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Transforms in Statistics

Brani Vidakovic

School of Industrial and Systems Engineering, Georgia Institute of Technology, 765
Ferst Drive, Atlanta, GA 30332-0205 brani@isye.gatech.edu

It is not an overstatement to say that statistics is based on various transforma-
tions of data. Basic statistical summaries such as the sample mean, variance,
z-scores, histograms, etc., are all transformed data. Some more advanced sum-
maries, such as principal components, periodograms, empirical characteristic
functions, etc., are also examples of transformed data. To give a just coverage
of transforms utilized in statistics will take a size of a monograph. In this
chapter we will focus only on several important transforms with the emphasis
on novel multiscale transforms (wavelet transforms and its relatives).

Transformations in statistics are utilized for several reasons, but unifying
arguments are that transformed data

(i) are easier to report, store, and analyze,
(ii) comply better with a particular modeling framework, and
(iii) allow for an additional insight to the phenomenon not available in the
domain of non-transformed data.

For example, variance stabilizing transformations, symmetrizing trans-
formations, transformations to additivity, Laplace, Fourier, Wavelet, Gabor,
Wigner-Ville, Hugh, Mellin, transforms all satisfy one or more of points listed
in (i-iii).

We emphasize that words transformation and transform are often used
interchangeably. However, the semantic meaning of the two words seem to be
slightly different. For the word transformation, the synonyms are alteration,
evolution, change, reconfiguration. On the other hand, the word transform
carries the meaning of a more radical change in which the nature and/or
structure of the transformed object are altered. In our context, it is natu-
ral that processes which alter the data leaving them unreduced in the same
domain should be called transformations (for example Box-Cox transforma-
tion) and the processes that radically change the nature, structure, domain,
and dimension of data should be called transforms (for example Wigner-Ville
transform).
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In this Chapter we focus mainly on transforms providing an additional
insight on data. After the introduction discussing three examples, several im-
portant transforms are overviewed. We selected discrete Fourier, Hilbert, and
Wigner-Ville transforms, discussed in Section 2, and given their recent popu-
larity, continuous and discrete wavelet transforms discussed in Sections 3 and
4.

1 Introduction

As an “appetizer” we give two simple examples of use of transformations
in statistics, Fisher z and Box-Cox transformations as well as the empirical
Fourier-Stieltjes transform.

Example 1. Assume that we are looking for variance transformation Y =
ϑ(X), in the case where VarX = σ2

X(µ) is a function of the mean µ = EX.
The first order Taylor expansion of ϑ(X) about mean µ is

ϑ(X) = ϑ(µ) + (X − µ)ϑ′(µ) + O[(X − µ)2].

Ignoring quadratic and higher order terms we see that

Eϑ(X) ≈ 0, Varϑ(X) ≈ E [(X − µ)2ϑ′(µ)] = [ϑ′(x)]2σ2
X(µ).

If Var (ϑ(X)) is to be c2, we obtain

[ϑ′(x)]2σ2
X(µ) = c2

resulting in

ϑ(x) = c

∫
dx

σX(x)
dx.

This is a theoretical basis for the so-called Fisher z-transformation.
Let (X11, X21), . . . , (X1n, X2n) be a sample from bivariate normal distri-

bution N2(µ1, µ2, σ
2
1 , σ

2
2 , ρ), and X̄i = 1

n

∑n
j=1Xij , i = 1, 2.

The Pearson coefficient of linear correlation

r =
∑n

i=1(X1i − X̄1)(X2i − X̄2)[∑n
i=1(X1i − X̄1)2 ·

∑n
i=1(X2i − X̄2)2

]1/2
has a complicated distribution involving special functions, e.g., Anderson
(1984), p.113. However, it is well known that the asymptotic distribution
for r is normal N(ρ, (1−ρ2)2

n ). Since the variance is a function of mean,

ϑ(ρ) =
∫

c
√
n

1 − ρ2
dρ

=
c
√
n

2

∫ (
1

1 − ρ
+

1
1 + ρ

)
dρ

=
c
√
n

2
log

(
1 + ρ

1 − ρ

)
+ k
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is known as Fisher z-transformation for the correlation coefficient (usually for
c = 1/

√
n and k = 0). Assume that r and ρ are mapped to z and ζ as

z =
1
2

log
(

1 + r

1 − r

)
= arctanh r, ζ =

1
2

log
(

1 + ρ

1 − ρ

)
= arctanh ρ.

The distribution of z is approximately normal N(ζ, 1
n−3 ) and this approxima-

tion is quite accurate when ρ2/n2 is small and when n is as low as 20. The use
of Fisher z-transformation is illustrated on finding the confidence intervals for
ρ and testing hypotheses about ρ.
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Fig. 1. (a) Simulational run of 10000 r’s from the bivariate population having
theorethical ρ =

√
2/2.; (b) The same r’s transformed to z’s with the normal ap-

proximation superimposed.

To exemplify the above, we generated n = 30 pairs of normally distributed
random samples with theoretical correlation

√
2/2. This was done by generat-

ing two i.i.d. normal samples a, and b of length 30 and taking the transforma-
tion x1 = a+b, x2 = b. The sample correlation coefficient r is found. This was
repeated M = 10000 times. The histogram of 10000 sample correlation coeffi-
cients is shown in Fig. 1(a). The histogram of z-transformed r’s is shown in Fig.
1(b) with superimposed normal approximation N(arctanh(

√
2/2), 1/(30−3)).

(i) For example, (1 − α)100% confidence interval for ρ is:[
tanh

(
z − Φ−1(1 − α/2)√

n− 3

)
, tanh

(
z +

Φ−1(1 − α/2)√
n− 3

)]
,

where z = arctanh(r) and tanhx = (ex − e−x)/(ex + e−x) and Φ stands for
the standard normal cumulative distribution function.

If r = −0.5687 and n = 28 z = −0.6456, zL = −0.6456− 1.96
5 = −1.0376

and zU = −0.6456+ 1.96
5 = −0.2536. In terms of ρ the 95% confidence interval

is [−0.7769,−0.2483].
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(ii) Assume that two samples of size n1 and n2, respectively, are obtained
form two different bivariate normal populations. We are interested in testing
H0 : ρ1 = ρ2 against the two sided alternative. After observing r1 and r2 and
transforming them to z1 and z2, we conclude that the p-value of the test is

2Φ
(

−|z1−z2|√
1/(n1−3)+1/(n2−3)

)
.

Example 2. Box and Cox (1964) introduced a family of transformations, in-
dexed by real parameter λ, applicable to positive data X1, . . . , Xn,

Yi =

{
Xλ

i −1
λ , λ �= 0

logXi, λ = 0.
(1)

This transformation is mostly applied to responses in linear models exhibiting
non-normality and/or heteroscedasticity. For properly selected λ, transformed
data Y1, . . . , Yn may look “more normal” and amenable to standard modeling
techniques. The parameter λ is selected by maximizing the log-likelihood,

(λ− 1)
n∑
i=1

logXi −
n

2
log

[
1
n

n∑
i=1

(Yi − Ȳi)2
]
, (2)

where Yi are given in (1) and Ȳi = 1
n

∑n
i=1 Yi.

As an illustration, we apply the Box-Cox transformation to apparently
skewed data of CEO salaries.

Forbes magazine published data on the best small firms in 1993. These
were firms with annual sales of more than five and less than $350 million.
Firms were ranked by five-year average return on investment. One of the
variables extracted is the annual salary of the chief executive officer for the
first 60 ranked firms (since one datum is missing, the sample size is 59). Fig.
2(a) shows the histogram of row data (salaries). The data show moderate
skeweness to the right. Panel (b) gives the values of likelihood in (2) for
different values of λ. Note that (2) is maximized for λ approximately equal
to 0.45. Fig. 2(c) gives the transformed data by Box-Cox transformation with
λ = 0.45. The histogram of transformed salaries is notably symetrized.

Example 3. As an example of transforms utilized in statistics, we provide an
application of empirical Fourier-Stieltjes transform (empirical characteristic
function) in testing for the independence.

The characteristic function of a probability distribution F is defined as its
Fourier-Stieltjes transform,

ϕX(t) = E exp(itX), (3)
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Fig. 2. (a) Histogram of row data [CEO salaries]; (b) Log-likelihood is maximized
at λ = 0.45; and (c) Histogram of Box-Cox-transformed data.

where E is expectation and random variable X has distribution function F .
It is well known that the correspondence of characteristic functions and dis-
tribution functions is 1-1, and that closeness in the domain of characteristic
functions corresponds to closeness in the domain of distribution functions. In
addition to uniqueness, characteristic functions are bounded. The same does
not hold for moment generating functions which are Laplace transforms of
distribution functions.

For a sample X1, X2, . . . , Xn one defines empirical characteristic function
ϕ∗(t) as

ϕ∗
X(t) =

1
n

n∑
j=1

exp(itXj).

The result by Feuerverger and Mureika (1977) establishes the large sample
properties of the empirical characteristic function

Theorem 1. For any T <∞

P

[
lim
n→∞ sup

|t|≤T
|ϕ∗(t) − ϕ(t)| = 0

]
= 1

holds. Moreover, when n→ ∞, the stochastic process

Yn(t) =
√
n(ϕ∗(t) − ϕ(t)), |t| ≤ T,

converges in distribution to a complex-valued Gaussian zero-mean process Y (t)
satisfying Y (t) = Y (−t) and

E (Y (t)Y (s)) = ϕ(t+ s) − ϕ(t)ϕ(s),

where Y (t) denotes complex conjugate of Y (t).
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Following Murata (2001) we describe how the empirical characteristic func-
tion can be used in testing for the independence of two components in bivariate
distributions.

Given the bivariate sample (Xi, Yi), i = 1, . . . , n, we are interested in
testing for independence of the components X and Y . The test can be based
on the following bivariate process,

Zn(t, s) =
√
n(ϕ∗

X,Y (t+ s) − ϕ∗
X(t)ϕ∗

Y (s)),

where ϕ∗
X,Y (t+ s) = 1

n

∑n
j=1 exp(itXj + isYj).

Murata (2001) shows that Zn(t, s) has Gaussian weak limit and that

VarZn(t, s) ≈ [ϕ∗
X(2t) − (ϕ∗

X(t))2][ϕ∗
Y (2s) − (ϕ∗

Y (s))2], and
Cov (Zn(t, s), Zn(t, s)) ≈ (1 − |ϕ∗

X(t)|2)(1 − |ϕ∗
Y (s)|2),

The statistics

T (t, s) = (�Zn(t, s) �Zn(t, s)) Σ−1 (�Zn(t, s) �Zn(t, s))′

has approximately χ2 distribution with 2 degrees of freedom for any t and s
finite. Symbols � and � stand for the real and imaginary parts of a complex
number. The matrix Σ is 2 × 2 matrix with entries

ς11 =
1
2
(�Var (Zn(t, s)) + Cov (Zn(t, s), Zn(t, s))

ς12 = ς21 =
1
2
�Var (Zn(t, s)), and

ς22 =
1
2
(−�Var (Zn(t, s)) + Cov (Zn(t, s), Zn(t, s)).

Any fixed pair t, s gives a valid test, and in the numerical example we selected
t = 1 and s = 1 for calculational convenience.

We generated two independent components from the Beta(1,2) distribution
of size n = 2000 and found T statistics and corresponding p-values M = 2000
times. Fig. 3(a,b) depicts histograms of T statistics and p values based on
2000 simulations. Since the generated components X and Y are indepen-
dent, the histogram for T agrees with asymptotic χ2

2 distribution, and of
course, the p-values are uniform on [0,1]. In Fig. 3(c) we show the p-values
when the components X and Y are not independent. Using two independent
Beta(1,2) components X and Y ′, the second component Y is constructed as
Y = 0.03X + 0.97Y ′. Notice that for majority of simulational runs the inde-
pendence hypothesis is rejected, i.e., the p-values cluster around 0.

2 Fourier and Related Transforms

Functional series have a long history that can be traced back to the early nine-
teenth century. French mathematician (and politician) Jean-Baptiste-Joseph
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Fig. 3. (a) Histogram of observed T statistics with theoretical χ2
2 distribution; (b)

p-values of the test when components are independent; and (c) p-values if the test
when the second component is a mixture of an independent sample and 3% of the
first component.

Fourier, decomposed a continuous, periodic on [−π, π] function f(x) into the
series od sines and cosines,

a0

2
+

∞∑
n=1

an cosnx+ bn sinnx,

where the coefficients an and bn are defined as

an =
1
π

∫ π

−π
f(x) cosnx dx, n = 0, 1, 2, . . .

bn =
1
π

∫ π

−π
f(x) sinnx dx, n = 1, 2, . . . .

The sequences {an, n = 0, 1, . . .} and {bn, n = 1, 2, . . .} can be viewed
as a transform of the original function f . It is interesting that at the time
of Fourier’s discovery the very notion of function was not precisely defined.
Fourier methods have long history in statistics especially in the theory of
nonparametric function and density estimation and characteristic functions.

There are three types of Fourier transforms: integral, serial, and discrete.
Next, we focus on discrete transforms and some modifications of the integral
transform.

2.1 Discrete Fourier Transform

The discrete Fourier transform (DFT) of a sequence f = {fn, n = 0, 1, . . . , N−
1} is defined as

F =

{
N−1∑
n=0

fnw
nk
N , k = 0, . . . , N − 1

}
,
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where wN = e−i2π/N . The inverse is

f =

{
1
N

N−1∑
k=0

Fkw
−nk
N , n = 0, . . . , N − 1

}
.

The DFT can be interpreted as the multiplication of the input vector
by a matrix; therefore, the discrete Fourier transform is a linear operator. If
Q = {Qnk = e−i2πnk}N×N , then F = Q · f . The matrix Q is unitary (up to
a scale factor), i.e., Q∗Q = NI, where I is the identity matrix and Q∗ is the
conjugate transpose of Q.

There are many uses of discrete Fourier transform in statistics. It turns
cyclic convolutions into component-wise multiplication, and the fast version
of DFT has a low computational complexity of O(n log(n)), meaning that the
number of operations needed to transform an input of size n is proportional to
n log(n). For a theory and various other uses of DFT in various fields reader
is directed to Brigham (1988).

We focus on estimation of a spectral density from the observed data, as an
important statistical task in a variety of applied fields in which the information
about frequency behavior of the phenomena is of interest.

Let {Xt, t ∈ Z} be a a real, weakly stationary time series with zero mean
and autocovariance function γ(h) = EX(t+h)X(t). An absolutely summable
complex-valued function γ(·) defined on integers is the autocovariance function
of Xt if and only if the function

f(ω) =
1
2π

∞∑
h=−∞

γ(h)e−ihω (4)

is non-negative for all ω ∈ [−π, π]. The function f(ω) is called the spec-
tral density associated with covariance function γ(h), and is in fact a version
of discrete Fourier transform of the autocovariance function γ(h). The spec-
tral density of a stationary process is a symmetric and non-negative function.
Given the spectral density, the autocovariance function can uniquely be re-
covered via inverse Fourier transform,

γ(h) =
∫ π

−π
f(ω)eihωdω, h = 0,±1,±2, . . . .

A traditional statistic used as an estimator of the spectral density is the pe-
riodogram. The periodogram I(ω), based on a sample X0, . . . , XT−1 is defined
as

I(ωj) =
1

2πT

∣∣∣∣∣
T−1∑
t=0

Xte
−itωj

∣∣∣∣∣
2

, (5)
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where ωj is the Fourier frequency ωj = 2πj
T , j = [−T/2]+1, . . . ,−1, 0, 1, . . . , [T/2].

By a discrete version of the sampling theorem it holds that I(ω) is uniquely
determined for all ω ∈ [−π, π], given its values at Fourier frequencies.

Calculationally, the periodogram is found by using fast Fourier transform.
A simple matlab m-function calculating the periodogram is

function out = periodogram(ts)
out = abs(fftshift(fft(ts - mean(ts)))).^2/(2*pi*length(ts));

An application of spectral and log-spectral estimation involves famous
Wolf’s sunspot data set. Although in this situation the statistician does not
know the “true” signal, the theory developed by solar scientists helps to eval-
uate performance of the algorithm.

The Sun’s activity peaks every 11 years, creating storms on the surface
of our star that disrupt the Earth’s magnetic field. These “solar hurricanes”
can cause severe problems for electricity transmission systems. An example of
influence of such periodic activity to everyday life is 1989 power blackout in
the American northeast.

Efforts to monitor the amount and variation of the Sun’s activity by count-
ing spots on it have a long and rich history. Relatively complete visual esti-
mates of daily activity date back to 1818, monthly averages can be extrapo-
lated back to 1749, and estimates of annual values can be similarly determined
back to 1700. Although Galileo made observations of sunspot numbers in the
early 17th century, the modern era of sunspot counting began in the mid-1800s
with the research of Bern Observatory director Rudolph Wolf, who introduced
what he called the Universal Sunspot Number as an estimate of the solar activ-
ity. The square root of Wolf’s yearly sunspot numbers are given in Fig. 4(a),
data from Tong (1996), p.471. Because of wavelet data processing we selected
a sample of size a power of two, i.e., only 256 observations from 1733 till 1998.
The square root transformation was applied to symmetrize and de-trend the
Wolf’s counts. Panel (b) in Fig. 4 gives a raw periodogram, while the panel (c)
in Fig. 4 shows the estimator of log-spectral density (Pensky and Vidakovic,
2003).

The estimator reveals a peak at frequency ω∗ ≈ 0.58, corresponding to the
Schwabe’s cycle ranging from 9 to 11.5 (years), with an average of 2π

0.58 ≈ 10.8
years. The Schwabe cycle is the period between two subsequent maxima or
minima the solar activity, although the solar physicists often think in terms
of a 22-year magnetic cycle since the sun’s magnetic poles reverse direction
every 11 years.

2.2 Windowed Fourier Transform

Windowed Fourier Transforms are important in providing simultaneous in-
sight in time and frequency behavior of the functions. Standard Fourier Trans-
forms describing the data in the “Fourier domain” are precise in frequency,
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Fig. 4. (a) Square roots of Wolf’s yearly sunspot numbers from 1732-1988 (256
observations); (b) Raw periodogram; (c) An estimator of the log-spectra. The fre-
quency ω∗ ≈ 0.58 corresponds to Schwabe’s period of 10.8 (years).

but not in time. Small changes in the signal (data) at one location cause
change in the Fourier domain globally. It was of interest to have transformed
domains that are simultaneously precise in both time and frequency domains.
Unfortunately, the precision of such an insight is limited by the Heisenberg’s
Uncertainty Principle.

Suppose f(t) is a signal of finite energy. In mathematical terms, the integral
of its modulus squared is finite, or shortly, f belongs to L2(R) space.

The integral Fourier transform of the signal

F(f)(ξ) = f̂(ξ) =
∫

R

f(t)e−itξdt, (6)

describes the allocation of energy content of a signal at different frequencies,
but the time-related information is lost.

Windowed Fourier transform (also called short time Fourier transform,
STFT) was introduced by Gabor (1946), to measure time-localized frequencies
of sound. An atom in Gabor’s decomposition is defined via:

gu,ξ(t) = eiξtg(t− u),

where g is a real, symmetric, and properly normalized “window” function.
[||g|| = 1 so that ||gu,ξ|| = 1]

If f ∈ L2(R), then windowed Fourier transform is defined as

Sf(u, ξ) = 〈f, gu,ξ〉 =
∫

R

f(t)g(t− u)e−iξtdt. (7)

The chief use of windowed Fourier transforms is to analyze time/frequency
distribution of signal energy, via a spectrogram.

The spectrogram,

PSf(u, ξ) = |Sf(u, ξ)|2 =
∣∣∣∣
∫ ∞

−∞
f(t)g(t− u)e−iξtdt

∣∣∣∣
2

,
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expresses the energy distribution in the signal f , with respect to time and
frequency simultaneously.

The following are some basic properties of STFT. Let f ∈ L2(R2). Then

[Inverse STFT] f(t) =
1
2π

∫
R

∫
R

Sf(u, ξ)g(t− u)eiξtdξdu, (8)

and

[Energy Conservation]
∫

R

|f(t)|2 dt =
1
2π

∫
R

∫
R

|Sf(u, ξ)|2 dξdu. (9)

The following is a characterizing property of STFT:
Let Φ ∈ L2(R2). There exist f ∈ L2(R2) such that Φ(u, ξ) = Sf(u, ξ) if

and only if

Φ(u0, ξ0) =
1
2π

∫
R

∫
R

Φ(u, ξ)K(u0, u, ξ0, ξ)dudξ, (10)

where

K(u0, u, ξ0, ξ) = 〈gu,ξ, gu0,ξ0〉 =
∫

R

g(t− u)g(t− u0)e−i(ξ0−ξ)tdt. (11)

2.3 Hilbert Transform

We next describe the Hilbert transform and its use in defining instantaneous
frequency, an important measure in statistical analysis of signals.

The Hilbert transform of the function signal) g(t) is defined by

Hg(t) =
1
π

(VP )
∫ ∞

−∞

g(τ)
t− τ

dτ. (12)

Because of the possible singularity at τ = t, the integral is to be considered
as a Cauchy principal value, (VP). From equation (12) we see that Hg(t) is a
convolution, 1

πt ∗ g(t).
The spectrum of Hg(t) is related to that of g(t). From the convolution

equation,

F(H(t)) = F(
1
πt

) F(g(t)).

where F is the Fourier transform. With a real signal g(t) one can associate
a complex function with the real part equal to g(t) and the imaginary part
equal to H(g(t)), h(t) = g(t) − iH(g(t)).

In statistical signal analysis this associated complex function h(t) is known
as analytic signal (or causal signal, since ĥ(ξ) = 0, for ξ < 0.) Analytic
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signals are important since they possess unique phase φ(t) which leads to the
definition of the instantaneous frequency.

If h(t) is represented as a(t) · exp{iφ(t)}, then the quantity dφ
dt is instanta-

neous frequency of the signal g(t), at time t. For more discussion and use of
instantaneous frequency, the reader is directed to Flandrin (1992, 1999).

2.4 Wigner-Ville Transforms

Wigner-Ville Transform (or Distribution) is the method to represent data
(signals) in the time/frequency domain. In statistics, Wigner-Ville transform
provide a tool to define localized spectral density for the nonstationary pro-
cesses.

0 0.2 0.4 0.6 0.8 1
−800

−600

−400

−200

0

200

400

600

Time [ms]
0.35 0.4 0.45 0.5

30

35

40

45

50

55

[ms]

[k
H

z
]

0

0.5

1

1.5

2

2.5

3

3.5

x 10
7

(a) (b)

Fig. 5. (a) Sonar signal from flying bat; (b) Its Wigner-Ville transform.

Ville (1948) introduced the quadratic form that measures a local time-
frequency energy:

PV f(u, ξ) =
∫

R

f(u+
τ

2
)f∗(u − τ

2
)e−iτξdτ,

where f∗ is conjugate of f .
The Wigner-Ville transform is always real since f(u + τ

2 )f∗(u − τ
2 ) has

Hermitian symmetry in τ .
Time and frequency are symmetric in PV f(u, ξ), by applying Parseval

formula one gets,

PV f(u, ξ) =
1
2π

∫
R

f̂(ξ +
γ

2
)f̂∗(ξ − γ

2
)e−iγudγ, (13)

For any f ∈ L2(R)
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R

PV f(u, ξ)du = |f̂(ξ)|2, (14)

i.e., the time marginalization reproduces power spectrum, and∫
R

PV f(u, ξ)dξ = 2π|f(u)|2, (15)

i.e, the frequency marginalization is proportional to the squared modulus of
the signal.

Integral (13) states that one-dimensional Fourier transform of gξ(u) =
PV f(u, ξ), with respect to u is,

ĝξ(γ) = f̂(ξ +
γ

2
)f̂∗(ξ − γ

2
).

If γ = 0, ĝξ(0) =
∫

R
gξ(u)du, which proves (14). Similarly for (15).

For example,
(i) if f(t) = 1(−T ≤ t ≤ T ), then

PV f(u, ξ) =
2 sin[2(T − |u|)ξ]

ξ
1(−T ≤ u ≤ T ).

Plot PV f(u, ξ).
(ii) if f(t) = exp{iλ(t+ αt2/2)}, then PV (u, ξ) = 2πδ(ξ − λ(1 + αu)).
(iii) a Gaussian f(t) = (σ2π)−1/4 exp(−t2/(2σ2)) is transformed into

PV f(u, ξ) =
1
π

exp(−u
2

σ2
− σ2ξ2).

In this case, PV f(u, ξ) = |f(u)|2 · |f̂(ξ)|2. The Gaussian is the only (up to time
and frequency shifts) distribution for which Wigner-Ville transform remains
positive. Some basic properties of Wigner-Ville transforms are listed in Table
1.

Table 1. Properties of Wigner-Ville transform

Function Wigner-Ville

f(t) PV f(u, ξ)
eiφf(t) PV f(u, ξ)

f(t − u0) PV f(u − u0, ξ)
eiξ0tf(t) PV f(u, ξ − ξ0)

eiat2f(t) PV f(u, ξ − 2au)
1√
s
f( t

s
) PV f(u

s
, sξ)

Next we show that expected value of Wigner-Ville transform of a random
process can serve as a definition for generalized spectrum of a non-stationary
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process. Let X(t) be real-valued zero-mean random process with covariance
function

EX(t)X(s) = R(t, s) = R(u+
τ

2
, u− τ

2
) = C(u, τ),

after substitution τ = t− s and u = t+s
2 .

Now, if the process X(t) is stationary, then C(u, τ) is a function of τ only
and

PX(ξ) =
∫ ∞

−∞
C(τ)e−iξτdτ

is its power spectrum.
For arbitrary process Flandrin (1999) defined “power spectrum” as

PX(ξ) =
∫ ∞

−∞
C(u, τ)e−iξτdτ.

Thus, PX(ξ) can be represented as EPVX(u, ξ), where

PVX(u, ξ) =
∫ ∞

−∞
X(u+

τ

2
)X(u− τ

2
)e−iξτdτ.

For more information on Wigner-Ville transforms and their statistical use
the reader is directed to Baraniuk (1994), Carmona et al. (1998), Flandrin
(1999) and Mallat (1999), among others.

3 Wavelets and Other Multiscale Transforms

Given their recent popularity and clear evidence of wide applicability the most
of the space in this Chapter is devoted to Wavelet transforms. Statistical
multiscale modeling has, in recent decade, become a well established area
in both theoretical and applied statistics, with impact to developments in
statistical methodology.

Wavelet-based methods are important in statistics in areas such as regres-
sion, density and function estimation, factor analysis, modeling and forecast-
ing in time series analysis, in assessing self-similarity and fractality in data,
in spatial statistics.

The attention of the statistical community was attracted in late 1980’s and
early 1990’s, when Donoho, Johnstone, and their coauthors demonstrated that
wavelet thresholding, a simple denoising procedure, had desirable statistical
optimality properties. Since then, wavelets have proved useful in many statis-
tical disciplines, notably in nonparametric statistics and time series analysis.
Bayesian concepts and modeling approaches have, more recently, been identi-
fied as providing promising contexts for wavelet-based denoising applications.

In addition to replacing traditional orthonormal bases in a variety statisti-
cal problems, wavelets brought novel techniques and invigorated some of the
existing ones.
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3.1 A Case Study

We start first with a statistical application of wavelet transforms. This exam-
ple emphasizes specificity of wavelet-based denoising not shared by standard
state-of-art denoising techniques.

A researcher in geology was interested in predicting earthquakes by the
level of water in nearby wells. She had a large (8192 = 213 measurements)
data set of water levels taken every hour in a period of time of about one year
in a California well. Here is the description of the problem.

The ability of water wells to act as strain meters has been observed for centuries.
The Chinese, for example, have records of water flowing from wells prior to earth-
quakes. Lab studies indicate that a seismic slip occurs along a fault prior to rupture.
Recent work has attempted to quantify this response, in an effort to use water wells
as sensitive indicators of volumetric strain. If this is possible, water wells could aid
in earthquake prediction by sensing precursory earthquake strain.

We have water level records from six wells in southern California, collected over

a six year time span. At least 13 moderate size earthquakes (magnitude 4.0 - 6.0)

occurred in close proximity to the wells during this time interval. There is a a

significant amount of noise in the water level record which must first be filtered out.

Environmental factors such as earth tides and atmospheric pressure create noise

with frequencies ranging from seasonal to semidiurnal. The amount of rainfall also

affects the water level, as do surface loading, pumping, recharge (such as an increase

in water level due to irrigation), and sonic booms, to name a few. Once the noise is

subtracted from the signal, the record can be analyzed for changes in water level,

either an increase or a decrease depending upon whether the aquifer is experiencing

a tensile or compressional volume strain, just prior to an earthquake.

A plot of the raw data for hourly measurements over one year (8192 = 213

observations) is given in Fig. 6a, with a close-up in panel b. After applying
the wavelet transform and further processing the wavelet coefficients (thresh-
olding), we obtained a fairly clean signal with a big jump at the earthquake
time. The wavelet-denoised data are given in Fig. 6d. The magnitude of the
water level change at the earthquake time did not get distorted in contrast to
traditional smoothing techniques. This local adaptivity is a desirable feature
of wavelet methods.

For example, Fig. 6c, is denoised signal after applying supsmo smoothing
procedure. Note that the earthquake jump is smoothed, as well.

3.2 Continuous Wavelet Transform

The first theoretical results in wavelets had been concerned with continuous
wavelet decompositions of functions and go back to the early 1980s. Papers
of Morlet et al. (1982) and Grossmann and Morlet (1984, 1985) were among
the first on this subject.

Let ψa,b(x), a ∈ R\{0}, b ∈ R be a family of functions defined as transla-
tions and re-scales of a single function ψ(x) ∈ L2(R),
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Fig. 6. Panel (a) shows n = 8192 hourly measurements of the water level for a
well in an earthquake zone. Notice the wide range of water levels at the time of an
earthquake around t = 417. Panel (b) focusses on the data around the earthquake
time. Panel (c) demonstrates action of a standard smoother supsmo, and (d) gives
a wavelet based reconstruction.

ψa,b(x) =
1√
|a|
ψ

(
x− b

a

)
. (16)

Normalization constant 1√
|a| ensures that the norm ||ψa,b(x)|| is indepen-

dent of a and b. The function ψ (called the wavelet function is assumed to
satisfy the admissibility condition,

Cψ =
∫

R

|Ψ(ω)|2
|ω| dω <∞, (17)



Transforms in Statistics 17

where Ψ(ω) =
∫
R
ψ(x)e−ixωdx is the Fourier transform of ψ(x). The admissi-

bility condition (17) implies

0 = Ψ(0) =
∫
ψ(x)dx.

Also, if
∫
ψ(x)dx = 0 and

∫
(1 + |x|α)|ψ(x)|dx < ∞ for some α > 0, then

Cψ <∞.
Wavelet functions are usually normalized to “have unit energy”, i.e.,

||ψa,b(x)|| = 1.
For example, the second derivative of the Gaussian function,

ψ(x) =
d2

dx2
[−Ce−x2/2] = C(1 − x2)e−x

2/2, C =
2√

3
√
π
,

is an example of an admissible wavelet, called Mexican Hat or Marr’s wavelet,
see Fig. 7.

−4 −3 −2 −1 0 1 2 3 4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x  or  ω

Mexican Hat
FT Mexican Hat

Fig. 7. Mexican hat wavelet (solid line) and its Fourier transform (dashed line)

For any square integrable function f(x), the continuous wavelet transform
is defined as a function of two variables

CWT f (a, b) = 〈f, ψa,b〉 =
∫
f(x)ψa,b(x)dx.

Here the dilation and translation parameters, a and b, respectively, vary con-
tinuously over R\{0} × R.

Fig. 8 gives the doppler test function, f = 1
t+0.05

√
t(1 − t) sin(2π ·

1.05), 0 ≤ t ≤ 1, and its continuous wavelet transform. The wavelet used
was Mexican Hat. Notice the distribution of “energy” in the time/frequency
plane in panel (b) of Fig. 8.
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Fig. 8. (a) Doppler signal; (b) Continuous wavelet transform of doppler signal by
the Mexican hat wavelet.

Resolution of Identity. When the admissibility condition is satisfied, i.e.,
Cψ <∞, it is possible to find the inverse continuous transform via the relation
known as resolution of identity or Calderón’s reproducing identity,

f(x) =
1
Cψ

∫
R2

CWT f (a, b)ψa,b(x)
da db

a2
.

The continuous wavelet transform of a function of one variable is a func-
tion of two variables. Clearly, the transform is redundant. To “minimize” the
transform one can select discrete values of a and b and still have a lossless
transform. This is achieved by so called critical sampling.

The critical sampling defined by

a = 2−j, b = k2−j, j, k ∈ Z, (18)
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will produce the minimal, but complete basis. Any coarser sampling will not
produce a unique inverse transform. Moreover under mild conditions on the
wavelet function ψ, such sampling produces an orthogonal basis {ψjk(x) =
2j/2ψ(2jx − k), j, k ∈ Z}. To formally describe properties of minimal and
orthogonal wavelet bases a multiresolution formalism is needed.

3.3 Multiresolution Analysis

Fundamental for construction of critically sampled orthogonal wavelets is a
notion of multiresolution analysis introduced by Mallat (1989a,b) A multires-
olution analysis (MRA) is a sequence of closed subspaces Vn, n ∈ Z in L2(R)
such that they lie in a containment hierarchy

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · . (19)

The nested spaces have an intersection that contains only the zero function
and a union that contains all square integrable functions.

∩nVj = {0}, ∪jVj = L2(R).

[With A we denoted the closure of a set A]. The hierarchy (19) is constructed
such that V -spaces are self-similar,

f(2jx) ∈ Vj iff f(x) ∈ V0. (20)

with the requirement that there exists a scaling function φ ∈ V0 whose integer-
translates span the space V0,

V0 =

{
f ∈ L2(R)| f(x) =

∑
k

ckφ(x − k)

}
,

and for which the family {φ(• − k), k ∈ Z} is an orthonormal basis. It can
be assumed that

∫
φ(x)dx ≥ 0. With this assumption this integral is in fact

equal to 1. Because of containment V0 ⊂ V1, the function φ(x) ∈ V0 can be
represented as a linear combination of functions from V1, i.e.,

φ(x) =
∑
k∈Z

hk
√

2φ(2x− k), (21)

for some coefficients hk, k ∈ Z. This equation called the scaling equation (or
two-scale equation) is fundamental in constructing, exploring, and utilizing
wavelets.
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Theorem 2. For the scaling function it holds∫
R

φ(x)dx = 1,

or, equivalently,
Φ(0) = 1,

where Φ(ω) is Fourier transform of φ,
∫

R
φ(x)e−iωxdx.

The coefficients hn in (21) are important in efficient application of wavelet
transforms. The (possibly infinite) vector h = {hn, n ∈ Z} will be called a
wavelet filter. It is a low-pass (averaging) filter as will become clear later by
its analysis in the Fourier domain.

To further explore properties of multiresolution analysis subspaces and
their bases, we will often work in the Fourier domain.

It will be convenient to use Fourier domain for subsequent analysis of
wavelet paradigm. Define the function m0 as follows:

m0(ω) =
1√
2

∑
k∈Z

hke
−ikω =

1√
2
H(ω). (22)

The function in (22) is sometimes called the transfer function and it describes
the behavior of the associated filter h in the Fourier domain. Notice that the
function m0 is 2π-periodic and that filter taps {hn, n ∈ Z} are in fact the
Fourier coefficients in the Fourier serias of H(ω) =

√
2 m0(ω).

In the Fourier domain, the relation (21) becomes

Φ(ω) = m0

(ω
2

)
Φ
(ω

2

)
, (23)

where Φ(ω) is the Fourier transform of φ(x). Indeed,

Φ(ω) =
∫ ∞

−∞
φ(x)e−iωxdx

=
∑
k

√
2 hk

∫ ∞

−∞
φ(2x− k)e−iωxdx

=
∑
k

hk√
2
e−ikω/2

∫ ∞

−∞
φ(2x− k)e−i(2x−k)ω/2d(2x− k)

=
∑
k

hk√
2
e−ikω/2 Φ

(ω
2

)

= m0

(ω
2

)
Φ
(ω

2

)
.

By iterating (23), one gets
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Φ(ω) =
∞∏
n=1

m0

( ω
2n
)
, (24)

which is convergent under very mild conditions concerning the rates of decay
of the scaling function φ.

Next, we prove two important properties of wavelet filters associated with
an orthogonal multiresolution analysis, normalization and orthogonality.

Normalization.

∑
k∈Z

hk =
√

2. (25)

Proof:

∫
φ(x)dx =

√
2
∑
k

hk

∫
φ(2x− k)dx

=
√

2
∑
k

hk
1
2

∫
φ(2x− k)d(2x− k)

=
√

2
2

∑
k

hk

∫
φ(x)dx.

Since
∫
φ(x)dx �= 0 by assumption, (25) follows.

This result also follows from m0(0) = 1.

Orthogonality. For any l ∈ Z,

∑
k

hkhk−2l = δl. (26)

Proof: Notice first that from the scaling equation (21) it follows that

φ(x)φ(x − l) =
√

2
∑
k

hkφ(2x− k)φ(x − l) (27)

=
√

2
∑
k

hkφ(2x− k)
√

2
∑
m

hmφ(2(x− l) −m).

By integrating the both sides in (27) we obtain
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δl = 2
∑
k

hk

[∑
m

hm
1
2

∫
φ(2x − k)φ(2x− 2l−m) d(2x)

]

=
∑
k

∑
m

hkhmδk,2l+m

=
∑
k

hkhk−2l.

The last line is obtained by taking k = 2l +m.
An important special case is l = 0 for which (26) becomes

∑
k

h2
k = 1. (28)

The fact that the system {φ(• − k), k ∈ Z} constitutes an orthonormal
basis for V0 can be expressed in the Fourier domain in terms of either Φ(ω)
or m0(ω).

In terms of Φ(ω),

∞∑
l=−∞

|Φ(ω + 2πl)|2 = 1. (29)

From the Plancherel identity and the 2π-periodicity of eiωk it follows

δk =
∫

R

φ(x)φ(x − k)dx

=
1
2π

∫
R

Φ(ω)Φ(ω)eiωkdω

=
1
2π

∫ 2π

0

∞∑
l=−∞

|Φ(ω + 2πl)|2eiωkdω. (30)

The last line in (30) is the Fourier coefficient ak in the Fourier series decom-
position of

f(ω) =
∞∑

l=−∞
|Φ(ω + 2πl)|2.

Due to the uniqueness of Fourier representation, f(ω) = 1. As a side result, we
obtain that Φ(2πn) = 0, n �= 0, and

∑
n φ(x − n) = 1. The last result follows

from inspection of coefficients ck in the Fourier decomposition of
∑
n φ(x−n),

the series
∑
k cke

2πikx. As this function is 1-periodic,

ck =
∫ 1

0

(∑
n

φ(x − n)

)
e−2πikxdx =

∫ ∞

−∞
φ(x)e−2πikxdx = Φ(2πk) = δ0,k.
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Remark 1. Utilizing the identity (29), any set of independent functions span-
ning V0, {φ(x− k), k ∈ Z}, can be orthogonalized in the Fourier domain. The
orthonormal basis is generated by integer-shifts of the function

F−1


 Φ(ω)√∑∞

l=−∞ |Φ(ω + 2πl)|2


 . (31)

This normalization in the Fourier domain is used in constructing of some
wavelet bases.

(b) In terms of m0 :

|m0(ω)|2 + |m0(ω + π)|2 = 1. (32)

Since
∑∞

l=−∞ |Φ(2ω + 2lπ)|2 = 1, then by (23)

∞∑
l=−∞

|m0(ω + lπ)|2|Φ(ω + lπ)|2 = 1. (33)

Now split the sum in (33) into two sums – one with odd and the other
with even indices, i.e.,

1 =
∞∑

k=−∞
|m0(ω + 2kπ)|2|Φ(ω + 2kπ)|2 +

∞∑
k=−∞

|m0(ω + (2k + 1)π)|2|Φ(ω + (2k + 1)π)|2.

To simplify the above expression, we use relation (29) and the 2π-periodicity
of m0(ω).

1 = |m0(ω)|2
∞∑

k=−∞
|Φ(ω + 2kπ)|2 + |m0(ω + π)|2

∞∑
k=−∞

|Φ((ω + π) + 2kπ)|2

= |m0(ω)|2 + |m0(ω + π)|2.

Whenever a sequence of subspaces satisfies MRA properties, there exists
(though not unique) an orthonormal basis for L2(R),
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{ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ Z} (34)

such that {ψjk(x), j-fixed, k ∈ Z} is an orthonormal basis of the “difference
space” Wj = Vj+1 � Vj . The function ψ(x) = ψ00(x) is called a wavelet
function or informally the mother wavelet.

Next, we discuss the derivation of a wavelet function from the scaling
function. Since ψ(x) ∈ V1 (because of the containment W0 ⊂ V1), it can be
represented as

ψ(x) =
∑
k∈Z

gk
√

2φ(2x− k), (35)

for some coefficients gk, k ∈ Z.
Define

m1(ω) =
1√
2

∑
k

gke
−ikω . (36)

By mimicking what was done with m0, we obtain the Fourier counterpart of
(35),

Ψ(ω) = m1(
ω

2
)Φ(

ω

2
). (37)

The spaces W0 and V0 are orthogonal by construction. Therefore,

0 =
∫
ψ(x)φ(x − k)dx =

1
2π

∫
Ψ(ω)Φ(ω)eiωkdω

=
1
2π

∫ 2π

0

∞∑
l=−∞

Ψ(ω + 2lπ)Φ(ω + 2lπ)eiωkdω.

By repeating the Fourier series argument, as in (29), we conclude

∞∑
l=−∞

Ψ(ω + 2lπ)Φ(ω + 2lπ) = 0.

By taking into account the definitions of m0 and m1, and by the derivation
as in (32), we find

m1(ω)m0(ω) +m1(ω + π)m0(ω + π) = 0. (38)

From (38), we conclude that there exists a function λ(ω) such that
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(m1(ω), m1(ω + π) ) = λ(ω)
(
m0(ω + π), −m0(ω)

)
. (39)

By substituting ξ = ω + π and by using the 2π-periodicity of m0 and m1, we
conclude that

λ(ω) = −λ(ω + π), and (40)
λ(ω) is 2π-periodic.

Any function λ(ω) of the form e±iωS(2ω), where S is an L2([0, 2π]), 2π-
periodic function, will satisfy (38); however, only the functions for which
|λ(ω)| = 1 will define an orthogonal basis ψjk of L2(R).

To summarize, we choose λ(ω) such that

(i) λ(ω) is 2π-periodic,
(ii) λ(ω) = −λ(ω + π), and
(iii)|λ(ω)|2 = 1.

Standard choices for λ(ω) are −e−iω, e−iω , and eiω ; however, any other
function satisfying (i)-(iii) will generate a validm1. We choose to define m1(ω)
as

m1(ω) = −e−iωm0(ω + π). (41)

since it leads to a convenient and standard connection between the filters h
and g.

The form of m1 and the equation (29) imply that {ψ(•− k), k ∈ Z} is an
orthonormal basis for W0.

Since |m1(ω)| = |m0(ω + π)|, the orthogonality condition (32) can be
rewritten as

|m0(ω)|2 + |m1(ω)|2 = 1. (42)

By comparing the definition of m1 in (36) with

m1(ω) = −e−iω 1√
2

∑
k

hke
i(ω+π)k

=
1√
2

∑
k

(−1)1−khke−iω(1−k)

=
1√
2

∑
n

(−1)nh1−ne−iωn,
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we relate gn and hn as

gn = (−1)n h1−n. (43)

In signal processing literature, the relation (43) is known as the quadrature
mirror relation and the filters h and g as quadrature mirror filters.

Remark 2. Choosing λ(ω) = eiω leads to the rarely used high-pass filter gn =
(−1)n−1 h−1−n. It is convenient to define gn as (−1)nh1−n+M , where M is
a “shift constant.” Such re-indexing of g affects only the shift-location of the
wavelet function.

3.4 Haar Wavelets

In addition to their simplicity and formidable applicability, Haar wavelets
have tremendous educational value. Here we illustrate some of the relations
discussed in the Section 3.3 using the Haar wavelet. We start with scaling
function φ(x) = 1(0 ≤ x ≤ 1) and pretend that everything else is unknown.
By inspection of simple graphs of two scaled Haar wavelets φ(2x) and φ(2x+1)
stuck to each other, we conclude that the scaling equation (21) is

φ(x) = φ(2x) + φ(2x− 1)

=
1√
2

√
2φ(2x) +

1√
2

√
2φ(2x− 1), (44)

which yields the wavelet filter coefficients:

h0 = h1 =
1√
2
.

The transfer functions are

m0(ω) =
1√
2

(
1√
2
e−iω0

)
+

1√
2

(
1√
2
e−iω1

)
=

1 + e−iω

2
.

and

m1(ω) = −e−iω m0(ω + π) = −e−iω
(

1
2
− 1

2
eiω
)

=
1 − e−iω

2
.

Notice that m0(ω) = |m0(ω)|eiϕ(ω) = cos ω2 · e−iω/2 (after cosx = eix+e−ix

2 ).
Since ϕ(ω) = −ω

2 , the Haar wavelet has linear phase, i.e., the scaling function
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is symmetric in the time domain. The orthogonality condition |m0(ω)|2 +
|m1(ω)|2 = 1 is easily verified, as well.

Relation (37) becomes

Ψ(ω) =
1 − e−iω/2

2
Φ
(ω

2

)
=

1
2
Φ
(ω

2

)
− 1

2
Φ
(ω

2

)
e−iω/2,

and by applying the inverse Fourier transform we obtain

ψ(x) = φ(2x) − φ(2x− 1)

in the time-domain. Therefore we “have found” the Haar wavelet function ψ.
From the expression for m1 or by inspecting the representation of ψ(x) by
φ(2x) and φ(2x− 1), we “conclude” that g0 = −g−1 = 1√

2
.

Although the Haar wavelets are well localized in the time domain, in the
frequency domain they decay at the slow rate of O( 1

n ) and are not effective
in approximating smooth functions.

3.5 Daubechies’ Wavelets

The most important family of wavelets was discovered by Ingrid Daubechies
and fully described in Daubechies (1992). This family is compactly supported
with various degrees of smoothness.

The formal derivation of Daubechies’ wavelets goes beyond the scope of
this chapter, but the filter coefficients of some of its family members can be
found by following considerations.

For example, to derive the filter taps of a wavelet with N vanishing mo-
ments, or equivalently, 2N filter taps, we use the following equations.

The normalization property of scaling function implies

2N−1∑
i=0

hi =
√

2,

requirement for vanishing moments for wavelet function ψ leads to

2N−1∑
i=0

(−1)iikhi = 0, k = 0, 1, . . . , N − 1,

and, finally, the orthogonality property can be expressed as

2N−1∑
i=0

hihi+2k = δk k = 0, 1, . . . , N − 1.

We obtained 2N + 1 equations with 2N unknowns; however the system is
solvable since the equations are not linearly independent.



28 Brani Vidakovic

Example 4. For N = 2, we obtain the system:


h0 + h1 + h2 + h3 =
√

2
h2

0 + h2
1 + h2

2 + h2
3 = 1

−h1 + 2h2 − 3h3 = 0 ,
h0 h2 + h1 h3 = 0

which has a solution h0 = 1+
√

3
4
√

2
, h1 = 3+

√
3

4
√

2
, h2 = 3−√

3
4
√

2
, and h3 = 1−√

3
4
√

2
.

For N = 4, the system is


h0 + h1 + h2 + h3 + h4 + h5 + h6 + h7 =
√

2
h2

0 + h2
1 + h2

2 + h2
3 + h2

4 + h2
5 + h2

6 + h2
7 = 1

h0 − h1 + h2 − h3 + h4 − h5 + h6 − h7 = 0
h0h2 + h1h3 + h2h4 + h3h5 + h4h6 + h5h7 = 0
h0h4 + h1h5 + h2h6 + h3h7 = 0
h0h6 + h1h7 = 0
0h0 − 1h1 + 2h2 − 3h3 + 4h4 − 5h5 + 6h6 − 7h7 = 0
0h0 − 1h1 + 4h2 − 9h3 + 16h4 − 25h5 + 36h6 − 49h7 = 0
0h0 − 1h1 + 8h2 − 27h3 + 64h4 − 125h5 + 216h6 − 343h7 = 0.

Fig. 9 depicts two scaling function and wavelet pairs from the Daubechies
family. Panels (a) and (b) depict the pair with two vanishing moments, while
panels (c) and (d) depict the pair with four vanishing moments.

4 Discrete Wavelet Transforms

Discrete wavelet transforms (DWT) are applied to discrete data sets and
produce discrete outputs. Transforming signals and data vectors by DWT is a
process that resembles the fast Fourier transform (FFT), the Fourier method
applied to a set of discrete measurements.

Table 2. The analogy between Fourier and wavelet methods

Fourier Fourier Fourier Discrete
Methods Integrals Series Fourier Transforms

Wavelet Continuous Wavelet Discrete
Methods Wavelet Transforms Series Wavelet Transforms

The analogy between Fourier and wavelet methods is even more complete
(Table 2) when we take into account the continuous wavelet transform and
wavelet series expansions.

Discrete wavelet transforms map data from the time domain (the original
or input data vector) to the wavelet domain. The result is a vector of the
same size. Wavelet transforms are linear and they can be defined by matrices
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Fig. 9. Wavelet functions from Daubechies family. (a) Daubechies scaling function,
2 vanishing moments, 4 tap filter (b) Wavelet function corresponding to (a),(c)
Daubechies scaling function, 4 vanishing moments, 8 tap filter (d) Wavelet function
corresponding to (c)

of dimension n × n if they are applied to inputs of size n. Depending on
boundary conditions, such matrices can be either orthogonal or “close” to
orthogonal. When the matrix is orthogonal, the corresponding transform is a
rotation in R

n in which the data (a n-typle) is a point in R
n. The coordinates

of the point in the rotated space comprise the discrete wavelet transform of
the original coordinates. Here we provide two toy examples.

Example 5. Let the vector be (1, 2) and let M(1, 2) be the point in R
2 with

coordinates given by the data vector. The rotation of the coordinate axes by
an angle of π

4 can be interpreted as a DWT in the Haar wavelet basis. The
rotation matrix is

W =
(

cos π4 sin π
4

cos π4 − sin π
4

)
=

(
1√
2

1√
2

1√
2
− 1√

2

)
,
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and the discrete wavelet transform of (1, 2)′ is W ·(1, 2)′ = ( 3√
2
,− 1√

2
)′. Notice

that the energy (squared distance of the point from the origin) is preserved,
12 + 22 = (1

2 )2 + (
√

3
2 )2, since W is a rotation.

Example 6. Let y = (1, 0,−3, 2, 1, 0, 1, 2). The associated function f is given in
Fig. 10. The values f(n) = yn, n = 0, 1, . . . , 7 are interpolated by a piecewise
constant function. We assume that f belongs to Haar’s multiresolution space
V0.

0 1 2 3 4 5 6 7 8

−3

−2

−1

0

1

2

Fig. 10. A function interpolating y on [0,8).

The following matrix equation gives the connection between y and the
wavelet coefficients (data in the wavelet domain).




1
0
−3
2
1
0
1
2




=




1
2
√

2
1

2
√

2
1
2 0 1√

2
0 0 0

1
2
√

2
1

2
√

2
1
2 0 − 1√

2
0 0 0

1
2
√

2
1

2
√

2
− 1

2 0 0 1√
2

0 0
1

2
√

2
1

2
√

2
− 1

2 0 0 − 1√
2

0 0
1

2
√

2
− 1

2
√

2
0 1

2 0 0 1√
2

0
1

2
√

2
− 1

2
√

2
0 1

2 0 0 − 1√
2

0
1

2
√

2
− 1

2
√

2
0 − 1

2 0 0 0 1√
2

1
2
√

2
− 1

2
√

2
0 − 1

2 0 0 0 − 1√
2



·




c00
d00

d10

d11

d20

d21

d22

d23



.

The solution is
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c00
d00

d10

d11

d20

d21

d22

d23




=




√
2

−
√

2
1
−1
1√
2

− 5√
2

1√
2

− 1√
2



.

Thus,

f =
√

2φ−3,0 −
√

2ψ−3,0 + ψ−2,0 − ψ−2,1

+
1√
2
ψ−1,0 −

5√
2
ψ−1,1 +

1√
2
ψ−1,2 −

1√
2
ψ−1,3. (45)

The solution is easy to verify. For example, when x ∈ [0, 1),

f(x) =
√

2 · 1
2
√

2
−
√

2 · 1
2
√

2
+ 1 · 1

2
+

1√
2
· 1√

2
= 1/2 + 1/2 = 1 (= y0).

Applying wavelet transforms by multiplying the input vector with an ap-
propriate orthogonal matrix is conceptually straightforward task, but of lim-
ited practical value. Storing and manipulating the transformation matrices
for long inputs (n > 2000) may not even be feasible.

This obstacle is solved by the link of discrete wavelet transforms with fast
filtering algorithms from the field of signal and image processing.

4.1 The Cascade Algorithm

Mallat (1989a,b) was the first to link wavelets, multiresolution analyses and
cascade algorithms in a formal way. Mallat’s cascade algorithm gives a con-
structive and efficient recipe for performing the discrete wavelet transform.
It relates the wavelet coefficients from different levels in the transform by
filtering with wavelet filter h and and its mirror counterpart g.

It is convenient to link the original data with the space VJ , where J is
often 0 or logn, where n is a dyadic size of data. Then, coarser smooth and
complementing detail spaces are (VJ−1,WJ−1), (VJ−2,WJ−2), etc. Decreasing
the index in V -spaces is equivalent to coarsening the approximation to the
data.

By a straightforward substitution of indices in the scaling equations (21)
and (35), one obtains

φj−1,l(x) =
∑
k∈Z

hk−2lφjk(x) and ψj−1,l(x) =
∑
k∈Z

gk−2lφjk(x). (46)
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The relations in (46) are fundamental in developing the cascade algorithm.
In a multiresolution analysis, · · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ . . . . Since

Vj = Vj−1⊕Wj−1, any function vj ∈ Vj can be represented uniquely as vj(x) =
vj−1(x) + wj−1(x), where vj−1 ∈ Vj−1 and wj−1 ∈ Wj−1. It is customary to
denote the coefficients associated with φjk(x) and ψjk(x) by cjk and djk,
respectively.

Thus,

vj(x) =
∑
k

cj,kφj,k(x)

=
∑
l

cj−1,lφj−1,l(x) +
∑
l

dj−1,lψj−1,l(x)

= vj−1(x) + wj−1(x).

By using the general scaling equations (46), orthogonality of wj−1(x) and
φj−1,l(x) for any j and l, and additivity of inner products, we obtain

cj−1,l = 〈vj , φj−1,l〉
= 〈vj ,

∑
k

hk−2lφj,k〉

=
∑
k

hk−2l〈vj , φj,k〉 (47)

=
∑
k

hk−2lcj,k.

Similarly dj−1,l =
∑
k gk−2lcj,k.

The cascade algorithm works in the reverse direction as well. Coefficients in
the next finer scale corresponding to Vj can be obtained from the coefficients
corresponding to Vj−1 and Wj−1. The relation

cj,k = 〈vj , φj,k〉
=
∑
l

cj−1,l〈φj−1,l, φj,k〉 +
∑
l

dj−1,l〈ψj−1,l, φj,k〉 (48)

=
∑
l

cj−1,lhk−2l +
∑
l

dj−1,lgk−2l,

describes a single step in the reconstruction algorithm.
The discrete wavelet transform can be described in terms of operators.

Let the operators H and G acting on a sequence a = {an, n ∈ Z}, satisfy the
following coordinate-wise relations:

(Ha)k =
∑
n

hn−2kan (Ga)k =
∑
n

gn−2kan,
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and their adjoint operators H� and G� satisfy:

(H�a)n =
∑
k

hn−2kak (G�a)n =
∑
k

gn−2kak,

where h = {hn} is wavelet filter and g = {gn} its quadrature-mirror counter-
part.

Denote the original signal by c(J) = {c(J)
k }. If the signal is of length 2J ,

then c(J) can be interpolated by the function f(x) =
∑
c
(J)
k φ(x − k) from

VJ . In each step of the wavelet transform, we move to the next coarser ap-
proximation (level) c(j−1) by applying the operator H, c(j−1) = Hc(j). The
“detail information,” lost by approximating c(j) by the “averaged” c(j−1), is
contained in vector d(j−1) = Gc(j).

The discrete wavelet transform of a sequence y = c(J) of length 2J can
then be represented as

(c(J−k),d(J−k),d(J−k+1), . . . ,d(J−2),d(J−1)). (49)

Notice that the lengths of y and its transform in (49) coincide. Because of
decimation, the length of c(j) is twice the length of c(j−1), and 2J = 2J−k +∑k

i=1 2J−i, 1 ≤ k ≤ J.
For an illustration of (49), see Fig. 11. By utilizing the operator notation,

it is possible to summarize the discrete wavelet transform (curtailed at level
k) in a single line:

y �→ (Hky,GHk−1y, . . . ,GH2y,GHy,Gy).

The number k can be any arbitrary integer between 1 and J and it is associ-
ated with the coarsest “smooth” space, VJ−k, up to which the transform was
curtailed. In terms of multiresolution spaces, (49) corresponds to the multires-
olution decomposition VJ−k ⊕WJ−k ⊕WJ−k+1 ⊕ · · · ⊕WJ−1. When k = J
the vector c(0) contains a single element, c(0).

If the wavelet filter length exceeds 2, one needs to define actions of the
filter beyond the boundaries of the sequence to which the filter is applied.
Different policies are possible. The most common is a periodic extension of
the original signal.

The reconstruction formula is also simple in terms of operators H� and
G�. They are applied on c(j−1) and d(j−1), respectively, and the results are
added. The vector c(j) is reconstructed as

c(j) = H�c(j−1) + G�d(j−1), (50)

Recursive application of (50) leads to
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Fig. 11. Forward wavelet transform of depth k (DWT is a vector of coefficients
connected by double lines.)

(Hky,GHk−1y, . . . ,GH2y,GHy,Gy)
= c(J−k),d(J−k),d(J−k+1), . . . ,d(J−2),d(J−1))

�→
k−1∑
i=1

(H�)k−1−iG�d(J−k+i) + (H�)kc(J−k) = y.

d(J-3)

c(J-3)

. . .

. . .
L

�

�
�
�
��
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�
�
�
��L

� �c(J-1)

d(J-1)

�
�
�
��L

� � c(J)

G�

H�

G�

H�

G�

H�

Fig. 12. Inverse Transform

Example 7. Let y = (1, 0,−3, 2, 1, 0, 1, 2) be an exemplary set we want to
transform by Haar’s DWT. Let k = J = 3, i.e., the coarsest approximation
and detail levels will contain a single point each. The decomposition algorithm
applied on y = (1, 0,−3, 2, 1, 0, 1, 2) is given schematically in Fig. 13.

For the Haar wavelet, the operators H and G are given by (Ha)k =∑
n hn−2kan =

∑
m hmam+2k = h0a2k + h1a2k+1 = a2k+a2k+1√

2
. Similarly,

(Ga)k =
∑

n gn−2kan =
∑

m gmam+2k = g0a2k + g1a2k+1 = a2k−a2k+1√
2

.
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y = c(3)
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c(2) 1√
2

− 1√
2

1√
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2
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�

G H
d(2)
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c(1)
0 2
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�
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G H

−√
2

c(0) √
2

Fig. 13. An illustration of a decomposition procedure.

The reconstruction algorithm is given in Fig. 14. In the process of recon-
struction, (H�a)n =

∑
k hn−2kak, and (G�a)n =

∑
k gn−2kak. For instance,

the first line in Fig. 14 recovers the object {1, 1} from
√

2 by applying H�.
Indeed, (H�{a0})0 = h0

√
2 = 1 and (H�{a0})1 = h1

√
2 = 1.

We already mentioned that when the length of the filter exceeds 2, bound-
ary problems occur since the convolution goes outside the range of data.

There are several approaches to resolving the boundary problem. The sig-
nal may be continued in a periodic way (. . . , yn−1, yn|y1, y2, . . . ), symmetric
way (. . . , yn−1, yn|yn−1, yn−2, . . . ), padded by a constant, or extrapolated as
a polynomial. Wavelet transforms can be confined to an interval (in the sense
of Cohen et al. (1993) and periodic and symmetric extensions can be viewed
as special cases. Periodized wavelet transforms are also defined in a simple
way.

If the length of the data set is not a power of 2, but of the form M · 2K ,
for M odd and K a positive integer, then only K steps in the decomposition
algorithm can be performed. For precise descriptions of conceptual and cal-
culational hurdles caused by boundaries and data sets whose lengths are not
a power of 2, we direct the reader to the monograph by Wickerhauser (1994).
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Fig. 14. An illustration of a reconstruction procedure
.

In this Section we discussed the most basic wavelet transform. Various gen-
eralizations include biorthogonal wavelets, multiwavelets, nonseparable mul-
tidimensional wavelet transforms, complex wavelets, lazy wavelets, and many
more.

For various statistical applications of wavelets (nonparametric regression,
density estimation, time series, deconvolutions, etc.) we direct the reader to
Antoniadis (1997), Härdle et al. (1998), Vidakovic (1999). An excellent mono-
graph by Walter and Shen (2000) discusses statistical applications of wavelets
and various other orthogonal systems.

4.2 Matlab Implementation of Cascade Algorithm

The following two matlab m-files implement discrete wavelet transform and
its inverse, with periodic handling of boundaries. The data needs to be of
dyadic size (power of 2). The programs are didactic, rather than efficient.
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For an excellent and comprehensive wavelet package, we direct the reader
to wavelab802 module [http://www-stat.stanford.edu/~wavelab/] main-
tained by Donoho and his coauthors.

function dwtr = dwtr(data, L, filterh)

% function dwtr = dwt(data, filterh, L);

% Calculates the DWT of periodic data set

% with scaling filter filterh and L scales.

%

% Example of Use:

% data = [1 0 -3 2 1 0 1 2]; filter = [sqrt(2)/2 sqrt(2)/2];

% wt = DWTR(data, 3, filter)

%------------------------------------------------------------------

n = length(filterh); %Length of wavelet filter

C = data; %Data ‘‘live’’ in V_J

dwtr = []; %At the beginning dwtr empty

H = fliplr(filterh); %Flip because of convolution

G = filterh; %Make quadrature mirror

G(1:2:n) = -G(1:2:n); % counterpart

for j = 1:L %Start cascade

nn = length(C); %Length needed to

C = [C(mod((-(n-1):-1),nn)+1) C]; % make periodic

D = conv(C,G); %Convolve,

D = D([n:2:(n+nn-2)]+1); % keep periodic, decimate

C = conv(C,H); %Convolve,

C = C([n:2:(n+nn-2)]+1); % keep periodic, decimate

dwtr = [D,dwtr]; %Add detail level to dwtr

end; %Back to cascade or end

dwtr = [C, dwtr]; %Add the last ‘‘smooth’’ part

function data = idwtr(wtr, L, filterh)

% function data = idwt(wtr, L, filterh);

% Calculates the IDWT of wavelet

% transform wtr using wavelet filter

% "filterh" and L scales.

% Example:

%>> max(abs(data - IDWTR(DWTR(data,3,filter), 3,filter)))

%ans = 4.4409e-016

%----------------------------------------------------------------

nn = length(wtr); n = length(filterh); %Lengths

if nargin==2, L = round(log2(nn)); end; %Depth of transform

H = filterh; %Wavelet H filter

G = fliplr(H); G(2:2:n) = -G(2:2:n); %Wavelet G filter

LL = nn/(2^L); %Number of scaling coeffs

C = wtr(1:LL); %Scaling coeffs

for j = 1:L %Cascade algorithm

w = mod(0:n/2-1,LL)+1; %Make periodic

D = wtr(LL+1:2*LL); %Wavelet coeffs
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Cu(1:2:2*LL+n) = [C C(1,w)]; %Upsample & keep periodic

Du(1:2:2*LL+n) = [D D(1,w)]; %Upsample & keep periodic

C = conv(Cu,H) + conv(Du,G); %Convolve & add

C = C([n:n+2*LL-1]-1); %Periodic part

LL = 2*LL; %Double the size of level

end;

data = C; %The inverse DWT

5 Conclusion

In this Chapter we gave an overview of several transforms useful in com-
putational statistics. We emphasized frequency and scale domain transforms
(Fourier and wavelet) since they provide an insight to the phenomena, not
available in the domain of untransformed data. Moreover, multiscale trans-
forms are relatively new, and as such deserve more attention. It was pre-
tentious to title this chapter Transforms in Statistics, since literally several
dozens important transforms are not even mentioned. As it was hinted in the
introduction, a just task of overviewing all important transformations used in
statistical practice would take a space of a large monograph.
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