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1 Introduction

1.1 Maximum Likelihood Estimation

The Expectation-Maximization (EM) algorithm is a broadly applicable ap-
proach to the iterative computation of maximum likelihood (ML) estimates,
useful in a variety of incomplete-data problems. Maximum likelihood esti-
mation and likelihood-based inference are of central importance in statistical
theory and data analysis. Maximum likelihood estimation is a general-purpose
method with attractive properties. It is the most-often used estimation tech-
nique in the frequentist framework; it is also relevant in the Bayesian frame-
work (Chapter III.11). Often Bayesian solutions are justified with the help of
likelihoods and maximum likelihood estimates (MLE), and Bayesian solutions
are similar to penalized likelihood estimates. Maximum likelihood estimation
is an ubiquitous technique and is used extensively in every area where statis-
tical techniques are used.

We assume that the observed data y has probability density function
(p.d.f.) g(y; Ψ ), where Ψ is the vector containing the unknown parameters
in the postulated form for the p.d.f. of Y . Our objective is to maximize the
likelihood L(Ψ ) = g(y; Ψ ) as a function of Ψ , over the parameter space Ω.
That is,

∂L(Ψ )/∂Ψ = 0,

or equivalently, on the log likelihood,

∂ log L(Ψ )/∂Ψ = 0. (1)

The aim of ML estimation is to determine an estimate Ψ̂ , so that it defines
a sequence of roots of (1) that is consistent and asymptotically efficient. Such
a sequence is known to exist under suitable regularity conditions (Cramér,
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1946). With probability tending to one, these roots correspond to local max-
ima in the interior of Ω. For estimation models in general, the likelihood
usually has a global maximum in the interior of Ω. Then typically a sequence
of roots of (1) with the desired asymptotic properties is provided by taking Ψ̂

to be the root that globally maximizes L(Ψ); in this case, Ψ̂ is the MLE. We
shall henceforth refer to Ψ̂ as the MLE, even in situations where it may not
globally maximize the likelihood. Indeed, in some of the examples on mixture
models (McLachlan and Peel, 2000, Chapter 3), the likelihood is unbounded.
However, for these models there may still exist under the usual regularity con-
ditions a sequence of roots of (1) with the properties of consistency, efficiency,
and asymptotic normality (McLachlan and Basford, 1988, Chapter 12).

When the likelihood or log likelihood is quadratic in the parameters as
in the case of independent normally distributed observations, its maximum
can be obtained by solving a system of linear equations in parameters. How-
ever, often in practice the likelihood function is not quadratic giving rise to
nonlinearity problems in ML estimation. Examples of such situations are: (a)
models leading to means which are nonlinear in parameters; (b) despite a
possible linear structure, the likelihood is not quadratic in parameters due to,
for instance, non-normal errors, missing data, or dependence.

Traditionally ML estimation in these situations has been carried out using
numerical iterative methods of solution of equations such as the Newton–
Raphson (NR) method and its variants like Fisher’s method of scoring. Under
reasonable assumptions on L(Ψ ) and a sufficiently accurate starting value, the
sequence of iterates {Ψ (k)} produced by the NR method enjoys local quadratic
convergence to a solution Ψ∗ of (1). Quadratic convergence is regarded as the
major strength of the NR method. But in applications, these methods could
be tedious analytically and computationally even in fairly simple cases; see
McLachlan and Krishnan (1997, Section 1.3) and Meng and van Dyk (1997).
The EM algorithm offers an attractive alternative in a variety of settings. It
is now a popular tool for iterative ML estimation in a variety of problems
involving missing data or incomplete information.

1.2 EM Algorithm: Incomplete-Data Structure

In the application of statistical methods, one is often faced with the prob-
lem of estimation of parameters when the likelihood function is complicated
in structure resulting in difficult-to-compute maximization problems. This
difficulty could be analytical or computational or both. Some examples are
grouped, censored or truncated data, multivariate data with some missing
observations, multiway frequency data with a complex cell probability struc-
ture, and data from mixtures of distributions. In many of these problems,
it is often possible to formulate an associated statistical problem with the
same parameters with “augmented data” from which it is possible to work
out the MLE in an analytically and computationally simpler manner. The
augmented data could be called the “complete data” and the available data
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could be called the “incomplete data”, and the corresponding likelihoods, the
“complete-data likelihood” and the “incomplete-data likelihood”, respectively,
and the corresponding ML estimations, the “complete-data problem” and the
“incomplete-data problem”. The EM Algorithm is a generic method for com-
puting the MLE of an incomplete-data problem by formulating an associated
complete-data problem, and exploiting the simplicity of the MLE of the latter
to compute the MLE of the former. The augmented part of the data could also
be called “missing data”, with respect to the actual incomplete-data problem
on hand. The missing data need not necessarily be missing in the practical
sense of the word. It may just be a conceptually convenient technical device.
Thus the phrase “incomplete data” is used quite broadly to represent a variety
of statistical data models, including mixtures, convolutions, random effects,
grouping, censoring, truncated and missing observations.

The EM algorithm is an iterative algorithm, in each iteration of which
there are two steps, the Expectation Step (E-step) and the Maximization Step
(M-step). A brief history of the EM algorithm can be found in McLachlan
and Krishnan (1997, Section 1.8). The name EM algorithm was coined by
Dempster et al. (1977), who synthesized earlier formulations of this algorithm
in many particular cases and presented a general formulation of this method
of finding MLE in a variety of problems and provided an initial catalogue
of problems where this method could be profitably applied. Since then the
EM algorithm has been applied in a staggering variety of general statistical
problems such as resolution of mixtures, multiway contingency tables, variance
components estimation, factor analysis, as well as in specialized applications
in such areas as genetics, medical imaging, and neural networks.

1.3 Overview of the Chapter

In Section 2, the basic theory of the EM algorithm is presented. In particu-
lar, the monotonicity of the algorithm, convergence, and rate of convergence
properties are systematically examined. In Section 3, the EM methodology
presented in this chapter is illustrated in some commonly occurring situations
such as the fitting of normal mixtures and missing observations in terms of
censored failure times. We also provide an example in which the EM algorithm
may not be applicable. Consideration is given also to the two important issues
associated with the use of the EM algorithm, namely the initialization of the
EM and the provision of standard errors.

We discuss further modifications and extensions to the EM algorithm in
Section 4. In particular, the extensions of the EM algorithm known as the
Monte Carlo EM, ECM, ECME, AECM, and PX–EM algorithms are con-
sidered. With the considerable attention being given to the analysis of large
data sets, as in typical data mining applications, recent work on speeding up
the implementation of the EM algorithm is discussed. These include the IEM,
SPIEM, the scalable EM algorithms, and the use of multiresolution kd-trees.
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In Section 5, the relationship of the EM algorithm to other data augmenta-
tion techniques, such as the Gibbs sampler and MCMC methods is presented
briefly. The Bayesian perspective is also included by showing how the EM
algorithm and its variants can be adapted to compute the maximum a pos-
teriori (MAP) estimate. We conclude the chapter with a brief account of the
applications of the EM algorithm in such topical and interesting areas as
Bioinformatics and Image Analysis.

2 Basic Theory of the EM Algorithm

2.1 The E- and M-steps

Within the incomplete-data framework of the EM algorithm, we let x denote
the vector containing the complete data and we let z denote the vector con-
taining the missing data. Even when a problem does not at first appear to be
an incomplete-data one, computation of the MLE is often greatly facilitated
by artificially formulating it to be as such. This is because the EM algorithm
exploits the reduced complexity of ML estimation given the complete data.
For many statistical problems the complete-data likelihood has a nice form.

We let gc(x; Ψ) denote the p.d.f. of the random vector X corresponding
to the complete-data vector x. Then the complete-data log likelihood function
that could be formed for Ψ if x were fully observable is given by

log Lc(Ψ ) = log gc(x; Ψ ).

The EM algorithm approaches the problem of solving the incomplete-data like-
lihood equation (1) indirectly by proceeding iteratively in terms of log Lc(Ψ ).
As it is unobservable, it is replaced by its conditional expectation given y,
using the current fit for Ψ . On the (k + 1)th iteration of the EM algorithm,
E-Step: Compute Q(Ψ ; Ψ (k)), where

Q(Ψ ; Ψ (k)) = EΨ (k){logLc(Ψ )|y}. (2)

M-Step: Choose Ψ (k+1) to be any value of Ψ ∈ Ω that maximizes Q(Ψ ; Ψ (k)):

Q(Ψ (k+1); Ψ (k)) ≥ Q(Ψ ; Ψ (k)) ∀Ψ ∈ Ω. (3)

The E- and M-steps are alternated repeatedly until convergence, which may
be determined, for instance, by using a suitable stopping rule like ‖Ψ (k+1) −
Ψ (k)‖ < ε for some ε > 0 with some appropriate norm ‖ · ‖ or the difference
L(Ψ (k+1)) − L(Ψ (k)) changes by an arbitrarily small amount in the case of
convergence of the sequence of likelihood values {L(Ψ (k))}.

It can be shown that both the E- and M-steps will have particularly simple
forms when gc(x; Ψ ) is from an exponential family:
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gc(x; Ψ ) = b(x) exp{c�(Ψ )t(x)}/a(Ψ), (4)

where t(x) is a k × 1 (k ≥ d) vector of complete-data sufficient statistics and
c(Ψ ) is a k × 1 vector function of the d × 1 parameter vector Ψ , and a(Ψ )
and b(x) are scalar functions. Members of the exponential family include most
common distributions, such as the multivariate normal, Poisson, multinomial
and others. For exponential families, the E-step can be written as

Q(Ψ ; Ψ (k)) = EΨ (k)(log b(x)|y) + c�(Ψ )t(k) − log a(Ψ ),

where t(k) = EΨ (k){t(X)|y} is an estimator of the sufficient statistic. The
M-step maximizes the Q-function with respect to Ψ ; but EΨ (k)(log b(x)|y)
does not depend on Ψ . Hence it is sufficient to write:
E–Step: Compute

t(k) = EΨ (k){t(X)|y}.
M–Step: Compute

Ψ (k+1) = arg max
Ψ

[c�(Ψ )t(k) − log a(Ψ )].

In Example 2 of Section 3.2, the complete-data p.d.f. has an exponential family
representation. We shall show how the implementation of the EM algorithm
can be simplified.

2.2 Generalized EM Algorithm

Often in practice, the solution to the M-step exists in closed form. In those
instances where it does not, it may not be feasible to attempt to find the value
of Ψ that globally maximizes the function Q(Ψ ; Ψ (k)). For such situations,
Dempster et al. (1977) defined a generalized EM (GEM) algorithm for which
the M-Step requires Ψ (k+1) to be chosen such that

Q(Ψ (k+1); Ψ (k)) ≥ Q(Ψ (k); Ψ (k)) (5)

holds. That is, one chooses Ψ (k+1) to increase the Q-function, Q(Ψ ; Ψ (k)),
over its value at Ψ = Ψ (k), rather than to maximize it over all Ψ ∈ Ω in (3).

It is of interest to note that the EM (GEM) algorithm as described above
implicitly defines a mapping Ψ → M(Ψ ), from the parameter space Ω to
itself such that

Ψ (k+1) = M(Ψ (k)) (k = 0, 1, 2, . . .).

The function M is called the EM mapping. We shall use this function in our
subsequent discussion on the convergence property of the EM algorithm.
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2.3 Convergence of the EM Algorithm

Let k(x|y; Ψ ) = gc(x; Ψ )/g(y; Ψ ) be the conditional density of X given
Y = y. Then the complete-data log likelihood can be expressed by

log Lc(Ψ ) = log gc(x; Ψ ) = log L(Ψ ) + log k(x|y; Ψ ). (6)

Taking expectations on both sides of (6) with respect to the conditional dis-
tribution x|y using the fit Ψ (k) for Ψ , we have

Q(Ψ ; Ψ (k)) = log L(Ψ ) + H(Ψ ; Ψ (k)), (7)

where H(Ψ ; Ψ (k)) = EΨ (k){log k(X|y; Ψ )|y}. It follows from (7) that

log L(Ψ (k+1)) − log L(Ψ (k)) = {Q(Ψ (k+1); Ψ (k)) − Q(Ψ (k); Ψ (k))}
−{H(Ψ (k+1); Ψ (k)) − H(Ψ (k); Ψ (k))}. (8)

By Jensen’s inequality, we have H(Ψ (k+1); Ψ (k)) ≤ H(Ψ (k); Ψ (k)). From (3)
or (5), the first difference on the right-hand side of (8) is nonnegative. Hence,
the likelihood function is not decreased after an EM or GEM iteration:

L(Ψ (k+1)) ≥ L(Ψ (k)) (k = 0, 1, 2, . . .). (9)

A consequence of (9) is the self-consistency of the EM algorithm. Thus for
a bounded sequence of likelihood values {L(Ψ (k))}, L(Ψ (k)) converges mono-
tonically to some L∗. Now questions naturally arise as to the conditions under
which L∗ corresponds to a stationary value and when this stationary value is
at least a local maximum if not a global maximum. Examples are known where
the EM algorithm converges to a local minimum and to a saddle point of the
likelihood (McLachlan and Krishnan, 1997, Section 3.6). There are also ques-
tions of convergence of the sequence of EM iterates, that is, of the sequence
of parameter values {Ψ (k)} to the MLE.

Before the general formulation of the EM algorithm in Dempster et al.
(1977), there have been convergence results for special cases, notable among
them being those of Baum et al. (1970) for what is now being called the
hidden Markov model. In the article of Dempster et al. (1977) itself, there are
some convergence results. However, it is Wu (1983) who investigates in detail
several convergence issues of the EM algorithm in its generality. Wu examines
these issues through their relationship to other optimization methods. He
shows that when the complete data are from a curved exponential family with
compact parameter space, and when the Q-function satisfies a certain mild
differentiability condition, then any EM sequence converges to a stationary
point (not necessarily a maximum) of the likelihood function. If L(Ψ ) has
multiple stationary points, convergence of the EM sequence to either type
(local or global maximizers, saddle points) depends upon the starting value
Ψ (0) for Ψ . If L(Ψ) is unimodal in Ω and satisfies the same differentiability
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condition, then any sequence {Ψ (k)} will converge to the unique MLE of Ψ ,
irrespective of its starting value.

To be more specific, one of the basic convergence results of the EM algo-
rithm is the following:

log L(M(Ψ )) ≥ log L(Ψ)

with equality if and only if

Q(M(Ψ ); Ψ ) = Q(Ψ ; Ψ ) and k(x|y; M(Ψ )) = k(x|y; Ψ ).

This means that the likelihood function increases at each iteration of the EM
algorithm, until the condition for equality is satisfied and a fixed point of the
iteration is reached. If Ψ̂ is an MLE, so that log L(Ψ̂ ) ≥ log L(Ψ ), ∀ Ψ ∈ Ω,
then log L(M(Ψ̂ )) = log L(Ψ̂). Thus MLE are fixed points of the EM algo-
rithm. If we have the likelihood function bounded (as might happen in many
cases of interest), the EM sequence {Ψ (k)} yields a bounded nondecreasing
sequence {log L(Ψ (k))} which must converge as k → ∞.

The theorem does not quite imply that fixed points of the EM algorithm
are in fact MLEs. This is however true under fairly general conditions. For
proofs and other details, see McLachlan and Krishnan (1997, Section 3.5)
and Wu (1983). Furthermore, if a sequence of EM iterates {Ψ (k)} satisfy the
conditions

1. [∂Q(Ψ ; Ψ (k))/∂Ψ ]Ψ=Ψ (k+1) = 0, and

2. the sequence {Ψ (k)} converges to some value Ψ∗ and log k(x|y; Ψ ) is
sufficiently smooth,

then we have [∂ log L(Ψ)/∂Ψ ]Ψ=Ψ ∗ = 0; see Little and Rubin (2002) and Wu
(1983). Thus, despite the earlier convergence results, there is no guarantee that
the convergence will be to a global maximum. For likelihood functions with
multiple maxima, convergence will be to a local maximum which depends on
the starting value Ψ (0).

Nettleton (1999) extends Wu’s convergence results to the case of con-
strained parameter spaces and establishes some stricter conditions to guaran-
tee convergence of the EM likelihood sequence to some local maximum and
the EM parameter iterates to converge to the MLE.

2.4 Rate of Convergence of the EM Algorithm

The rate of convergence of the EM algorithm is also of practical interest. The
convergence rate is usually slower than the quadratic convergence typically
available with Newton-type methods. Dempster et al. (1977) show that the
rate of convergence of the EM algorithm is linear and the rate depends on
the proportion of information in the observed data. Thus in comparison to
the formulated complete-data problem, if a large portion of data is missing,
convergence can be quite slow.
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Recall the EM mapping M defined in Section 2.2. If Ψ (k) converges to
some point Ψ∗ and M(Ψ ) is continuous, then Ψ∗ is a fixed point of the
algorithm; that is, Ψ∗ must satisfy Ψ∗ = M(Ψ ∗). By a Taylor series expansion
of Ψ (k+1) = M(Ψ (k)) about the point Ψ (k) = Ψ∗, we have in a neighborhood
of Ψ∗ that

Ψ (k+1) − Ψ∗ ≈ J(Ψ∗)(Ψ (k) − Ψ∗),

where J(Ψ ) is the d×d Jacobian matrix for M(Ψ ) = (M1(Ψ ), . . . , Md(Ψ ))�,
having (i, j)th element rij(Ψ ) equal to

rij(Ψ ) = ∂Mi(Ψ )/∂Ψj ,

where Ψj = (Ψ )j and d is the dimension of Ψ . Thus, in a neighborhood of
Ψ∗, the EM algorithm is essentially a linear iteration with rate matrix J(Ψ∗),
since J(Ψ ∗) is typically nonzero. For this reason, J(Ψ∗) is often referred to as
the matrix rate of convergence. For vector Ψ , a measure of the actual observed
convergence rate is the global rate of convergence, which is defined as

r = lim
k→∞

‖ Ψ (k+1) − Ψ∗ ‖ / ‖ Ψ (k) − Ψ∗ ‖,

where ‖ · ‖ is any norm on d-dimensional Euclidean space 	d. It is noted that
the observed rate of convergence equals the largest eigenvalue of J(Ψ ∗) under
certain regularity conditions (Meng and van Dyk, 1997). As a large value of
r implies slow convergence, the global speed of convergence is defined to be
s = 1 − r (Meng, 1994).

2.5 Properties of the EM Algorithm

The EM algorithm has several appealing properties, some of which are:

1. It is numerically stable with each EM iteration increasing the likelihood.
2. Under fairly general conditions, it has reliable global convergence.
3. It is easily implemented, analytically and computationally. In particular, it

is generally easy to program and requires small storage space. By watching
the monotone increase in likelihood (if evaluated easily) over iterations, it
is easy to monitor convergence and programming errors (McLachlan and
Krishnan, 1997, Section 1.7).

4. The cost per iteration is generally low, which can offset the larger number
of iterations needed for the EM algorithm compared to other competing
procedures.

5. It can be used to provide estimates of missing data.

Some of its drawbacks are:

1. It does not automatically provide an estimate of the covariance matrix
of the parameter estimates. However, this disadvantage can be easily re-
moved by using appropriate methodology associated with the EM algo-
rithm (McLachlan and Krishnan, 1997, Chapter 4).
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2. It is sometimes very slow to converge.
3. In some problems, the E- or M-steps may be analytically intractable.

We shall briefly address these three issues in Sections 3.5 and 4.

3 Examples of the EM algorithm

3.1 Example 1: Normal Mixtures

One of the classical formulations of the two-group discriminant analysis or the
statistical pattern recognition problem involves a mixture of two p-dimensional
normal distributions with a common covariance matrix. The problem of two-
group cluster analysis with multiple continuous observations has also been
formulated in this way. Here, we have n independent observations y1, y2, . . . ,
yn from the mixture density

(1 − π)φ(y; µ1, Σ) + πφ(y; µ2, Σ),

where φ(y; µi, Σ) denotes the p-dimensional normal density function with
mean vector µi and common covariance matrix Σ, i = 1, 2. The (1 − π) and
π denote the proportions of the two clusters, respectively. The problem of
estimating the parameters Ψ = (π, µ1, µ2, Σ) is an instance of the problem
of resolution of mixtures or in pattern recognition parlance an “unsupervised
learning problem”. The MLE problem here is quite messy and classical statis-
tical and pattern recognition literature has struggled with it for a long time.

Consider the corresponding “supervised learning problem”, where observa-
tions on the random vector X = (Z, Y ) are x1 = (z1, y1), x2 = (z2, y2), . . . ,
xn = (zn, yn). Here zj is an indicator variable which identifies the jth ob-
servation as coming from the first (z = 0) or the second (z = 1) component
(j = 1, . . . , n). The MLE problem is far simpler here with easy closed-form
MLE. The classificatory variable zj could be called the “missing variable” and
data z = (z1, z2, . . . , zn)� the missing data. The unsupervised learning prob-
lem could be called the incomplete-data problem and the supervised learning
problem the complete-data problem. A relatively simple iterative method for
computing the MLE for the unsupervised problem could be given exploiting
the simplicity of the MLE for the supervised problem. This is the essence of
the EM algorithm.

The complete-data log likelihood function for Ψ is given by

log Lc(Ψ ) =
n∑

j=1

(1 − zj) log φ(y; µ1, Σ) + zj log φ(y; µ2, Σ). (10)

By differentiating (10) with respect to Ψ , the MLEs of Ψ are obtained, as if
z were actually observed:
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π =
n∑

j=1

zj/n, (11)

µ1 =
n∑

j=1

(1 − zj)yj/(n −
n∑

j=1

zj), µ2 =
n∑

j=1

zjyj/

n∑
j=1

zj , (12)

Σ =
n∑

j=1

[(1 − zj)(yj − µ1)(yj − µ1)
� + zj(yj − µ2)(yj − µ2)

�]/n, (13)

Now the EM algorithm for this problem starts with some initial value Ψ (0)

for the parameters. As log Lc(Ψ ) in (10) is a linear function of the unobserv-
able data z for this problem, the calculation of Q(Ψ ; Ψ (k)) on the E-step is
effected simply by replacing zj by its current conditional expectation given
the observed data y, which is the usual posterior probability of the jth obser-
vation arising from component 2

τ
(k)
j = EΨ (k)(Zj |y) =

π(k)φ(yj ; µ
(k)
2 , Σ(k))

(1 − π(k))φ(yj ; µ
(k)
1 , Σ(k)) + π(k)φ(yj ; µ

(k)
2 , Σ(k))

.

The M-step then consists of substituting these τ
(k)
j values for zj in equa-

tions (11) to (13). The E- and M-steps are then iterated until convergence.
Unlike in the MLE for the supervised problem, in the M-step of the unsu-
pervised problem, the posterior probabilities τj , which are between 0 and 1,
are used. The mean vectors µi (i = 1, 2) and the covariance matrix Σ are
computed using the τ

(k)
j as weights in weighted averages.

It is easy to extend the above method to a mixture of g > 2 multinormal
mixtures or even to a mixture of g > 2 distributions from other (identifiable)
families. For a detailed discussion of the applications of the EM algorithm
in the resolution of finite mixtures and other issues of finite mixtures, see
McLachlan and Peel (2000).

3.2 Example 2: Censored Failure-Time Data

In survival or reliability analyses, the focus is the distribution of time T to the
occurrence of some event that represents failure (for computational methods
in survival analysis see also Chapter III.12). In many situations, there will
be individuals who do not fail at the end of the study, or individuals who
withdraw from the study before it ends. Such observations are censored, as
we know only that their failure times are greater than particular values. We let
y = (c1, δ1, . . . , cn, δn)� denote the observed failure-time data, where δj = 0
or 1 according as the jth observation Tj is censored or uncensored at cj (j =
1, . . . , n). That is, if Tj is uncensored, tj = cj , whereas if tj > cj , it is censored
at cj.
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In the particular case where the p.d.f. for T is exponential with mean µ,
we have

f(t; µ) = µ−1 exp(−t/µ)I(0,∞)(t) (µ > 0), (14)

where the indicator function I(0,∞)(t) = 1 for t > 0 and is zero elsewhere. The
unknown parameter vector Ψ is now a scalar, being equal to µ. Denote by s
the number of uncensored observations. By re-ordering the data so that the
uncensored observations precede censored observations. It can be shown that
the log likelihood function for µ is given by

log L(µ) = −s logµ −
n∑

j=1

cj/µ. (15)

By equating the derivative of (15) to zero, the MLE of µ is

µ̂ =
n∑

j=1

cj/s. (16)

Thus there is no need for the iterative computation of µ̂. But in this simple
case, it is instructive to demonstrate how the EM algorithm would work and
how its implementation could be simplified as the complete-data log likelihood
belongs to the regular exponential family (see Section 2.1).

The complete-data vector x can be declared to be x = (t1, . . . , ts, z�)�,
where z = (ts+1, . . . , tn)� contains the unobservable realizations of the n − s
censored random variables. The complete-data log likelihood is given by

log Lc(µ) = −n logµ −
n∑

j=1

tj/µ. (17)

As log Lc(µ) is a linear function of the unobservable data z, the E-step is
effected simply by replacing z by its current conditional expectation given
y. By the lack of memory of the exponential distribution, the conditional
distribution of Tj − cj given that Tj > cj is still exponential with mean µ. So,
we have

Eµ(k)(Tj |y) = Eµ(k)(Tj |Tj > cj) = cj + µ(k) (18)

for j = s + 1, . . . , n. Accordingly, the Q-function is given by

Q(µ; µ(k)) = −n logµ − µ−1




n∑
j=1

cj + (n − s)µ(k)


 .

In the M-step, we have

µ(k+1) =




n∑
j=1

cj + (n − s)µ(k)




/
n. (19)
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On putting µ(k+1) = µ(k) = µ∗ in (19) and solving for µ∗, we have for s < n
that µ∗ = µ̂. That is, the EM sequence {µ(k)} has the MLE µ̂ as its unique
limit point, as k → ∞; see McLachlan and Krishnan (1997, Section 1.5.2).

From (17), it can be seen that log Lc(µ) has the exponential family form (4)
with canonical parameter µ−1 and sufficient statistic t(X) =

∑n
j=1 Tj. Hence,

from (18), the E-step requires the calculation of t(k) =
∑n

j=1 cj + (n− s)µ(k).
The M-step then yields µ(k+1) as the value of µ that satisfies the equation

t(k) = Eµ{t(X)} = nµ.

This latter equation can be seen to be equivalent to (19), as derived by direct
differentiation of the Q-function.

3.3 Example 3: Nonapplicability of EM algorithm

Examples 1 and 2 may have given an impression that the E-step consists in
replacing the missing data by their conditional expectations given the observed
data at current parameter values. Although in many examples this may be
the case as log Lc(Ψ ) is a linear function of the missing data z, it is not quite
so in general. Rather, as should be clear from the general theory described
in Section 2.1, the E-step consists in replacing log Lc(Ψ ) by its conditional
expectation given the observed data at current parameter values. Flury and
Zoppé (2000) give the following interesting example to demonstrate the point
that the E-step does not always consist in plugging in “estimates” for missing
data. This is also an example where the E-step cannot be correctly executed at
all since the expected value of the complete-data log likelihood does not exist,
showing thereby that the EM algorithm is not applicable to this problem, at
least for this formulation of the complete-data problem.

Let the lifetimes of electric light bulbs of a certain type have a uniform
distribution in the interval (0, θ], θ > 0 and unknown. A total of n + m
bulbs are tested in two independent experiments. The observed data consist
of y = (y1, . . . , yn) and e = (en+1, . . . , en+m), where y are exact lifetimes of
a random sample of n bulbs and e are indicator observations on a random
sample of m bulbs, taking value 1 if the bulb is still burning at a fixed time
point T > 0 and 0 if it is expired. The missing data is z = (yn+1, . . . , yn+m)�.
Let s be the number of ej ’s with value 1 and ymax = max{y1, . . . , yn}.

In this example, the unknown parameter vector Ψ is a scalar, being equal
to θ. Let us first work out the MLE of θ directly. The likelihood is

L(θ) = θ−nI[ymax,∞)(θ) ×
(

T

max(T, θ)

)m−s (
1 − T

max(T, θ)

)s

,

where IA is the notation for the indicator function of set A. For s = 0, L(θ)
is decreasing in θ for θ ≥ ymax and hence the MLE is θ̂ = ymax. For s ≥ 1,
we have max(T, θ) = θ. Here the function L1(θ) = (θ)−(n+m)(θ − T )s has a
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unique maximum at θ̃ = n+m
n+m−sT and is monotonically decreasing for θ > θ̃.

Hence the MLE of θ is

θ̂ =
{

θ̃ if θ̃ > ymax and s ≥ 1
ymax otherwise.

Now let us try the EM algorithm for the case s ≥ 1. The complete data can
be formulated as y1, . . . , yn, yn+1, . . . , yn+m and the complete-data MLE is

max
j=1,...,n+m

yj.

Since s ≥ 1, we have θ ≥ T . Now if we take the approach of replacing the
missing observations, then we compute

Eθ(k)(y(k+1)
j |y, e) = Eθ(k)(yj |ej) =




1
2 (T + θ) if ej = 1

1
2T if ej = 0

for j = n + 1, . . . , n + m. The M-step is

θ(k+1) = max{ymax,
1
2 (T + θ(k))}.

Combining the E- and M-steps, we can write the EM algorithm as a sequence
of iterations of the equation

θ(k+1) = M (θk) ≡ max{ymax,
1
2 (T + θ(k))}.

It is easily seen that if we start with any θ(0), this procedure will converge to
θ̂ = max{ymax, T }, by noting that θ̂ = M(θ̂).

The reason for the apparent EM algorithm not resulting in the MLE is that
the E-step is wrong. In the E-step, we are supposed to find the conditional
expectation of log Lc(θ) given y, e at current parameter values. Now given the
data with s ≥ 1, we have θ ≥ T and hence the conditional distributions of yj

are uniform in [T, θ(k)]. Thus for θ < θ(k) the conditional density of missing
yj takes value 0 with positive probability and hence the conditional expected
value of the complete-data log likelihood we are seeking does not exist.

3.4 Starting values for EM Algorithm

The EM algorithm will converge very slowly if a poor choice of initial value
Ψ (0) were used. Indeed, in some cases where the likelihood is unbounded on
the edge of the parameter space, the sequence of estimates {Ψ (k)} generated
by the EM algorithm may diverge if Ψ (0) is chosen too close to the bound-
ary. Also, with applications where the likelihood equation has multiple roots
corresponding to local maxima, the EM algorithm should be applied from a
wide choice of starting values in any search for all local maxima. A variation of
the EM algorithm (Wright and Kennedy, 2000) uses interval analysis methods
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to locate multiple stationary points of a log likelihood within any designated
region of the parameter space.

Here, we illustrate different ways of specification of initial value within mix-
ture models framework. For independent data in the case of mixture models
of g components, the effect of the E-step is to update the posterior probabil-
ities of component membership. Hence the first E-step can be performed by
specifying a value τ

(0)
j for each j (j = 1, . . . , n), where τ j = (τ1j , . . . , τgj)� is

the vector containing the g posterior probabilities of component membership
for yj . The latter is usually undertaken by setting τ

(0)
j = z

(0)
j , where

z(0) = (z(0)
1

�
, . . . , z(0)

n

�
)�

defines an initial partition of the data into g components. For example, an ad
hoc way of initially partitioning the data in the case of, say, a mixture of g = 2
normal components with the same covariance matrices (Example 1, Section
3.1) would be to plot the data for selections of two of the p variables, and
then draw a line that divides the bivariate data into two groups that have
a scatter that appears normal. For higher-dimensional data, an initial value
z(0) for z might be obtained through the use of some clustering algorithm,
such as k-means or, say, an hierarchical procedure if n is not too large.

Another way of specifying an initial partition z(0) of the data is to ran-
domly divide the data into g groups corresponding to the g components of the
mixture model. With random starts, the effect of the central limit theorem
tends to have the component parameters initially being similar at least in
large samples. One way to reduce this effect is to first select a small random
subsample from the data, which is then randomly assigned to the g compo-
nents. The first M-step is then performed on the basis of the subsample. The
subsample has to be sufficiently large to ensure that the first M-step is able to
produce a nondegenerate estimate of the parameter vector Ψ (McLachlan and
Peel, 2000, Section 2.12). In the context of g normal components, a method
of specifying a random start is to generate the means µ

(0)
i independently as

µ
(0)
1 , . . . , µ(0)

g
i.i.d.∼ N(ȳ, V ),

where ȳ is the sample mean and V =
∑n

j=1(yj − ȳ)(yj − ȳ)�/n is the
sample covariance matrix of the observed data. With this method, there is
more variation between the initial values µ

(0)
i for the component means µi

than with a random partition of the data into g components. The component-
covariance matrices Σi and the mixing proportions πi can be specified as

Σ
(0)
i = V and π

(0)
i = 1/g (i = 1, . . . , g).

Ueda and Nakano (1998) considered a deterministic annealing EM (DAEM)
algorithm in order for the EM iterative process to be able to recover from a
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poor choice of starting value. They proposed using the principle of maxi-
mum entropy and the statistical mechanics analogy, whereby a parameter,
say θ, is introduced with 1/θ corresponding to the “temperature” in an an-
nealing sense. With their DAEM algorithm, the E-step is effected by averaging
log Lc(Ψ ) over the distribution taken to be proportional to that of the current
estimate of the conditonal density of the complete data (given the observed
data) raised to the power of θ; see for example McLachlan and Peel (2000,
pp. 58–60).

3.5 Provision of Standard Errors

Several methods have been suggested in the EM literature for augmenting
the EM computation with some computation for obtaining an estimate of
the covariance matrix of the computed MLE. Many such methods attempt to
exploit the computations in the EM steps. These methods are based on the
observed information matrix I(Ψ̂ ; y), the expected information matrix I(Ψ )
or on resampling methods. Baker (1992) reviews such methods and also de-
velops a method for computing the observed information matrix in the case of
categorical data. Jamshidian and Jennrich (2000) review more recent methods
including the Supplemented EM (SEM) algorithm of Meng and Rubin (1991)
and suggest some newer methods based on numerical differentiation.

Theorectically one may compute the asymptotic covariance matrix by in-
verting the observed or expected information matrix at the MLE. In practice,
however, this may be tedious analytically or computationally, defeating one of
the advantages of the EM approach. Louis (1982) extracts the observed infor-
mation matrix in terms of the conditional moments of the gradient and cur-
vature of the complete-data log likelihood function introduced within the EM
framework. These conditional moments are generally easier to work out than
the corresponding derivatives of the incomplete-data log likelihood function.
An alternative approach is to numerically differentiate the likelihood func-
tion to obtain the Hessian. In a EM-aided differentiation approach, Meilijson
(1989) suggests perturbation of the incomplete-data score vector to compute
the observed information matrix. In the SEM algorithm (Meng and Rubin,
1991), numerical techniques are used to compute the derivative of the EM op-
erator M to obtain the observed information matrix. The basic idea is to use
the fact that the rate of convergence is governed by the fraction of the miss-
ing information to find the increased variability due to missing information
to add to the assessed complete-data covariance matrix. More specifically, let
V denote the asymptotic covariance matrix of the MLE Ψ̂ . Meng and Rubin
(1991) show that

I−1(Ψ̂ ; y) = I−1
c (Ψ̂ ; y) + ∆V , (20)

where ∆V = {Id − J(Ψ̂ )}−1J(Ψ̂ )I−1
c (Ψ̂ ; y) and Ic(Ψ̂ ; y) is the conditional

expected complete-data information matrix, and where Id denotes the d × d
identity matrix. Thus the diagonal elements of ∆V give the increases in the
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asymptotic variances of the components of Ψ̂ due to missing data. For a
wide class of problems where the complete-data density is from the regular
exponential family, the evaluation of Ic(Ψ̂ ; y) is readily facilitated by standard
complete-data computations (McLachlan and Krishnan, 1997, Section 4.5).
The calculation of J(Ψ̂ ) can be readily obtained by using only EM code via
numerically differentiation of M (Ψ ). Let Ψ̂ = Ψ (k+1) where the sequence of
EM iterates has been stopped according to a suitable stopping rule. Let Mi

be the ith component of M(Ψ ). Let u(j) be a column d-vector with the jth
coordinate 1 and others 0. With a possibly different EM sequence Ψ (k), let
rij be the (i, j)th element of J(Ψ̂ ), we have

r
(k)
ij =

Mi[Ψ̂ + (Ψ (k)
j − Ψ̂ ju

(j))] − Ψ̂ i

Ψ
(k)
j − Ψ̂ j

.

Use a suitable stopping rule like |r(k+1)
ij − r

(k)
ij | <

√
ε to stop each of the

sequences rij (i, j = 1, 2, . . . , d) and take r∗ij = r
(k+1)
ij ; see McLachlan and

Krishnan (1997, Section 4.5).
It is important to emphasize that estimates of the covariance matrix of

the MLE based on the expected or observed information matrices are guar-
anteed to be valid inferentially only asymptotically. In particular for mixture
models, it is well known that the sample size n has to be very large before the
asymptotic theory of maximum likelihood applies. A resampling approach,
the bootstrap (Efron, 1979; Efron and Tibshirani, 1993), has been considered
to tackle this problem. Basford et al. (1997) compared the bootstrap and
information-based approaches for some normal mixture models and found
that unless the sample size was very large, the standard errors obtained by
an information-based approach were too unstable to be recommended.

The bootstrap is a powerful technique that permits the variability in a
random quantity to be assessed using just the data at hand. Standard error
estimation of Ψ̂ may be implemented according to the bootstrap as follows.
Further discussion on bootstrap and resampling methods can be found in
Chapters III.2 and III.3 of this handbook.

1. A new set of data, y∗, called the bootstrap sample, is generated according
to F̂ , an estimate of the distribution function of Y formed from the orig-
inal observed data y. That is, in the case where y contains the observed
values of a random sample of size n, y∗ consists of the observed values of
the random sample

Y ∗
1, . . . , Y ∗

n
i.i.d.∼ F̂ ,

where the estimate F̂ (now denoting the distribution function of a single
observation Y j) is held fixed at its observed value.

2. The EM algorithm is applied to the bootstrap observed data y∗ to com-
pute the MLE for this data set, Ψ̂

∗
.
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3. The bootstrap covariance matrix of Ψ̂
∗

is given by

Cov∗(Ψ̂
∗
) = E∗[{Ψ̂∗ − E∗(Ψ̂

∗
)}{Ψ̂∗ − E∗(Ψ̂

∗
)}�], (21)

where E∗ denotes expectation over the bootstrap distribution specified by
F̂ .

The bootstrap covariance matrix can be approximated by Monte Carlo meth-
ods. Steps 1 and 2 are repeated independently a number of times (say, B) to
give B independent realizations of Ψ̂

∗
, denoted by Ψ̂

∗
1, . . . , Ψ̂

∗
B. Then (21)

can be approximated by the sample covariance matrix of these B bootstrap
replications to give

Cov∗(Ψ̂
∗
) ≈

B∑
b=1

(Ψ̂
∗
b − Ψ̂

∗
)(Ψ̂

∗
b − Ψ̂

∗
)�/(B − 1), (22)

where Ψ̂
∗

=
∑B

b=1 Ψ̂
∗
b/B. The standard error of the ith element of Ψ̂ can be

estimated by the positive square root of the ith diagonal element of (22). It
has been shown that 50 to 100 bootstrap replications are generally sufficient
for standard error estimation (Efron and Tibshirani, 1993).

In Step 1 above, the nonparametric version of the bootstrap would take
F̂ to be the empirical distribution function formed from the observed data
y. Situations where we may wish to use the latter include problems where
the observed data are censored or are missing in the conventional sense. In
these cases the use of the nonparametric bootstrap avoids having to postulate
a suitable model for the underlying mechanism that controls the censorship
or the absence of the data. A generalization of the nonparametric version of
the bootstrap, known as the weighted bootstrap, has been studied by Newton
and Raftery (1994).

4 Variations on the EM Algorithm

In this section, further modifications and extensions to the EM algorithm are
considered. In general, there are extensions of the EM algorithm

1. to produce standard errors of the MLE using the EM;
2. to surmount problems of difficult E-step and/or M-step computations;
3. to tackle problems of slow convergence;
4. in the direction of Bayesian or regularized or penalized ML estimations.

We have already discussed methods like the SEM algorithm for producing
standard errors of EM-computed MLE in Section 3.5. The modification of the
EM algorithm for Bayesian inference will be discussed in Section 5.1. In this
section, we shall focus on the problems of complicated E- or M-steps and of
slow convergence of the EM algorithm.
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4.1 Complicated E-step

In some applications of the EM algorithm, the E-step is complex and does
not admit a close-form solution to the Q-function. In this case, the E-step at
the (k + 1)th iteration may be executed by a Monte Carlo (MC) process:

1. Make M independent draws of the missing values Z, z(1k), . . . , z(Mk),
from the conditional distribution k(z|y; Ψ (k)).

2. Approximate the Q-function as

Q(Ψ ; Ψ (k)) ≈ QM (Ψ ; Ψ (k)) =
1
M

M∑
m=1

log k(Ψ |z(mk); y).

In the M-step, the Q-function is maximized over Ψ to obtain Ψ (k+1). The
variant is known as the Monte Carlo EM (MCEM) algorithm (Wei and Tanner,
1990). As MC error is introduced at the E-step, the monotonicity property is
lost. But in certain cases, the algorithm gets close to a maximizer with a high
probability (Booth and Hobert, 1999). The problems of specifying M and
monitoring convergence are of central importance in the routine use of the
algorithm. Wei and Tanner (1990) recommend small values of M be used in
initial stages and be increased as the algorithm moves closer to convergence.
As to monitoring convergence, they recommend that the values of Ψ (k) be
plotted against k and when convergence is indicated by the stabilization of
the process with random fluctuations about Ψ̂ , the process may be terminated
or continued with a larger value of M . Alternative schemes for specifying M
and stopping rule are considered by Booth and Hobert (1999) and McCulloch
(1997).

4.1.1 Example 4: Generalized Linear Mixed Models

Generalized linear mixed models (GLMM) are extensions of generalized linear
models (GLM) (McCullagh and Nelder, 1989) that incorporate random effects
in the linear predictor of the GLM (more material on the GLM can be found
in Chapter III.7). We let y = (y1, . . . , yn)� denote the observed data vector.
Conditional on the unobservable random effects vector, u = (u1, . . . , uq)�,
we assume that y arise from a GLM. The conditional mean µj = E(yj |u) is
related to the linear predictor ηj = x�

j β + z�
j u by the link function g(µj) =

ηj (j = 1, . . . , n), where β is a p-vector of fixed effects and xj and zj are,
respectively, p-vector and q-vector of explanatory variables associated with
the fixed and random effects. This formulation encompasses the modeling of
data involving multiple sources of random error, such as repeated measures
within subjects and clustered data collected from some experimental units
(Breslow and Clayton, 1993).

We let the distribution for u be g(u; D) that depends on parameters D.
The observed data y are conditionally independent with density functions of
the form
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f(yj|u; β, κ) = exp[mjκ
−1{θjyj − b(θj)} + c(yj ; κ)], (23)

where θj is the canonical parameter, κ is the dispersion parameter, and mj is
the known prior weight. The conditional mean and canonical parameters are
related through the equation µj = b′(θj), where the prime denotes differen-
tiation with respect to θj . Let Ψ denotes the vector of unknown parameters
within β, κ, and D. The likelihood function for Ψ is given by

L(Ψ ) =
∫ n∏

j=1

f(yj|u; β, κ)g(u; D)du, (24)

which cannot usually be evaluated in closed form and has an intractable in-
tegral whose dimension depends on the structure of the random effects.

Within the EM framework, the random effects are considered as missing
data. The complete data is then x = (y�, u�)� and the complete-data log
likelihood is given by

log Lc(Ψ ) =
n∑

j=1

log f(yj |u; β, κ) + log g(u; D). (25)

On the (k + 1)th iteration of the EM algorithm, the E-step involves the com-
putation of the Q-function, Q(Ψ ; Ψ (k)) = EΨ (k){log Lc(Ψ )|y}, where the
expectation is with respect to the conditional distribution of u|y with current
parameter value Ψ (k). As this conditional distribution involves the (marginal)
likelihood function L(Ψ ) given in (24), an analytical evaluation of the Q-
function for the model (23) will be impossible outside the normal theory mixed
model (Booth and Hobert, 1999). The MCEM algorithm can be adopted to
tackle this problem by replacing the expectation in the E-step with a MC ap-
proximation. Let u(1k), . . . , u(Mk) denote a random sample from k(u|y; Ψ (k))
at the (k + 1)th iteration. A MC approximation of the Q-function is given by

QM (Ψ ; Ψ (k)) =
1
M

M∑
m=1

{log f(y|u(mk); β, κ) + log g(u(mk); D)}. (26)

From (26), it can be seen that the first term of the approximated Q-function
involves only parameters β and κ, while the second term involves only D.
Thus, the maximization in the MC M-step is usually relatively simple within
the GLMM context (McCulloch, 1997).

Alternative simulation schemes for u can be used for (26). For example,
Booth and Hobert (1999) proposed the rejection sampling and a multivariate
t importance sampling approximations. McCulloch (1997) considered depen-
dent MC samples using MC Newton-Raphson (MCNR) algorithm.

4.2 Complicated M-step

One of major reasons for the popularity of the EM algorithm is that the M-step
involves only complete-data ML estimation, which is often computationally



20 S.K. Ng, T. Krishnan, and G.J. McLachlan

simple. But if the complete-data ML estimation is rather complicated, then
the EM algorithm is less attractive. In many cases, however, complete-data
ML estimation is relatively simple if maximization process on the M-step is
undertaken conditional on some functions of the parameters under estimation.
To this end, Meng and Rubin (1993) introduce a class of GEM algorithms,
which they call the Expectation–Conditional Maximization (ECM) algorithm.

4.2.1 ECM and Multicycle ECM Algorithms

The ECM algorithm takes advantage of the simplicity of complete-data condi-
tional maximization by replacing a complicated M-step of the EM algorithm
with several computationally simpler conditional maximization (CM) steps.
Each of these CM-steps maximizes the Q-function found in the preceding E-
step subject to constraints on Ψ , where the collection of all constraints is such
that the maximization is over the full parameter space of Ψ .

A CM-step might be in closed form or it might itself require iteration, but
because the CM maximizations are over smaller dimensional spaces, often they
are simpler, faster, and more stable than the corresponding full maximizations
called for on the M-step of the EM algorithm, especially when iteration is
required. The ECM algorithm typically converges more slowly than the EM
in terms of number of iterations, but can be faster in total computer time.
More importantly, the ECM algorithm preserves the appealing convergence
properties of the EM algorithm, such as its monotone convergence.

We suppose that the M-step is replaced by S > 1 steps and let Ψ (k+s/S)

denote the value of Ψ on the sth CM-step of the (k + 1)th iteration. In
many applications of the ECM algorithm, the S CM-steps correspond to the
situation where the parameter vector Ψ is partitioned into S subvectors,

Ψ = (Ψ�
1 , . . . , Ψ�

S )�.

The sth CM-step then requires the maximization of the Q-function with re-
spect to the sth subvector Ψ s with the other (S − 1) subvectors held fixed
at their current values. The convergence properties and the rate of conver-
gence of the ECM algorithm have been discussed in Meng (1994) and Meng
and Rubin (1993); see also the discussion in Sexton and Swensen (2000). In
particular, it can be shown that

Q(Ψ (k+1); Ψ (k)) ≥ Q(Ψ (k+(S−1)/S); Ψ (k)) ≥ . . . ,≥ Q(Ψ (k); Ψ (k)). (27)

This shows that the ECM algorithm is a GEM algorithm and so possesses its
desirable convergence properties. As noted in Section 2.3, the inequality (27)
is a sufficient condition for

L(Ψ (k+1)) ≥ L(Ψ (k)) (28)

to hold.
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In many cases, the computation of an E-step may be much cheaper than
the computation of the CM-steps. Hence one might wish to perform one E-
step before each CM-step. A cycle is defined to be one E-step followed by one
CM-step. The corresponding algorithm is called the multicycle ECM (Meng
and Rubin, 1993). A multicycle ECM may not necessarily be a GEM algo-
rithm; that is, the inequality (27) may not be hold. However, it is not difficult
to show that the multicycle ECM algorithm monotonically increases the like-
lihood function L(Ψ) after each cycle, and hence, after each iteration. The
convergence results of the ECM algorithm apply to a multicycle version of it.
An obvious disadvantage of using a multicycle ECM algorithm is the extra
computation at each iteration. Intuitively, as a tradeoff, one might expect it
to result in larger increases in the log likelihood function per iteration since
the Q-function is being updated more often (Meng, 1994; Meng and Rubin,
1993).

4.2.2 Example 5: Single-Factor Analysis Model

Factor analysis is commonly used for explaining data, in particular, correla-
tions between variables in multivariate observations and for dimensionality
reduction. In a typical factor analysis model, each observation Y j is modeled
as

Y j = µ + BU j + ej (j = 1, . . . , n), (29)

where U j is a q-dimensional (q < p) vector of latent or unobservable variables
called factors and B is a p×q matrix of factor loadings (parameters). The U j

are assumed to be i.i.d. as N(O, Iq), independently of the errors ej , which are
assumed to be i.i.d. as N(O, D), where D = diag (σ2

1 , . . . , σ2
p), and where Iq

denotes the q × q identity matrix. Thus, conditional on U j = uj , the Yj are
independently distributed as N(µ + B uj , D). Unconditionally, the Y j are
i.i.d. according to a normal distribution with mean µ and covariance matrix

Σ = BB� + D. (30)

If q is chosen sufficiently smaller than p, representation (30) imposes some
constraints on Σ and thus reduces the number of free parameters to be esti-
mated. Note that in the case of q > 1, there is an infinity of choices for B,
since (30) is still satisfied if B is replaced by BC, where C is any orthogonal
matrix of order q. As 1

2q(q − 1) constraints are needed for B to be uniquely
defined, the number of free parameters is pq + p − 1

2q(q − 1); see Lawley and
Maxwell (1971, Chapter 1) and McLachlan et al. (2003).

The factor analysis model (29) can be fitted by the EM algorithm and
its variants. The MLE of the mean µ is obviously the sample mean µ
of the n observed values y1, . . . , yn corresponding to the random sample
Y 1, . . . , Y n. Hence in the sequel, µ can be set equal to µ without loss of
generality. The log likelihood for Ψ that can be formed from the observed
data y = (y�

1 , . . . , y�
n )� is, apart from an additive constant,



22 S.K. Ng, T. Krishnan, and G.J. McLachlan

log L(Ψ) = − 1
2n{log | BB� + D | +

m∑
j=1

(yj − µ)�(BB� + D)−1(yj − µ)}.

We follow Dempster et al. (1977) and formulate x = (y�, u�
1 , . . . , u�

n )�

as the complete-data vector, where uj corresponds to U j . Thus, the complete-
data log likelihood is, but for an additive constant,

log Lc(Ψ ) = − 1
2n log | D | − 1

2

n∑
j=1

{(yj−µ−Buj)�D−1(yj−µ−Buj)+u�
j uj}.

The complete-data density belongs to the exponential family, and the complete-
data sufficient statistics are Cyy, Cyu, and Cuu, where

Cyy =
n∑

j=1

(yj − µ)(yj − µ)�; Cyu =
n∑

j=1

(yj − µ)u�
j ; Cuu =

n∑
j=1

uju
�
j .

On the (k + 1)th iteration of the EM algorithm, we have

E-Step: Compute the conditional expectation of the sufficient statistics
given y and the current fit Ψ (k) for Ψ :

EΨ (k)(Cyy | y) = Cyy, EΨ (k)(Cyu | y) = Cyyγ
(k),

and
EΨ (k)(Cuu | y) = γ(k)�Cyyγ(k) + nω(k),

where

γ(k) = {B(k)B(k)� + D(k)}−1B(k) and ω(k) = Iq − γ(k)�B(k).

M-Step: Calculate B(k+1) = Cyyγ(k)(γ(k)�Cyyγ(k) + nω(k))−1 and

D(k+1) = diag{Cyy/n − B(k+1)H(k)B(k+1)�}
= n−1 diag{Cyy − Cyyγ(k)B(k+1)�}, (31)

where

H(k) = EΨ (k)(Cuu | y)/n = γ(k)�Cyyγ
(k)/n + ω(k). (32)

It is noted that direct differentiation of log L(Ψ ) shows that the ML estimate
of the diagonal matrix D satisfies

D̂ = diag{Cyy/n − B̂B̂
�}. (33)

As remarked by Lawley and Maxwell (1971, pp. 30), (33) looks temptingly
simple to use to solve for D̂, but was not recommended due to convergence



The EM Algorithm 23

problems. On comparing (33) with (31), it can be seen that with the cal-
culation of the ML estimate of D directly from log L(Ψ ), the unconditional
expectation of U jU

�
j , which is the identity matrix, is used in place of the

conditional expectation in (32) on the E-step. Although the EM algorithm is
numerically stable, the rate of convergence is slow, which can be attributed
to the typically large fraction of missing data. Liu and Rubin (1994, 1998)
have considered the application of the ECME algorithm to this problem; see
Section 4.3.1 for the description of the algorithm. The M-step is replaced by
two CM-steps. On the first CM-step, B(k+1) is calculated as on the M-step
above, while on the second CM-step the diagonal matrix D(k+1) is obtained
by using an algorithm such as Newton-Raphson to maximize the actual log
likelihood with B fixed at B(k+1).

The single-factor analysis model provides only a global linear model for
the representation of the data in a lower-dimensional subspace, the scope
of its application is limited. A global nonlinear approach can be obtained
by postulating a mixture of linear submodels for the distribution of the full
observation vector Y j given the (unobservable) factors uj (McLachlan et
al., 2003). This mixture of factor analyzers has been adopted both (a) for
model-based density estimation from high-dimensional data, and hence for
the clutering of such data, and (b) for local dimensionality reduction; see
for example McLachlan and Peel (2000, Chapter 8). Some more material on
dimension reduction methods can be found in Chapter III.6 of this handbook.

4.3 Speeding up Convergence

Several suggestions are available in the literature for speeding up convergence,
some of a general kind and some problem-specific; see for example McLach-
lan and Krishnan (1997, Chapter 4). Most of them are based on standard
numerical analytic methods and suggest a hybrid of EM with methods based
on Aitken acceleration, over-relaxation, line searches, Newton methods, con-
jugate gradients, etc. Unfortunately, the general behaviour of these hybrids
is not always clear and they may not yield monotonic increases in the log
likelihood over iterations. There are also methods that approach the prob-
lem of speeding up convergence in terms of “efficient” data augmentation
scheme (Meng and van Dyk, 1997). Since the convergence rate of the EM
algorithm increases with the proportion of observed information in the pre-
scribed EM framework (Section 2.4), the basic idea of the scheme is to search
for an efficient way of augmenting the observed data. By efficient, they mean
less augmentation of the observed data (greater speed of convergence) while
maintaining the simplicity and stability of the EM algorithm. A common
trade-off is that the resulting E- and/or M-steps may be made appreciably
more difficult to implement. To this end, Meng and van Dyk (1997) introduce
a working parameter in their specification of the complete data to index a
class of possible schemes to facilitate the search.
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4.3.1 ECME, AECM, and PX–EM Algorithms

Liu and Rubin (1994, 1998) present an extension of the ECM algorithm called
the ECME (expectation–conditional maximization either) algorithm. Here the
“either” refers to the fact that with this extension, each CM-step either max-
imizes the Q-function or the actual (incomplete-data) log likelihood function
log L(Ψ ), subject to the same constraints on Ψ . The latter choice should lead
to faster convergence as no augmentation is involved. Typically, the ECME
algorithm is more tedious to code than the ECM algorithm, but the reward of
faster convergence is often worthwhile especially because it allows convergence
to be more easily assessed.

A further extension of the EM algorithm, called the Space-Alternating
Generalized EM (SAGE), has been proposed by Fessler and Hero (1994),
where they update sequentially small subsets of parameters using appropri-
ately smaller complete data spaces. This approach is eminently suitable for
situations like image reconstruction where the parameters are large in number.
Meng and van Dyk (1997) combined the ECME and SAGE algorithms. The
so-called Alternating ECM (AECM) algorithm allows the data augmentation
scheme to vary where necessary over the CM-steps, within and between it-
erations. With this flexible data augmentation and model reduction schemes,
the amount of data augmentation decreases and hence efficient computations
are achieved.

In contrast to the AECM algorithm where the optimal value of the working
parameter is determined before EM iterations, a variant is considered by Liu
et al. (1998) which maximizes the complete-data log likelihood as a function
of the working parameter within each EM iteration. The so-called parameter-
expanded EM (PX–EM) algorithm has been used for fast stable computation
of MLE in a wide range of models. This variant has been further developed,
known as the one-step-late PX–EM algorithm, to compute MAP or maximum
penalized likelihood (MPL) estimates (van Dyk and Tang, 2003). Analogous
convergence results hold for the ECME, AECM, and PX–EM algorithms as
for the EM and ECM algorithms. More importantly, these algorithms preserve
the monotone convergence of the EM algorithm as stated in (28).

4.3.2 Extensions to the EM for Data Mining Applications

With the computer revolution, massively huge data sets of millions of mul-
tidimensional observations are now commonplace. There is an ever increas-
ing demand on speeding up the convergence of the EM algorithm to large
databases. But at the same time, it is highly desirable if its simplicity and
stability can be preserved. In applications where the M-step is computation-
ally simple, for example, in fitting mutivariate normal mixtures, the rate of
convergence of the EM algorithm depends mainly on the computation time
of an E-step as each data point is visited at each E-step. There have been
some promising developments on modifications to the EM algorithm for the
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ML fitting of mixture models to large databases that preserve the simplicity
of implementation of the EM in its standard form.

Neal and Hinton (1998) proposed the incremental EM (IEM) algorithm to
improve the convergence rate of the EM algorithm. With this algorithm, the
available n observations are divided into B (B ≤ n) blocks and the E-step is
implemented for only a block of data at a time before performing a M-step. A
“scan” of the IEM algorithm thus consists of B partial E-steps and B M-steps.
The argument for improved rate of convergence is that the algorithm exploits
new information more quickly rather than waiting for a complete scan of the
data before parameters are updated by an M-step. Another method suggested
by Neal and Hinton (1998) is the sparse EM (SPEM) algorithm. In fitting a
mixture model to a data set by ML via the EM, the current estimates of
some posterior probabilities τ

(k)
ij for a given data point yj are often close to

zero. For example, if τ
(k)
ij < 0.005 for the first two components of a four-

component mixture being fitted, then with the SPEM algorithm we would fix
τ

(k)
ij (i=1,2) for membership of yj with respect to the first two components at

their current values and only update τ
(k)
ij (i=3,4) for the last two components.

This sparse E-step will take time proportional to the number of components
that needed to be updated. A sparse version of the IEM algorithm (SPIEM)
can be formulated by combining the partial E-step and the sparse E-step.
With these versions, the likelihood is still increased after each scan. Ng and
McLachlan (2003a) study the relative performances of these algorithms with
various number of blocks B for the fitting of normal mixtures. They propose
to choose B to be that factor of n that is the closest to B∗ = round(n2/5) for
unrestricted component-covariance matrices, where round(r) rounds r to the
nearest integer.

Other approaches for speeding up the EM algorithm for mixtures have
been considered in Bradley et al. (1998) and Moore (1999). The former devel-
oped a scalable version of the EM algorithm to handle very large databases
with a limited memory buffer. It is based on identifying regions of the data
that are compressible and regions that must be maintained in memory. Moore
(1999) has made use of multiresolution kd-trees (mrkd-trees) to speed up the
fitting process of the EM algorithm on normal mixtures. Here kd stands for
k-dimensional where, in our notation, k = p, the dimension of an observation
yj . His approach builds a multiresolution data structure to summarize the
database at all resolutions of interest simultaneously. The mrkd-tree is a bi-
nary tree that recursively splits the whole set of data points into partitions.
The contribution of all the data points in a tree node to the sufficient statis-
tics is simplified by calculating at the mean of these data points to save time.
Ng and McLachlan (2003b) combined the IEM algorithm with the mrkd-tree
approach to further speed up the EM algorithm. They also studied the con-
vergence properties of this modified version and the relative performance with
some other variants of the EM algorithm for speeding up the convergence for
the fitting of normal mixtures.



26 S.K. Ng, T. Krishnan, and G.J. McLachlan

Neither the scalable EM algorithm nor the mrkd-tree approach guaran-
tee the desirable reliable convergence properties of the EM algorithm. More-
over, the scalable EM algorithm becomes less efficient when the number of
components g is large, and the mrkd-trees-based algorithms slow down as
the dimension p increases; see for example Ng and McLachlan (2003b) and
the references therein. Further discussion on data mining applications can be
found in Chapter III.13 of this handbook.

5 Miscellaneous Topics on the EM Algorithm

5.1 EM Algorithm for MAP Estimation

Although we have focussed on the application of the EM algorithm for com-
puting MLEs in a frequentist framework, it can be equally applied to find
the mode of the posterior distribution in a Bayesian framework. This problem
is analogous to MLE and hence the EM algorithm and its variants can be
adapted to compute MAP estimates. The computation of the MAP estimate
in a Bayesian framework via the EM algorithm corresponds to the considera-
tion of some prior density for Ψ . The E-step is effectively the same as for the
computation of the MLE of Ψ in a frequentist framework, requiring the cal-
culation of the Q-function. The M-step differs in that the objective function
for the maximization process is equal to the Q-function, augmented by the
log prior density. The combination of prior and sample information provides
a posterior distribution of the parameter on which the estimation is based.

The advent of inexpensive high speed computers and the simultaneous
rapid development in posterior simulation techniques such as Markov chain
Monte Carlo (MCMC) methods (Gelfand and Smith, 1990) enable Bayesian
estimation to be undertaken. In particular, posterior quantities of interest
can be approximated through the use of MCMC methods such as the Gibbs
sampler. Such methods allow the construction of an ergodic Markov chain with
stationary distribution equal to the posterior distribution of the parameter of
interest. A detailed description of the MCMC technology can be found in
Chapter II.3.

Although the application of MCMC methods is now routine, there are some
difficulties that have to be addressed with the Bayesian approach, particularly
in the context of mixture models. One main hindrance is that improper priors
yield improper posterior distributions. Another hindrance is that when the
number of components g is unknown, the parameter space is simultaneously
ill-defined and of infinite dimension. This prevents the use of classical test-
ing procedures and priors (McLachlan and Peel, 2000, Chapter 4). A fully
Bayesian approach with g taken to be an unknown parameter has been con-
sidered by Richardson and Green (1997). Their MCMC methods allow jumps
to be made for variable dimension parameters and thus can handle g being
unspecified. A further hindrance is the effect of label switching, which arises



The EM Algorithm 27

when there is no real prior information that allows one to discriminate be-
tween the components of a mixture model belonging to the same parametric
family. This effect is very important when the solution is being calculated
iteratively and there is the possibility that the labels of the components may
be switched on different iterations (McLachlan and Peel, 2000, Chapter 4).

5.2 Iterative Simulation Algorithms

In computing Bayesian solutions to incomplete-data problems, iterative simu-
lation techniques have been adopted to find the MAP estimates or estimating
the entire posterior density. These iterative simulation techniques are concep-
tually similar to the EM algorithm, simply replacing the E- and M-steps by
draws from the current conditional distribution of the missing data and Ψ , re-
spectively. However, in some methods such as the MCEM algorithm described
in Section 4.1, only the E-step is so implemented. Many of these methods can
be interpreted as iterative simulation analogs of the various versions of the
EM and its extensions. Some examples are Stochastic EM, Data Augmenta-
tion algorithm, and MCMC methods such as the Gibbs sampler (McLachlan
and Krishnan, 1997, Chapter 6). Here, we give a very brief outline of the Gibbs
sampler; see also Chapter II.3 of this handbook and the references therein.

The Gibbs sampler is extensively used in many Bayesian problems where
the joint distribution is too complicated to handle, but the conditional distri-
butions are often easy enough to draw from; see Casella and George (1992).
On the Gibbs sampler, an approximate sample from p(Ψ | y) is obtained by
simulating directly from the (full) conditional distribution of a subvector of
Ψ given all the other parameters in Ψ and y. We write Ψ = (Ψ1, . . . , Ψd) in
component form, a d-dimensional Gibbs sampler makes a Markov transition
from Ψ (k) to Ψ (k+1) via d successive simulations as follows:

(1) Draw Ψ
(k+1)
1 from p(Ψ1 | y; Ψ

(k)
2 , . . . , Ψ

(k)
d ).

(2) Draw Ψ
(k+1)
2 from p(Ψ2 | y; Ψ

(k+1)
1 , Ψ

(k)
3 . . . , Ψ

(k)
d ).

...
...

...
(d) Draw Ψ

(k+1)
d from p(Ψd | y; Ψ

(k+1)
1 , . . . , Ψ

(k+1)
d−1 ).

The vector sequence {Ψ (k)} thus generated is known to be a realization
of a homogeneous Markov Chain. Many interesting properties of such a
Markov sequence have been established, including geometric convergence, as
k → ∞; to a unique stationary distribution that is the posterior density
p(Ψ (k)

1 , . . . , Ψ
(k)
d | y) under certain conditions; see Roberts and Polson (1994).

Among other sampling methods, there is the Metropolis-Hastings algorithm
(Hastings, 1970), which, in contrast to the Gibbs sampler, accepts the can-
didate simulated component in Ψ with some defined probability (McLachlan
and Peel, 2000, Chapter 4).

The Gibbs sampler and other such iterative simulation techniques being
Bayesian in their point of view consider both parameters and missing values



28 S.K. Ng, T. Krishnan, and G.J. McLachlan

as random variables and both are subjected to random draw operations. In
the iterative algorithms under a frequentist framework, like the EM-type al-
gorithms, parameters are subjected to a maximization operation and missing
values are subjected to an averaging operation. Thus the various versions of
the Gibbs sampler can be viewed as stochastic analogs of the EM, ECM, and
ECME algorithms. Besides these connections, the EM-type algorithms also
come in useful as starting points for iterative simulation algorithms where
typically regions of high density are not known a priori (McLachlan and Kr-
ishnan, 1997, Section 6.7.3). The relationship between the EM algorithm and
the Gibbs sampler and the connection between their convergence properties
have been examined in Sahu and Roberts (1999).

5.3 Further Applications of the EM Algorithm

Since the publication of Dempster et al. (1977), the number, variety, and range
of applications of the EM algorithm and its extensions have been tremendous.
Applications in many different contexts can be found in monographs Little
and Rubin (2002), McLachlan and Krishnan (1997), and McLachlan and Peel
(2000). We conclude the chapter with a quick summary of some of the more
interesting and topical applications of the EM algorithm.

5.3.1 Bioinformatics: Mixture of factor analyzers

The analysis of gene expression microarray data using clustering techniques
has an important role to play in the discovery, validation, and understanding
of various classes of cancer; see for example Alon et al. (1999) and van’t Veer
et al. (2002). Clustering algorithms can be applied to the problem of clustering
genes and tumour tissues (McLachlan et al., 2002) and also in the discovery of
motif patterns in DNA sequences (Bailey and Elkan, 1995); see also Chapter
IV.3 for the description of biomolecular sequences and structures. The EM
algorithm and its variants have been applied to tackle some of the problems
arisen in such applications. For example, the clustering of tumour tissues on
the basis of genes expression is a nonstandard cluster analysis problem since
the dimension of each tissue sample is so much greater than the number of
tissues. In McLachlan et al. (2002), mixture of factor analyzers is adopted
to reduce effectively the dimension of the feature space of genes. The AECM
algorithm (Meng and van Dyk, 1997) can be used to fit the mixture of factor
analyzers by ML (McLachlan and Peel, 2000, Chapter 8).

5.3.2 Image analysis: Hidden Markov models

In image analysis, the observed data yj refers to intensities measured on n
pixels in a scene, the associated component indicator vectors zj will not be
independently distributed as the intensities between neighboring pixels are
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spatially correlated. The set of hidden states zj is viewed as missing data
(McLachlan and Peel, 2000, Chapter 13; van Dyk and Meng, 2001) and a
stationary Markovian model over a finite state space is generally formulated
for the distribution of the hidden variable Z. In one dimension, this Markovian
model is a Markov chain, and in two and higher dimensions a Markov random
field (MRF) (Besag, 1986).

The use of the EM algorithm in a hidden Markov chain, known in the
Hidden Markov model literature as the Baum-Welch algorithm (Baum et al.,
1970), has been formulated long before Dempster et al. (1977). Also, Robert
et al. (1993) consider a stochastic Bayesian approach to parameter estimation
for a hidden Markov chain. Lystig and Hughes (2002) provide a means of
implementing a NR approach to obtain parameter estimates and an exact
computation of the observed information matrix for hidden Markov models.

The EM algorithm for the hidden MRF is considerably more difficult;
see McLachlan (1992, Chapter 13) and the references therein. Even in the
exponential family case (see Section 2.1) the E- and M- steps are difficult to
perform even by numerical methods, except in some very simple cases like a
one-parameter case; in some cases they may be implemented by suitable Gibbs
sampler algorithms. A variety of practical procedures has been considered in
the literature. They are reviewed by Qian and Titterington (1992), who also
suggest a Monte Carlo restoration-estimation algorithm. An approximation to
the E-step, based on a fractional weight version of Besag’s iterated conditional
modes (ICM) algorithm (Besag, 1986), has been adopted for the segmentation
of magnetic resonance images (McLachlan and Peel, 2000, Section 13.4). An
alternative approach is a Bayesian one, where the likelihood can be regularized
using a prior, resulting in a better-conditioned log likelihood. This can also
be interpreted as a penalized likelihood approach. Random field models such
as Gibbs priors are often used in this context to capture the local smooth
structures of the images (Geman and Geman, 1984).
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