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ABSTRACT In this paper we investigate the profitability of ’skewness
trades’ and ’kurtosis trades’ based on comparisons of implied state price
densities versus historical densities. In particular, we examine the ability
of SPD comparisons to detect structural breaks in the options market be-
haviour. While the implied state price density is estimated by means of the
Barle and Cakici Implied Binomial Tree algorithm using a cross section of
DAX option prices, the historical density is inferred by a combination of a
non–parametric estimation from a historical time series of the DAX index
and a forward Monte Carlo simulation.

1 Introduction

From a trader’s point of view implied state price densities (SPD’s) may be
used as market indicators and thus constitute a good basis for advanced
trading strategies. Deviations of historical SPD’s from implied SPD’s have
led to skewness and kurtosis trading strategies, Ait–Sahalia, Wang and
Yared (2001). Blaskowitz and Schmidt (2002) investigated such strategies
for the period from 04/97 until 12/99. The trades applied to European
options on the German DAX index generated a positive net cash flow.

However, it is market consensus that option markets behavior changed as
a consequence of the stock market bubble that burst in March 2000, Figure
1. The purpose of this paper is to examine the trading profitability and the
informational content of both the implied and the historical SPD for the
extended period from 04/97 to 07/02. Our analysis focuses on the ability
of SPD skewness and kurtosis comparisons to detect structural breaks.

For this purpose we use EUREX DAX option settlement prices and DAX
closing prices. All data is included in MD*Base (http://www.mdtech.de),
a database located at CASE (Center for Applied Statistics and Economics,
http://www.case.hu-berlin.de) of Humboldt-Universität zu Berlin.
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We start by explaining skewness and kurtosis trades in Section 2. In Sec-
tion 3 we motivate the transition from Black–Scholes implied and historical
volatility comparisons to implied and historical SPD comparisons. The SPD
estimation techniques are discussed in Section 4, and Section 5 presents the
estimation results. Section 6 investigates the trading performance, Section
7 concludes.

DAX 1997-2003

Time

DAX

1/97 1/98 1/99 1/00 1/01 1/02 1/03

3000

4000

5000

6000

7000

8000

Figure 1. DAX from 01/97 to 01/03.

2 What are Skewness and Kurtosis Trades ?

In derivatives markets option strategies such as risk–reversals and strangles,
Willmot (2002), are used to exploit asymmetric and fat–tailed properties of
the underlyings’ risk–neutral distribution. A risk–reversal is a portfolio of
two European options with time to maturity τ. More precisely, it consists
of a short position in a put with strike K1 and a long position in a call
with strike K2, where K1 < K2. Its payoff profile at maturity as shown
in Figure 2 suggests that an investor in this portfolio considers high prices
of the underlying to be more likely to occur than low prices. Similarly, an
investor believing that large moves of the underlying are likely to occur will
buy a long strangle, which consists of a long position in a European put
with strike K1 and time to maturity τ and a long position in a European
call with strike K2 and time to maturity τ.

In our study we will use a risk–reversal and a modified strangle portfo-
lio to exploit differences in two risk–neutral SPD’s. To motivate the SPD
comparison we recall the general pricing equations for European put and
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Payoff Risk Reversal

K_1

Underlying K_2

Figure 2. Payoff Risk Reversal

call options. From option pricing theory it follows that:

P = e−rτ

∫ ∞

0

max(K1 − ST , 0)q(ST )dST (1.1)

C = e−rτ

∫ ∞

0

max(ST −K2, 0)q(ST )dST ,

where P and C are put respectively call prices, r is the risk–free interest
rate, ST is the price of the underlying at maturity T and q is a risk–neutral
density, Franke, Härdle and Hafner (2001). Consider two risk–neutral den-
sities denoted f∗ and g∗ as in Figure 3 where density f∗ is more negatively
skewed than g∗. Then equation (1.1) implies that the price of a European
call option with strike K2 computed with density f∗ is lower than the price
computed with density g∗. The reason for this is that f∗ assigns less prob-
ability mass to prices ST > K2 than g∗. If the call is priced using f∗ but
one regards density g∗ as a better approximation of the underlyings’ dis-
tribution one would buy the option. Along these lines one would sell a put
option with strike K1, what finally results in a risk–reversal portfolio or,
as well call it, a skewness 1 trade.

The same probability mass reasoning leads to kurtosis trades. We buy
and sell calls and puts of different strikes as shown in Figure 4. The payoff
profile at maturity is given in Figure 5. In Section 6 we will specify the
regions in which to buy or sell options in terms of the moneyness K/Ste

rτ .

Note, in a complete market model admitting no arbitrage opportunities
exists exactly one risk–neutral density. If markets are not complete, for
example when the volatility is stochastic, there are in general many risk–
neutral measures. Comparing two risk–neutral densities, as we do, amounts
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Skewness Trades
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Figure 3. Skewness Trade

rather to comparing two different models, and trades are initiated depend-
ing on the model in which one believes more. The next section will discuss
briefly how this approach is implemented in practice.

3 Skewness and Kurtosis in a Black–Scholes World

Black–Scholes’ assumption that the underlyings’ process St follows a geo-
metric Brownian motion

dSt = µStdt + σStdWt,

where µ, σ are constants and dWt is a Wiener Process, implies the un-
derlying to be log–normally distributed with mean exp (µdt) and vari-
ance exp (2µdt)

{
exp

(
σ2

)− 1
}

. Skewness and kurtosis solely depend on
the volatility parameter σ. As σ increases, skewness and kurtosis increase,
as well. If there is only one implied volatility (IV) for all options, trading
differences in Black–Scholes implied and historical volatilities, σimp respec-
tively σhist, amounts to a comparison of two log–normal distributions. More
precisely, such traders compare two Black–Scholes models with constant pa-
rameters σimp and σhist. Within this framework of two log–normals and a
constant volatility one would buy all options if the historical volatility is
higher than the IV and if one believes in such a ’historical volatility model’.

This way traders can trade volatility differences, but the assumption of
log–normality does not allow the implementation of skewness and kurtosis
trades. Comparing skewness and kurtosis requires the information con-
tained in the Black–Scholes IV smile that is observed on option markets.
Traders often use this smile to asses the markets’ view on the underlyings’
risk–neutral probabilistic behavior. Applying the inverted Black–Scholes
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Kurtosis Trade 1
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option pricing formula to prices obtained from a model with a left–skewed
risk–neutral distribution, for example, entails out–of–the–money (OTM)
calls to have a higher IV than at–the–money (ATM) calls or puts and the
latter to have higher IVs than OTM puts. If the unknown risk–neutral dis-
tribution has more kurtosis than the log–normal distribution then OTM
calls and OTM puts have higher Black–Scholes IVs than ATM options.
Depending on the smiles’ location, slope and curvature a skewness or a
kurtosis trade is set up.

Relaxing the assumption that neither the implied nor the historical risk–
neutral distribution is log–normal it is possible to extend trading rules
based on Black–Scholes IVs to a framework where comparisons within a
more general class of risk–neutral distributions are possible. In light of this,
the approach we follow in this paper amounts to a generalization of a com-
parison of implied and historical volatility. In the following section we will
briefly motivate the notion of implied and historical SPD’s and describe
the methods we used to extract them.

4 Implied and Historical DAX SPD’s

Modern options markets have a high degree of market liquidity, i. e. prices
on these markets are determined by supply and demand. This is partic-
ularly true for DAX options traded on the EUREX, the world’s leading
market for the trading of futures and options on stocks and stock indices.
Some 425 participants in 17 countries traded more than 106 million options
and futures contracts in March 2003. DAX options belong to the most fre-
quently traded contracts (www.eurexchange.com).

Given a set of market option prices an implied distribution q is the dis-
tribution that simultaneously satisfies the pricing equation for all observed
options in the set. As we work with European options, prices are given
by equation (1.1). The implied state price density of an asset should be
viewed as a way of characterizing the prices of derivatives contingent upon
this asset. It is the density used to price options and has therefore a ’for-
ward looking character’, Cont (1998).

We will later see that the historical SPD is inferred from a time series
of past underlyings’ prices without involving option prices at all. Since we
will use this distribution to compar it to the implied SPD, we call it a SPD
too, a ’historical SPD’.
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4.1 Extracting the Options Implied SPD

In recent years a number of methods have been developed to infer implied
SPD’s from cross–sectional option prices, see Cont (1998) and Jackwerth
(1999) for an overview. As Binomial Trees are widely used and accepted
by practitioners, we use Implied Binomial Trees (IBT) in order to obtain
a proxy for the option implied SPD, which is denoted by f∗ from now on.
The IBT algorithm is a modification of the Cox–Ross–Rubinstein (CRR)
algorithm. The numerous IBT techniques proposed by Rubinstein (1994),
Derman and Kani (1994), Dupire (1994) and Barle and Cakici (1998) rep-
resent discrete versions of a continuous time and space diffusion model

dSt

St
= µ (St, t) dt + σ(St, t)dWt.

Whereas the classical CRR binomial tree assumes the instantaneous local
volatility function to be constant, i. e. σ(St, t) = σ, the IBT allows σ(St, t)
to dependent on time and space.

Relying on the work of Härdle and Zheng (2002) we decided to work
with Barle & Cakici’s method for two reasons. First, the authors provide
interactive XploRe quantlets to compute the IBT’s proposed by Derman
& Kani and Barle & Cakici. Second, according to the authors the latter
method proved to be more robust.

The procedure works as follows: From a cross–section of two weeks of
options data the XploRe quantlet volsurf.xpl estimates the IV surface
over ’forward’ moneyness and time to maturity, which we measure assum-
ing 250 trading days per year. The quantlet IBTbc.xpl computes the IBT
assuming a flat yield curve, a constant time to maturity of three months
and taking the IV surface as input.

Furthermore, the IBT consists of three trees, the tree of stock prices,
the tree of transition probabilities and finally the tree of Arrow–Debreu
prices. If the tree is discretised by N time steps of length ∆t = τ/N, the
tree consists of N + 1 final stock prices SN+1,i, i ∈ {1, 2, . . . , N + 1}, and
N+1 final Arrow–Debreu prices λN+1,i, i ∈ {1, 2, . . . , N+1}. Compounding
the Arrow–Debreu prices to maturity erτλN+1,i, i ∈ {1, 2, . . . , N + 1}, and
associating them to annualized stock returns

uN+1,i = {log(SN+1,i)− log(St)} τ−1 , i ∈ {1, 2, . . . , N + 1}.

we obtain the option implied risk–neutral SPD f∗ over log–returns. A more
detailed description of the procedure is given in Blaskowitz and Schmidt
(2002).
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Figure 6 displays the implied SPD on Monday, June 23, 1997, and N = 10
time steps. This is the fourth Monday in June 1997. On that day, the
DAX index St was at 3748.79 and the risk–free three month rate r was at
3.12. The plot shows the three months ahead risk–neutral SPD for Friday,
September 19, 1997. This is the third Friday of September 1997, the expi-
ration day of September 97 options. The SPD’s standard deviation is 0.5,
its skewness is −0.45 and its kurtosis is 4.17.

Option Implied SPD for September 97

-2 -1 0 1
LogReturn

0
5

10
15

20
25

SP
D

*E
-2

Figure 6. Option Implied SPD on Monday, June 23, 1997, for Friday, September
19, 1997, with St = 3748.79, r = 3.12, N = 10

We are interested in the SPD on the third Friday of the expiry month
since later we will design the trading strategies such that we set up skewness
and kurtosis portfolios on the 4th Monday of each month. These portfolios
will consist of long and short positions in call and put options expiring on
the 3rd Friday three months later.

4.2 Extracting the Historical SPD

The risk–neutral historical SPD g∗ is estimated by assuming that the un-
derlying St follows a continuous diffusion process:

dSt = µ(St)dt + σ(St)dWt.

If we assume, as above, a flat yield curve and the existence of a bank
account, which evolves according to Bt = B0e

rt, then from Itô’s formula
and Girsanov’s theorem we obtain the risk–neutral dynamics:

dS∗t = rS∗t dt + σ(S∗t )dW ∗
t . (1.2)
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Note, since here the underlying is the DAX performance index, we do not
take dividend yields into account.

The instantaneous local volatility function is identical under both the
actual and the risk–neutral dynamics. It is estimated by means of Härdle
and Tsybakov’s (1997) non–parametric version of the minimum contrast
estimator:

σ̂2(S) =

∑N∗−1
i=1 K1(Si−S

h1
)N∗{S(i+1)/N∗ − Si/N∗}2

∑N∗
i=1 K1(Si−S

h1
)

,

where K1 is a kernel function, h1 is a bandwidth parameter, Si are dis-
cretely observed daily DAX closing prices and N∗ is the total number of
observed daily DAX closing prices. In the model specified in equation (1.2)
σ̂2 (S) is an unbiased estimator of σ2 (S) .

Using three months of past daily DAX closing prices we estimate σ2 (S)
and then simulate M = 10000 paths of the diffusion process for a time
period of 3 months:

dS∗t = rS∗t dt + σ̂a(S∗t )dW ∗
t ,

with σ̂a (S) = σ̂ (S) τ−1 being the estimated annualized diffusion coeffi-
cient. As the DAX is a performance index, the continuous dividend yield
is 0.

Collecting the endpoints of the simulated paths, we compute annualized
log–returns:

um,t = {log(Sm,T )− log(St)} τ−1 ,m = 1, . . . , M.

Using the notation u = log(ST /St) and knowing that

P (ST ≤ S) = P (u ≤ log(S/St)) =
∫ log(S/St)

−∞ p∗t (u)du

g∗ is obtained by

g∗(S) = ∂
∂S P (ST < S) = p̂∗{log(S/St)}

S ,

where p̂∗ is a non–parametric kernel density estimation of the continuously
compounded log–returns. p̂∗ is given by

p̂∗(u) =
1

Mh2

M∑
m=1

K2

(um,t − u

h2

)
,

with K2 being a kernel function and h2 a bandwidth parameter. g∗ is√
N∗–consistent for M → ∞ even though σ̂2 converges at a slower rate,
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Historical Density for September 1997
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Figure 7. Historical SPD on Monday, June 23, 1997, for Friday, September 19,
1997, with St = 3748.79, r = 3.12

Ait–Sahalia, Wang and Yared (2001).

In order to satisfy the condition that under the absence of arbitrage the
mean of the underlyings’ risk–neutral density is equal to the futures price,
we translate the Monte Carlo simulated historical density:

S̄ = S − E (S) + Ste
rt,τ .

As for the SPD comparison later on we are only interested in the standard
deviation, skewness and kurtosis measures of g∗. Because the annualized
log–returns contain already all the necessary information, we finally com-
pute only these statistics for the simulated log–returns.

Consider the period in the example above. On Monday, June 23, 1997, we
used past daily DAX closing prices of the period of time between Monday,
March 23, 1997, and Friday, June 20, 1997, to estimate σ2. Following, on
Monday, June 23, 1997, we simulate M = 10000 paths to obtain the three
months ahead SPD, shown in Figure 7, whose standard deviation is 0.52,
skewness is −0.39 and kurtosis is 3.23. Figure 8 illustrates both procedures.

5 SPD Comparison

In order to compare both SPD’s we computed the three month implied
and historical densities every three months. More precisely, in March we
compute implied and historical densities for June. Following, we compute
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Density Estimation Illustration
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Figure 8. Comparison of procedures to estimate historical and implied SPD of
Friday, 19/09/97. SPD’s estimated on Monday, 23/06/97, by means of 3 months
of index data respectively 2 weeks of option data.

in June the densities for September etc. The reason is that DAX options
maturing in March, June, September and December are most liquid, thus
containing most information. Starting in June 97 we estimate the first
SPD’s for September 97. We compare both SPD’s by looking at the stan-
dard deviation, skewness and kurtosis.

Figure 9 shows the standard deviations of the implied (blue line with
triangles) and the historical SPD (red line with circles). Although difficult
to interpret, it appears that differences in standard deviations are less sig-
nificant at the end of 1997 and in 1998. It seems that deviations in the
dispersion become more pronounced from 1999 on.

In contrast, skewness and kurtosis measures of implied and historical
SPD as shown in Figures 10 and 11 give a less unambiguous picture.
Whereas the skewness signal changes in the beginning of 2001, the kur-
tosis comparison yields in almost all periods a one-sided signal, ignoring
the outlier in September 2001.

Given that market participants agree upon a structural break occurring
in March 2000, the methodology applied above does not seem to provide
useful information about such a break in the options markets behavior.
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StandardDeviation: Comparison
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Figure 9. Comparison of Standard Deviations of Implied and Historical Densities.
Historical and implied SPD are denoted by a circle respectively a triangle.

Skewness: Comparison
09/97 06/98 03/99 12/99 09/00 06/01 03/02
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Figure 10. Comparison of Skewness of Implied and Historical Densities. Historical
and implied SPD are denoted by a circle respectively a triangle.
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Kurtosis Comparison
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Figure 11. Comparison of Kurtosis of Implied and Historical Densities. Historical
and implied SPD are denoted by a circle respectively a triangle.
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6 Skewness and Kurtosis Trades

The results from the previous section indicate that the implied SPD is more
negatively skewed and has a higher kurtosis than the historical SPD. In this
section, we investigate the skewness 1 and kurtosis 1 trade performance for
the periods from June 1997 to March 2000, from June 2000 to March 2002,
and for the overall period from June 1997 to March 2002. Each period
consists of non–overlapping three month subperiods, in which we set up
portfolios of calls and puts with a time to maturity of three months. For
each subperiod we measure the portfolio return by:

portfolio return =
net cash flow at maturity
net cash flow at initiation

− 1.

The investment to set up the portfolio comprises the net cash flow from
buying and selling calls and puts. Whenever the options sold are worth
more than the options bought entailing a positive cash inflow, it is not
possible to compute a return measure. To ensure that the net cash flow at
initiation is negative, we buy one share of the underlying for each call option
sold and deposit on a bank account the cash value of each sold put options
strike. Such an approach amounts to a very careful performance measure-
ment. Applying margin deposits required by EUREX, for example, would
lower the cash outflow at initiation and thus increase the profitability. Since
a DAX option contract on EUREX consists of five options and one index
point has a value of 5 EUR, we ’charge’ 1 EUR for an index point. At matu-
rity, we sum up all option payoffs, the bank account balance and the DAX
value. For simplicity, we assume that the bank accounts interest rate is zero.

As for the skewness trade, we consider put options with a moneyness,
K/Ste

rτ , of less than 0.95 as OTM. We sell all OTM put options available
in the market. We buy all available ITM call options, i. e. call options with
a moneyness of more than 1.05, see Table 1.1. In our trading simulation
one call or put is traded on each moneyness. As Table 1.2 shows, the per-
formance for the two subperiods reversed. The annualized total returns as
well as Sharpe ratios turned from positive to negative.

A kurtosis 1 portfolio is set up by selling and buying puts and calls as
given in Table 1.1. The kurtosis trade performed similarly to the skewness
trade. In the first period it was highly profitable. In the second period it
turned out to be a bad strategy compared to a risk–free investment.
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Skewness 1 Trade Kurtosis 1 Trade
Position Moneyness Position Moneyness

short puts < 0.95 short puts < 0.90
long puts 0.90− 0.95
short puts 0.95− 1.00
long calls 1.00− 1.05
short calls 1.05− 1.10

long calls > 1.05 long calls > 1.10

Table 1.1. Skewness 1 Trade: Definitions of moneyness regions.

Skewness 1 Trade

Period 06/97–03/00 06/00–03/02 Overall
Number of Subperiods 12 8 20

Total Return 4.85 -8.53 -2.05
Return Volatility 3.00 9.79 6.78
Minimum Return -3.66 -25.78 -25.78
Maximum Return 7.65 7.36 7.65
Sharpe Ratio (Strategy) 0.10 -0.46 -0.24
Sharpe Ratio (DAX) 0.38 -0.35 0.02

Table 1.2. Skewness 1 Trade Performance. Only Total Return is annualized. Re-
turns are given in percentages.

Kurtosis 1 Trade

Period 06/97–03/00 06/00–03/02 Overall
Number of Subperiods 12 8 20

Total Return 14.49 -7.48 2.01
Return Volatility 3.87 13.63 9.33
Minimum Return -4.54 -28.65 -28.65
Maximum Return 8.79 18.14 18.14
Sharpe Ratio (Strategy) 0.55 -0.32 -0.05
Sharpe Ratio (DAX) 0.38 -0.35 0.02

Table 1.3. Kurtosis 1 Trade Performance. Only Total Return is annualized. Re-
turns are given in percentages.
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7 Conclusion

Given that the trading performance of the skewness as well as the kurtosis
trade differ significantly in both subperiods, it is disappointing that the
SPD comparison does not reveal a similar pattern. One could argue that
what we see within the two subperiods is just a feature of the risk premium
as pointed out by Ait–Sahalia, Wang and Yared (2001). However, as mar-
ket participants agree that options markets behave differently since March
2000, we believe that there is more to exploit from a SPD comparison.
In light of this, a topic for future research will be to investigate different
methodologies with respect to their potential to improve and fine tune such
a SPD comparison.
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Franke, J., Härdle, W. and Hafner, C. (2001). Einführung in die Statistik
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Härdle, W. and Zheng, J. (2002). How Precise Are Price Distributions Pre-
dicted by Implied Binomial Trees?, in W. Härdle, T. Kleinow, G. Stahl:
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