
µ is a uniform distribution on [−1, 1]. For a given loss function ρ (with
“derivative” ψ), the vector γψ is simply

γψ =
1
2

∫ 1

−1
E[ψ(W )|x]

(

1
x

)

dx =
{∫ 1

−1
E[ψ(W )|x] dx

}(

1
cψ

)

where −1 < cψ < 1; note that for ρ(x) = x, cψ = 0. For simplicity, we will
take α = 1 and set λ(x) = 1 (which is possible even when the Wi’s are not
identically distributed). Thus for a given ρ (and corresponding ψ), we have

n(̂βn − β) d−→ U =
(

U0

U1

)

where U maximizes u0 + cψu1 subject to Γi ≥ u0 + u1Xi for i ≥ 1 where
the Γi’s are partial sums of i.i.d. unit mean exponential random variables and
the Xi’s are i.i.d. uniform random variables on [−1, 1]. Thus the limiting
distribution depends only on the constant cψ (which depends on ψ and the
dependence between the Wi’s and the xi’s). Figures 2 to 5 show contour plots
of the joint density of U (using (9)) for cψ = 0, 0.25, 0.5, 0.75. In all cases,
the distribution of U0 (intercept) is concentrated on the positive part of the
real line. As cψ increases, more probability mass is shifted to the positive
part of the distribution of U1, that is, the bias of the slope estimator becomes
more positive as cψ increases; likewise, the bias becomes more negative as cψ

decreases from 0 to −1.
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Figure 2: Contours of the joint density of U in Example 1 for cψ = 0; the
interval between adjacent contours is 0.01.
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Figure 3: Contours of the joint density of U in Example 1 for cψ = 0.25; the
interval between adjacent contours is 0.01.
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Figure 4: Contours of the joint density of U in Example 1 for cψ = 0.5; the
interval between adjacent contours is 0.01.
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Figure 5: Contours of the joint density of U in Example 1 for cψ = 0.75; the
interval between adjacent contours is 0.01.
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3 Barrier regularization

Estimators minimizing (2) are inherently biased upwards since necessarily we
have

n
∑

i=1

ρ(Yi − xT
i

̂βn) <
n

∑

i=1

ρ(Yi − xT
i β)

and so xT ̂βn tends to be systematically smaller than xT β (since ρ is “on
average” increasing under condition (A0)). In general, reducing bias is a
tricky proposition since such a reduction often leads to an increase in vari-
ance. In this problem, the bias typically manifests itself in the estimation of
the intercept and so one might consider reducing bias simply by adjusting
(downwards) the intercept estimator.

An alternative approach to reducing bias is to replace the constraints
Yi ≥ xT

i φ (i = 1, · · · , n) in (2) by a “barrier” function that pushes the
estimator away from the boundary of the constraint region. Specifically, we
will define ̂βn(ε) to minimize

n
∑

i=1

ρ(Yi − xT
i φ) + ε

n
∑

i=1

τ(Yi − xT
i φ) subject to Yi ≥ xT

i φ for all i (10)

where ε is a positive constant and the barrier function τ(w) is a convex
function on (0,∞) satisfying

lim
w↓0

τ(w) = +∞,

for example, τ(w) = w−r for r > 0 or τ(w) = − ln(w). It is easy to see
that, for any ε > 0, the minimizer of (10) will lie in the interior of the set
{φ : Yi ≥ xT

i φ for i = 1, · · · , n} and so if ρ(w) and τ(w) are differentiable for
w > 0, it follows that ̂βn(ε) satisfies

n
∑

i=1

[

ρ′(Yi − xT
i

̂βn(ε)) + ετ ′(Yi − xT
i

̂βn(ε))
]

xi = 0.

More importantly, by choosing ε = εn appropriately, we may be able to
reduce the bias of ̂βn(εn) while retaining many of the otherwise attractive
properties possessed by ̂βn.

There is a connection between the estimators minimizing (2) and (10). If
̂βn(ε) minimizes (10) and ̂βn minimizes (2) then

lim
ε↓0

̂βn(ε) = ̂βn.

(This follows since the objective function implied by (10) epi-converges to the
objective function implied by (2) as ε ↓ 0 for each fixed n.) This observation
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turns out to be useful in the computation of ̂βn minimizing (2). For each
ε > 0, (10) can be minimized using “standard” optimization techniques (for
example, Newton and quasi-Newton methods) and so we can obtain an arbi-
trarily good approximation to ̂βn minimizing (2) by computing a sequence of
minimizers of (10), ̂βn(εk) with εk ↓ 0. Such numerical methods for solving
constrained optimization problems are commonly referred to as barrier or
interior point methods; some theory can be found in Fiacco & McCormick
(1990).

By taking τ(w) = w−r for r sufficiently large, we obtain the following
analogue of Theorem 1.

THEOREM 2. Assume the model (1) and suppose that ̂βn(εn) minimizes
(10) (with ε = εn) where ρ is convex and satisfies (4) and (5). If conditions
(A0)–(A6) hold and τ(w) = w−r where r > α and

lim
n→∞

ar+1
n

n
εn = ε0

then
anCn(̂βn(εn)− β) d−→ U

where U minimizes

−E[ψ(W1)]uT γ + ε0
∞
∑

i=1

(Γi − uT Xi)−r

subject to Γi ≥ uT Xi for all i with {Γi} and {Xi} defined as in Theorem 1.

Proof. The proof follows along the same lines as the proof of Theorem 1.
We redefine Zn in (6) by

Zn(u) =
an

n

n
∑

i=1

[

ρ(Wi − uT C−1
n xi/an)− ρ(Wi)

]

+
an

n
εn

n
∑

i=1

(

Wi − uT C−1
n xi/an

)−r

=
an

n

n
∑

i=1

[

ρ(Wi − uT C−1
n xi/an)− ρ(Wi)

]

+
ar+1

n

n
εn

n
∑

i=1

(

anWi − uT C−1
n xi

)−r

= Z(1)
n (u) + Z(2)

n (u)

provided that anWi ≥ uT C−1
n xi for all i with Zn(u) = +∞ otherwise. The
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Figure 6: Estimated boundary lines for the 1500m data using ρ(w) = w and
τ(w) = w−2 for ε = 0.05 (dotted) and ε = 0.5 (dashed). The solid line is
estimate given in Figure 1 and corresponds to the limit as ε ↓ 0.

only technical complication lies in showing that Z(2)
n

f−d−→ Z(2) where

Z(2)(u) = ε0
∞
∑

i=1

(Γi − uT Xi)−r

when Γi ≥ uT Xi for all i with Z(2)(u) = +∞ otherwise; this can be done
by truncating the barrier function τ(w) = w−r to make it bounded with
compact support and then using Slutsky-type arguments to take care of the
difference. 2

The assumption that r > α is inconvenient but seems to be necessary in
order to obtain non-degenerate asymptotic results, at least, with the “right”
rate of convergence; if τ(w) → ∞ too slowly as w ↓ 0 then typically we will
obtain a slower convergence rate for the resulting estimators. In particular,
it rules out the barrier function τ(w) = − ln(w), which is quite useful for
numerical computation.

Figure 6 shows the estimated boundaries for the 1500m data discussed in
section 1 using ρ(w) = w and τ(w) = w−2 in (10) with ε = 0.05 and ε = 0.5.
The choice of ε for a given value of r is an open question; however, for these
data, the estimates seem somewhat insensitive to the value of ε.
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4 Final comments

Models such as (1) fit into framework considered by Chernozhukov & Hong
(2002), Donald & Paarsch (2002), and Hirano & Porter (2003), who consider
asymptotic theory for estimation in models with parameter-dependent sup-
port. Unlike classical statistical models (where the support is independent of
the parameters), maximum likelihood estimation does not have any partic-
ular asymptotic optimality. Both Chernozhukov & Hong (2002) and Hirano
& Porter (2003) consider the asymptotics of Bayes estimators for a given
loss function and prior distribution on the parameter space. Such estimators
have the advantage of being admissible (with respect to loss function) and
have asymptotic distributions that are independent of the prior distribution.
Of course, these admissibility results are dependent on the model being cor-
rectly specified although one might expect Bayes estimators to be useful more
generally.

It is also possible to extend the results to estimators (̂βn, ̂θn) minimizing

n
∑

i=1

ρ(Yi − xT
i φ; ζ) subject to Yi ≥ xT

i φ for i = 1, · · · , n

where ρ(w; ζ) is a three times differentiable (or otherwise sufficiently smooth)
function in ζ; the support of the response depends on β but not on the
“nuisance” parameter θ. We assume that for some matrices A(θ) and B(θ),
we have

E [∇ζρ(Wi; θ)] = 0,

E
[

∇ζρ(Wi; θ)∇T
ζ ρ(Wi;θ)

]

= A(θ),

and E [∇ζζρ(Wi; θ)] = B(θ)

where ∇ζ and ∇ζζ are, respectively, the gradient and Hessian operators with
respect to ζ. Then under additional regularity conditions (including, for
example, appropriate modifications of (A0)–(A6)), we have the same limiting
behaviour for anCn(̂βn − β) as given in Theorem 1; moreover,

√
n(̂θn − θ) d−→ N

(

0, B−1(θ)A(θ)B−1(θ)
)

with the two limiting distributions being independent.

We can also consider non-parametric estimation of boundaries by fitting
parametric models (for example, polynomials) locally in the neighbourhood
of a given point; the asymptotic behaviour of such non-parametric estimators
can be determined using the theory discussed in sections 2 and 3 with ap-
propriate modifications. An alternative non-parametric approach to bound-
ary estimation is given by Bouchard et al. (2003). This approach defines
the boundary as a linear combination of kernel functions with non-negative
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weights estimated as the solution of a linear programming problem. In the
context of production frontier estimation, a good survey of non-parametric
estimation methods can be found in Florens & Simar (2002).
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Portnoy, S. & Jurec̆ková, J. (1999) On extreme regression quantiles. Ex-
tremes. 2, 227-243.

Smith, R.L. (1994) Nonregular regression. Biometrika. 81, 173-183.


