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XploRe Quantlet Client – Web Service for  Mathematical and Statistical 
Computing 
 
 
Heiko Lehmann 
 
CASE, Humboldt-Universität zu Berlin, Spandauer Strasse 1, 10178 Berlin, Germany 
 
 
Abstract. Many mathematical and statistical questions require the use of computational 
assistance. The proposed XploRe Quantlet Client (XQC) with it's combined CUI and GUI 
interface gives access to the XploRe software environment (XploRe Quantlet Server – XQS) with 
it's large number of available mathematical and statistical methods (Quantlets) via the Internet. 
To offer the client to a large community the Java language is used to implement the client's 
functionalities. 
 
Keywords. Web services, User Interface, Net based mathematical and statistical computing, 
Client/Server architecture, Java, XploRe, www.xplore-stat.de/java/java.html 
 
 
1 Introduction 
 
Mathematical and statistical research and the use of computers and its calculating power has 
become an inseparable unit. A large number of mathematical and statistical methods have been 
developed during the last decades, e.g. nonparametric methods, bootstrapping time series, 
wavelets, estimation of diffusion coefficients. Most of these methods are only available for a 
certain software package or software environment, but not for widely used standard software 
packages. To apply these methods to empirical analyses a potential user may face a number of 
problems. It may often even be impossible for him to use the existing methods without rewriting 
them in a different programming language. 
 
A similar problem occurs in teaching statistics. For students it is often difficult to relate statistical 
concepts presented by their teacher to real world situations and problems. Use of computers has 
proven itself as favorable in this area to illustrate the statistical content learned in class. Quite a 
few projects are currently working on this topic (e-Stat, WebStat, MM*Stat). Kinds of realization 
of these projects go from Java Applets to visualize statistical content to complete electronic books 
and tutorials containing interactive examples. 
 
Statistical software has also become an important part of scientific research that is reflected in the 
publications of the research results. Publishing a mathematical theorem requires also the 
publication of the proof of this theorem. The result of a computation can be seen as the equivalent 
of a mathematical theorem. When publishing results of statistical research, it is desirable for an 
interested reader to be able to verify and regenerate these results. Even more desirable to an 
interested researcher is to be able to inspect the source code, modify it and produce variations of 
the results. Buckheit and Donoho (1995) outline the topic of Reproducible Research – "When we 
publish articles containing figures which were generated by computer, we also publish the 
complete software environment which generates the figures." They propose to publish research 
papers as electronic books and include the software environment the results where generated with 
to make them interactively accessible.  
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The approach presented in this paper is meant to solve the challenges stated above. This paper 
describes a client that offers access to the statistical computing environment XploRe with its 
broad range of available statistical methods (see Härdle et al. 1999). Due to compatibility reasons 
the clients is fully programmed in Java. It can run as a Java application as well as being started as 
a Java applet. Special configuration files allow for influencing appearance and behavior of the 
XQC. 
 
 
2 XploRe Quantlet Client/Server Architecture 
 
The general XploRe Quantlet Client/Server (XQC/XQS) architecture is based on a common three 
level client/server model as shown in figure 1. It consists of the main components server, 
middleware and client (see Kleinow and Lehmann 2001). 
 
A server  is offering services to one or more client(s). The server of the XQC/XQS architecture 
consists of the XploRe Quantlet Server (XQS) representing the powerful statistical computing 
engine written in C++ that provides a high-level statistical programming language. Running on a 
remote computer the XQS can offer a magnitude of computer power, which many users would 
not be able to access in other ways. Having access to the method- and database the XQS and the 
method- and database respectively is easily extendible by new statistical methods via XploRe 
programs (Quantlets) as well as native code methods, e.g. -dll and -so. For server side 
communication purposes the middleware MD*Serv is attached to the XQS. The Communication 
between MD*Serv and XploRe server is realized via standard I/O streams – the middleware reads 
from the server's standard input and writes to its standard output. 
 
The server offers access to a data- and method pool, which contains a variety of methods and 
data. This easy extendible database ensures the possibility to add newly developed statistical 
methods and to use them via the client without any changes on the client side. 
 

XploRe Quantlet Client

CLIENT 1

MD*Crypt Package

Internet/Intranet via TCP/IP

MD*Serv

XploRe Quantlet Server

SERVER

XploRe Quantlet Client

CLIENT 2

MD*Crypt Package

Internet/Intranet via TCP/IP

XploRe Quantlet Server

Methods
& Data

Methods
& Data

Methods
& Data  

 
Figure 1: XQS/XQC architecture 

 
The client is the part of the architecture requesting a service. Using the client the user is able to 
access the statistical methods, data and computing power offered by the server. The XploRe 
Quantlet Client (XQC), responsible for presenting the statistical results, represents the client of 
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the XQC/XQS architecture. For client side communication purposes the MD*Crypt package is 
attached to the client. The MD*Crypt package supports the client side communication between 
client and server in the XQC/XQS model. It is implemented in a single Java package to make it 
available to different clients, e.g. XQC and GraphFitI (Blauth, 2000), without double 
programming effort. The MD*Crypt package gets in and keeps contact to MD*Serv using the 
MD*Crypt protocol. Via TCP/IP incoming data are prepared to be available to the client in an 
easy accessible way. On the other hand MD*Crypt package offers methods that allow to send 
commands to the XploRe server (see Feuerhake 2001). Running as an application or a certified 
applet the XQC can access its own local data pool containing statistical methods and data. 
 
 
3 Aims of the XQC 
 
The XploRe Quantlet Client (XQC) represents the front end - the user interface (UI) of the 
XQC/XQS architecture. The XQC is fully programmed in Java. Using a pure Java solution the 
XQC does not depend on a certain computer platform. It can run on Windows and Mac platforms 
as well as on Unix and Linux machines. Running as an application or a certified applet the XQC 
can access resources of the computer it is running on. Because of Java's sandbox principle the 
XQC underlies restrictions of accessing the local system while running as an applet. 
Unfortunately these restrictions also restrict its functionality of accessing local methods and data. 
Figure 2 shows a screen shot of the XQC running as an application. 
 

 
Figure 2: XQC in action 

 
The appearance of the XQC is based on the MS Windows XploRe version (see Härdle et al. 
1999) to ensure an easy handling and a familiar look. In difference to MS Windows version that 
only offers a CUI the XQC combines a CUI with GUI functionality. The CUI (Character-UI) 
functionality is realized by a console that offers direct command line access to the XploRe server 
and an editor-window with a text area for writing and executing more than just a single line 
command. To make use of this functionality the potential user needs to be familiar with the 
XploRe programming language. The GUI (Graphical-UI) functionality is realized by a combined 
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data- and method-window. It enables the user to explore data with given methods without having 
to know the XploRe language itself. Like the name implies the data- and method-window consists 
of two parts - an excel-like table for editing the data and a tree with methods for the use on the 
data. 
 
Property files allow for customizing the XQC to meet special needs and thus to manage its 
appearance and behavior. Because of its pure Java implementation, the resulting platform 
independence and the customizability via property files the XQC recommends itself for the 
integration into HTML and PDF contents (e.g. electronic books) for visualizing statistical and 
mathematical coherences. 
 
 
4 Structure of the XQC 
 
Due to the characteristic of the Java programming language all components of the XQC are 
capsulated in it's own class object respectively. This object-oriented characteristic of the Java 
language offers the possibility to reuse certain objects in other projects as shown for the XQC plot 
classes. 
  

capsulated for non-XQC use 

XApplet 

XClient 

XClientAction 

XProperties 

XConsole 

XEditorFrame 

XDataMethodFrame 

XDataMethodFrameAction XDataTabelModel 

XOutputFrame 

XDataMethodFrameTree 

xqc.ini 

XDisplayFrame 

XDisplay XPlot XPlotAction 

xqc_methodtree.ini 

MD*Crypt 

XQSListener 

XQSListener 

XQSListener 

XQServer 

... Helper Classes ... 

 
 

Figure 3: XQC - Structure 
 



 5

Figure 3 shows the general structure of the XQC and it's main components. Each square implies a 
single Java class. There also exist some – I would call them – "helper classes" used by other 
classes within the process but not shown in figure 3. Examples of these "helper classes" are a 
dialog class for message and error dialogs, classes to handle local files and Internet files (data and 
methods). 
 
 
 
4.1 XClient – The Star ting Point 
 
The XClient.class works as the "Starting point" or "Main class" of the XQC. Calling its main-
method a new instance of this class is created. The desktop frame with its menu bar represents 
this object visually. First activity of the XClient-object is to create an instance of the 
XProperties.class in order to access the xqc.ini file. Among other information this file contains 
information about the server and port to connect to. Property files will be discussed in detail later 
on. Using the given information the XQC tries to establish a TCP/IP connection to the server. For 
this purpose it uses MD*Crypt's services and creates an instance of the XQServer.class (see 
MD*Crypt package). This XQServer.class contains different methods that allow communication 
with the server. 
 
 
4.2 User Inter faces 
 
A user interface is a component that allows for interaction with another computer or like in our 
case server respectively. Two different types of interfaces can be distinguished – a Character User 
Interface (CUI) and a Graphical User Interface (GUI). A Character User Interface presents 
information to the user as text. It requires the user to type commands (known as command lines) 
to run programs. Unix and MS DOS are examples of CUIs. A Graphical User Interface on the 
other hand is an interface consisting of graphical elements such as windows, icons and as with the 
XQC of trees with underlying options. The user can select and activate these options by using 
pointing devices like a mouse. Since the user does not have to type in certain code in order to use 
options or to start programs or functions the GUI is much easier to use. 
 
 
4.2.1 Character User I nter face – CUI  
 
The XQC's CUI is primarily meant for experienced XploRe users. It requires the user to be 
familiar with the XploRe programming language. 
 

 
Figure 4: Console 

 
The XQC's component CONSOLE represents one part of the Character User Interface (CUI). It 
consists of a command line window that allows entering single-line commands. These commands 
can be sent to the server for direct processing. Console itself does not have implemented an 
XQSListener (see MD*Crypt package) and can consequently not receive any results coming from 
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the XploRe server. A history of the last 20 commands sent to the server helps to keep an 
overview. They can easily be selected and executed again. 
 

 
Figure 5: Editor frame 

 
The EDITOR FRAME represents an extension of the single-line Console. This component is 
also part of the Character User Interface (CUI). It allows for writing and editing complete XploRe 
programs (XploRe Quantlets). In difference to the Console this XploRe code will not be send to 
and executed by the server after typing in a single line. Instead the execution is triggered for the 
complete XploRe program by clicking the according 'Execute' icon. 
 
Both components do not receive any results coming from server. Depending on its kind result is 
either shown as text within the Output/Result frame or presented graphically in a display (part of 
the GUI). 
 
As mentioned above, main task of the OUTPUT FRAME is the presentation of text output 
coming from the server. Therefore this component implements an XQSListener of the MD*Crypt 
package. Received content is not converted in any kind. 
 
 
4.2.2 Graphical User Inter face – GUI  
 
The GUI is primarily thought for users that are not familiar with the statistical programming 
language XploRe and/or users that want to use existing statistical methods on their own data sets. 
Basic feature of a GUI is a surface that can be controlled intuitionally. A simple mouse-click can 
trigger functions of the underlying program without the need for the user to type a line of code. 
 
The XQC's graphical user interface consists of several components. Right after starting the client 
a DESKTOP FRAME appears on the screen. Its menu bar allows for example to connect and 
disconnect with an XploRe server, open and save programs and data sets or to download data 
objects from server. Due to the sandbox concept of the Java programming language it must be 
distinguished between running the XQC as an application, a certified or a pure applet. Pure 
applets are limited in their functionality. They are not allowed to access local files or to use the 
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copy and paste functionality of the underlying operation system. For using the full functionality 
of the XQC it should be started as an application or a certified applet. 
 
Most important GUI component for communication with the XploRe server is the METHOD and 
DATA FRAME. As shown in figure 6 this component consists of a method tree and a table 
model – a spreadsheet. Following its function as an input component of the GUI the method and 
data frame sends commands (methods and data) to the server via the MD*Crypt protocol. Server 
results are either shown within the Output/Result frame or presented graphically in a display. 
 

 
Figure 6: Method and data frame 

 
The structure of the TABLE model is similar to a common spreadsheet. It holds the data that are 
object of research. To execute methods on the data, parts of the data set can be selected column 
wise or cell wise. Selection mode is chosen via the icons or the spreadsheet's context menu. In 
addition the table model allows maintaining column headers. These headers can either be set 
automatically while opening a dataset or manually via the spreadsheet's context menu. Headers 
are used for axis description within plots. This makes an interpretation of graphical output much 
easier. It is also possible to upload data to the server and to use those uploaded data within CUI 
components, e.g. programs written in the editor frame. Manipulation of the data set like deleting 
and inserting new rows is possible via the spreadsheet's context menu. 
 
The METHOD TREE is a collection of executable methods thematically grouped. Navigation 
within the tree is very similar to a common file explorer (MS Windows Explorer). Analogous to 
the common file explorer the tree can consists of nodes and Childs on several levels. In the actual 
version of the XQC (version 1.4) the number of levels is limited to four levels. Childs represent 
statistical methods that can be used on the data. Nodes can be used to group methods. Using a 
special property file, that is discussed in detail later on, the method tree can be set up individually. 
This feature makes it possible to configure the XQC for different statistical or mathematical 
purposes, e.g. ‘Basic Statistics’  or ‘Multivariate Statistics’ . The executable methods are XploRe 
programs that can either be stored at client side or at server side. As a defined strategy the XQC 
first tries to find a method on the client’s computer. On failure the XQC looks for the method on 
the server’s method pool (see figure 1). 
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To keep track of data uploaded to the server the XQC offers a HISTORY. This history contains a 
list of variable names of the uploaded data. Selecting a variable shows the source of this variable, 
changes performed on the variable and it’s actual content. Due to performance reasons only 
uploaded data and actions on data from the CUI component CONSOLE and the GUI component 
TABLE MODEL are recorded. Parsing executed XploRe programs for uploaded variable 
information is not (yet) realized – this would slow down the speed of program’s execution. For a 
future release it is planned to make the user able to record those data uploads and actions as well, 
adjustable via the property file. 
 
Output within the GUI is realized throughout the PLOT CLASSES. These classes are 
responsible to present server results graphically. To receive results from the server plot classes 
have implemented MD*Crypt’s XQSListener (see figure 3). Plot classes consist of different 
components – XDisplayFrame, XDisplay, XPlot and XPlotAction. One reason is the clarity in 
programming. Another even more important reason is an encapsulation of the pure plot classes 
(XDisplay, XPlot, XPlotAction) to make its functionality useable outside the XQC, useable for 
other client that want to use the XploRe server (see Mori). Only function of XDisplayFrame is the 
implementation of a desktop frame. This frame holds the XDisplay – a panel that can easily be 
integrated into other common Java components. The XDisplay itself holds the single plots 
realized by the XPlot class. This class converts server results according to the received 
information about type, shape and color to graphical output. Three-dimensional plots can be 
rotated using a pointing device or the cursor keys. This feature helps to discover structures in data 
sets, e.g. clusters. A context menu offers additional functionality. Java tool tips are used to show 
the coordinates of point within the plot. 
 
In the current version of the XQC there is no communication (sending of information) from GUI 
components back to the XploRe server. A challenge for future work is to offer the possibility to 
manipulate data via GUI components and send those manipulations to the server. An example 
would be to mark outliers within plots and have them automatically marked in the spreadsheet as 
well. 
 
 
4.3 Configuration of the XQC 
 
Property files allow for configuration of the XQC to meet special needs of the user. These files 
can be used to manage the appearance and behavior of the XQC. As ordinary ASCII files any text 
editor can edit the configuration files. Generally all information is optional to use. 
 
The xqc.ini file contains the basic set-up of the XQC. 
 
Server = localhost 
Port = 4451 
 
Size = 0.9 
Width = 800 
Height = 600 
 
Up on start the XQC tries to connect to the server and port given in this file. If this information is 
missing the client starts with a dialog box to enter server and port manually. Size statements 
allow for adjusting the size the XQC takes on the screen – either by using a factor or by stating 
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it's exact width and height. To influence the behavior of the XQC the following property 
statements can be used: 
 
ShowOutputWindow = yes 
ShowCommandWindow = yes 
ExecuteCommands = normal(10,2) 
ExecuteProgram = file:///C:/.../normal.xpl 
OpenInEditor = file:///C:/.../test1.xpl 
OpenData = XQCROOT/decathlon.dat 
 
Using these settings it is possible to easily embed the XQC into multimedia contents. It could be 
started with executing a certain Quantlet stated in the file without displaying console or output 
frame. In this case the XQC behaves like a Java applet programmed for a particular task. It could 
also be started with just opening a dataset with certain predefined and customized methods to 
execute the methods on the dataset. Path statements are possible as absolute paths – locally 
(file:///…) or URL (http://…) – as well as relative to the directory the XQC has been started in 
(XQCROOT/…). 
 
ShowMethodTree = yes 
MethodTreeIniFile = xqc_methodtree.ini 
MethodPath = XQCROOT/xqc_quantlets/ 
 
The actual method tree is set up in a separate configuration file that is given by the property of 
MethodTreeIniFile. This file contains a systematic structure of the tree – nodes and childs, the 
method to be executed and it's description to be shown within the tree frame. 
 
Node_1 = path name 
  Child_1.1 = method|description 
  Child_1.2 = method|description 
  Child_1.3 = method|description 
 Node_2 = path name 
  Node_2.1 = path name 
   Child_2.1.1 = method|description 
 
The name of the method has to be identical to the name of the XploRe program (Quantlet). The 
Quantlet itself has to have a procedure with the same name as the method. This procedure is 
called by the XQC on execution within the method tree. 
 
A third property file allows setting up the XQC’s language. This file contains all texts used within 
the XQC. To localize the client the texts have to be translated. 
 
 
5 XQC in practice 
 
Important features of the XQC are its realization in the programming language Java and its 
configuration possibilities via the property files. Due to these features the client recommends 
itself for a broad range of use. As described in a previous chapter Java makes a platform 
independent use possible. The client can be used as an applet integrated into HTML content as 
well as a standalone application. 
 
The XploRe Quantlet Client is meant to address the following target groups: 
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− Statistical and mathematical newcomer 
By using the GUI functionality – e.g. a method tree set up for a certain topic for use on 
his/her own data 

− Experienced statisticians and mathematicians with knowledge of the XploRe language 
By using the CUI functionality – XploRe console, XploRe editor 

− Educational purposes 
XQC configured for a certain statistical and mathematical task using the configuration 
files 

− Electronic books 
Integration of the XQC in multimedia content (pdf, html) to publish statistical and 
mathematical results with the possibility of reproducible research 

 
Lets take for example a teacher who teaches his students basic statistics as happens in different 
areas. Not only a few students think of statistics as being far from reality and abstract. By using 
the XQC theoretical content can be filled with living examples. By using the property files the 
teacher is able to configure the XQC according to the subject of an ongoing lecture. A pre-
configured client for the topic 'One dimensional Statistics' could consist of executable XploRe 
programs illustrating the presentation of ordinal data with a histogram and the effect of changing 
the bandwidth. Students are able to verify content learned in class without the need of purchasing 
extensive statistical software packages. While using the XQC as an application or a signed applet 
the student would even be able to use the methods on his/her own data. 
 

 
Figure 7: XQC running as part of MM*Stat 

 
The MM*Stat project (Rönz, 2001) is an example of the XQC being integrated into an e-learning 
environment. MM*Stat is a HTML-based multimedia tool for supporting teaching and learning 
statistics in its basics. This tool is either available online via the Internet (http://www.md-
stat.com) or as a CD version. Beside lecture unit’s different kind of examples are offered to help 
to understand the theoretical content. The XQC offers its features within the interactive examples. 
These examples allow users to perform examples repeatedly with different data sets or variables 
or with changed parameters of the statistical method. Figure 7 shows an interactive MM*Stat 
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example – a Binomial distribution offering the possibility to change the parameter x, probability p 
and quantity n. As a result the distribution is shown graphically as well as the calculations for the 
given information. 
 
As mentioned in the introduction of this paper a basic tenet of scientific research is the 
requirement that research results should be reproducible by other scientists. "Taking care to 
preserve and document the devilish details of computer programs pays dividends not only in the 
communication with other scientists, but also for the person conducting the research." (Gentle) 
Claerbaout et al (2000) give rules and examples of publishing documents allowing for 
reproducible research. They publish CD-ROMs that contain the text of their work along with a 
special viewer that makes those research results interactive documents. While reading those 
documents it is possible to open separate windows for figures in the document that allow for 
interaction with the code that actually generated the figure. 
 
The XQC offers similar functionality. To realize desired reproducibility in scientific publications 
the XQC could easily be integrated into PDF or HTML content. Examples of these kinds of 
documents are available at http://www.xplore-stat.de/ebooks/ebooks.html. Most of the graphical 
figures contain a link that starts the XQC. Depending on the configuration the client behaves 
different. It either just executes the underlying XploRe method and rebuilds the figure or it 
additionally opens the editor frame allowing the reader to verify, change and execute the coding. 
Publication is not limited to the use of the Internet. A CD-ROM that contains the interactive 
document could also contain all parts of the XQC/XQS architecture. In this case client and server 
are running locally after started via an interactive link. In an even more extended version the CD-
ROM could contain a Java Runtime Environment (JRE) avoiding the need of a locally installed 
JRE. 
 
 
6 XQC among other web based statistical/mathematical solutions 
 
Searching the Internet for web based statistical/mathematical solutions leads to three different 
approaches: 
 
1. CGI techniques 
2. "Standalone" Java applets 
3. Java based distributed computing 
 
Using CGI techniques the user enters data or the location of a data file via a CGI interface. A 
statistical program on the server side calculates and sends back the results to the user. The user 
will get the results either right away – shown in the browser window or the result will be sent to 
the user by e-mail. Examples are given by Inoue et al (2001), the MMM project (Günther et al, 
http://macke.wiwi.hu-berlin.de/mmm/) the Rweb project (http://www.math.montana.edu/Rweb/). 
The advantage of the CGI approach is the use of an architecture that is similar to the client/server 
architecture. With the statistical program running on the server side the user can access resources 
of a powerful computing system as offered by our XQC/XQS approach. The disadvantage of the 
CGI is the lack of interactivity. A CGI program works as a new individual process against a 
HTTP request without any communication that takes place between different processes. 
 
Interactivity is an advantage offered by the use of Java applets. Most statistical (standalone) 
applets available via the World Wide Web have two things in common - they are completely 
programmed in Java and integrated in one single applet. Therefore, the user has to download the 
whole program containing the computation algorithm as well as routines for presenting the 
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results. Examples of such statistical applets are the Internet Statistical Computing Center 
(http://www.statlets.com) and the WebStat project of the University of South Carolina 
(http://www.stat.sc.edu/webstat/). The XQC/XQS architecture on the other hand splits the load 
between the client and the server. The Java client only has to present the output computed by the 
server. Therefore it can be a relatively slim application. 
 
For calculating just a simple histogram of a small dataset the use of a single Java applet would be 
an appropriate way. But the more complex a statistical algorithm gets and the larger the datasets 
are the more difficult is a pure Java implementation of these algorithms and the more load lies on 
the client computer. Computing a nonparametric time series process that contains about a 
thousand observations within a single Java applet is hardly possible. The computational load of 
the XQC/XQS model lies on the server side that can take advantage of a powerful underlying 
computer architecture. This speeds up the computational process significantly. Due to the 
communication process between client and server which takes place the XQC might take a little 
longer for calculating simple statistical problems compared to a pure Java applet. But with 
increasing complexity the time saved using the server power exceeds the time needed for the 
communication process. 
 
Extending an existing Java applet with a new statistical method implies a high effort for 
reprogramming the method. The new method, usually developed using a statistical software 
package, would have to be reprogrammed in Java. Extending the XQC/XQS model just means to 
add the new method programmed in XploRe to the server's or to the client's method pool without 
any reprogramming effort on the client or server side. 
 
Besides our XQC/XQS project there exist other projects using client/server approaches for 
statistical computing via the Internet. One example is the Jasp project (http://jasp.ism.ac.jp/index-
e.html), see Kobayashi et al (2001). Jasp is a statistical system whose language is based on Pnuts 
(http://javacenter.sun.co.jp/pnuts/). Like the XQC/XQS model the Jasp approach uses the 
advantages of Java and Java applets respectively to implement a user interface. The user interface 
- a mixed user interface consisting of a CUI as well as a GUI - is an advantage of the JASP 
project over the current version of the XploRe Quantlet Client. It only offers a CUI, where 
knowledge of the programming language XploRe is required to perform statistical computing. 
But the XQC is not only meant to work like a "conventional" program – the advantage of the 
XQC is the possibility to customize its behavior via a configuration file. This characteristic offers 
a way to extend the features of electronically enhanced books (e-books) towards interactive 
examples. The Jasp approach allows for distributed computing on several servers whereas in the 
XQC/XQS model a client chooses a certain server that computes the data of this (and possible 
other) client(s) during the entire session. 
 
Pure web-based client/server approaches suffer from well-known problems of the Internet – the 
security of data transferred via the Internet, the stability and the speed of the network/modem 
connection that may represent the bottleneck of the client/server architecture. Encrypting the data 
could solve the security problem. To take advantage of the server's speed a fast and stable 
network/modem connection is required for the transport of data and results. The quite fast 
technical development in this area should help to solve this problem in the future. 
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