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Simulation of risk processes

Krzysztof Burnecki1, Wolfgang Härdle2 and Rafa�l Weron1

1 Introduction

The simulation of risk processes is a standard procedure for insurance companies. The generation
of simulated (aggregated) claims is vital for the calculation of the amount of loss that may occur.
Simulation of risk processes also appears naturally in rating triggered step-up bonds, where the
interest rate is bound to random changes of the companies’ ratings.

Claims of random size Xi arrive at random times Ti. The number of claims up to time t is
described by the stochastic process Nt. The risk process {Rt}t≥0 of an insurance company can
be therefore represented in the form

Rt = u + c(t) −
Nt∑
i=1

Xi. (1)

This standard model for insurance risk [8, 9] involves

• the claim arrival point process {Nt}t≥0,

• an independent claim sequence {Xk}∞k=1 of positive i.i.d. random variables with common
mean µ,

• the nonnegative constant u representing the initial capital of the company,

• the premium function c(t).

To cover its liabilities, the company sells insurance policies and receives a premium according
to c(t). Liabilities result from claims covered by the previously sold insurance policies and are
represented by the aggregated claim process

∑Nt
i=1 Xi. The claim severities are described by the

random sequence Xk.
The simulation of the risk process or the aggregated claim process reduces therefore to

modeling the point process Nt and the claim size sequence Xk. Both processes are assumed
to be independent, hence can be simulated independently of each other. The modeling and
computer generation of claim severities is covered in detail in chapter 6 (???).

The focus of this chapter is therefore on the efficient simulation of the claim arrival point
process Nt. Typically it is simulated via the arrival times Ti, i.e. moments when the ith claim
occurs, or the inter-arrival times (or waiting times) Wi = Ti−Ti−1, i.e. the time periods between
successive claims. The prominent scenarios for Nt, are given by

• the homogeneous Poisson process,

• the non-homogeneous Poisson process,

• the mixed Poisson process,

• the Cox process (or doubly stochastic Poisson process),
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2CASE – Center for Applied Statistics and Economics, Humboldt-Universität zu Berlin, 10099 Berlin, Ger-

many.

1



• the renewal process.

In section 2 we present simulation algorithms of these five models. In section 3 we illustrate the
application of selected scenarios to modeling the risk process. The analysis is conducted for the
PCS (Property Claim Services [13]) dataset covering losses resulting from catastrophic events
in USA that occurred between 1990 and 1999.

2 Claim arrival process

2.1 Homogeneous Poisson process

A continuous-time stochastic process {Nt : t ≥ 0} is a (homogeneous) Poisson process with
intensity (or rate) λ > 0 if (i) Nt is a point process, and (ii) the times between events are
independent and identically distributed with an exponential(λ) distribution, i.e. exponential
with mean 1/λ. Therefore, successive arrival times T1, T2, . . . , Tn of the Poisson process can be
generated by the following algorithm:

Step 1: set T0 = 0

Step 2: for i = 1, 2, . . . , n do

Step 2a: generate an exponential random variable E with intensity λ

Step 2b: set Ti = Ti−1 + E

To generate an exponential random variable E with intensity λ we can use the inverse transform
method, which reduces to taking a random number U distributed uniformly on (0, 1) and setting
E = F−1(U), where F−1(x) = (− log(1 − x))/λ is the inverse of the exponential cumulative
distribution function. In fact we can just as well set E = (− log U)/λ since 1 − U has the same
distribution as U .

Since for the homogeneous Poisson process the expected value ENt = λt, it is natural to
define the premium function in this case as c(t) = ct, where c = (1 + θ)µλ, µ = EXk and θ > 0
is the relative safety loading which ”guarantees” survival of the insurance company. With such
a choice of the risk function we obtain the classical form of the risk process [8, 9].

2.2 Non-homogeneous Poisson process

One can think of various generalizations of the homogeneous Poisson process in order to obtain
a more reasonable description of reality. Note that the choice of such a process implies that the
size of the portfolio cannot increase or decrease. In addition, there are situations, like in motor
insurance, where claim occurrence epochs are likely to depend on the time of the year or of the
week [9]. For modeling such phenomena the non-homogeneous Poisson process (NHPP) is suited
much better than the homogeneous one. The NHPP can be thought of as a Poisson process
with a variable intensity defined by the deterministic intensity (rate) function λ(t). Note that
the increments of a NHPP do not have to be stationary. In the special case when λ(t) takes the
constant value λ, the NHPP reduces to the homogeneous Poisson process with intensity λ.

The simulation of the process in the non-homogeneous case is slightly more complicated than
in the homogeneous one. The first approach is based on the observation [9] that for a NHPP
with rate function λ(t) the increment Nt − Ns, 0 < s < t, is distributed as a Poisson random
variable with intensity λ̃ =

∫ t
s λ(u)du. Hence, the cumulative distribution function Fs of the

waiting time Ws is given by

Fs(t) = P (Ws ≤ t) = 1 − P (Ws > t) = 1 − P (Ns+t − Ns = 0) =

= 1 − exp
(
−

∫ s+t

s
λ(u)du

)
= 1 − exp

(
−

∫ t

0
λ(s + v)dv

)
.
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If the function λ(t) is such that we can find a formula for the inverse F−1
s then for each s we can

generate a random quantity X with the distribution Fs by using the inverse transform method.
The algorithm, often called the ”integration method”, can be summarized as follows:

Step 1: set T0 = 0

Step 2: for i = 1, 2, . . . , n do

Step 2a: generate a random variable U distributed uniformly on (0, 1)

Step 2b: set Ti = Ti−1 + F−1
s (U)

The second approach, known as the ”thinning” or ”rejection method”, is based on the
following observation [3, 12]. Suppose that there exists a constant λ such that λ(t) ≤ λ for
all t. Let T ∗

1 , T ∗
2 , T ∗

3 , . . . be the successive arrival times of a homogeneous Poisson process with
intensity λ. If we accept the ith arrival time with probability λ(T ∗

i )/λ, independently of all
other arrivals, then the sequence T1, T2, . . . of the accepted arrival times (in ascending order)
forms a sequence of the arrival times of a non-homogeneous Poisson process with rate function
λ(t). The resulting algorithm reads as follows:

Step 1: set T0 = 0 and T ∗ = 0

Step 2: for i = 1, 2, . . . , n do

Step 2a: generate an exponential random variable E with intensity λ

Step 2b: set T ∗ = T ∗ + E

Step 2c: generate a random variable U distributed uniformly on (0, 1)

Step 2d: if U > λ(T ∗)/λ then return to step 2a (→ reject the arrival time) else set
Ti = T ∗ (→ accept the arrival time)

As mentioned in the previous section, the inter-arrival times of a homogeneous Poisson process
have an exponential distribution. Therefore steps 2a–2b generate the next arrival time of a
homogeneous Poisson process with intensity λ. Steps 2c–2d amount to rejecting (hence the
name of the method) or accepting a particular arrival as part of the thinned process (hence the
alternative name).

We finally note that since in the non-homogeneous case the expected value ENt =
∫ t
0 λ(s)ds,

it is natural to define the premium function as c(t) = (1 + θ)µ
∫ t
0 λ(s)ds.

2.3 Mixed Poisson process

The very high volatility of risk processes, for example expressed in terms of the index of dis-
persion Var(Nt)/E(Nt) being greater than 1 – a value obtained for the homogeneous and the
non-homogeneous cases, led to the introduction of the mixed Poisson process [2, 11]. In many
situations the portfolio of an insurance company is diversified in the sense that the risks asso-
ciated with different groups of policy holders are significantly different. For example, in motor
insurance we might want to make a difference between male and female drivers or between
drivers of different age. We would then assume that the claims come from a heterogeneous
group of clients, each one of them generating claims according to a Poisson distribution with
the intensity varying from one group to another.

In the mixed Poisson process the distribution of Nt is given by a mixture of Poisson processes.
This means that, conditioning on an extrinsic random variable Λ (called a structure variable),
the process Nt behaves like a homogeneous Poisson process. The process can be generated in
the following way: first a realization of a non-negative random variable Λ is generated and,
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conditioned upon its realization, Nt as a homogeneous Poisson process with that realization as
its intensity is constructed. Making the algorithm more formal we can write:

Step 1: generate a realization λ of the random intensity Λ

Step 2: set T0 = 0

Step 3: for i = 1, 2, . . . , n do

Step 3a: generate an exponential random variable E with intensity λ

Step 3b: set Ti = Ti−1 + E

Since for each t the claim numbers Nt up to time t are Poisson with intensity Λt, in the
mixed case it is reasonable to consider the premium function of the form c(t) = (1 + θ)µΛt.

2.4 Cox process

The Cox process, or doubly stochastic Poisson process, provides flexibility by letting the intensity
not only depend on time but also by allowing it to be a stochastic process. Cox processes seem
to form a natural class for modeling risk and size fluctuations. Therefore the doubly stochastic
Poisson process can be viewed as a two step randomization procedure. An intensity process
Λ(t) is used to generate another process Nt by acting as its intensity. That is, Nt is a Poisson
process conditional on Λ(t) which itself is a stochastic process. If Λ(t) is deterministic, then Nt

is a non-homogeneous Poisson process. If Λ(t) = Λ for some positive random variable Λ, then
Nt is a mixed Poisson process.

This definition suggests that the Cox process can be generated in the following way: first
a realization of a non-negative stochastic process Λ(t) is generated and, conditioned upon its
realization, Nt as a non-homogeneous Poisson process with that realization as its intensity is
constructed. Making the algorithm more formal we can write:

Step 1: generate a realization λ(t) of the intensity process Λ(t) for a sufficiently large time
period

Step 2: set λ = max {λ(t)}
Step 3: set T0 = 0 and T ∗ = 0

Step 4: for i = 1, 2, . . . , n do

Step 4a: generate an exponential random variable E with intensity λ

Step 4b: set T ∗ = T ∗ + E

Step 4c: generate a random variable U distributed uniformly on (0, 1)

Step 4d: if U > λ(T ∗)/λ then return to step 4a (→ reject the arrival time) else set
Ti = T ∗ (→ accept the arrival time)

In the doubly stochastic case the premium function is a generalization of the former functions,
in line with the generalization of the claim arrival process. Hence, it takes the form c(t) =
(1 + θ)µ

∫ t
0 Λ(s)ds.
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2.5 Renewal process

Generalizing the point process we come to the position where we can make a variety of different
distributional assumptions on the sequence of waiting times {W1,W2, . . .}. In some particular
cases it might be useful to assume that the sequence is generated by a renewal process of
claim arrival epochs, i.e. the random variables Wi are i.i.d. and nonnegative. Note that the
homogeneous Poisson process is a renewal process with exponentially distributed inter-arrival
times. This observation lets us write the following algorithm for the generation of the arrival
times for a renewal process:

Step 1: set T0 = 0

Step 2: for i = 1, 2, . . . , n do

Step 2a: generate a random variable X with an assumed distribution function F

Step 2b: set Ti = Ti−1 + X

An important point in the previous generalizations of the Poisson process was the possibility
to compensate risk and size fluctuations by the premiums. Thus, the premium rate had to be
constantly adapted to the development of the total claims. For renewal claim arrival processes
a constant premium rate allows for a constant safety loading [7]. Let Nt be a renewal process
and assume that Wk has finite mean 1/λ. Then the premium function is defined in a natural
way as c(t) = (1 + θ)µλt, like in the homogeneous Poisson process case.

3 Simulation of risk processes

In this section we will illustrate some of the models described earlier. We will conduct the analysis
on the PCS (Property Claim Services [13]) dataset covering losses resulting from catastrophic
events in USA that occurred between 1990 and 1999. The data includes market’s loss amounts
in USD adjusted for inflation. Only natural perils which caused damages exceeding 5 million
dollars were taken into consideration. Two largest losses in this period were caused by Hurricane
Andrew (24 August 1992) and the Northridge Earthquake (17 January 1994).

The claim arrival process was analyzed by Burnecki et al. [6]. They fitted exponential,
lognormal, Pareto, Burr and gamma distributions to the waiting time data and tested the fit
with the χ2, Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling test statistics, see
[1, 5]. The χ2 test favored the exponential distribution with λw = 30.97, justifying application
of the homogeneous Poisson process. However, other tests suggested that the distribution is
rather lognormal with µw = −3.88 and σw = 0.86 leading to a renewal process. Since none
of the analyzed distributions was an unanimous winner Burnecki et al. [6] suggested to fit the
rate function λ(t) = 35.32 + 2.32 · 2π · sin[2π(t − 0.20)] and treat the claim arrival process as a
non-homogeneous Poisson process.

The claim severity distribution was studied by Burnecki and Kukla [4]. They fitted lognor-
mal, Pareto, Burr and gamma distributions and tested the fit with various non-parametric tests.
The lognormal distribution with µs = 18.44 and σs = 1.13 passed all tests and yielded smallest
errors. The Pareto distribution with αs = 2.39 and λs = 3.03 · 108 came in second.

The simulation results are presented in Figure 1. We consider a hypothetical scenario where
the insurance company insures losses resulting from catastrophic events in the United States.
The company’s initial capital is assumed to be u = USD 100 billion and the relative safety load-
ing used is θ = 0.5. We choose four models of the risk process whose application is most justified
by the statistical results described above: a homogeneous Poisson process with lognormal claim
sizes, a non-homogeneous Poisson process with lognormal claim sizes, a non-homogeneous Pois-
son process with Pareto claim sizes, and a renewal process with Pareto claim sizes and lognormal
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Figure 1: Simulation results for a homogeneous Poisson process with lognormal claim sizes
(top left), a non-homogeneous Poisson process with lognormal claim sizes (top right), a non-
homogeneous Poisson process with Pareto claim sizes (bottom left), and a renewal process with
Pareto claim sizes and lognormal waiting times (bottom right). Figures were created with the
Insurance library of XploRe [14].

6



waiting times. It is important to note that the choice of the model has influence on both – the
ruin probability and the reinsurance strategy of the company.

In all subplots of Figure 1 the thick solid line is the ”real” risk process, i.e. a trajectory con-
structed from the historical arrival times and values of the losses. The thin solid line is a sample
trajectory. The dotted lines are the sample 0.001, 0.01, 0.05, 0.25, 0.50, 0.75, 0.95, 0.99, 0.999-
quantile lines based on 20000 trajectories of the risk process. Recall that the function x̂p(t) is
called a sample p-quantile line if for each t ∈ [t0, T ], x̂p(t) is the sample p-quantile, i.e. if it
satisfies Fn(xp−) ≤ p ≤ Fn(xp), where Fn is the sample distribution function. Quantile lines
are a very helpful tool in the analysis of stochastic processes. For example, they can provide a
simple justification of the stationarity (or the lack of it) of a process, see [10]. In Figure 1 they
visualize the evolution of the density of the risk process. Clearly, if claim severities are Pareto
distributed then extreme events are more probable to happen than in the lognormal case.
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[7] P. Embrechts and C. Klüppelberg (1993), Some aspects of insurance mathematic, Theory Probab.
Appl. 38(2), 262-295.
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