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Abstract
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1 Introduction

Nonparametric methods have become a core area in statistics (see, e.g., Härdle, 1990; Fan and

Gijbels, 1996) in the last two decades and have been used successfully to various fields such as

economics and finance (see, e.g., Pagan and Ullah, 1999; Mittelhammer, Judge and Miller,

2000) due to their advantage of requiring little prior information on the data generating

process. Recently, nonparametric techniques have been proved to be the most attractive

way to conduct research and gain economic intuition in certain core areas in finance, such as

asset and derivative pricing, term structure theory, portfolio choice, and risk management,

particularly, in modeling continuous-time models.

Finance is characterized by time and uncertainty. Continuous-time modelling has been a

basic analytic tool in modern finance since the seminar papers by Black and Scholes (1973)

and Merton (1973). The rationale behind it is that most of time, news arrives at finan-

cial markets in a continuous manner. More importantly, derivative pricing in theoretical

finance is generally much more convenient and elegant in a continuous-time framework than

through binomial or other discrete approximations. However, statistical analysis based on

continuous-time financial models has just emerged as a field in less than a decade. This

is apparently due to the difficulty of estimating and testing continuous-time models using

discretely observed data. The purpose of this survey is to review some recent developments

of nonparametric methods in continuous-time finance, and particularly in the areas of non-

parametric estimation and testing of diffusion models, and derivative pricing. Financial

time series data have some distinct important stylized facts, such as persistent volatility

clustering, heavy tails, strong serial dependence, and occasionally sudden but large jumps.

In addition, financial modelling is often closely embedded in a financial theoretical frame-

work. These features suggest that standard statistical theory may not be readily applicable

to financial time series. This is a promising and fruitful area for both financial economists

and statisticians to interact each other.

Section 2 introduces various continuous-time diffusion processes and nonparametric es-

timation methods for diffusion processes. Section 3 reviews the estimation and testing of a

parametric diffusion model using nonparametric methods. Section 4 discusses nonparametric

estimation of derivative pricing, particularly the estimation of risk neutral density functions.

Section 5 concludes.
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2 Diffusions and Nonparametric Estimation

2.1 Models

Modeling the dynamics of interest rates, stock prices, foreign exchange rates, and macroe-

conomic factors, inter alia, is one of the most important topics in asset pricing studies. The

instantaneous risk-free interest rate or the so-called short rate is, for example, the state vari-

able that determines the evolution of the yield curve in an important class of term structure

models, such as Vasicek (1977) and Cox, Ingersoll and Ross (1985, CIR). It is of fundamental

importance for pricing fixed-income securities. Many theoretical models have been developed

in mathematical finance to describe the short rate movement.1

In the theoretical term structure literature, the short rate or the underlying process of

interest, {Xt, t ≥ 0}, is often modelled as a time-homogeneous diffusion process, or stochastic

differential equation,

dXt = µ(Xt) dt+ σ(Xt) dBt, (2.1)

where {Bt, t ≥ 0} is a standard Brownian motion. The functions µ(·) and σ2(·) are respec-

tively the drift (or instantaneous mean) and the diffusion (or instantaneous variance) of the

process, which determine the dynamics of the short rate.

There are two approaches to modeling µ(·) and σ(·). The first is a parametric approach,

which assumes some parametric forms µ(·, θ) and σ(·, θ), and estimates the unknown model

parameters θ. Most existing models in the literature assume that the interest rate exhibits

mean-reversion and that the drift µ(·) is a linear function of the interest rate level. It is

also often assumed that the diffusion σ(·) takes the form of σ |Xt|γ, where γ measures the

sensitivity of interest rate volatility to the interest rate level. This specification, in modelling

interest rate dynamics, captures the so-called “level effect”; i.e., the higher the interest rate

level, the larger the volatility. With γ = 0 and 0.5, the model (2.1) reduces to the well-

known Vasicek and CIR models, respectively. The forms of µ(·, θ) and σ(·, θ) are typically

chosen due to theoretical convenience. They may not be consistent with the data generating

process.

The second approach is a nonparametric one, which does not assume any restrictive

functional form for µ(·) and σ(·) beyond regularity conditions. In the last few years, great

progress has been made in estimating and testing continuous-time models for the short term

interest rate using nonparametric methods.2 Despite many studies, empirical analysis on the

1Other theoretical models are studied by Brennan and Schwartz (1979), Constantinides (1992), Courtadon
(1982), Cox, Ingersoll and Ross (1980), Dothan (1978), Duffie and Kan (1996), Longstaff and Schwartz
(1992), Marsh and Rosenfield (1983), and Merton (1973). Heath, Jarrow and Morton (1992) consider another
important class of term structure models which use the forward rate as the underlying state variable.

2Empirical studies on the short rate include Ait-Sahalia (1996a, b), Andersen and Lund (1997), Ang and
Bekaert (1998), Brenner, Harjes and Kroner (1996), Brown and Dybvig (1986), Chan, Karolyi, Longstaff

2



functional forms of the drift and diffusion is still not conclusive. For example, recent studies

by Ait-Sahalia (1996b) and Stanton (1997) using nonparametric methods, overwhelmingly

reject all linear drift models for the short rate. They find that the drift of the short rate

is a nonlinear function of the interest rate level. Both studies show that for the lower and

middle ranges of the interest rate, the drift is almost zero, i.e., the interest rate behaves like

a random walk. But the short rate exhibits strong mean-reversion when the interest rate

level is high. These findings lead to the development of nonlinear term structure models

such as those of Ahn and Gao (1999).

However, the evidence of nonlinear drift has been challenged by Pritsker (1998) and

Chapman and Pearson (2000), who find that the nonparametric methods of Ait-Sahalia

(1996b) and Stanton (1997) have severe finite sample problems, especially near the extreme

observations. The finite sample problems with nonparametric methods cast doubt on the

evidence of nonlinear drift. On the other hand, the findings in Ait-Sahalia (1996b) and

Stanton (1997) that the drift is nearly flat for the middle range of the interest rate are

not much affected by the small sample bias. Chapman and Pearson (2000) point out that

this is a puzzling fact, since “there are strong theoretical reasons to believe that short rate

cannot exhibit the asymptotically explosive behavior implied by a random walk model.”

They conclude that “time series methods alone are not capable of producing evidence of

nonlinearity in the drift.” Recently, Fan and Zhang (2001) fit a nonparametric model using

local linear technique and apply the generalized likelihood ratio test of Fan, Zhang and

Zhang (2001) to test whether the drift is linear. They support Chapman and Pearson’s

(2000) conclusion. However, the generalized likelihood ratio test is developed by Fan, Zhang

and Zhang (2001) for the iid samples but it is unknown whether it is valid for financial

time series contexts, which is warranted for a further investigation. Interest rate data are

well-known for persistent serial dependence. Pritsker (1998) uses Vasicek’s (1977) model of

interest rates to investigate the performance of a nonparametric density estimation in finite

samples. He finds that asymptotic theory gives poor approximation even for a rather large

sample size.

Controversies also exist on the diffusion σ(·). The specification of σ(·) is important,

because it affects derivative pricing. Chan, Karolyi, Longstaff and Sanders (1992) show that

in a single factor model of the short rate, γ roughly equals to 1.5 and all the models with

γ ≤1 are rejected. Ait-Sahalia (1996b) finds that γ is close to 1, Stanton (1997) finds that

in his simiparametric model γ is about 1.5, and Conley, Hansen, Luttmer and Scheikman

(1997) show that their estimate of γ is between 1.5 and 2. However, Bliss and Smith (1998)

and Sanders (1992), Chapman and Pearson (2000), Chapman, Long and Pearson (1999), Conley, Hansen,
Luttmer and Scheinkman (1997), Gray (1996), and Stanton (1997).
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argue that the result that γ equals 1.5 depends on whether the data between October 1979

to September 1982 are included.

2.2 Nonparametric estimation

Under some regularity conditions (Jiang and Knight, 1997; Bandi and Nguyen, 2000a),

the diffusion process in (2.1) is a one-dimensional, regular, strong Morkov process with

continuous sample paths and time-invariant stationary transition density. The drift and

diffusion are respectively the first two moments of the infinitesimal conditional distribution

of Xt :

µ(Xt) = lim
∆→0

E

{
Xt+∆ −Xt

∆

∣∣∣Xt

}
(2.2)

and

σ2(Xt) = lim
∆→0

E

{
(Xt+∆ −Xt)

2

∆

∣∣∣Xt

}
. (2.3)

See, e.g., Øksendal (1985) and Karatzas and Shreve (1988). The drift describes the movement

of Xt due to time changes, whereas the diffusion term measures the magnitude of random

fluctuations around the drift.

Using the Dynkin operator (see, e.g., Øksendal, 1985; Karatzas and Shreve, 1988), Stan-

ton (1997) shows that the first order approximation

µ(Xt)
(1) =

1

∆
E {Xt+∆ −Xt |Xt}+O(∆),

the second order approximation

µ(Xt)
(2) =

1

2∆
[4 E {Xt+∆ −Xt |Xt} − E {Xt+2∆ −Xt |Xt}] +O(∆2),

and the third order approximation

µ(Xt)
(3) =

1

6∆
[18 E {Xt+∆ −Xt |Xt} − 9 E {Xt+2∆ −Xt |Xt}

+2 E {Xt+3∆ −Xt |Xt}] +O(∆3),

etc. Fan and Zhang (2001) derive higher-order approximations. Similar formulas hold for

the diffusion (Stanton, 1997). Bandi and Nguyen (2000a) argue that approximations to the

drift and diffusion of any order display the same rate of convergence and limiting variance, so

that asymptotic argument in conjunction with computational issues suggest simply using the

first order approximations in practice. As indicated by Stanton (1997, p.1982), the higher

the order of the approximations, the faster they will converge to the true drift and diffusion.

However, as noted by Bandi and Nguyen (2000a) and Fan and Zhang (2001), higher order

approximations can be detrimental to the efficiency of the estimation procedure in finite
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samples. In fact, the variance grows nearly exponentially fast as the order increases and

they are much more volatile than their lower order counterparts. For more discussions, see

Bandi (2000), Bandi and Nguyen (2000a), and Fan and Zhang (2001).

Now suppose we observe Xt at t = τ∆, τ = 1, . . . , n, in a fixed time interval [0, T ] with

T . Denote the random sample as {Xτ∆}nτ=1. Then from (2.2) and (2.3) that the first order

approximations to µ(·) and σ(·) lead to

µ(Xτ∆) ≈
1

∆
E[X(τ+1)∆ −Xτ∆|Xτ∆] and σ2(Xτ∆) ≈

1

∆
E[(X(τ+1)∆ −Xτ∆)

2 |Xτ∆]

for all 1 ≤ τ ≤ n− 1. This becomes a classical nonparametric regression problem.

There are many nonparametric approaches to estimating conditional expectations. Most

existing nonparametric methods in finance dwell mainly on the Nadaraya-Watson (NW)

kernel estimator due to its simplicity. According to Ait-Sahalia (1996a, b), Stanton (1997),

Jiang and Knight (1997), and Chapman and Pearson (2000), the NW estimators of µ(x) and

σ2(x) are given, respectively, by

µ̂(x) =
1

∆

∑n−1
τ=1(X(τ+1)∆ −Xτ∆) Kh(x−Xτ∆)∑n−1

τ=1Kh(x−Xτ∆)
,

and

σ̂2(x) =
1

∆

∑n−1
τ=1(X(τ+1)∆ −Xτ∆)

2 Kh(x−Xτ∆)∑n−1
τ=1Kh(x−Xτ∆)

, (2.4)

where Kh(u) = K(u/h)/h, h = hn > 0 is the bandwidth with h → 0 and nh → ∞ as

n→∞, and K(·) : R → R is a standard kernel. Jiang and Knight (1997) suggest first using

(2.4) to estimate σ2(·). Observing that the drift

µ(Xt) =
1

2 π(Xt)

∂[σ2(Xt)π(Xt)]

∂Xt

,

where π(·) is the stationary density of {Xt} (see, e.g., Ait-Sahalia, 1996a; Jiang and Knight,

1997; Stanton, 1997; Bandi and Nguyen, 2000a), Jiang and Knight (1997) suggest estimating

µ(·) by

µ̂(x) =
1

2 π̂(x)

∂
{
σ̂2(x) π̂(x)

}

∂x
,

where π̂(·) is a consistent estimator of π(·), say, the classical kernel density estimator. The

reason of doing so is based on the fact that in (2.1) the drift is of order dt and the diffusion

is of order
√
dt, as (dBt)

2 = dt + O((dt)2). That is, the diffusion has lower order than the

drift for infinitesimal changes in time, and the local-time dynamics of the sampling path

reflects more of the diffusion than those of the drift term. Therefore, when ∆ is very small,

identification becomes much easier for the diffusion term than the drift term.
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It is well known that the NW estimator suffers from some disadvantages such as larger

bias, boundary effects, and inferior minimax efficiency (see, e.g., Fan and Gijbels, 1996). To

overcome these drawbacks, Fan and Zhang (2001) suggest using the local linear technique,

for k = 1 and 2,

n−1∑

τ=1

{
∆−1(X(τ+1)∆ −Xτ∆)

k − β0 − β1 (x−Xτ∆)
}2

Kh(x−Xτ∆), (2.5)

which gives the local linear estimate of µ(·) for k = 1 and σ2(·) for k = 2. However, the

local linear estimator of the diffusion σ(·) cannot be always nonnegative in finite samples.

To attenuate this disadvantage of local polynomial method, a weighted NW method due to

Cai (2001) can be used to estimate σ(·) although the method needs further verification.

The asymptotic theory can be found in Jiang and Knight (1997) and Bandi and Nguyen

(2000a) for the NW estimator and in Fan and Zhang (2001) for the local linear estimator. To

implement kernel estimates, the bandwidth(s) must be chosen. In the iid setting, there are

theoretically optimal bandwidth selections. There are no such results for diffusion processes

available although there are many theoretic and empirical studies in the literature.

One crucial assumption in the above development is the stationarity of {Xt}. However,

it might not hold for real financial time series data. If {Xt} is not stationary, Bandi and

Phillips (2003) propose using the following estimators to estimate µ(x) and σ2(x),

µ̂(x) =

∑n
τ=1Kh(x−Xτ∆) µ̃(Xτ∆)∑n

τ=1Kh(x−Xτ∆)
, and

σ̂2(x) =

∑n
τ=1Kh(x−Xτ∆) σ̃

2(Xτ∆)∑n
τ=1Kh(x−Xτ∆)

,

where

µ̃(x) =
1

∆

∑n−1
τ=1 I(|Xτ∆ − x| ≤ b) (X(τ+1)∆ −Xτ∆)∑n

τ=1 I(|Xτ∆ − x| ≤ b)
, and

σ̃2(x) =
1

∆

∑n−1
τ=1 I(|Xτ∆ − x| ≤ b) (X(τ+1)∆ −Xτ∆)

2

∑n
τ=1 I(|Xτ∆ − x| ≤ b)

.

See, also Bandi and Nguyen (2000a). Here, b = bn > 0 is a bandwidth-like smoothing pa-

rameter that depends on the time span and on the sample size, which is called the spatial

bandwidth in Bandi and Phillips (2003). This modeling approach is termed as the chrono-

logical local time estimation. Bandi and Philips’s approach can deal well with the situation

that the series is not stationary. The reader is referred to the papers by Bandi and Phillips

(2003) and Bandi and Nguyen (2000a) for more discussions and asymptotic theory.

Bandi and Philips’s (2003) estimator can be viewed as a two-step smoothing method:

The first step defines straight sample analogs to the values that drift and diffusion take at
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the sampled points. Indeed, this step uses the smoothing technique (a linear estimator with

same weights) to obtain the raw estimates of the two functions µ̃(x) and σ̃2(x), respectively.

To implement this estimator, an empirical and theoretical study on the selection of two

bandwidths b and h is needed.

2.3 Time-dependent diffusion models

The time-homogeneous diffusion models in (2.1) have certain limitations. For example, they

cannot capture the time effect. A variety of time-dependent diffusion models have been

proposed in the literature. A time-dependent diffusion process is

dXt = µ(Xt, t) dt+ σ(Xt, t) dBt. (2.6)

Examples of (2.6) include Ho and Lee (HL) (1986), Hull and White (HW) (1990), Black,

Derman and Toy (BDT) (1990), and Black and Karasinski (BK) (1991), among others. They

consider respectively the following models:

HL: dXt = µ(t) dt+ σ(t) dBt,

HW: dXt = [α0 + α1(t)Xt] dt+ σ(t)Xk
t dBt, k = 0 or 0.5

BDT: dXt = [α1(t)Xt + α2(t)Xt log(Xt)] dt+ σ(t)Xt dBt,

BK: dXt = [α1(t)Xt + α2(t)Xt log(Xt)] dt+ σ(t)Xt dBt,

where α2(t) = σ′(t)/σ(t). Similar to (2.2) and (2.3), one haw

µ(Xt, t) = lim
∆→0

E{Xt+∆ −Xt |Xt}
∆

and σ2(Xt, t) = lim
∆→0

E {(Xt+∆ −Xt)
2 |Xt}

∆
,

which provide a regression form for estimating µ(·, t) and σ2(·, t).
Fan, Jiang, Zhang and Zhou (2001) consider the following time-varying coefficients single

factor model

dXt = [α0(t) + α1(t)Xt] dt+ β0(t)X
β1(t)
t dBt, (2.7)

and use the local linear technique in (2.5) to estimate the coefficient functions {αj(·)} and

{βj(·)}. Since the coefficients depend on time, {Xt}might not be stationary. The asymptotic

properties of the resulting estimators are still unknown. The aforementioned models are

a special case of the following more general time-varying coefficient multi-factor diffusion

models

dXt = µ(Xt, t) dt+ σ(Xt, t) dBt, (2.8)

where

µ(Xt, t) = α0(t) + α1(t) g(Xt), and (σ(Xt, t)σ(Xt, t)
′)ij = β0,ij(t) + β1,ij(t)

′ hij(Xt),
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and g(·) and {hij(·)} are known functions. This is the time-dependent version of the multi-

factor affine models studied in Duffie, Pan and Singleton (2000). It allows time-varying

coefficients in multi-factor affine models. A further theoretical and empirical study of the

time-varying coefficient multi-factor diffusion model in (2.8) is warranted.

2.4 Jump diffusion models

There has been a vast literature on the study of diffusion models with jumps; see, for

example, Pan (1997), Duffie and Pan (2001), Bollerslev and Zhou (1999), Eraker, Johannes

and Polson (1999), Bates (2000), Duffie, Pan and Singleton (2000), Johannes (2000), Liu,

Longstaff and Pan (2002), Zhou (2001), Singleton (2001), Perron (2001), Chernov, Gallant,

Ghysels and Tauchen (2002). The main purpose of adding jumps into diffusion models or

stochastic volatility diffusion models is to accommodate impact of sudden and large shocks

to financial markets, such as macroeconomic announcements, the Asian and Russian finance

crisis, an unusually large unemployment announcement, and a dramatic interest rate cut by

the Federal Reserve. For more discussions on why it is necessary to add jumps into diffusion

models, see, for example, Lobo (1999), Bollerslev and Zhou (1999), Liu, Longstaff and Pan

(2002), and Johannes (2000), among others. Jumps can capture the heavy tail behavior of

the distribution of the underlying process.

For the expositional purpose, we only consider a single factor diffusion model with jump:

dXt = µ(Xt) dt+ σ(Xt) dBt + dJt, (2.9)

where Jt is a compensated jump process (zero conditional mean) with arrival rate λt =

λ(Xt) ≥ 0, which is an instantaneous intensity function, and the jump size, ξ, has a time-

invariant distribution Π(·) with mean zero. There are several studies on specification of Jt.

For example, Jt = ξ Pt, where Pt is a Poisson process with an intensity λ(Xt) or a binomial

distribution with probability λ(Xt), and Π(·) can be either normal or uniform. If λt(·) = 0

or E(ξ2) = 0, the jump-diffusion model in (2.9) becomes the diffusion model in (2.1). More

generally, Chernov, Gallant, Ghysels and Tauchen (2002) consider a Lévy process for {Jt}.
In practice, λ(·) might be assumed to have a particular form. For example, Chernov,

Gallant, Ghysels and Tauchen (2002) consider three different types of special forms, each

having the appealing feature of yielding analytic option pricing formula for European type

contracts written on the stock price index. There are some open issues for the jump-diffusion

model: (i) jumps are not observed and it is not possible to say surely if they exist; (ii) if

they exist, a natural question arises how to estimate a jump time τ , which is defined to be

the discontinuous time at which Xτ+ 6= Xτ−, and the jump size ξ, which is ξ = Xτ+ −Xτ−.

Wavelet methods may be potentially useful here.
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Similar to (2.2) and (2.3), the first two conditional moments are given by

µ1(Xt) = lim
∆↓0

E[{Xt+∆ −Xt} |Xt]

∆
= µ(Xt) + λ(Xt)E(ξ),

and

µ2(Xt) = lim
∆↓0

E
[
{Xt+∆ −Xt}2 |Xt

]

∆
= σ2(Xt) + λ(Xt)E(ξ2).

This implies that the first two moments are the same as those for a diffusion model by

using a new drift coefficient µ̃(Xt) = µ(Xt) + λ(Xt)E(ξ) and a new diffusion coefficient

σ̃2(x) = σ2(x) + λ(x)E(ξ2). However, the fundamental difference between a diffusion model

and a diffusion model with jumps relies on higher order moments. Using the infinitesimal

generator (Øksendal, 1985; Karatzas and Shreve, 1988) of Xt, we can compute, j > 2,

µj(Xt) = lim
∆→0

E[(Xt+∆ −Xt)
j
∣∣∣Xt]

∆
= λ(Xt)E(ξj).

See Duffie, Pan and Singleton (2000) and Johannes (2000) for details. Obviouslyt, jumps

provide a simple and intuitive mechanism for capturing the heavy tail behavior of interest

rates. In particular, the conditional skewness and kurtosis are given by

s(Xt) ≡ λ(Xt)E(ξ3)
[
σ2(Xt) + λ(Xt)E(ξ2)

]3/2 ,

k(Xt) ≡ λ(Xt)E(ξ4)
[
σ2(Xt) + λ(Xt)E(ξ2)

]2 .

Note that s(Xt) = 0 if ξ is symmetric. By assuming ξ ∼ N(0, σ2ξ), Johannes (2000) uses the

conditional kurtosis to measure the departures for the treasury bill data from normality and

concludes that interest rates exchanges are extremely non-normal.

The NW estimation of µj(·) is considered by Johannes (2000) and Bandi and Nguyen

(2000b). Moreover, Bandi and Nguyen (2000b) provide a general asymptotic theory for

the resulting estimators. Further, by specifying a particular form of Π(λ) = Π0(λ, θ), say,

ξ ∼ N(0, σ2ξ), Bandi and Nguyen (2000b) propose consistent estimators of λ(·), σ2ξ , and
σ2(·) and derive their asymptotic properties.

A natural question arises how to measure the departures from a pure diffusion model

statistically. That is to test the model (2.9) against the model (2.1). It is equivalent to

checking whether λ(·) ≡ 0 or ξ = 0. Instead of using the conditional skewness or kurtosis,

a test statistic can be constructed based on the higher order conditional moments. For

example, one can construct the following nonparametric test statistics

T1 =

∫
µ̂4(x)w(x) dx, or T2 =

∫
µ̂23(x)w(x) dx,
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where w(·) is a weighting function. This is under investigation theoretically and empirically.

More generally, for given a discrete sample of a diffusion process, can one tell whether

the underlying model that gave rise to the data was a diffusion, or should jumps be allowed

into the model? To answer this question, Ait-Sahalia (2002b) proposes an approach to

identifying the sufficient and necessary restriction on the transition densities of diffusions,

at the sampling interval of the observed data. This restriction characterizes the continuity

of the unobservable continuous sample path of the underlying process and is valid for every

sampling interval including long ones. Let {Xt, t ≥ 0} be a Markovian process taking

values in D ⊆ <. Let p(∆, y |x) denote the transition density function of the process over

interval length ∆, that is, the conditional density of Xt+∆ = y given Xt = x, and it is

assumed that the transition densities are time homogenous. Ait-Sahalia (2002b) shows that

if the transition density p(∆, y |x) is strictly positive and twice-continuously differentiable

on D ×D and the following condition

∂2

∂x ∂y
ln p(∆, y |x) > 0 for all ∆ > 0 and (x, y) ∈ D ×D,

which is the so called “diffusion criterion” in Ait-Sahalia (2002b), is satisfied, then, the

underlying process is a diffusion. From a discretely sampled time series {Xτ∆}, once could

test nonparametrically the hypothesis that the data were generated by a continuous-time

diffusion {Xt}. That is to test nonparametrically the null hypothesis

H0 :
∂2

∂x ∂y
ln p(∆, y |x) > 0 for all x, y

versus the alternative

HA :
∂2

∂x ∂y
ln p(∆, y |x) ≤ 0 for some x, y.

One could construct a test statistic based on checking whether the above “diffusion criterion”

holds for a nonparametric estimator of p(∆, y |x). This topic is still open.

2.5 Time-dependent jump diffusion models

Duffie, Pan and Singleton (2000) consider the time-varying coefficient intensity

λ(Xt, t) = λ0(t) + λ1(t)Xt,

and Chernov, Gallant, Ghysels and Tauchen (2002) consider a more general stochastic volatil-

ity model with the stochastic intensity,

λ(ξ0, Xt, t) = λ0(ξ0, t) + λ1(ξ0, t)Xt,
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where ξ0 is the size of the previous jump. This specification yields a class of jump Lévy

measures which combine the features of jump intensities depending on, say volatility, as well

as the size of the previous jump. Johannes, Kumar and Polson (1999) also propose a class

of jump diffusion processes with a jump intensity depending on the past jump time and

the absolute return. Moreover, as pointed out by Chernov, Gallant, Ghysels and Tauchen

(2002), another potentially very useful specification of the intensity function would include

the past duration, i.e., the time since the last jump, say τ(t), which is the time that has

elapsed between the last jump and t where τ(t) is a continuous function of t, such as

λ(ξ0, Xt, τ , t) = {λ0(t) + λ1(t)Xt}λ{τ(t)} exp{G(ξ0)}, (2.10)

which can accommodate the increasing, decreasing or hump-shaped hazard functions of the

size of the previous jump, and the duration dependence of jump intensities. However, to

the best of our knowledge, there have not been any attempt in the literature to discuss the

estimation and test of the intensity function λ(·) nonparametrically in the above settings.

A natural question arises is how to generalize the model (2.9) economically and statisti-

cally to a more general time-dependent jump diffusion model

dXt = µ(Xt, t) dt+ σ(Xt, t) dBt + dJt

with the time-dependent intensity function λ(ξ0, Xt, τ , t) without any specified form or with

some nonparametric structure, say, like (2.10). Clearly, they include the aforementioned

models as a special case, which are studied by Duffie, Pan and Singleton (2000), Johannes,

Kumar and Polson (1999), and Chernov, Gallant, Ghysels and Tauchen (2002), among others.

This is still an open problem.

3 Nonparametric Estimation and Testing of Paramet-
ric Diffusions

3.1 Nonparametric estimation of parametric diffusion models

As is well-known, derivative pricing in mathematical finance is generally much more tractable

in a continuous-time modelling framework than through binomial or other discrete approxi-

mations. In the empirical literature, however, it is an usual practice to abandon continuous-

time modeling when estimating derivative pricing models. This is mainly due to the difficulty

that the transition density for most continuous-time models with discrete observations has

no closed form and therefore the maximum likelihood estimation (MLE) is infeasible.

One major focus of the continuous-time literature is on developing econometric methods

11



to estimate continuous-time models using discretely-sampled data.3 This is largely moti-

vated by the fact that using the discrete version of a continuous-time model can result in

inconsistent parameter estimates (Lo, 1988). Available estimation procedures include the

MLE method of Lo (1988), the simulated methods of moments of Duffie and Singleton (1993)

and Gourieroux, Monfort and Renault (1993), the generalized method of moments (GMM)

of Hansen and Scheinkman (1995), the efficient method of moments (EMM) of Gallant and

Tauchen (1996), the Markov chain Monte Carlo (MCMC) of Jacquier, Polson and Rossi

(1994), Eraker (1998) and Jones (1998), and the methods based on the empirical character-

istic function of Jiang and Knight (2001) and Singleton (2001).

Below we focus on nonparametric estimation of a parametric continuous-time model

dXt = µ(Xt, θ) dt+ σ(Xt, θ) dBt, (3.1)

where µ(·, ·) and σ(·, ·) are known functions, and θ is unknown parameter vector in an open

bounded parameter space Θ. Ait-Sahalia (1996b) proposes a minimum distance estimator

θ̂ = argmin
θ∈Θ

n−1
n∑

τ=1

[π̂0(Xτ∆)− π(Xτ∆, θ)]
2 , (3.2)

where

π̂0(x) = n−1
n∑

τ=1

Kh(x−Xτ∆)

is a kernel estimator for the stationary density of Xt, and

π (x, θ) =
c(θ)

σ2(x, θ)
exp

{∫ x

x∗
0

2µ(u, θ)

σ2(u, θ)
du

}
, (3.3)

is the marginal density estimator implied by the diffusion model, where the standardization

factor c(θ) ensures that π(·, θ) integrates to 1 for every θ ∈ Θ, and x∗0 is the lower bound

of the support of Xt. Because the marginal density cannot capture the full dynamics of the

diffusion process, one can expect that θ̂ will not be asymptotically most efficient, although

it is root-n consistent for θ0.

Let px(∆, x |x0, θ) be the conditional density function of Xτ∆ = x given X(τ−1)∆ = x0

induced by model (3.1). The log-likelihood function of the model for the sample is

ln(θ) =
n∑

τ=1

ln px(∆, Xτ∆ |X(τ−1)∆, θ).

3Sundaresan (2001) states that “perhaps the most significant development in the continuous-time field
during the last decade has been the innovations in econometric theory and in the estimation techniques for
models in continuous time.” For other reviews of the recent literature, see, e.g., Melino (1994), Tauchen
(1997, 2001), and Campbell, Lo and MacKinlay (1997).
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The MLE estimator that maximizes ln(θ) would be asymptotically most efficient if the con-

ditional density px(∆, x|x0, θ) has a closed form. Unfortunately, except for some simple

models, px(∆, x|x0, θ) usually does not have a closed form.

Using the Hermite polynomial series, Ait-Sahalia (2002a) proposes a closed form sequence

{p(J)x (∆, x|x0, θ)} to approximate px(∆, x|x0, θ), and then obtains an estimator θ̂
(J)

n that max-

imizes the approximated model likelihood. The estimator θ̂
(J)

n enjoys the same asymptotic

efficiency as the (infeasible) MLE as J = Jn → ∞. More specifically, Ait-Sahalia (2002a)

first considers a transformed process

Yt ≡ γ(Xt, θ) =

∫ Xt

−∞

1

σ(u, θ)
du.

This transformed process obeys the following diffusion

dYt = µy(Yt, θ)dt+ dBt,

where

µy(y, θ) =
µ[γ−1(y, θ), θ]

σ[γ−1(y, θ), θ]
− 1

2

∂σ[γ−1(y, θ), θ]

∂x
.

The transform X → Y ensures that the tail of the transition density py(∆, y|y0, θ) of Yt

will generally vanish exponentially fast so that Hermite series approximations will converge.

However, py(∆, y|y0, θ) may get peaked at y0 when the sample frequency ∆ gets smaller. To

avoid this, Ait-Sahalia (2002a) considers a further transform

Zt = ∆−1/2(Yt − y0)

and then approximates the transition density of Zt by the Hermite polynomials:

p(J)z (z | y0, θ) = φ(z)
J∑

j=0

η(j)z (y0, θ)Hj(z),

where φ(·) is the N(0, 1) density, and {Hj(z)} is the Hermite polynomial series. The

coefficients {η(j)z (y0, θ} are specific conditional moments of process Zt, and can be explicitly

computed using the Monte Carlo method or using a higher Taylor series expansion in ∆.

The approximated transition density of Xt is then given as follows:

px(x |x0, θ) = σ(x, θ)−1py(γ(x, θ) | γ(x, θ), θ)
= ∆−1/2pz(∆

−1/2(γ(x, θ)− γ(x0, θ)) | γ(x0, θ), θ).

Under suitable regularity conditions, particularly when J = Jn → ∞ as n → ∞, the

estimator

θ̂n = argmin
θ∈Θ

n∑

τ=1

ln p(J)x (Xτ∆|X(τ−1)∆, θ)
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will be asymptotically equivalent to the infeasible MLE. Ait-Sahalia (1999) applies this

method to estimate a variety of diffusion models for spot interest rates, and finds that J = 2

or 3 already gives accurate approximation for most financial diffusion models. Egorov, Li and

Xu (2003) extend this approach to stationary time-inhomogeneous diffusion models. Ait-

Sahalia (2002c) extend this method to general multivariate diffusion models and Ait-Sahalia

and Kimmel (2002) to affine multi-factor term structure models.

In a rather general continuous-time setup which allows for stationary multi-factor diffu-

sion models with partially observable state variables, Gallant and Tauchen (1996) propose

an efficient method of moment estimator that also enjoys the asymptotic efficiency as the

MLE. The basic idea of EMM is to first use a Hermite-polynomial based semi-nonparametric

(SNP) density estimator to approximate the transition density of the observed state vari-

ables. This is called the auxiliary model and its score is called the score generator, which

has expectation zero under the model-implied distribution when the parametric model is

correctly specified. Then, given a parameter setting for the multi-factor model, one may

use simulation to evaluate the expectation of the score under the stationary density of the

model and compute a chi-square criterion function. A nonlinear optimizer is used to find

the parameter values that minimize the proposed criterion.

Specifically, suppose {Xt} is a stationary possibly vector-valued process such that the

true conditional density function p0(∆, Xτ∆|Xs∆, s ≤ τ − 1) = p0(∆, Xτ∆|Yτ∆), where

Yτ∆ ≡ (X(τ−1)∆, . . . , X(τ−d)∆)
′ for some fixed integer d ≥ 0. This is a Markovian process of

order d. To check the adequacy of a parametric model in (3.1), Gallant and Tauchen (1996)

propose to check whether the following moment condition holds:

M(βn, θ) ≡
∫

∂ log f(∆, x, y; βn)

∂βn

p(∆, x, y; θ)dxdy = 0, if θ = θ0 ∈ Θ, (3.4)

where p(∆, x, y; θ) is the model-implied joint density for (Xτ∆, Y
′
τ∆)

′, θ0 is the unknown

true parameter value, and f(∆, x, y; βn) is an auxiliary model for the conditional density of

(Xτ∆, Y
′
τ∆)

′. Note that βn is the parameter vector in the SNP density model f(∆, x, y; βn)

and generally does not nest the parametric parameter θ. By allowing the dimension of βn

to grow with the sample size n, the SNP density f(∆, x, y; βn) will eventually span the true

density p0(∆, x, y) of (Xτ∆, Y
′
τ∆)

′, and thus is free of model misspecification asymptotically.

Gallant and Tauchen (1996) use a Hermite polynomial approximation for f(∆, x, y; βn), with

the dimension of βn determined by such model selection criteria as BIC. The integration in

(3.4) can be computed by simulating a large number of realizations under the distribution

of the parametric model p(∆, x, y; θ).

The efficient method of moment estimator is defined as follows:

θ̂ = argmin
θ∈Θ

M(β̂n, θ)
′ Î−1(θ)M(β̂n, θ),

14



where β̂ is the quasi-MLE for βn, the coefficients in the Hermite polynomial expansion of the

SNP density model f(x, y, βn) and the matrix Î(θ) is an estimate of the asymptotic variance

of
√
n∂Mn(β̂n, θ)/∂θ (Gallant and Tauchen, 2001). This estimator θ̂ is asymptotically as

efficient as the (infeasible) MLE.

The EMM has been applied widely in financial applications. See, for example, Anderson

and Lund (1997), Dai and Singleton (2000), Ahn, Dittmar and Gallant (2002) for interest

rate applications, Liu (2000), Anderson, Berzoni and Lund (2002), Chernov, Gallant, Ghysels

and Tauchen (2001) for estimating stochastic volatility models for stock prices with such

complications as long memory and jumps, Chung and Tauchen (2001) for estimating and

testing target zero models of exchange rates, Jiang and van der Sluis (2000) for price option

pricing, and Valderamma (2001) for a macroeconomic application. It would be interesting

to compare the EMM method and Ait-Sahalia’s (2002a) approximate MLE in finite sample

performance.

3.2 Nonparametric testing of diffusion models

In financial applications, most continuous-time models are parametric. It is important to test

whether a parametric diffusion model adequately captures the dynamics of the underlying

process. Model misspecification generally renders inconsistent estimators of model parame-

ters and their variance-covariance matrix, leading to misleading conclusions in inference and

hypothesis testing. More importantly, a misspecified model can yield large errors in hedging,

pricing and risk management.

Unlike the vast literature of estimation of parametric diffusion models, there are relatively

few test procedures for parametric diffusion models using discrete observations. Suppose

{Xt} follows a continuous-time diffusion process in (2.6). Often it is assumed that the drift

and diffusion µ(·, t) and σ(·, t) have some parametric forms µ(·, t, θ) and σ(·, t, θ), where

θ ∈ Θ. We say that models µ(·, t, θ) and σ(·, t, θ) are correctly specified for the drift and

diffusion µ(·, t) and σ(·, t) respectively if

H0 : P [µ(Xt, t, θ0) = µ(Xt, t), σ(Xt, t, θ0) = σ(Xt, t)] = 1 for some θ0 ∈ Θ. (3.5)

As noted earlier, warious methods have been developed to estimate θ0, taking (3.5) as given.

However, these methods generally cannot deliver consistent parameter estimates if µ(·, t, θ)
or σ(·, t, θ) is misspecified in the sense that

HA : P [µ(Xt, t, θ) = µ(Xt, t), σ(Xt, t, θ) = σ(Xt, t)] < 1 for all θ ∈ Θ. (3.6)

Under HA of (3.6), there exists no parameter value θ ∈ Θ such that the drift model µ(·, t, θ)
and the diffusion model σ(·, t, θ) coincide with the true drift µ(·, t) and the true diffusion

σ(·, t) respectively.
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There is a growing interest in testing whether a continuous-time model is correctly spec-

ified using a discrete sample {Xτ∆}nτ=1. Ait-Sahalia (1996b) observes that for a stationary

time-homogeneous diffusion process in (3.1), a pair of drift and diffusion models µ(·, θ) and
σ(·, θ) uniquely determines the stationary density π(·, θ) in (3.3). Ait-Sahalia (1996b) com-

pares a parametric marginal density estimator π(·, θ̂) with a nonparametric density estimator

π̂0(·) via the quadratic form

M ≡
∫ x∗

1

x∗
0

[
π̂0(x)− π(x, θ̂)

]2
π̂0(x)dx, (3.7)

where x∗1 is the upper bound for Xt, θ̂ is the minimum distance estimator given by (3.2).

The M statistic, after demeaning and scaling, is asymptotically normal under H0.

The M test makes no restrictive assumptions on the data generating process and can

detect a wide range of alternatives. This appealing power property is not shared by para-

metric approaches such as generalized method of moment tests (e.g., Conley et al. 1997).

The latter has optimal power against certain alternatives (depending on the choice of mo-

ment functions) but may be completely silent against other alternatives. In an application

to Euro-dollar interest rates, Ait-Sahalia (1996b) rejects all existing one-factor linear drift

models using asymptotic theory and finds that “the principal source of rejection of existing

models is the strong nonlinearity of the drift,” which is further supported by Stanton (1997).

However, several limitations of this test may hinder its empirical applicability. First, as

Ait-Sahalia (1996b) has pointed out, the marginal density cannot capture the full dynamics

of {Xt}. It cannot distinguish two diffusion models that have the same marginal density but

different transition densities.4 Second, subject to some regularity conditions, the asymptotic

distribution of the quadratic formM in (3.7) remains the same whether the sample {Xτ∆}nτ=1
is iid or highly persistently dependent (Ait-Sahalia, 1996b). This convenient asymptotic

property unfortunately results in a substantial discrepancy between the asymptotic and

finite sample distributions, particularly when data display persistent dependence (Pritsker,

1998). This discrepancy and the slow convergence of kernel estimators are the main reasons

identified by Pritsker (1998) for the poor finite sample performance of theM test. They cast

some doubt on the applicability of first order asymptotic theory of nonparametric methods in

finance, since persistent serial dependence is a stylized fact for interest rates and many other

high frequency financial data. Third, a kernel density estimator produces biased estimates

near the boundaries of the data (e.g., Härdle, 1990 and Fan and Gijbels, 1996). In the

present context, the boundary bias can generate spurious nonlinear drifts, giving misleading

conclusions on the dynamics of {Xt}.
4A simple example is the Vasicek model, where if we vary the speed of mean reversion and the scale of

diffusion in the same proportion, the marginal density will remain unchanged, but the transition density will
be different.

16



Recently, Hong and Li (2002) have developed a nonparametric test for the model in

(2.6) using the transition density, which can capture the full dynamics of {Xt} in (3.1).

Let px(x, t |x0, s) be the true transition density of the diffusion process Xt; that is, the

conditional density of Xt = x given Xs = x0, s < t. For a given pair of drift and diffusion

models µ(·, t, θ) and σ(·, t, θ), a certain family of transition densities {p(x, t |x0, s, θ)} is

characterized. When (and only when) H0 in (3.5) holds, there exists some θ0 ∈ Θ such that

p(x, t |x0, s, θ0) = p0(x, t |x0, s) almost everywhere for all t > s. Hence, the hypotheses of

interest H0 in (3.5) versus HA in (3.6) can be equivalently written as follows:

H0 : p(x, t | y, s, θ0) = p0(x, t | y, s) almost everywhere for some θ0 ∈ Θ (3.8)

versus the alternative hypothesis

HA : p(x, t | y, s, θ) 6= p0(x, t | y, s) for some t > s and for all θ ∈ Θ. (3.9)

A natural approach to testing H0 in (3.8) versus HA in (3.9) would be to compare a

model transition density estimator p(x, t |x0, s, θ̂) with a nonparametric transition density

estimator, say p̂0(x, t |x0, s). Instead of comparing p(x, t |x0, s, θ̂) and p̂0(x, t |x0, s) directly,
Hong and Li (2002) first transform {Xτ∆}nτ=1 via a probability integral transform. Define a

discrete transformed sequence

Zτ (θ) ≡
∫ Xτ∆

−∞

p
[
x, τ∆|X(τ−1)∆, (τ − 1)∆, θ

]
dx, τ = 1, . . . , n. (3.10)

Under (and only under) H0 in (3.8) there exists some θ0 ∈ Θ such that p[x, τ∆|X(τ−1)∆, (τ −
1)∆,θ0] = p0[x, τ∆|X(τ−1)∆, (τ − 1)∆] almost surely for all ∆ > 0. Consequently, the

transformed series {Zτ ≡ Zτ (θ0)}nτ=1 is iid U [0, 1] under H0 in (3.8). This result is first

proven, in a simpler context, by Rosenblatt (1952), and is more recently used to evaluate

out-of-sample density forecasts (e.g., Diebold, Gunther and Tay, 1998) in a discrete-time

context. Intuitively, we may call {Zτ (θ)} “generalized residuals” of the model p(x, t | y, s,θ).
To test H0 in (3.8), Hong and Li (2002) check whether {Zτ}nτ=1 is both iid and U [0, 1].

They compare a kernel estimator ĝj(z1, z2) defined in (3.11) below for the joint density of

{Zτ , Zτ−j} with unity, the product of two U [0, 1] densities. This approach has at least

three advantages. First, since there is no serial dependence in {Zτ} under H0 in (3.8),

nonparametric joint density estimators are expected to perform much better in finite samples.

In particular, the finite sample distribution of the resulting tests is expected to be robust to

persistent dependence in data. Second, there is no asymptotic bias for nonparametric density

estimators under H0 in (3.8). Third, no matter whether {Xt} is time-inhomogeneous or even

nonstationary, {Zτ} is always iid U [0, 1] under correct model specification.
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Hong and Li (2002) employ the kernel joint density estimator,

ĝj(z1, z2) ≡ (n− j)−1
n∑

τ=j+1

Kh(z1, Ẑτ )Kh(z2, Ẑτ−j), j > 0, (3.11)

where Ẑτ = Zτ (θ̂), θ̂ is any
√
n-consistent estimator for θ0, and for x ∈ [0, 1],

Kh(x, y) ≡





h−1k
(
x−y
h

)
/
∫ 1
−(x/h)

k(u)du, if x ∈ [0, h),

h−1k
(
x−y
h

)
, if x ∈ [h, 1− h],

h−1k
(
x−y
h

)
/
∫ (1−x)/h

−1
k(u)du, if x ∈ (1− h, 1]

is the kernel with boundary correction (Rice, 1986) and k(·) is a standard kernel. This avoids

the boundary bias problem, and has some advantages over some alternative methods such

as trimming and the use of the jackknife kernel.5 To avoid the boundary bias problem, one

might apply other kernel smoothing methods such as local polynomial (Fan and Gijbels,

1996) or weighted NW (Cai, 2001).

Hong and Li’s (2002) test statistic is

Q̂(j) ≡
[
(n− j)h

∫ 1

0

∫ 1

0

[ĝj(z1, z2)− 1]2 dz1dz2 − A0h

]
/V

1/2
0 ,

where A0h and V0 are non-stochastic centering and scale factors that depends on h and k(·).
In a simulation experiment mimicking the dynamics of U.S. interest rates via the Vasicek

model, Hong and Li (2002) find that Q̂(j) has rather reasonable sizes for n = 500 (i.e.,

about two years of daily data). This is a rather substantial improvement over Ait-Sahalia’s

(1996b) test, in lights of Pritsker’s (1998) simulation evidence. Moreover, Q̂(j) has better

power than the marginal density test. Hong and Li (2002) find extremely strong evidence

against a variety of existing one-factor diffusion models for the spot interest rate and affine

models for interest rate term structures.

Because the transition density of a continuous-time model generally has no closed form,

the probability integral transform {Zτ (θ)} in (3.10) is difficult to compute. However, one can

approximate the model transition density using the simulation methods developed by (e.g.)

5One could simply ignore the data in the boundary regions and only use the data in the interior region.
Such a trimming procedure is simple, but in the present context, it would lead to the loss of significant
amount of information. If h = sn−

1

5 where s2 = var(Xt), for example, then about 23, 20and 10of a
uniformly distributed sample will fall into the boundary regions when n = 100, 500 and 5, 000 respectively.
For financial time series, one may be particularly interested in the tail distribution of the underlying process,
which is exactly contained in (and only in) the boundary regions!
Another solution is to use a kernel that adapts to the boundary regions and can effectively eliminate the

boundary bias. One example is the so-called jackknife kernel, as used in Chapman and Pearson (2000).
In the present context, the jackknife kernel, however, has some undesired features in finite samples. For
example, it may generate negative density estimates in the boundary regions because the jackknife kernel
can be negative in these regions. It also induces a relatively large variance for the kernel estimates in the
boundary regions, adversely affecting the power of the test in finite samples.
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Pedersen (1995), Brandt and Santa-Clara (2001), and Elerian, Chib and Shephard (2001).

Alternatively, we can use Ait-Sahalia’s (2002a) Hermite expansion method to construct a

closed-form approximation of the model transition density.

When a misspecified model is rejected, one may like to explore what are possible sources

for the rejection. For example, is the rejection due to misspecification in the drift, such

as the ignorance of mean shifts or jumps? Is it due to the ignorance of GARCH effects or

stochastic volatility? Or is it due to the ignorance of asymmetric behaviors (e.g., leverage

effects)? Hong and Li (2002) consider to examine the autocorrelations in the various powers

of {Zτ}, which are very informative about how well a model fits various dynamic aspects of

the underlying process (e.g., conditional mean, variance, skewness, kurtosis, ARCH-in-mean

effect, and leverage effect).

Gallant and Tauchen (1996) also propose an EMM-based minimum chi-square specifica-

tion test for stationary continuous-time models. They examine the simulation-based expec-

tation of an auxiliary SNP score function under the model distribution, which is zero under

correct model specification. The greatest appeal of the EMM approach is that it applies to

a wide range of stationary continuous-time processes, including both one-factor and multi-

factor diffusion processes with partially observable state variables (e.g., stochastic volatility

models). In addition to the minimum chi-square test for generic model misspecifications,

the EMM approach also provides a class of individual t-statistics that are informative in

revealing possible sources of model misspecification. This is perhaps the most appealing

strength of the EMM approach.

Another feature of the EMM tests is that all EMM test statistics avoid estimating long-

run variance-covariances, thus resulting in reasonable finite sample size performance (cf.

Anderson, Chung and Sorensen, 1999). In practice, however, it may not be easy to find an

adequate SNP density model for financial time series. For example, Anderson and Lund

(1997) find that an AR(1)-EGARCH model with a number of Hermite polynomials ade-

quately captures the full dynamics of daily S&P 500 return series, using a BIC criterion.

However, Hong and Lee (2003) find that there still exists strong evidence on serial depen-

dence in the standardized residuals of the model, indicating that the auxiliary SNP model

is inadequate. This affects the validity of the EMM tests, because their asymptotic variance

estimators have exploit the correct specification of the SNP density model. 6

There has been also an interest in separately testing the drift model and the diffusion

model in (3.1). For example, it has been controversial whether the drift of interest rates is

6Chen, Gao and Li (2001) consider kernel-based simultaneous specification testing for both mean and
variance models in a discrete-time setup with dependent observations. The empirical likelihood principle
is used to construct the test statistic. They apply the test to check adequacy of a discrete version of a
continuous-time diffusion model.

19



linear. To test the linearity of the drift term, one can write it as a functional coefficient

form (Cai, Fan and Yao, 2000) µ (Xt) = α0(Xt) + α1 (Xt) Xt. Then, the null hypothesis is

H0 : α0(·) ≡ α0 and α1(·) ≡ α1. Fan and Zhang (2001) apply the generalized likelihood ratio

test developed by Fan, Zhang and Zhang (2001). They find that H0 is not rejected for the

short-term interest rates. It is noted that the generalized likelihood ratio test is developed

for the iid samples but it is still unknown whether it is valid for a time series context. Fan

and Zhang (2001) and Fan, Jiang, Zhang and Zhou (2001) conjecture that it would hold

based on their simulations. On the other hand, Chen, Härdle and Kleinow (2001) consider

an empirical likelihood goodness-of-ft test for time series regression model, and they apply

the test to test a discretized drift model of a diffusion process.

There has been also interest in testing the diffusion model σ(·, θ). The motivation comes

from the fact that derivative pricing with an underlying equity process only depends on the

diffusion σ(·), which is one of the most important features of (3.1) for derivative pricing.

Kleisten (2002) recently proposes a nonparametric test for a diffusion model σ(·). More

specifically, Kleisten (2002) compares a nonparametric diffusion estimator σ̂2(·) with a para-

metric diffusion estimator σ2(·, θ) via an asymptotically χ2 test statistic

T̂k =
k∑

l=1

[
T̂ (xl)

]2
,

where

T̂ (x) = [nhπ̂(x)]1/2

[
σ̂2(x)

σ̃2(x, θ̂)
− 1

]
,

θ̂ is an
√
n-consistent estimator for θ0 and

σ̃2(x, θ) =
1

nhπ̂(x)

n∑

t=1

σ2(x, θ̂)Kh[(x−Xt)/h]

is a smooth version of σ2(x, θ). The use of σ̃2(x, θ̂) instead of σ2(x, θ̂) directly reduces

the kernel estimation bias in T̂ (x), thus allowing the use of the optimal bandwidth h for

σ̂2(x). This device is also used in Härdle and Mammen (1993) in testing a parametric

regression model. Kleinow (2002) finds that the empirical level of T̂k is too large relative to

the significance level in finite samples and then proposes a modified test statistic using the

empirical likelihood approach, which endogenously studentizes conditional heteroscedasticity.

As expected, the empirical level of the modified test improves in finite samples, though not

necessarily for the power of the test.

Finally, Fan, Jiang, Zhang and Zhang (2001) test whether the coefficients in the time-

varying coefficient single factor diffusion model of (2.7) are really time-varying. Specially,
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they apply the generalized likelihood ratio test to check whether some or all of {αj(·)} and

{βj(·)} are constant.

4 Derivative Pricing and Risk Neural Density Estima-
tion

4.1 Risk neutral density

In modern finance, the pricing of contingent claims is important given the phenomenal growth

in turnover and volume of financial derivatives over the past decades. Derivative pricing

formulas are highly nonlinear even when they are available in closed form. Nonparametric

techniques are expected to be very useful in this area. In a standard dynamic exchange

economy, the equilibrium price of a security at date t with a single liquidating payoff Y (CT )

at date T that is a function of aggregate consumption CT is given by

Pt = Et [Y (CT )Mt,T ] , (4.1)

where the conditional expectation is taken with respect to the information set available to the

representative economic agent at time t, Mt,T = δT−1U ′(CT )/U
′(Ct), the so-called stochastic

discount factor, is the marginal rate of substitution between dates t and T , δ is the rate of

time preference, and U(·) is the utility function of the economic agent. This is the stochastic

Euler equation, or the first order condition of the intertemporal utility maximization of the

economic agent with suitable budget constraints (e.g., Cochrane, 1996, 2001). It holds for all

securities, including assets and various derivatives. All capital asset pricing models (CAPM)

and derivative pricing models can be embedded in this unified framework — each model

can be viewed as a specific specification of Mt,T . See Cochrane (1996, 2001) for an excellent

discussion.

There have been some parametric tests for CAMP models (e.g., Hansen and Janaganan,

1997). To our knowledge, there is only one nonparametric test for CAMP models based on

the kernel method (Wang, 2002). Also, all the tests for CAMP models are formulated in

terms of discrete time frameworks. Below, we focus on nonparametric derivative pricing.

Assuming that the conditional distribution of future consumption CT has a density rep-

resentation ft(·), then the conditional expectation can be expressed as

Et [Y (CT )Mt,T ] = exp(−τ rt)
∫
Y (CT )f

∗
t (CT )dCT = exp(−τ rt) E∗

t [Y (Ct)] ,

where rt is the riskfree interest rate, τ = T − t, and

f ∗t (CT ) =
Mt,Tft(CT )∫
Mt,Tft(CT )dCT
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is called the risk neutral density (RND) function. This function is also called the risk-

neural pricing probability (Cox and Ross, 1976), or equivalent martingale measure (Harrison

and Kreps, 1979), or the state-price density. It contains rich information on the pricing and

hedging of risky assets in an economy, and can be used to price other assets, or to recover the

information about the market preferences and asset price dynamics (Bahra 1997, Jackwerth

1999). Obviously, the RND function differs from ft(CT ), the physical density function of CT

conditional on the information available at time t.

4.2 Nonparametric pricing

In order to calculate an option price from (4.1), one has to make some assumption on the

data generating process of the underlying asset, {Pt}. For example, Black and Scholes (1973)

assume that the underlying asset follows a geometric Brwonian motion:

dPt = µPtdt+ σPt dBt, (4.2)

where µ and σ are two constants. Applying Ito’s lemma, one can show immediately that Pτ

follows a lognormal distribution with parameter (µ− 1
2
σ2)τ and σ

√
τ . Using a no-arbitrage

argument, Black and Scholes (1973) show that options can be priced if investors are risk

neutral by setting the expected rate of return in the underlying asset, µ, equal to the risk-

free interest rate, r. Specifically, the European call option price is

π(Kt, Pt, r, τ) = Pt Φ(d1t)− e−rt τ Kt Φ(d2t), (4.3)

where Kt is the strike price, Φ(·) is the standard normal cumulative distribution function,

d1t =
ln(Pt/Kt) + (r + 1

2
σ2)τ

σ
√
τ

, and d2t =
ln(Pt/Kt) + (r − 1

2
σ2)τ

σ
√
τ

= d1t − σ
√
τ .

In (4.3), the only parameter that is not observable a time t is σ. This parameter, when

multiplied with
√
τ , is the underlying asset return volatility over the remaining life of the

option. An knowledge of σ can be inferred from the prices of options traded in the markets:

given an observed option price, one can solve an appropriate option pricing model for σ

which is essentially a market estimate of the future volatility of the underlying asset returns.

This estimate of σ is known as “implied volatility”.

The most important implication of Black-Scholes option pricing is that when the option

is correctly priced, the implied volatility σ2 should be the same across all exercise prices

of options on the same underlying asset and with the same maturity date. However, the

implied volatility observed in the market is usually a convex function of exercise price, which

is often referred to as the “volatility smile”. This indicates that market participants make
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more complicated assumptions than the geometric Bownian motion for the dynamics of the

underlying asset. In particular, the convexity of “volatility smile” indicates the degree to

which the market RND function has a heavier tail than a lognormal density. A great deal of

effort has been made to use alternative models for the underlying asset to smooth out the

volatility smile and so to achieve higher accuracy in pricing and hedging.

A more general approach to derivative pricing is to estimate the RND function directly

from the observed option prices and then use it to price derivatives or to extract market in-

formation. To obtain better estimation of the RND function, several econometric techniques

have been introduced. These methods are all based on the following fundamental relation

between option prices and RNDs: Suppose Gt = G(Kt, Pt, rt, τ) is the option pricing for-

mula. Then there is a close relation between the second derivative of Gt with respect to the

strike price Kt and the RND function:

∂2Gt

∂K2
t

= exp(−τ rt) f ∗t (PT ). (4.4)

This is first shown by Breeden and Litzenberger (1978) in a time-state preference framework.

Most commonly used estimation methods for RNDs are various parametric approaches.

One of them is to assume that the underlying asset follows a parametric diffusion process,

from which one can obtain the option pricing formula by a no-arbitrage argument, and

then obtain the RND function from (4.4) (see, e.g., Bates 1991, 2000, Anagnou, Bedendo,

Hodges and Tompkins 2001). Another parametric approach is to directly impose some form

for the RND function and then estimate unknown parameters by minimizing the distance

between the observed option prices and those generated by the assumed RND function (e.g.,

Jackwerth and Rubinstein, 1996, Melick and Thomas, 1997, Rubinstein, 1994). A third

parametric approach is to assume a parametric form for the call pricing function or the

implied volatility smile curve and then apply (4.4) to get the RND function (Bates 1991,

Jarrow and Tudd, 1982, Longstaff, 1992, 1995, Shimko, 1993).

The aforementioned parametric approaches all impose certain restrictive assumptions,

directly or indirectly, on the data generating process as well as the stochastic discount factor

in some cases. The obtained RND function is not robust to the violation of these restrictions.

To avoid this drawback, Ait-Sahalia and Lo (1998) use a nonparametric method to extract

the RND function from option prices.

Given observed call option prices {Gt, Kt, τ}, the price of the underlying asset {Pt}, and
the risk free rate of interest {rt}, Ait-Sahalia and Lo (1998) construct a kernel-estimator for

E(Gt|Pt, Kt, τ , rt). Under standard regularity conditions, Ait-Sahalia and Lo (1998) show

that the RND estimator is consistent and asymptotically normal and they provide explicit

expressions for the asymptotic variance of the estimator.
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Armed with the RND estimator, Ait-Sahalia and Lo (1998) apply it to the pricing and

delta-hedging of S&P 500 call and put options using daily data obtained from the Chicago

Board Options Exchange for the sample period from January 4, 1993 to December 31, 1993.

The RND estimator exhibits negative skewness and excess kurtosis, a common feature of

historical stock returns. Unlike many parametric option pricing models, the RND-generated

option pricing formula is capable of capturing persistent “volatility smiles” and other em-

pirical features of market prices. Ait-Sahalia and Lo (2000) use a nonparametrical RND

estimator to compute the economic value at risk, that is, the value at risk of the RND

function.

The artificial neural network (ANN) has received much attention in economics and finance

over the last decade. Hutchinson, Lo and Poggio (1994), Anders, Korn and Schmitt (1998)

and Hanke (1999) have successfully applied the ANN models to estimate pricing formulas

of finnacial derivatives. In particular, Hutchinson, Lo and Poggio (1994) use the ANN to

address the following question: If option prices are truly determined by the Black-Scholes

formula exactly, can ANN “learn” the Black-Scholes formula? In other words, can the Black-

Scholes formula be estimated nonparametrically via learning networks with a sufficient degree

of accuracy to be of practical use? Hutchinson, Lo and Poggio (1994) perform Monte Carlo

simulation experiments in which various ANNs are trained on artificially generated Black-

Scholes formula and then compare to the Black-Scholes formula both analytically and in

out-of-sample hedging experiments. They begin by simulating a two-year sample of daily

stock prices, and creating a across-section of options each day according to the rules used

by the Chicago Broad Options Exchange with prices given by the Black-Scholes formula.

They find that, even with training sets of only six months of daily data, learning network

pricing formulas can approximate the Black-Scholes formula with reasonable accuracy. The

nonlinear models obtained from neutral networks yield estimates option prices and deltas

that are difficult to distinguish visually from the true Black-Scholes values.

There are several directions of further research on nonparametric estimation and testing of

RNDs for derivative pricing. First, how to evaluate the quality of a RND function estimated

from option prices? In other words, how to judge how well an estimated RND function

reflects the market expected uncertainty of the underlying asset? Because the RND function

differs from the physical probability density function of the underlying asset, the valuation

of the RND function is rather challenging. The method developed by Hong and Li (2002)

cannot be applied directly. One possible way to evaluate the RND function is to assume a

certain family of utility functions for the representative investor, as in Rubinstein (1994) and

Anagnou, Bedendo, Hodges and Tompkins (2001). Based on this assumption, one can obtain

the stochastic discount factor and then the physical probability density function, to which
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Hong and Li’s (2002) test can be applied. However, the utility function of the economic

agent is not observable. Thus, when the test delivers a rejection, it may be due to either

misspecification of the utility function or misspecification of the data generating process,

or both. More fundamentally, it is not clear whether the economy can be a proxy by an

representative agent.

A practical issue in recovering the RND function is the limitation of option prices data

with certain common characterizations. In other words, the sample size of option price data

could be small in many applications. As a result, nonparametric methods should be carefully

developed to fit the problems at hand.

Most econometric techniques to estimate the RND function is restricted to European

options, while many of the more liquid exchange-traded options are often American. Rather

complex extensions of the existing methods, including the nonparametric ones, are required

in order to estimate the RND functions from the prices of American options. This is an

interesting and practically important direction for further research.

5 Conclusion

Over the last several years, nonparametric continuous-time methods have become an inte-

gral part of research in financial economics. The literature is already vast and continues

to grow swiftly, involving a full spread of participants for both financial economists and

statisticians and engaging a wide sweep of academic journals. The field has left indelible

mark on almost all core areas in finance such as asset pricing theory, consumption-portfolio

selection, derivatives and risk analysis. The popularity of this field is also witnessed by the

fact that the graduate students at both Master and doctoral levels in economics, finance,

mathematics and statistics are expected to take courses in this discipline or alike and review

the important research papers in this area to search for their own research interests, partic-

ularly dissertation topics for doctoral students. On the other hand, this area also has made

an impact in the financial industry as the sophisticated nonparametric techniques can be

of practical assistance in the industry. We hope that this selective review has provided the

reader a perspective on this important field in finance and statistics and some open research

problems.
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