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1 Introduction

Since the last decade we live in a digitalized world where many actions in
human and economic life are monitored. This produces a continuous stream
of new, rich and high quality data in the form of panels, repeated cross-sections
and long time series. These data resources are available to many researchers
at a low cost. This new era is fascinating for econometricians who can address
many open economic questions. To do so, new models are developed that call
for elaborate estimation techniques. Fast personal computers play an integral
part in making it possible to deal with this increased complexity.

This chapter reviews econometric models for which statistical inference re-
quires intensive numerical computations. A common feature of such models is
that they incorporate unobserved (or latent) variables, in addition to observed
ones. This often implies that the latent variables have to be integrated from
the joint distribution of latent and observed variables. The implied integral is
typically of high dimension and not available analytically. Simulation methods
are almost always required to solve the computational issue, but they bring
new problems. A general introduction on simulation based inference can be
found in Gourieroux and Monfort (1997) and Mariano et al. (2000).

The organisation of this chapter is as follows. The first section deals with
limited dependent variable models, with a focus on multi-period discrete
choice dynamic models. The second section treats the stochastic volatility
(SV) model, used in finance and financial econometrics to calibrate the volatil-
ity of asset returns, as an alternative to the class of generalized autoregressive
conditional heteroskedastic (GARCH) models. It also reviews related dynamic
duration models. The last section deals with finite mixture models. Illustrative
applications drawn from the recent literature are used. Programs and data are
on the web site www.core.ucl.ac.be/econometrics/Bauwens/HBCS/HBCS.htm.

All the models discussed in this chapter are parametric. Nonparametric
and semiparametric models may induce additional computational complexity.
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We refer to Pagan and Ullah (1999), Horowitz (1998) and Chapter ?? of this
volume for examples on these methods.

2 Limited Dependent Variable Models

This section deals with models in which the dependent variable is discrete.
Many interesting problems like labour force participation, presidential voting,
transport mode choice and brand choice are discrete in nature. In particular,
we consider discrete choice models in the case where panel data are available.
This allows, for example, to follow individuals with their choices over time,
so that richer behavioural models can be constructed. Although the number
of parameters in these models does not necessarily increase, the likelihood
function, and therefore estimation, becomes more complex. In this section we
describe the multinomial multiperiod probit, the multivariate probit and the
mixed multinomial logit model. Examples are given.

We refer to Maddala (1983) for a general introduction to limited dependent
and qualitative variables in econometrics and to Franses and Paap (2001) for
a basic introduction motivating such models in relation to marketing.

2.1 Multinomial Multiperiod Probit

Definition

Denote by U;j: the unobserved utility perceived by individual ¢ who chooses
alternative j at time ¢. This utility may be modelled as follows

Uiji = X118 + €ije (1)

wherei =1,...,I, j=1,...,J, t =1,...,T;, X;j; is a k-dimensional vector
of explanatory variables, B is a k-dimensional parameter vector and €;j; is a
random shock known to individual i. This individual chooses alternative j in
period ¢ if

Uijt > Uimt Vj #m. (2)

We observe d; = (d;1,...,d;7.)T where d;; = j if individual i chooses alter-
native 7 at time ¢. We suppose that there is always only one choice by each
individual at each period, i.e. choices are mutually exclusive. The multinomial
multiperiod probit model is obtained by assuming

€; = (Gill,...,ﬁijl,...,GilTi,...,GiJTi)T ~ IIDN(O, 2) (3)

Consequently,
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T;
Pi=Pd)=P| () () Uidict > Uime
m#d; t=1

T;
=P ﬂ ﬂ €idiet — €imt > (Ximt — Xian 1) B (4)
m#d; t=1

which is a (T; x J)-variate integral. However, since individual choices are based
on utility comparisons, it is conventional to work in utility differences relative
to alternative J. If we multiply the utilities in (1) by a constant, we see that
the probability event in (4) is invariant, thus a different scaling of the utilities
does not alter the choices of the individuals. The rescaled relative utility is
then defined as
Uiji = (Uiji — Usgi) (o011 + 005 — 2015) /2
= ((Xije — Xis) "B + €5t — €it) (011 + 005 — 200) /2
~ T -

= X;¢B + €ije.- (5)

An individual chooses alternative j in period ¢ if

(7ijt > Uimt Vi #m. (6)
As an identification restriction, one usually imposes a unit variance for the
last alternative expressed in utility differences. Define

€ = (11, g 11y s GilTis - Eg—11) T ~ TIDN(0, ) (7)

where 3 is the transformed ¥ with G7-1,7—1 = 1, so that (4) becomes

T;
P, =P ﬂ ﬂ Eivdint — Eimt > (Ximt — Xiaot)' B (8)
m#d; t=1

which is a T;(J — 1)-variate integral. Note that when the &;;;’s are serially
uncorrelated, this probability event can be calculated by the product of T;
integrals of dimension J — 1, which is easier to compute but this rules out
interesting cases, see the applications below.

Estimation

This section briefly explains how the multinomial multiperiod probit model
can be estimated in the classical or Bayesian framework. More details can be
found in Geweke et al. (1997).
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Classical Estimation

Since we assume independent observations on individuals the likelihood is

I
Prd|X,8,%) =[] P (9)
i=1
where d = (dy,...,d;) and X denotes all the observations on the explanatory

variables. Evaluation of this likelihood is infeasible for reasonable values of T;
and J. Classical maximum likelihood estimation methods are usually, except
in some trivial cases, based on numerical search algorithms that require many
times the evaluation of the likelihood function and are therefore not suitable
for this model. For more information on classical estimation, see Hajivassil-
iou and Ruud (1994), Gourieroux and Monfort (1997) and Hajivassiliou and
Mc Fadden (1998).

Alternative estimation methods are based on simulations of the choice
probabilities. The simulated maximum likelihood (SML) method maximizes
the simulated likelihood which is obtained by substituting the simulated choice
probabilities in (9). The method of simulated moments is a simulation based
substitute for the generalized method of moments. For further information on
these estimation methods we refer to Gourieroux and Monfort (1997).

Bayesian Inference
The posterior density is
¢(8,2|d,X) x Pr(d | X,8,%)¢(8,%) (10)

where (3, f)) is the prior density. This does not solve the problem of eval-
uating a high dimensional integral in the likelihood and it remains hard to
compute posterior means for example. Data augmentation, see for example
Tanner and Wong (1987), provides a solution because this technique allows
to set up a Gibbs sampling scheme using distributions that are easy to draw
from. The idea is to augment the parameter vector with U, the latent utilities,
so that the posterior density in (10) changes to

¢(8,2,U|d,X) x Pr(d| X,8,2,0) f(U | B,%)p(8, %) (11)

implying three blocks in the Gibbs sampler: (8 | X,U,d,X), ¢(T |
,B,fI,d,X) and go(ﬂ | B,f],d,X). For more details on the Gibbs sampler
we refer to Chapter 7?7 and Chapter ??. For the first two blocks, the model in
(5) is the conventional regression model since the utilities, once simulated, are
observed. For the last block, remark that Pr(d | X, 3,3, U) is an indicator
function since U is consistent with d or not.
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Applications

It is possible to extend the model in (5) in various ways, such as alternative
specific @’s, individual heterogeneity or a dynamic specification.
Paap and Franses (2000) propose a dynamic specification

AUy = AX (e + o) + (TT=T;_y) (ﬂi,t—l — X+ 1(B + ,3z)) + i (12)

where Uy, is the (J —1)-dimensional vector of utilities of individual i, AU, =
Ui — fJi,t,l, Xz’,tq and AX;; are matrices of dimension (J —1) x k for the
explanatory variables, @ and 3 are k-dimensional parameter vectors, IT is a
(J — 1) x (J — 1) parameter matrix with eigenvalues inside the unit circle,
nit ~ N(0, f)), and «; and 3; are random individual effects with the same
dimension as & and 3. These individual heterogeneity effects are assumed to
be normally distributed: o;; ~ N(0,X4) and B; ~ N(0,Xg). The specification
in (12) is a vector error-correction model where the parameters a + «; and
B+ 3; measure respectively the short-run and long-run effects. The parameters
in IT determine the speed at which deviations from the long-run relationship
are adjusted.

The model parameters are B,a,f],ai,ﬁi,zg,ﬁa and IT and are aug-
mented by the latent utilities U;;. Bayesian inference may be done by Gibbs
sampling as described in the estimation part above. Table 1 describes for each
of the nine blocks which posterior distribution is used. For example, 5 has a
conditional (on all other parameters) posterior density that is normal.

Table 1. Summary of conditional posteriors for (12)

parameter conditional posterior

B, Bi, a, a; Multivariate normal distributions
ﬁ, Ya, X3 Inverted Wishart distributions

Matrix normal distribution

e A

it Truncated multivariate normal

As an illustration we reproduce the results of Paap and Franses (2000), who
provided their Gauss code (which we slightly modified). They use optical
scanner data on purchases of four brands of saltine crackers. Chintagunta
and Honore (1996) use the same data set to estimate a static multinomial
probit model. The data set contains all purchases (choices) of crackers of 136
households over a period of two years, yielding 3,292 observations. Variables
such as prices of the brands and whether there was a display and/or newspaper
feature of the considered brands at the time of purchase are also observed and
used as the explanatory variables forming X;;; (and then transformed into
Xijt). Table 2 gives the means of these variables. Display and Feature are
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dummy variables, e.g. Sunshine was displayed 13 per cent and was featured
4 per cent of the purchase occasions. The average market shares reflect the
observed individual choices, with e.g. 7 per cent of the choices on Sunshine.

Table 2. Means of X;; variables in (12)

Sunshine Keebler Nabisco Private Label

Market share 0.07 0.07 0.54 0.32
Display 0.13 0.11 0.34 0.10
Feature 0.04 0.04 0.09 0.05
Price 0.96 1.13 1.08 0.68

Table 3 shows posterior means and standard deviations for the a and 3 pa-
rameters. They are computed from 50,000 draws after dropping 20,000 initial
draws. The prior on ¥ is inverted Wishart, denoted by IW(S,v), with v = 10
and S chosen such that E(X) = I3. Note that Paap and Franses (2000) use a

prior such that E(3¥ ) = I5. For the other parameters we put uninformative
priors. As expected, Display and Feature have positive effects on the choice
probabilities and price has a negative effect. This holds both in the short run
and the long run. With respect to the private label (which serves as reference
category), the posterior means of the intercepts are positive except for the
first label whose intercept is imprecisely estimated.

Table 3. Posterior moments of 3 and « in (12)

B parameter o parameter Intercepts
mean st. dev. mean st. dev. mean st. dev.

Display 0.307 (0.136) 0.102 (0.076)  Sunshine -0.071 (0.253)

Feature 0.353 (0.244) 0.234 (0.090)  Keebler 0.512 (0.212)
Price  -1.711 (0.426) -2.226 (0.344)  Nabisco 1.579 (0.354)

Table 4 gives the posterior means and standard deviations of s, I, flﬁ and
.. Note that the reported last element of ¥ is equal to 1 in order to identify
the model. This is done, after running the Gibbs sampler with 3 unrestricted,
by dividing the variance related parameter draws by 6 ;7_1,7—1. The other pa-
rameter draws are divided by the square root of the same quantity. McCulloch
et al. (2000) propose an alternative approach where 3 J—1,7-1 is fixed to 1 by
construction, i.e. a fully identified parameter approach. They write

« [(®+yyT A
z—( L (13)

and show that the conditional posterior of v is normal and that of @ is
Wishart, so that draws of X are easily obtained. This approach is of particular
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Table 4. Posterior means and standard deviations of X, IT, g and X4 in (12)

b II

0.474 0.213 0.054
(0.103) (0.134) (0.066)
0.440 0.685 —0.196

0.563 —0.102 0.433
(0.179) (0.096) (0.087)

0.241 0.293
(0.119) (0.069) (0.067) (0.081) (0.049)
' '1 —0.099 —0.161 0.421
(0.091) (0.138) (0.087)
P Sa

0.431 —0.267 0.335 —0.176 —0.100 0.087

(0.201) (0.250) (0.463) (0.247) (0.209) (0.401)
1.053 0281 0412 0306 0.721
(0.603) (0.774) (0.352) (0.372) (0.719) 0.207 —0.023 —0.004
5.445 —1.310 —1.010 0.539 (0.091) (0.075) (0.220)
(2.268) (0.999) (0.853) (1.120) 0.382 0.217
1919 1.225 1.950 (0.144) (0.366)
(0.672) (0.560) (0.664) 6.672
1.496 1.564 (2.453)
(0.879) (0.816)
4.915
(1.319)

interest when a sufficiently informative prior on ¥ is used. A drawback of this
approach is that the Gibbs sampler has higher autocorrelation and that it is
more sensitive to initial conditions.

The relatively large posterior means of the diagonal elements of IT show
that there is persistence in brand choice. The matrices X5 and X, measure
the unobserved heterogeneity. There seems to be substantial heterogeneity
across the individuals, especially for the price of the products (see the third
diagonal elements of both matrices). The last three elements in f]g are related
to the intercepts.

The multinomial probit model is frequently used for marketing purposes.
For example, Allenby and Rossi (1999) use ketchup purchase data to empha-
size the importance of a detailed understanding of the distribution of con-
sumer heterogeneity and identification of preferences at the customer level.
In fact, the disaggregate nature of many marketing decisions creates the need
for models of consumer heterogeneity which pool data across individuals while
allowing for the analysis of individual model parameters. The Bayesian ap-
proach is particularly suited for that, contrary to classical approaches that
yields only aggregate summaries of heterogeneity.
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2.2 Multivariate Probit

The multivariate probit model relaxes the assumption that choices are mu-
tually exclusive, as in the multinomial model discussed before. In that case,
d; may contain several 1’s. Chib and Greenberg (1998) discuss classical and
Bayesian inference for this model. They also provide examples on voting be-
havior, on health effects of air pollution and on labour force participation.

2.3 Mixed Multinomial Logit
Definition

The multinomial logit model is defined as in (1), except that the random shock
€;j¢ is extreme value (or Gumbel) distributed. This gives rise to the indepen-
dence from irrelevant alternatives (ITA) property which essentially means that
Cov(Uijt, Uikt) = 0 V3, VEk. Like the probit model, the mixed multinomial
logit (MMNL) model alleviates this restrictive ITA property by treating the 3
parameter as a random vector with density fo(3). The latter density is called
the mixing density and is usually assumed to be a normal, lognormal, trian-
gular or uniform distribution. To make clear why this model does not suffer
from the ITA property, consider the following example. Suppose that there is
only explanatory variable and that 5 ~ N(f3,5%). We can then write (1) as

Uijt = XijtB + Xiji6z + €j (14)
= Xi]‘tﬂ + G;jt (15)
where z ~ N(0,1), implying that the variance of €;;: depends on the ex-
planatory variable and that there is nonzero covariance between utilities for
different alternatives.
The mixed logit probability is given by

T; ex:.fjtﬁ
. / il (7) fo(B)dB (16)

7 XT3
Z]‘:1e it

where the term between brackets is the logistic distribution arising from the
difference between two extreme value distributions. The model parameter is
0. Note that one may want to keep elements of 3 fixed as in the usual logit
model. One usually keeps random the elements of 3 corresponding to the
variables that are believed to create correlation between alternatives. The
mixed logit model is quite general. McFadden and Train (2000) demonstrate
that any random utility model can be approximated to any degree of accuracy
by a mixed logit with appropriate choice of variables and mixing distribution.



Econometrics 9
Estimation
Classical Estimation

Estimation of the MMNL model can be done by SML or the method of sim-
ulated moments or simulated scores. To do this, the logit probability in (16)
is replaced by its simulated counterpart

T; ”tﬁr
121—[( . M’”) (17)

r=1t=1

where the {37}, are i.i.d. draws of fo(3). The simulated likelihood is the
product of all the individual SP;’s. The simulated log-likelihood can be max-
imized with respect to 6 using numerical optimization techniques like the
Newton-Raphson algorithm. To avoid an erratic behaviour of the simulated
objective function for different values of 8, the same sequences of basic random
numbers is used to generate the sequence {8"} used during all the iterations
of the optimizer (this is referred to as the technique of ‘common random
numbers’).

According to Gourieroux and Monfort (1997) the SML estimator is asymp-
totically equivalent to the ML estimator if 7' (the total number of observa-
tions) and R both tend to infinity and v/T/R — 0. In practice, it is sufficient
to fix R at a moderate value.

The approximation of an integral like in (16) by the use of pseudo-random
numbers may be questioned. Bhat (2001) implements an alternative quasi-
random SML method which uses quasi-random numbers . Like pseudo-random
sequences, quasi-random sequences, such as Halton sequences, are determin-
istic, but they are more uniformly distributed in the domain of integration
than pseudo-random ones. The numerical experiments indicate that the quasi-
random method provides considerably better accuracy with much fewer draws
and computational time than does the usual random method.

Bayesian Inference

Let us suppose that the mixing distribution is Gaussian, that is, the vector 3
is normally distributed with mean b and variance matrix W. The posterior
density for I individuals can be written as

p(b,W | d,X) o Pr(d | X, b, W) (b, W) (18)

where Pr(d | X,b,W) = Hle P; and ¢(b, W) is the prior density on b
and W. Sampling from (18) is difficult because P; is an integral without a
closed form as discussed above. We would like to condition on 3 such that
the choice probabilities are easy to calculate. For this purpose we augment
the model parameter vector with 3. It is convenient to write 3; instead of
B to interpret the random coefficients as representing heterogeneity among
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individuals. The 3;’s are independent and identically distributed with mixing
distribution f(- | b, W). The posterior can then be written as

¢(b,W, 8 [ d,X) oc Pr(d | X, 8r) f(Br | b, W) ¢(b, W) (19)

where 35 collects the 3;’s for all the I individuals. Draws from this posterior
density can be obtained by using the Gibbs sampler. Table 5 summarizes the
three blocks of the sampler.

Table 5. Summary of conditional posteriors for MMNL model

parameter conditional posterior or sampling method

b Multivariate normal distribution
W Inverted Wishart distribution
B Metropolis Hastings algortihm

For the first two blocks the conditional posterior densities are known and
are easy to sample from. The last block is more difficult. To sample from
this density, a Metropolis Hastings (MH) algorithm is set up. Note that only
one iteration is necessary such that simulation within the Gibbs sampler is
avoided. See Train (2003), Chapter 12, for a detailed description of the MH
algorithm for the mixed logit model and for guidelines about how to deal with
other mixing densities. More general information on the MH algorithm can
be found in Chapter ?7?.

Bayesian inference in the mixed logit model is called hierarchical Bayes be-
cause of the hierarchy of parameters. At the first level, there are the individual
parameters (3; which are distributed with mean @ and variance matrix W.
The latter are called hyper-parameters, on which we have also prior densities.
They form the second level of the hierarchy.

Application

We reproduce the results of McFadden and Train (2000) using their Gauss
code available on the web site elsa.berkeley.edu/~train/software.html. They
analyse the demand for alternative vehicles. There are 4,654 respondents who
choose among six alternatives (two alternatives run on electricity only). There
are 21 explanatory variables among which 4 are considered to have a random
effect. The mixing distributions for these random coefficients are independent
normal distributions. The model is estimated by SML and uses R = 250 repli-
cations per observation. Table 6 includes partly the estimation results of the
MMNL model. We report the estimates and standard errors of the parameters
of the normal mixing distributions, but we do not report the estimates of the
fixed effect parameters corresponding to the 17 other explanatory variables.
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Table 6. SML estimates of MMNL random effect parameters

Variable Mean Standard Dewviation
Electric vehicle (EV) dummy -1.032  (0.503) 2.466 (0.720)
Compressed natural gass (CNG) dummy 0.626 (0.167) 1.072 (0.411)
Size 1.435 (0.499) 7.457 (2.043)
Luggage space 1.702  (0.586) 5.998 (1.664)

Robust standard errors within parentheses

For example, the luggage space error component induces greater covariance in
the stochastic part of utility for pairs of vehicles with greater luggage space.
We refer to McFadden and Train (2000) or Brownstone and Train (1999) for
more interpretations of the results.

Train (2003) provides more information and pedagogical examples on the
mixed multinomial model.

3 Stochastic Volatility and Duration Models

Stochastic volatility (SV) models may be used as an alternative to general-
ized autoregressive conditonal heteroskedastic (GARCH) models as a way to
model the time-varying volatility of asset returns. Time series of asset returns
feature stylized facts, the most important being volatility clustering, which
produces a slowly decreasing positive autocorrelation function of the squared
returns, starting at a low value (about 0.15). Another stylized fact is excess
kurtosis of the distribution (with respect to the Gaussian distribution). See
Bollerslev et al. (1994) for a detailed list of the stylized facts and a survey of
GARCH models, Shephard (1996) for a comparative survey of GARCH and
SV models, and Ghysels et al. (1996) for a survey of SV models focused on
their theoretical foundations and their applications in finance. The first four
parts of this section deal with SV models while in subsection 3.5 we survey
similar models for dynamic duration analysis.

3.1 Canonical SV Model
The simplest version of a SV model is given by

yr = exp(ht/2) uy, ug ~ N(0,1), t=1,...,n,

20
hi = w4+ Bhi—1 +ove, vy ~ N(0,1), (20)

where y; is a return measured at ¢, h; is the unobserved log-volatility of y;,
{us} and {v;} are mutually independent sequences, (w, 3, o) are parameters
to be estimated, jointly denoted €. The parameter space is IR x (—1,1) x IR;..
The restriction on [ ensures the strict stationarity of y;. Estimates of 5 are
typically quite close to 1 (in agreement with the first stylized fact), thus 8
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is a ‘persistence’ parameter of the volatility. The unconditonal mean of h;
is p = w/(1 — ) and the second equation may be parametrized using p
by writing hy = u + B(hi—1 — p) + ov;. Another parametrization removes w
from the second equation while writing the first as y; = 7exp(h:/2) us where
7 = exp(w/2). These different parametrizations are in one-to-one correspon-
dance. Which one to choose is mainly a matter of convenience and numerical
efficiency of estimation algorithms.

For further use, let y and h denote the n x 1 vectors of observed returns
and unobserved log-volatilities, respectively.

3.2 Estimation

Estimation of the parameters of the canonical SV model may be done by the
maximum likelihood (ML) method or by Bayesian inference. Other methods
have been used but they will not be considered here. We refer to Ghysels
et al. (1996), section 5, for a review. ML and, in principle, Bayesian estimation
require to compute the likelihood function of an observed sample, which is a
difficult task. Indeed, the density of y given 8 and an initial condition hq (not
explicitly written in the following expressions) requires to compute a multiple
integral which has a dimension equal to the sample size:

£016) = [ 7o 1i6) (21)
= [ s(win.6)s(hl6) n (22)
- /f[lf(yt,ht|Yt_1,Ht_1,0) dh (23)
where Y, = {y;}{_, and H; = {h;}t_,. For model (20), this is
/ H F (10, ) ol + Bl 1,0) b, (24)

where fx (z|u, 0?) denotes the normal density function of x, with parameters u
and 0. An analytical solution to the integration problem is not available. Even
a term by term numerical approximation by a quadrature rule is precluded:
the integral of N (0, exp(hy)) X N(w + Bhyp_1,0?) with respect to h,, depends
on h,_1, and has to be carried over in the previous product, and so on until
h1. This would result in an explosion of the number of function evaluations.
Simulation methods are therefore used.

Two methods directly approximate (23): efficient importance sampling
(EIS), and Monte Carlo maximum likelihood (MCML). Another approach,
which can only be used for Bayesian inference, works with f(y,h|@) as data
density, and produces a posterior joint density for 8, h given y. The posterior
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density is simulated by a Monte Carlo Markov chain (MCMC) algorithm,
which produces simulated values of 8 and h. Posterior moments and marginal
densities of 8 are then estimated by their simulated sample counterparts. We
pursue by describing each method.

EIS (Liesenfeld and Richard (2003))

A look at (24) suggests to sample R sequences {h} ~ N(w + Bhs_1,0%)}7,,
r = 1...R, and to approximate it by (1/R) Zle [T/, N(0,exp(h})). This
direct method proves to be inefficient. Intuitively, the sampled sequences of
h; are not linked to the observations y;. To improve upon this, the integral
(23), which is the convenient expression to present EIS, is expressed as

- fys, he|Yi—1, Hi 1, 0)
/tl_[l m(he|Hi—1, ¢1) m(hy|H;—1, ¢;) dh, (25)

where {m(h:|H;_1,¢:)}}_; is a sequence of importance density functions,
indexed by parameters {¢;}. These importance functions serve to generate R
random draws {h},h?...hf*}2 |, such that the integral is approximated by
the sample mean

R n
1 f(ytah“Yt*l:HIfl:e)
- . 26
98 Sy e (20

The essential point is to choose the form of m() and its auxiliary parameters
¢+ so as to secure a good match between the product of m(h:|H;_1, ¢+) and
the product of f(yt, he|Yi—1,H;_1,0) viewed as a function of h. A relevant
good match criterion is provided by a choice of {¢:}, for a given family of
densities for m(), based on the minimization of the Monte Carlo variance of
the mean (26). The choice of {¢;} is explained below, after the choice of m().

A convenient choice for m() is the Gaussian family of distributions. A
Gaussian approximation to f(), as a function of h¢, given y; and h;_1, turns
out to be efficient. It can be expressed as proportional to exp(¢1 ¢ths + ¢2 ¢h7),
where (¢1 4, $2.+) = ¢y, the auxiliary parameters. It is convenient to multiply it
with exp[—0.502(—2mgh; + h? + m?)], where m; = w + Bh¢_1, which comes
from the N(my,0?) term included in f(yi, he|Y¢ 1, Hi 1,0). The product
of these two exponential functions can be expressed as a Gaussian density
N(ug,0?), where

e =0 (me/o® + 614),  of =0°/(1—20"¢a1). (27)

The choice of the auxiliary parameters can be split into n separate prob-
lems, one for each ¢. It amounts to minimize the sum of squared devi-
ations between In f(y:|Y;_1,H},0) plus a correction term, see (28), and
Go.t + b1 thl + do 1 (hY)? where ¢ is an auxiliary intercept term. This problem
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is easily solved by ordinary least squares. See Liesenfeld and Richard (2003)
for a detailed explanation.

Let us summarize the core of the EIS algorithm in three steps (for given
6 and y):
Step 1: Generate R trajectories {h} } using the ‘natural’ samplers { N (my, 0?)}.
Step 2: For each t (starting from ¢ = n and ending at ¢ = 1), using the R
observations generated in the previous step, estimate by OLS the regression

'8

1 _pT /J,T 2 my 2
—5[h +uie™ 4 (F5) = (—2) = o + duihi + don(h)? + €] (28)
t+1

where €] is an error term. For ¢ = n, the dependent variable does not include
the last two terms in the square brackets. The superscript r on p;41, 0441 and
my41 indicates that these quantities are evaluated using the r-th trajectory.

Step 3: Generate R trajectories {h}} using the efficient samplers { N (u:,0?)}
and finally compute (26).

Steps 1 to 3 should be iterated about five times to improve the efficiency
of the approximations. This is done by replacing the natural sampler in step 1
by the importance functions built in the previous iteration. It is also possible
to start step 1 of the first iteration with a more efficient sampler than the
natural one. This is achieved by multiplying the natural sampler by a nor-
mal approximation to f(y¢|he, hi—1,0) o< exp{—0.5[y? exp(—h¢) + hi]}. The
normal approximation is based on a second-order Taylor series expansion of
the argument of the exponential in the previous expression around h; = 0. In
this way, the initial importance sampler links y; and h;. This enables one to
reduce to three (instead of five) the number of iterations over the three steps.
In practical implementations, R can be fixed to 50. When computing (26) for
different values of #, such as in a numerical optimizer, it is important to use
common random numbers to generate the set of R trajectories {h}} that serve
in the computations.

It is also easy to compute by EIS filtered estimates of functions of hy,
such as the conditional standard deviation exp(h:/2), conditional on the past
returns (but not on the lagged unobserved h;), given a value of 8 (such as
the ML estimate). Diagnostics on the model specification are then obtained
as a byproduct: if the model is correctly specified, y; divided by the filtered
estimates of exp(ht/2) is a residual that has zero mean, unit variance, and is
serially uncorrelated (this also holds for the squared residual).

Richard (1998) contains a general presentation of EIS and its properties.

MCML (Durbin and Koopman (1997))

The likelihood to be computed at y (the data) and any given 6 is equal to
f(y|0) and is conveniently expressed as (22) for this method. This quantity is
approximated by importance sampling with an importance function defined
from an approximating model. The latter is obtained by using the state space
representation of the canonical SV model (parametrized with 7):
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Iny? =In7? + hy + ¢, (29)
ht = ﬁht_l + ovg. (30)

In the canonical SV model, ¢; = Inu? is distributed as the logarithm of a

x2(1) random variable. However the approximating model replaces this with a
Gaussian distribution (defined below), keeping the state equation unchanged.
Therefore, the whole machinery of the Kalman filter is applicable to the ap-
proximating model, which is a Gaussian linear state space model. If we denote
by g(h|y,8) the importance function that serves to simulate h (see below),
we have

6)f(h|O

fivle) = [ DR ouly.6)an (31)
y|h, 0)

~gtyie) [ T |'h0 hly, 0) dh. (52)

where the second equality results from g(hly, 8)g(y|6) = g(y|h, 8)g(h|8) and
g(h|0) = f(h|@). All the densities g(.) and g(.|.) are defined from the approx-
imating Gaussian model. In particular, g(y|@) is the likelihood function of
the Gaussian linear state space model and is easy to compute by the Kalman
filter (see the appendix to Sandman and Koopman (1998) for all details).
Likewise, g(y|h, #) obtains from the Gaussian densities g(In y?|hy,6) resulting
from (29) with e, ~ N (a, s?) where a; and s7 are chosen so that g(y|h, 0) is
as close as possible to f(y|h,#). The parameters a; and s; are chosen so that
In g(Iny2|hs, @) and In f(Iny?2|hs, ) have equal first and second derivatives,
where ﬁt is the smoothed value of h; provided by the Kalman filter applied to
the approximating model. Remark that this is a different criterion from that
used in EIS. Finally, g(hly, @) can be simulated with the Gaussian simulation
smoother of de Jong and Shephard (1995).
In brief, the likelihood function is approximated by

f(ylh",6)
Z g(y|hr, 6 (33)

where h” = {h]}I_, is simulated independently R times with the importance
sampler and g(y|0) is computed by the Kalman filter. Equation (32) and (33)
shows that importance sampling serves to evaluate the departure of the actual
likelihood from the likelihood of the approximating model. R is fixed to 250
in practice.

For SML estimation, the approximation in (33) is transformed in loga-
rithm. This induces a bias since the expectation of the log of the sample mean
is not the log of the corresponding integral in (32). The bias is corrected by
adding s /(2Rw) to the log of (33), where s2, is the sample variance of the ra-
tios w” = f(y|h",0)/g(y|h",0) and @ is the sample mean of the same ratios,
i.e. w is the sample mean appearing in (33). Moreover, Durbin and Koopman
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(1997) use antithetic and control variables to improve the efficiency of the
estimator of the log-likelihood function.

Durbin and Koopman (2000) present several generalizations of MCML
(e.g. the case where the state variable in non-Gaussian) and develop analogous
methods for Bayesian inference.

MCMC (Kim et al. (1998))

We present briefly the ‘Mixture Sampler’, one of the three algorithms added
by Kim et al. (1998) to the six algorithms already in the literature at that time
(see their paper for references). They approximate the density of ¢, = Inu? by
a finite mixture of seven Gaussian densities, such that in particular the first
four moments of both densities are equal. The approximating density can be
written as

7 7

faler) =D Prls; = ilf(etls; = i) = Y Pr[s; = i]fn(elbi — 1.2704,cF) (34)

i=1 =1

where s; is a discrete random variable, while Pr[s; = ], b; and ¢; are known
constants (independent of ¢). The constant -1.2704 is the expected value of a
In x2(1) variable.

The crux of the algorithm is to add s = {s;}}"; to € and h in the MCMC
sampling space. This makes it possible to sample h|s,0,y, s|h,y and 0|h,y
within a Gibbs sampling algorithm. Remark that s and @ are independent
given h and y. Moreover, h can be sampled entirely as a vector. The intuition
behind this property is that, once s is known, the relevant term of the mixture
(34) is known for each observation, and since this is a Gaussian density, the
whole apparatus of the Kalman filter can be used. Actually, this a bit more
involved since the relevant Gaussian density depends on ¢, but an augmented
Kalman filter is available for this case.

Sampling h as one block is a big progress over previous algorithms, such
as in Jacquier et al. (1994), where each element h; is sampled individually
given the other elements of h (plus @ and y). The slow convergence of such
algorithms is due to the high correlations between the elements of h.

Kim et al. (1998) write the model in state space form, using p rather than
w or T as a parameter, i.e.

Iny? = hy + €, (35)
ht—,u:B(ht_l —/,L)+O'Ut. (36)

The ‘Mixture Sampler’ algorithm is summarized in Table 7. Notice that once 6
has been sampled, it is easy to transform the draws of p into equivalent draws
of w or 7 by using the relationships between these parameters. Since inference
is Bayesian, prior densities must be specified. For o2, an inverted gamma, prior
density is convenient since the conditional posterior is in the same class and
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Table 7. Summary of ‘Mixture Sampler’ algorithm

parameter conditional posterior or sampling method

Gaussian simulation smoother

Univariate discrete distribution for each s;
Inverted gamma distribution

Rejection or Metropolis-Hastings sampler
Normal distribution

T w5
V)

easy to simulate. For 3, any prior can be used since the conditional posterior is
approximated and rejection sampling is used. A beta prior density is advocated
by Kim et al. (1998). For u, a Gaussian or uninformative prior results in a
Gaussian conditional posterior.

Kim et al. (1998) also propose an algorithm to compute filtered estimates

of hg, from which model diagnostics can be obtained as described above for
EIS.

3.3 Application

For illustration, estimates of the canonical SV model parameters are reported
in Table 8 for a series of 6,107 centred daily returns of the Standard and
Poor’s 500 (SP500) composite price index (period: 02/01/80-30/05/03, source:
Datastream). Returns are computed as 100 times the log of the price ratios.
The sample mean and standard deviation are equal to 0.03618 and 1.0603,
respectively.

Table 8. ML and Bayesian estimates of SV model (20)

EIS (w) MCML (1) MCMC (1)

w/T -0.00524 (0.00227) 0.863 (0.0469) 0.864 (0.0494)
B 0.982  (0.00385) 0.982 (0.00389) 0.983 (0.00382)
o 0149  (0.0138) 0.147 (0.0135) 0.143 (0.0139)

11f -8023.98 -8023.80
time  2.36 min. 7.56 min. 6.23 min.
code Gauss Ox Ox

1If: value of log-likelihood function at the reported estimate;
EIS, MCML, and MCMC are defined in subsection 3.2

We used computer codes provided by the authors cited above. For EIS, we
received the code from R. Liesenfeld, for MCML and MCMC we downloaded
them from the web site staff.feweb.vu.nl/koopman/sv.

For SML estimation by EIS or MCML, identical initial values (8 = 0.96,
0 =0.15,w = 0.02 or 7 = 0.01) and optimization algorithms (BFGS) are used,
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but in different programming environments. Therefore, the computing times
are not fully comparable, although a careful rule of thumb is that Ox is two to
three times faster than Gauss (see Cribari-Neto (1997)). Reported execution
times imply that EIS appears to be at least six times faster than MCML. This
is a reversal of a result reported by Sandman and Koopman (1998) (p 289),
but they compared MCML with a precursor of EIS implemented by Danielson
(1994). More importantly, the two methods deliver quasi-identical results.

MCMC results are based on 18,000 draws after dropping 2,000 initial
draws. The posterior means and standard deviations are also quite close to
the ML results. The posterior density of o (computed by kernel estimation)
is shown in Figure 1 together with the large sample normal approximation to
the density of the ML estimator using the EIS results. The execution time for
MCMC is difficult to compare with the other methods since it depends on the
number of Monte Carlo draws. It is however quite competitive since reliable
results are obtained in no more time than MCML in this example.

McMC SN EIS
7

Fig. 1. Posterior density of o and normal density of the MLE

3.4 Extensions of the Canonical SV Model

The canonical model presented in (20) is too restrictive to fit the excess kurto-
sis of many return series. Typically, the residuals of the model reveal that the
distribution of u; has fatter tails than the Gaussian distribution. The assump-
tion of normality is most often replaced by the assumption that u; ~ £(0, 1, v),
which denotes Student-t distribution with zero mean, unit variance, and de-
grees of freedom parameter v > 2. SML estimates of v are usually between
5 and 15 for stock and foreign currency returns using daily data. Posterior
means are larger because the posterior density of has a long tail to the right.

Several other extensions of the simple SV model presented in (20) exist
in the literature. The mean of y; need not be zero and may be a function of
explanatory variables x; (often a lag of y; and an intercept term). Similarly
ht may be a function of observable variables (z;) in addition to its own lags.
An extended model along these lines is
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ye = xi v+ exp(hy /2) uy, (37)
hi = w+ 2zl a+ Bhi—1 + ovy,

It should be obvious that all these extensions are very easy to incorporate
in EIS (see Liesenfeld and Richard (2003)) and MCML (see Sandman and
Koopman (1998)). Bayesian estimation by MCMC remains quite usable but
becomes more demanding in research time to tailor the algorithm for achieving
a good level of efficiency of the Markov chain (see Chib et al. (2002), in
particular p 301-302, for such comments).

Chib et al. (2002) also include a jump component term k:;q; in the
conditional mean part to allow for irregular, transient movements in re-
turns. The random variable ¢; is equal to 1 with unknown probablity &
and zero with probability 1 — k, whereas k; is the size of the jump when
it occurs. These time-varying jump sizes are assumed independent draws
of In(1 + k¢) ~ N(—0.562,8%), § being an unknown parameter representing
the standard deviation of the jump size. For daily SP500 returns (period:
03/07/1962-26/08/1997) and a Student-t density for wu;, Chib et al. (2002)
report posterior means of 0.002 for , and 0.034 for § (for prior means of 0.02
and 0.05, respectively). This implies that a jump occurs on average every 500
days, and that the variability of the jump size is on average 3.4 per cent. They
also find that the removal of the jump component from the model reduces the
posterior mean of v from 15 to 12, which corresponds to the fact that the
jumps capture some outliers.

Another extension consists of relaxing the restriction of zero correlation (p)
between u; and vy. This may be useful for stock returns for which a negative
correlation corresponds to the leverage effect of the financial literature. If
the correlation is negative, a drop of u;, interpreted as a negative shock on
the return, tends to increase v; and therefore h;. Hence volatility increases
more after a negative shock than after a positive shock of the same absolute
value, which is a well-known stylized fact. Sandman and Koopman (1998)
estimate such a model by MCML, and report p = —0.38 for daily returns of
the SP500 index (period: 02/01/80-30/12/87), while Jacquier et al. (2004) do
it by Bayesian inference using MCMC and report a posterior mean of p equal
to -0.20 on the same data. They use the same reparametrization as in (13) to
impose that the first diagonal element of the covariance matrix of u; and ov;
must be equal to 1. This covariance matrix is given by

_( L po)_ (1 Y
2= ) =(0 w¥s) 3%)

where the last matrix is a reparametrization. This enables to use a normal
prior on the covariance ¢ and an inverted gamma prior on ¢?, the conditional
variance of ov; given u;. The corresponding conditional posteriors are of the
same type, so that simulating these parameters in the MCMC algorithm is
easy. This approach can also be used if u; has a Student-¢ distribution.
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Multivariate SV models are also on the agenda of researchers. Liesenfeld
and Richard (2003) estimate by EIS a one-factor model introduced by Shep-
hard (1996), using return series of four currencies. Kim et al. (1998), section
6.6, explain how to deal with the multi-factor model case by extending the
MCMC algortihm reviewed in subsection 3.2.

3.5 Stochastic Duration and Intensity Models

Models akin to the SV model have been used for dynamic duration analysis by
Bauwens and Veredas (2004) and Bauwens and Hautsch (2003). The context
of application is the analysis of a sequence of time spells between events (also
called durations) occurring on stock trading systems like the New York Stock
Exchange (NYSE). Time stamps of trades are recorded for each stock on
the market during trading hours every day, resulting in an ordered series of
durations. Marks, such as the price, the exchanged quantity, the prevailing bid
and ask prices, and other observed features may also be available, enabling
to relate the durations to the marks in a statistical model. See Bauwens and
Giot, (2001) for a presentation of the issues.

Let 0 =ty < t; <ty < ... <ty denote the arrival times and dy,ds...d,
denote the corresponding durations, i.e. d; = t; — t;—1. The stochastic condi-
tional duration (SCD) model of Bauwens and Veredas (2004) is defined as

di :exp(@bi) Uq, U,’ND(’)/), t= 1,...,’!7,,

i = w+ Bhi1 +ovi, v~ N(0,1), (39)
where D(v) denotes some distribution on the positive real line, possibly de-
pending on a parameter . For example, Bauwens and Veredas use the Weibull
distribution and the gamma distribution (both with shape parapeter denoted
by v).Assuming that the distribution of u; is parameterized so that E(u;) = 1,
; is the logarithm of the unobserved mean of d;, and is modelled by a Gaus-
sian autoregressive process of order one. It is also assumed that {u;} and
{v;} are mutually independent sequences. The parameters to be estimated are
(w, B, g,7), jointly denoted 0. The parameter space is IR x (—1,1) x IRy xIR...

The similarity with the canonical SV model (20) is striking. A major dif-
ference is the non-normality of u; since this is by definition a positive random
variable. This feature makes it possible to identify ~. Therefore, the estima-
tion methods available for the SV model can be adapted to the estimation of
SCD models. Bauwens and Veredas (2004) have estimated the SCD model by
the quasi-maximum likelihood (QML) method, since the first equation of the
model may be expressed as In d; = ¥; +Inu;. If In u; were Gaussian, the model
would be a Gaussian linear state space model and the Kalman filter could be
directly applied. QML relies on maximizing the likelihood function as if In u;
were Gaussian. The QML estimator is known to be consistent but inefficient
relative to the ML estimator which would obtain if the correct distribution
of Inu; were used to define the likelihood function. Galli (2003), Chapter 3,
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has studied by simulation the loss of efficiency of QML relative to ML. ML
estimation assuming a Weibull distribution is done by applying the EIS algo-
rithm. For a sample size of 500 observations, the efficiency loss ranges from
20 to 50 per cent, except for the parameter w, for which it is very small. He
also applied the EIS method using the same data as in Bauwens and Veredas
(2004). For example, for a dataset of 1,576 volume durations of the Boeing
stock (period: September-November 1996; source: TAQ database of NYSE),
the ML estimates are: w = —0.028, B = 0.94, 6% = 0.0159, 4 = 1.73. They
imply a high persistence in the conditional mean process (corresponding to
duration clustering), a Weibull distribution with an increasing concave hazard
function, and substantial heterogeneity. Notice that an interesting feature of
the SCD model is that the distribution of u; conditional to the past informa-
tion, but marginalized with respect to the latent process, is a Weibull mixed
by a lognormal distribution.

Strickland et al. (2003) have designed a MCMC algortithm for the SCD
model (39) assuming a standard exponential distribution for u;. The design of
their MCMC algorithm borrows features from Koopman and Durbin’s MCML
approach and one of the MCMC algorithms used for the SV model.

As an alternative to modelling the sequence of durations, Bauwens and
Hautsch (2003) model directly the arrival times through the intensity func-
tion of the point process. Their model specifies a dynamic intensity function,
where the intensity function is the product of two intensity components: an
observable component that depends on past arrival times, and a latent compo-
nent. The logarithm of the latter is a Gaussian autoregressive process similar
to the second equation in (20) and (39). The observable component may be a
Hawkes process (Hawkes (1971)) or an autoregressive intensity model (Russell
(1999)). When the model is multivariate, there is an observable intensity com-
ponent specific to each particular point process, while the latent component
is common to all particular processes. Interactions between the processes oc-
cur through the observable components and through the common component.
The latter induces similar dynamics in the particular processes, reflecting the
impact of a common factor influencing all processes. Bauwens and Hautsch
use intensity-based likelihood inference, with the EIS algorithm to deal with
the latent component.

4 Finite Mixture Models

Many econometric isuues require models that are richer or more flexible than
the conventional regression type models. Several possibilities exist. For exam-
ple, as explained in subsection 2.3, the logit model is made more realistic by
generalizing it to a mixed logit. Many models currently used in econometrics
can be generalized in such a way.

In this section, we assume that the univariate or multivariate observations
y; are considered as draws of
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~ G
f(j) :anf(}’j|eg) (40)
g=1

with m + ...+ ne = 1. The densities f(-|0,) are called component distribu-
tions. The observation y; comes from one of these component distributions
but we do not observe to which component it belongs. The mixture problem
involves making inference about the n,’s and the parameters of the component
distributions given only a sample from the mixture. The closer the component
distributions are to each other, the more difficult this is because of problems
of identifiability and computational instability.

4.1 Inference and Identification

The structure of (40) implies that the likelihood for all the .J observations
contains G terms

J G
L(n,0ly) o< ]| (Z m;f(wl%)) (41)

where n = (1,...,n¢)T and @ = (04,...,05)T contain all the parameters
and y denotes all the data. Maximum likelihood estimation using numerical
optimization techniques, requiring many evaluations of the likelihood function,
becomes cumbersome, if not unfeasible, for large G and J. This is even worse
for multivariate observations.

Bayesian inference on finite mixture distributions by MCMC sampling is
explained in Diebolt and Robert (1994). Gibbs sampling on (n, 0) is difficult
since the posterior distributions of 7|0,y and @|n,y are generally unknown.
For the same reason as for the probit model in section 2.1 and the stochastic
volatility model in section 3, inference on the finite mixture model is straight-
forward once the state or group of an observation is known. Data augmen-
tation is therefore an appropriate way to render inference easier. Define the
state indicator S; which takes value s; = g when y; belongs to state or group
g where g € {1,...,G}. Denote by S the J-dimensional discrete vector con-
taining all the state indicators. To facilitate the inference, prior independence,
that is ¢(n,0,S) = ©(n)(0)p(S), is usually imposed. As shown in the next
examples, the posterior distributions S|n,0,y, 0|n,S,y and 1|0,S,y are ei-
ther known distributions easy to sample from or they are distributions for
which a second, but simpler, MCMC sampler is set up. A Gibbs sampler with
three main blocks may therefore be used.

The complete data likelihood of the finite mixture is invariant to a relabel-
ing of the states. This means that we can take the labeling {1,2,...,G} and do
a permutation {p(1),p(2),...,p(G)} without changing the value of the like-
lihood function. If the prior is also invariant to relabeling then the posterior
has this property also. As a result, the posterior has potentially G! different
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modes. To solve this identification or label switching problem, identification
restrictions have to be imposed.

Note that the inference described here is conditional on G, the number
of components. There are two modelling approaches to take care of G. First,
one can treat G as an extra parameter in the model as is done in Richardson
and Green (1997) who make use of the reversible jump MCMC methods. In
this way, the prior information on the number of components can be taken
explicitly into account by specifying for example a Poisson distribution on
G in such a way that it favors a small number of components. A second
approach is to treat the choice of G as a problem of model selection. By
so-doing one separates the issue of the choice of G from estimation with G
fixed. For example, one can take G = 2 and G = 3 and do the estimation
separately for the two models. Then Bayesian model comparison techniques
(see Chapter ??) can be applied, for instance by the calculation of the Bayes
factor, see Cowles and Carlin (1996) and Chib (1995) for more details.

4.2 Examples

We review two examples. The first example fits US quarterly GNP data using
a Markov switching autoregressive model. The second example is about the
clustering of many GARCH models.

Markov Switching Autoregressive Model

Frithwirth-Schnatter (2001) uses US quarterly real GNP growth data from
1951:2 to 1984:4. This series was initially used by Hamilton (1989) and is
displayed in Figure 2. The argument is that contracting and expanding periods

50 55 60 65 70 75 80 85

Fig. 2. US real GNP growth data in percentages (1951:2 to 1984:4)

are generated by the same model but with different parameters. These models
are called state- (or regime-) switching models.
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After some investigation using Bayesian model selection techniques, the
adequate specification for the US growth data is found to be the two-state
switching AR(2) model

Yt = BinYi—1 + Bipyi—2 + Bis + € €ti ~ N(0,07) i=1,2. (42)

The idea behind the choice of two states is motivated by the contracting
(negative growth) and expanding periods (positive growth) in an economy.
The conditional posteriors for the 0?’s are independent inverted gamma dis-
tributions. For the f;’s, the conditional posteriors are independent normal
distributions. Inference for the switching model in (42) is done in two steps.
The first step is to construct an MCMC sample by running the random per-
mutation sampler. Generally speaking, a draw from the random permutation
sampler is obtained as follows:

(i) Draw from the model by use of the Gibbs sampler for example.
(ii) Relabel the states randomly.

By so-doing, one samples from the unconstrained parameter space with bal-
anced label switching. Note that in (ii), there are G! possibilities to relabel
when there are G possible states.

In the second step, this sample is used to identify the model. This is
done by visual inspection of the posterior marginal and bivariate densities.
Identification restrictions need to be imposed to avoid multimodality of the
posterior densities. Once suitable restrictions are found, a final MCMC sample
is constructed to obtain the moments of the constrained posterior density. The
latter sample is constructed by permutation sampling under the restrictions,
which means that (ii) is replaced by one permutation defining the constrained
parameter space.

In the GNP growth data example, two identification restrictions seem pos-
sible, namely f11 < (2,1 and 13 < (2.3, see Frihwirth-Schnatter (2001) for
details. Table 9 provides the posterior means and standard deviations of the
B;,;’s for both identification restrictions.

Table 9. Posterior means and standard deviations

Bi,1 < P21 B1,3 < B2,3
Contraction Expansion Contraction Expansion
Bin 0.166 (0.125) 0.33 (0.101) 0.249 (0.164) 0.295 (0.116)
Bi,2 0.469 (0.156) -0.129 (0.093) 0.462 (0.164) -0.114 (0.098)
Bia -0.479 (0.299) 1.07 (0.163) -0.557 (0.322) 1.06 (0.175)

The GNP growth in contraction and expansion periods not only have differ-
ent unconditional means, they are also driven by different dynamics. Both
identification restrictions result in similar posterior moments.
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Clustering of Many GARCH Models

Bauwens and Rombouts (2003) focus on the differentiation between the com-
ponent distributions via different conditional heteroskedasticity structures by
the use of GARCH models. In this framework, the observation y; is multi-
variate and the @,’s are the parameters of GARCH(1,1) models. The purpose
is to estimate many, of the order of several hundreds, GARCH models. Each
financial time series belongs to one of the G groups but it is not known a
priori which series belongs to which cluster.

An additional identification problem arises due to the possibility of empty
groups. If a group is empty then the posterior of 8, is equal to the prior
of 6,. Therefore an improper prior is not allowed for 8,. The identification
problems are solved by using an informative prior on each 8,. The identifi-
cation restrictions use the fact that we work with GARCH models: we se-
lect rather non-overlapping supports for the parameters, such that the prior
p(B) = HgG:1 ©(0,) depends on a labeling choice. Uniform prior densities on
each parameter, on finite intervals, possibly subject to stationarity restric-
tions, are relatively easy to specify.

Bayesian inference is done by use of the Gibbs sampler and data augmen-
tation. Table 10 summarizes the three blocks of the sampler.

Table 10. Summary of conditional posteriors

parameter conditional posterior
or sampling method

S Multinomial distribution
n Dirichlet distribution
(7] Griddy-Gibbs sampler

Because of the prior independence of the 8,’s, the griddy-Gibbs sampler is
applied separately G times.
As an illustration we show the posterior marginals of the following model

3

.f(yj) = anf(ijg) (43)

g9=1

with 7; = 0.25, 72 = 0.5, J = 100 and 7} = 1000. The components are defined
more precisely as

T;

Fw;10y) = T £ 54104, 1;.0) (44)
t=1

Yj.t|0g, Ljt ~ N(0,hjt) (45)

hjt = (1- Qg — :89)‘:)]' + oy (f‘/j,t—l)2 + Bghjt—1 (46)
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where I ; is the information set until ¢—1 containing (at least) y;1,...,y;¢—1
and initial conditions which are assumed to be known. For the simulation of
the data @; is fixed equal to one which implies that the unconditional variance
for every generated data series is equal to one. However, the constant @; in
the conditional variance is not subject to inference, rather it is fixed at the
empirical variance of the data. Table 11 presents the true values, the prior
intervals on the 8,’s and posterior results on 77 and 6.

Table 11. Posterior results on 17 and 8 (G = 3)

m 72 ns
True value 0.25 0.50 0.25
Mean 0.2166 0.4981 0.2853
Standard deviation 0.0555 0.0763  0.0692
Correlation matrix 1 -0.4851 -0.2677
-0.4851 1 -0.7127

-0.2677  -0.7127 1
g=1 g9=2 g=3

True value Qg 0.04 0.12 0.20
By 0.90 0.60 0.40
Prior interval a4 0.001,0.07 0.07,0.15 0.15,0.25
By 0.65,0.97 0.45,0.75 0.20,0.60
Mean ag 0.0435 0.1041 0.1975
By 0.8758  0.5917  0.4369
Standard deviation oy 0.0060  0.0092  0.0132
By 0.0238  0.0306 0.0350
Correlation oy, By -0.7849 -0.71409 -0.7184

Bauwens and Rombouts (2003) succesfully apply this model to return se-
ries of 131 US stocks. Comparing the marginal likelihoods for different models,
they find that G = 3 is the appropriate choice for the number of component
distributions.

Other interesting examples of finite mixture modelling exist in the litera-
ture. Frithwirth-Schnatter and Kaufmann (2002) develop a regime switching
panel data model. Their purpose is to cluster many short time series to cap-
ture asymmetric effects of monetary policy on bank lending. Deb and Trivedi
(1997) develop a finite mixture negative binomial count model to estimate six
measures of medical care demand by the elderly. Chib and Hamilton (2000)
offer a flexible Bayesian analysis of the problem of causal inference in models
with non-randomly assigned treatments. Their approach is illustrated using
hospice data and hip fracture data.
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function, 2, 12, 15-17, 20, 22
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logistic distribution, 8
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