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Abstract

This note is concerned with two recent agent-based models of speculative dynamics from
the literature, one by Gaunersdorfer and Hommes and the other by He and Li. At short
as well as long lags, both of them display an autocorrelation structure in absolute and
squared returns that comes remarkably close to that of real data at a daily frequency.
The note argues that these long memory effects are to be ascribed to the stochastic
specification of the price equation, which given the wide fluctuations in these models
unduly fails to normalize the price shocks. Under an appropriate respecification, the long
memory completely disappears.

JEL classification: C15; D84; G12.

Keywords: Volatility clustering; Autocorrelations of returns; Fundamentalists and trend-
followers.

1. Introduction

Volatility clustering and long memory effects are among the most important ‘stylized
facts’ in (daily) financial time series data. As evidenced by insignificant autocorrelations
(ACs) of raw returns and a hyperbolic decline of the ACs of the absolute and squared
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returns, these features have spurred attempts at a theoretical explanation. Since tra-
ditional economic and finance theory based on the representative agent with rational
expectations had been fraught with difficulty in this respect, there has been an increased
interest in models incorporating heterogeneous types of agents and some form of ‘market
psychology’ or ‘investor sentiment’.

Originating with Beja and Goldman (1980), a wide class of these models displays
just two archetypical groups of speculative traders, namely, fundamentalists and trend-
followers. The fact that fundamentalists tend to stabilize and trend-followers tend to
destabilize the market offers broad scope for oscillatory price dynamics. If in addition
the weights of the demand of the two groups on the market are suitably varying over time,
there may be good prospects of generating the desired AC patterns as an endogenous
phenomenon. In fact, there are two recent papers that claim to have achieved this goal.
One is Gaunersdorfer and Hommes (2007; GH henceforth), where the variations of the
weights are governed by a process of evolutionary fitness for the market fractions of the
two groups and the fitness is measured by the accumulated realized profits. The other
paper is He and Li (2007; HL henceforth). They fix the market fractions of the traders,
and variations of their impact on the market are brought about by risk adjustments
in the demand of the trend-followers, which in turn derive from a geometric learning
process.

While one can find some other low-dimensional models in the literature that also
purport to match the stylized facts to some degree, it may, in short, be said that they
have a poorer and less satisfactory theoretical structure. 2 In comparison, the theoretical
design of GH and HL provides a fruitful and convincing compromise of rich, substantial
and yet parsimonious modelling. Within a small-scale agent-based framework, the two
papers appear to be the best theoretical explanation of the empirical AC patterns that are
currently available. The present note, however, sets out to spoil this positive evaluation.
It will argue that in both models the long memory effects are to be attributed to a
particular specification of the exogenous stochastic perturbations in the price equation,
which is arbitrary and even artificial given that it unduly fails to normalize this noise.
Furthermore, once a respecification of the noise takes an obvious normalization into
account, the long memory effects will completely disappear.

It is useful for the presentation to begin the discussion with the GH model, which
is done in Section 2. Subsequently, Section 3 deals with the HL model, and Section 4
concludes.

2 We are thinking of Westerhoff (2003), Manzan and Westerhoff (2005), or Alfarano et al. (2005).
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2. The Gaunersdorfer–Hommes model

2.1. Formulation of the model

The Gaunersdorfer–Hommes (GH) model employs the standard framework with one
risky asset, i.e. a large stock or market index, that pays a (stochastic) dividend yt per
share at the beginning of the market period t, and risk-free bonds that pay a fixed rate
of return r. The demand zh,t for the risky asset by trader type h is supposed to be
determined by the expected excess returns,

zh,t = zh,t(pt) =
Eh,t[pt+1 + yt+1 − (1+r)pt]

aσ2
(1)

where pt is the stock price (ex-dividend) in period t, Eh,t are the conditional expectations
of trader type h, a is a uniform risk aversion coefficient, and σ2 is the conditional vari-
ance, which is here supposed to be uniform across all traders and constant over time. 3

Dividends are correctly expected to be given by ȳ > 0, so the agents know the true
fundamental value

p? =
∞∑

τ=1

ȳ

(1 + r)τ
=

ȳ

r
(2)

The market is populated by two types of speculative traders: fundamentalists (type 1)
and trend-followers (type 2). The price expectations for the next period t+1 are:

E1,t(pt+1) = p? + v (pt−1 − p?) , 0 ≤ v ≤ 1

E2,t(pt+1) = pt−1 + g (pt−1 − pt−2) , g ≥ 0
(3)

A Walrasian auctioneer takes care of market clearing. With respect to predetermined
market fractions nh,t of the two types of traders (n1,t + n2,t = 1), he sets the period-t
price pt such that

∑2
h=1 nh,t zh,t(pt) = zs, where the supply zs of the asset is assumed to

be fixed and, for convenience, equal to zero. This condition can be explicitly solved for
pt. Introducing at this place also i.i.d. additive price shocks (APS), which are normally
distributed with standard deviation σε, we get

p̂t :=
1

1 + r

[
pt−1 + ȳ +

n1,t (1−v) (p? − pt−1) + n2,t g (pt−1 − pt−2)
aσ2

]
(4)

pt = p̂t + σε εt , εt ∼ N(0, 1) (APS)

The core of our criticism of the GH model will be that this specification of a random
influence on price formation is less innocent than it might look at first sight.

The changing composition of the agents is governed by an evolutionary process. The
market fraction nh,t of trader type h in period t is based on the fitness Uh,t−1 of this

3 Usually (1) is said to be derived from a mean-variance optimization of expected wealth. In this
case ‘demand’ zh,t is the agents’ desired holding of the asset; see Franke (2008) for a clarification
of the concepts behind eq. (1).
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strategy in the previous period, which derives from information up to t−1. The standard
discrete choice probability for the trend-followers is then determined as follows,

ñ2,t =
exp(β U2,t−1)∑2

h=1 exp(β Uh,t−1)
=

1
1 + exp[β (U1,t−1 − U2,t−1)]

(5)

where the parameter β > 0 is the well-known intensity of choice. It is a special feature of
the GH model that the actual market fraction of the trend-followers is not directly given
by (5). GH rather assume that the more the market price diverges from the fundamental
value, more and more trend-followers start believing that a price correction is about
to occur. This idea is captured by a dampening factor. That is, ñ2,t is multiplied by a
positive coefficient (equal to or) less than unity, which decreases as pt−1 moves further
away from p?. Letting the strength of the dampening mechanism depend on a parameter
α > 0, the market fractions of the two types of agents are thus specified as,

n2,t =
exp[−(pt−1 − p?)2/α ]

1 + exp[β (U1,t−1 − U2,t−1)]
(6)

n1,t = 1 − n2,t (7)

It remains to present the fitness function, which is akin to discounted profits. Precisely,

Uh,t−1 = [pt−1 + yt−1 − (1+r)pt−2] zh,t−2 + η Uh,t−2 (0 ≤ η ≤ 1) (8)

The term in square brackets is the excess return per share of the risky asset over the
risk-free asset, which trader type h has realized in period t−1. It is multiplied by the
demand from the period before that, which yields the sum of his excess profits for period
t−1. These, in turn, are added to the fitness from the previous period, where η is a
memory parameter that measures how slowly past fitness is discounted. 4

Equation (8) completes the description of the model. Directly, the actual market price
pt in (4) and (APS) depends on the two lagged prices pt−1 and pt−2. However, the pop-
ulation shares nh,t entering there depend on the fitness Uh,t−1, which besides pt−1, pt−2

depends on the forecasts Eh,t−2; see (5) – (8) and (1), the latter correspondingly dated
backward. Then (3) shows that also pt−3 and pt−4 are used in (8). On the whole, with
U1,t−1, U2,t−1 and four lagged prices in the market clearing condition (4), the determin-
istic skeleton is six-dimensional. Given initial values of these six variables, the stochastic
model can, of course, be easily iterated forward.

2.2. Volatility clustering and long memory

In model (1) – (8), price changes are driven by a combination of additive random forces
acting on the market price and an evolutionary mechanism governing the proportions
in which the two trading strategies are adopted. With a suitable calibration, the asset

4 A more obvious formalization of the idea of discounting would be the weighted average (1−
η) [. . .] zh,t−2 + η Uh,t−2. Presumably, eq. (8) simplifies the mathematical analysis of the model.
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market turns out to be characterized by an irregular switching between phases of low
volatility, where the price changes remain small, and phases of high volatility, where
initially small price changes caused by the random perturbations are reinforced and may
eventually become large due to the trend-following traders. Hence volatility clustering
arises, brought about by heterogeneity and conditional evolutionary learning. In addition,
the model is able to generate autocorrelation patterns of raw returns as well as absolute
and squared returns that bear some similarity to those observed in daily data of a stock
market index like S&P 500. 5

aσ2 ȳ r v g β α η σε/p?

1 1 0.001 1.00 1.90 2.00 1800 0.99 0.01

Table 1: Numerical parameters of the GH model.

The numerical parameter values by which these results have been achieved are collected
in Table 1. The first 15,000 periods of a sample run are plotted in Figure 1. From the
brief summary it is clear that they have to interpreted as days. The time series thus
spans 15,000/250 = 60 years. The plus sign added to ‘APS’ in the caption of the figure
will be explained further below.

Figure 1: Simulation of the GH model with additive price shocks (APS+).

5 This summary paraphrases GH (2007, p. 266).
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One does not need to compute precise statistical numbers in order to see that the
return series rt in Figure 1 exhibits a strong pattern of volatility clustering. 6 As GH
(2007, p. 283) point out, the key parameter on which this result depends is the coefficient
v in the expectations of the fundamentalists. It must be close to or, as in the present
case, equal to one, while the phenomenon is reported to be fairly robust with respect to
variations in the other parameters. Conceptually, v=1 means that the fundamentalists in
this model are rather believers in the efficient market hypothesis (EMH), since the naive
forecast E1,t+1 = pt−1 does not refer to any fundamental value at all and is consistent
with an efficient market where prices follow a random walk. GH also notice that if all
agents are EMH believers, n1,t = 1 in p̂t in (4), the market price equation (APS) becomes

pt =
pt−1 + r p?

1 + r
+ σε εt = pt−1 +

r

1 + r
(p? − pt−1) + σε εt (9)

Given the small magnitude of the daily interest rate r = 0.001, the price dynamics is
close to a random walk under these circumstances, which would only confirm the trading
strategy of the agents.

On this basis the occurrence of volatility clustering can be explained as follows. When
EMH believers dominate the market, prices are highly persistent and essentially driven
by the exogenous shocks εt. A comparison of the first and third panel in Figure 1 shows
that such a regime prevails as long as the price keeps a certain distance away from
the fundamental value p? = ȳ/r = 1000. It will become clear in a moment that quite
independently of the differential fitness in (5), the near extinction of trend-followers in
these phases is due to the dampening in eq. (6).

Accidentally, however, the price returns into a vicinity of p?. The corresponding trend-
ing behaviour in the price lets the trend-followers earn higher profits. At the same time
there is a weaker dampening in (6), so that the market fraction n2,t of the trend-followers
rises. This, in turn, reinforces the current upward or downward motion in the price, which
additionally favours the trend-following strategy. As a consequence, the destabilizing ef-
fects of this trading rule amplifies the price changes and these stages are characterized
by excess volatility.

The succession of the tranquil and volatile phases can be studied in greater detail
if we consider the 81-day subinterval between t = 6, 230 and t = 6, 310 for pt, rt and
n2,t. This is done in Figure 2. It is here evident that trend-followers are in the majority
if—and only if—the price is close to p?. The relatively gradual increase of n2,t as pt

approaches p?, and the precipitous fall after pt has crossed the p = p? line, is typical
for the evolutionary dynamics and certainly an attractive feature of the model. The
emergence of this asymmetry can be best understood in the deterministic framework,
where because of the greater smoothness it is even more pronounced (see Figure 1 and
its discussion in GH, 2007, pp. 277f).

6 Returns are defined as rt = 100 · (pt − pt−1)/pt−1.
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Figure 2: Extract from Figure 1.

The presentation of the model and its results by GH suggests that the changing market
fractions in the bottom panel of Figure 2 are mainly caused by the differential fitness of
trend-followers and EMH believers. This, however, is not quite true. As a matter of fact,
over the whole time interval shown in Figure 2 the original discrete choice probability
ñ2,t in (5) is equal to unity! The variations of the actual market fraction n2,t of the
trend-followers have therefore to be exclusively ascribed to the dampening coefficient
exp[−(pt−1 − p?)2/α ] in (6).

Responsible for this effect is the low(!) value of the coefficient α=1800. Rewriting the
argument of the exponential function in the numerator as −[(p?)2/α] [(pt−1 − p?)/p?]2,
it is easily checked that a dampening coefficient of 0.10 obtains when the price deviates
by 6.4% from the fundamental value. 7 A ten percent deviation of the price from p?

even reduces the dampening coefficient to 0.0038. Since the trend-followers drive the
price in one direction, it follows from their strong risk aversion to already a moderate
misalignment that this strategy can survive for only very few days. Concretely, only
during 11 of the 81 days in Figure 2 are there more trend-followers than EMH believers
on the market.

While Figure 2 is a qualitatively representative illustration of the phenomenon of
volatility clustering, it is rather special in that the market price crosses the p = p? line

7 Computing (p?)2/α = 10002/1800 = 555.5 and putting xt−1 := (pt−1−p?)/p?, one has to solve
the equation 0.10 = exp(−555.5 · x2

t−1) for xt−1.
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no less than four times within the 81 days. Figure 1 demonstrates that usually the price
stays away from the fundamental value over much longer spells of time, where the trend-
followers have almost completely disappeared from the market. In fact, extending the
simulations over 50,000 days we find that about 85% of this time the EMH believers
form a majority of 99% and more; and they are in a minority only over less than 2% of
this time. The exact numbers are reported in the first row of Table 2.

cases of n2,t exceeding

1 % 50 % 90 %

APS+ 15.33 1.80 0.59
APS− 15.56 1.91 0.59

NPS+ 15.76 1.90 0.57
NPS− 14.06 1.66 0.52

Table 2: Quantiles of the shares of trend-followers
under alternative shock scenarios (based on 50,000 observations).

Note: APS and NPS are additive and normalized price shocks, respectively. The random
number sequence ‘−’ is obtained from the ‘+’ sequence through sign reversal.

In addition to the qualitative volatility clustering, GH are interested in the statistical
properties of the return series of their model and how they compare to those of real data.
To this end they concentrate on the autocorrelation functions (ACF) of the daily raw
and absolute returns. 8 As it should be for the raw returns, they exhibit no significant
autocorrelation at longer lags. On the other hand, it will be evident from the discussion
of Figure 2 that the autocorrelation coefficients are significantly positive at the first two
lags, although the strong effects observed in this diagram are attenuated by the quasi
random walk behaviour of the price that prevails most of the other time. The figures
resulting from our 50,000 period sample run are documented in the first row of Table 3.

The statistically most attractive feature of the GH model is connected with the ab-
solute returns: they are significantly positive not only for the short lags but for all long
lags, too (likewise, see the first row in Table 3). On this basis, GH (p. 281) conclude that
“although our model is only six dimensional it is able to generate apparent long memory
effects”.

2.3. A critical discussion of the long memory effects

The quotation at the end of the previous subsection emphasizes the low dimensionality
of the model. Nevertheless, it also suggests that actually all six dimensions contribute to

8 We omit the squared returns since their ACF provides no further insights vis-à-vis the absolute
returns.
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ACF raw returns at lag ACF absolute returns at lag
sd 1 2 100 1 2 5 50 100

original rt 1.241 0.142 0.078 −0.008 0.210 0.117 0.063 0.054 0.055

r̃t∼N(0, 1.2412)
if n2,t > 0.90 1.193 0.065 0.050 −0.004 0.131 0.114 0.075 0.062 0.062
if n2,t > 0.50 1.148 0.020 0.007 −0.001 0.095 0.092 0.087 0.075 0.073
if n2,t > 0.01 1.167 −0.002 −0.003 0.000 0.081 0.083 0.084 0.066 0.067

Table 3: Statistics of the original (rt) and modified (r̃t) return series.

Note: Based on simulation (APS+) over 50,000 periods, so that the Bartlett standard
deviation of the coefficients is 1/

√
50, 000 = 0.0045. ‘sd’ is the standard deviation of the

returns. In the modified series r̃t, the original rt is replaced with random draws from the
normal distribution N(0, 1.2412) if, and only if, at that date n2,t exceeds the indicated
threshold.

the long memory effects. If one realizes that most of the time the vast majority of traders
are EMH believers and the price dynamics is close to the one-dimensional quasi random
walk (9), this statement is no longer so obvious. To check this issue we conduct a little
experiment that reduces the role of the agents’ interactions in the model.

We take the return series rt from the 50,000 period simulation and replace this value
with another return r̃t at all days where the fraction of trend-followers exceeds a certain
threshold n̄2 of 90, 50 and 1 percent, respectively. This new return is drawn from a normal
distribution whose standard deviation 1.241 is taken over from the original series. In this
way the phases of the dynamic process when the price is near the fundamental value are
filtered out, but only these.

The outcome of this replacement procedure is presented in the lower part of Table 3.
It is clear that as the threshold n̄2 decreases and so excludes an increasing number of
days that have generated the volatility clustering, the standard deviation of the artificial
series r̃t diminishes as well as the short-lag coefficients of ACF(r̃t) and ACF(|r̃t|). At
all longer lags, however, the coefficients of the absolute returns do not follow this rule;
if anything they are even higher than those for |rt|. Table 3 thus indicates that it is
essentially the EMH believers that produce the long memory phenomenon, and that not
all of the model’s six dimensions are required for that.

Before proceeding with this discussion, let us consider the concrete numbers of the
ACF coefficients that we have obtained in the first row of Table 3. After all, some of
them are considerably lower than those reported by GH (2007, Table 2, p. 282). At the
lags 1, 2 and 5 the coefficients of GH for the absolute returns are 0.193, 0.156 and 0.124,
respectively; and from their correlogram one infers that at lag 50, ACF(|rt|) is greater
than 0.10 (ibid., p. 270).

To understand this variability in the statistical numbers it is useful to refer to eq. (9)

9



and rewrite the returns in a regime of EMH believers (when n2,t = 0) as

0.01 · rt =
r

1 + r

p? − pt−1

pt−1
+

σε εt

pt−1
(10)

This expression shows that positive and negative deviations of the market price from the
fundamental value p? = 1000 make a difference. With a positive deviation of pt−1−p? =
200, say, an εt shock of one standard deviation σε = 10 yields a return rt ≈ 100·10/1200 =
0.83%, whereas with a negative deviation of −200 the same shock raises the return to
rt ≈ 100 · 10/800 = 1.25%. With deviations ±400, which according to Figure 1 are not
too extraordinary after the first 3,500 days, the discrepancy is even more striking: 0.71%
versus 1.67%.

In order to check whether the scaling issue in (10) has a bearing on the order of magni-
tude of the autocorrelation coefficients, we take the shock sequence {εt} that constituted
our stochastic sample run. Now, however, instead of adding the εt to the undisturbed
p̂t in (APS), we subtract them from p̂t. Correspondingly, the first shock scenario will be
referred to as (APS+) and this second one as (APS−).

Figure 3: Simulations with additive price shocks (APS−) (upper two panels)
and normalized price shocks (NPS−) (lower two panels).
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The prices and returns of the first 15,000 days under (APS−) are plotted in the upper
part of Figure 3. The pattern of the price series is an almost perfect reverse mirror image
of the (APS+) simulation in Figure 1. This phenomenon goes along with very similar
frequencies at which the trend-following strategy appears on the market; cf. the second
row in Table 2.

The fact that around t = 5, 800 the strong deviations of about 800 are now negative
rather than positive leads to another kind of volatility clustering in the returns. Since in
that phase the market is in a regime of EMH believers, it is clear from the discussion of
eq. (10) that this is a pure price scaling effect without further economic content. We will
return to this issue shortly.

Turning to the ACF, the first two rows of Table 4 compare these statistics for the two
shock scenarios (APS+) and (APS−) over the 50,000 observations of our sample period
(sd and ACF for (APS+) are reproduced from the first row of Table 3; “EMH + TF”
indicates the simulations of the original model where generally both EMH believers and
trend-followers are present). Except for the standard deviation of the returns themselves,
the (APS−) realizations of the additive price shocks lead to higher coefficients, although
those of ACF(|rt|) do not yet reach the abovementioned order of magnitude in the sim-
ulation by GH. This order is, however, attained (and even exceeded) if we follow GH
and base the computations on the first 10,000 days only; see the third row in the table
and recall GH’s coefficients 0.193, 0.156 and 0.124 for the lags 1, 2 and 5. The numerical
examples demonstrate that the model exhibits a considerable variability in the summary
statistics. Of course, this is largely explained by the fact that roughly 85% of the time,
when n2,t ≤ 1%, the price dynamics does not differ much from a random walk.

ACF(rt) at lag ACF(|rt|) at lag
sd α̂H 1 2 100 1 2 5 100

EMH +TF, APS+ 1.241 3.59 0.142 0.078 −0.008 0.210 0.117 0.063 0.055

EMH +TF, APS− 1.181 3.24 0.160 0.089 −0.005 0.254 0.159 0.098 0.088
days 1− 10, 000 1.383 3.29 0.091 0.038 0.001 0.244 0.190 0.159 0.168

EMH only, APS− 1.054 4.37 0.001 0.001 0.003 0.109 0.108 0.109 0.103
EMH +TF, NPS− 1.100 3.72 0.150 0.082 0.001 0.174 0.066 0.001 0.001
EMH only, NPS− 0.996 5.98 −0.003 0.001 0.001 −0.002 0.000 0.001 0.002

Table 4: Statistics of returns under alternative shock scenarios.

Note: Based on 50,000 observations each (except for the third row). ‘sd’ is the standard
deviation of the returns, α̂H the Hill estimator with a 5 percent tail.

As an aside, Table 4 additionally reports another aspect of the stylized facts of daily
returns, which are the fat tails. They are conveniently measured by the Hill estimator
α̂H . As for real stock market data it typically ranges between 3 and 4, the table shows
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that the model’s volatility clustering implies a good match of this criterion, too. 9

To identify the main cause for the long memory, we can now pick up the discussion
of Table 3. Its conclusion that the phenomenon is essentially generated by the EMH
believers can be most directly checked by putting n2,t = 0 for all t, which amounts to
simulating the quasi price random walk (9). Certainly, the autocorrelations of the raw
returns must be insignificant then, and also the low-lag autocorrelations of the absolute
returns diminish. The fourth row of Table 4, however, documents that at all longer
lags the levels of ACF(|rt|) are maintained. Combining this result with the previous
discussion, we have safely established that the long memory is indeed exclusively due
to the EMH believers; that is, the other structural components of the model with the
trend-followers and the evolutionary process do not contribute to it at all (except that
the process marginalizes the role of the trend-followers).

Let us then go one step further and reconsider the nature of the price shocks. The
additive shocks would be quite innocent if the prices remained within a relatively narrow
corridor around the fundamental value. In the light of the wide variations of the market
price that the model typically produces this specification is, however, no longer appro-
priate. To guard against the pure scaling effects that we have revealed, the price shocks
should rather be normalized. Thus, we now replace equation (APS) with

pt = p̂t (1 + σ̃ε εt) , εt ∼ N(0, 1) , σ̃ε = σε/p? = 0.01 (NPS)

where (NPS) stands for normalized price shocks. Of course, the random number sequence
{εt} will be the same as in the simulations above, so that, in obvious notation, we have
two additional shock scenarios (NPS+) and (NPS−).

The lower part of Figure 3 plots the price and return series resulting from the simu-
lation with the shocks (NPS−). The differences from (APS−) in the upper part of the
figure are plain to see. First, while the pattern of the price fluctuations is fairly similar,
the negative deviations (especially) are much more limited, which is exactly what one
will have expected. Second, the fluctuations of the returns are more limited, too. It might
even be feared that the volatility clustering phenomenon has disappeared.

To check the latter, we first refer to Table 2 and note that the significance of the trend-
followers has not much changed. The lower percentages, under (NPS−) versus (APS−),
of the cases where n2,t exceeds the given thresholds is probably specific to the present
random number sequence, since for (NPS+) the percentages tend to be somewhat higher
than for (APS+). In any case, as a comparison of the second and fifth row in Table 4
shows, the first- and second-order autocorrelations of the raw returns under (NPS−) are

9 The computation of the Hill estimator presumes that the absolute returns vt := |rt| are already
rearranged in ascending order, vi−1 ≤ vi for 1 ≤ i ≤ k := 50, 000. Specifying the tail of this series
by the last m elements, it is then defined as α̂H = 1/γ̂H with γ̂H = (1/m)

∑m−1
i=0 [ln vk−i−ln vk−m].

Obviously, lower values of α̂H indicate a fatter tail of the data.
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only slightly lower than under (APS−). Likewise, the Hill estimator α̂H = 3.72 is still
indicative of a fat tail.

The major difference between (NPS−) and (APS−) are the autocorrelations of the
absolute returns. They are considerably lower at the first and second lag, though they
continue to be significantly positive. Most importantly, however, the insignificant coeffi-
cients at the higher lags ascertain that the long memory phenomenon has faded away.
To round out the argument, the last row in Table 4 shows the same insignificance for a
perfect market regime of EMH believers.

In a short summing up it can be said that while the GH model is able to produce
volatility clustering in returns, its long memory effects in the absolute returns are quite
artificial since they rest on additive price shocks that reasonably need to be, but are not,
normalized. On the other hand, after normalizing the price shocks it will not be easy to
design another mechanism that can recover the long memory. One may infer this from
the unsatisfactory estimation results by Amilon (2008) in the present class of models
with, as he emphasizes (p. 359), multiplicative noise in prices. 10

3. The He–Li model

3.1. Formulation of the model

The model by He and Li (2007; HL henceforth) that is to be discussed in this section
appears to be fairly different from the GH model at first sight. Recall that in the GH
model the demand of fundamentalists and trend-followers is proportional to their ex-
pected excess profits, and that the weights of the two components of demand are varying
over time as the market fractions of the two groups undergo an evolutionary process.
In the HL model, by contrast, the market fractions are fixed. However, the variability
that is lost in this way is to some extent reintroduced by the assumption that in the
formulation of demand the conditional variance of the trend-followers is endogenously
changing, while that of the fundamentalists remains constant.

The demand mechanisms in the two models are therefore not that different. Also
the different determination of the market price, which in HL is adjusted in the direc-
tion of excess demand as opposed to the market clearing in GH, should be of limited
significance—at least once the models are calibrated such that they generate cyclical
trajectories in their deterministic skeleton, which both the GH and HL model actually
do.

To begin with the speculative demand zh,t in the HL model, it has just been mentioned
that GH’s assumption of a uniform and constant variance of the excess returns is dropped.

10 Actually, Amilon’s modelling approach is even more elaborated than the present setting since
he also includes a contrarian trading strategy and time-varying conditional variances in (1).
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Hence σ2 in (1) is replaced with a variable σ2
h,t and the equation becomes, 11

zh,t =
Eh,t[pt+1 + yt+1 − (1+r)pt]

a σ2
h,t

(11)

The fundamentalists adopt the same forecasting rule as in GH, except that instead of pt−1

they use the predetermined price pt as the most recent price information. In addition,
HL assume a variable fundamental value, p? = p?

t (see below). For better comparison
with (3), the price expectations of the fundamentalists may be written as,

E1,t(pt+1) = p?
t + (1−α) (pt − p?

t ) 0 ≤ α ≤ 1 (12)

Obviously, (1−α) corresponds to the coefficient v in (3).
The expectations of trend-followers are a bit more ambitious than in GH. Here these

traders are supposed to extrapolate the distance of the observed price from a long-run
moving average ut, where the latter is computed over an infinite horizon with a geometric
decay parameter δ. The variance vt of prices is estimated in a similar manner, with the
same coefficient δ for the geometric decay process. Taken together we have,

E2,t(pt+1) = pt + γ (pt − ut)

ut = δ ut−1 + (1−δ) pt

vt = δ vt−1 + δ (1−δ) (pt − ut−1)2 , 0 ≤ δ ≤ 1

(13)

Turning to the conditional variance s2
h,t of the excess returns in the denominator of (11),

let ra = 250 · r be the annual rate of interest (with respect to 250 trading days), σ2
1 the

unconditional variance of the price, and b>0 another coefficient. Then HL assume that
the two groups of agents perceive their variance s2

h,t as follows: 12

σ2
1,t = (1 + q) σ2

1 , q = (ra)2 = (250 · r)2

σ2
2,t = (1 + q + b vt) σ2

1

(14)

To complete the specification of excess demand, expectations of the dividend payments
yt+1 are r p̄, where p̄ is the expected long-run fundamental value. The market fractions
of fundamentalists and trend-followers, n1 and n2, have already been announced to be
fixed. On the whole, total excess demand zt = z1,t + z2,t derives from (11) as,

zt =
1 + m

2
E1,t(pt+1) + rp̄− (1+r)pt

a (1 + q) σ2
1

+
1−m

2
E2,t(pt+1) + rp̄− (1+r)pt

a (1 + q + b vt) σ2
1

(15)

where m is defined as m := n1−n2. Shifts in the weights of the two demand components
are here brought about by the time-varying term bvt. In principle, the (modulus of the)

11 The notation in HL also allows the risk coefficients to differ across the agents. We disregard
this option since in their calibration HL do not exercise it, either.
12 Regarding the determination of the coefficient q in HL’s (2007) equations (2.9) and (2.10), see
their footnote 12 on p. 3403. Notice in this respect that their symbol r is the annual interest rate
and so corresponds to ra in (14) , while they write (R−1) for our symbol r of the daily interest
rate.
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demand of trend-followers can be arbitrarily small relative to fundamentalists, but not
the other way around. A common feature with the GH model is that the influence of the
trend-followers increases in times of tranquillity or steady price movements, though in
HL the mechanism is more direct than in GH, where it involves the differential profits
in the evolutionary process.

Generally, the excess demand need not be zero in (15), that is, the market is allowed
to be in disequilibrium. The agents can nevertheless realize their plans with the aid of a
market maker, who serves as a buffer. His role is to take a long position (when zt < 0) to
absorb the shares that are in excess supply, and to take a short position (when zt > 0)
to provide the market with the shares that are in excess demand. At the end of period
t, after all these transactions have been carried out, the market maker adjusts the price
for the next period in the direction of the observed (positive or negative) excess demand
zt with a speed µ > 0. Random factors in demand, the transaction process or the price
quotes themselves are treated in exactly the same way as in GH, namely, by introducing
i.i.d. additive price shocks (APS). So the price in period t+1 is determined as,

p̂t+1 := pt + µ zt (16)

pt+1 = p̂t+1 + σε εt , εt ∼ N(0, 1) (APS)

The model is closed by the exogenous stochastic law that governs the evolution of the
fundamental value, for which HL employ the standard assumption of a random walk.
Remarkably, however, it is here stated in a normalized form,

p?
t+1 = (1 + σφ φt) p?

t , φt ∼ N(0, 1) (17)

(The event σφ φt < −1 is so unlikely that no extra qualification is made for it.) Even
without any suspicion of the possibly problematic consequences of the additively speci-
fied price shocks, the unequal treatment of the shocks in (APS) and (17), which is left
uncommented by the authors, appears a bit peculiar. One would rather expect that the
shocks are both either additive or normalized.

The deterministic skeleton of the model is a three-dimensional difference equations
system, which by virtue of its highly nonlinear nature can generate rich dynamic phe-
nomena. For their investigation of the stochastic dynamics, HL are exclusively concerned
with the set of parameters collected in Table 5. Their discussion makes it very clear that
the adjustment period is one day. Thus, the daily interest rate r corresponds to an annual
rate of 5%, and the values of the standard deviations σφ and σ1 derive from an annual
volatility of the fundamental value of 20%. 13

13 Table 5 combines HL’s Table 1 and the additional information in their footnotes 12 and 13
(HL, 2007, pp. 3403f). In particular (in the present notation), r = 0.05/250 = 0.0002, σφ =
0.20/

√
250 = 0.01265, σ2

1 = (0.20 · p̄)2/250 = 1.60.
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a α γ δ m p̄ r σ2
1 b µ σε/p̄ σφ

0.80 0.10 0.30 0.85 0.00 100 0.0002 1.60 1.00 2.00 0.010 0.01265

Table 5: Numerical parameters of the HL model.

3.2. The role of the price shocks

The top panel in Figure 4 shows the time path of the market price in the HL model
over the first 15,000 days. The sequence of the shocks to the fundamental value in (17)
is, by the way, the same as for the price shocks in the simulation of the GH model.
Indeed, the broad pattern of the motions of pt after the first 5,000 days is qualitatively
similar to the top panel in Figure 1. Given that in the HL model pt does not persistently
disconnect from p?

t (as illustrated in the bottom panel of Figure 4 and, over a longer
period, in HL, 2007, Figure 4 on p. 3407), the wide fluctuations of the price are here
basically caused by the exogenous random walk of the fundamental value. Note that also
in the GH model the price dynamics is, over long passages of time, reduced to a (quasi)
random walk, although this is an endogenous mechanism since the random walk is put
into operation when the EMH believers happen to form the overwhelming majority on
the market. Anyhow, the occasional reappearance of the trend-followers in GH causes
their price fluctuations to be more limited than in the HL model.

The large deviations of pt from the long-run fundamental value p̄=100 at around t=
5, 800 point to a first problem with the additive price shocks (APS). Another sequence of
the shocks φt to the fundamental value may drive the price to very low values. While by
the normalization design in (17) the fundamental value itself will always stay positive,
there are good chances for the price pt to turn negative. For the simulations shown in
Figure 4 this happens around t = 26, 600, and experiments with other shock sequences
lead to a similar result. 14 Hence for the model to be well-defined, the assumption (APS)
would have to be complemented by a rule that takes the negativity problem into account.

As in the sample run studied by HL (2007; see the left bottom panel in their Figure 2,
p. 3405), the return series in the second panel in Figure 4 shows clear evidence of volatility
clustering. This is statistically confirmed by its autocorrelation patterns. The coefficients
of the raw returns are (nearly) all insignificant and need not be further discussed here.
The ACF of the absolute returns is plotted as the upper bold (blue) line in Figure 5
(it corresponds to the bottom panel in the middle of Figure 3 in HL, 2007, p. 3405).
There can be no doubt about the significance of these coefficients and the long range
dependence they indicate. 15

14 HL do not encounter this problem since, together with an initial transition period, they only
report results over the first 6,000 days.
15 For completeness it may be remarked that there is a decay in the coefficients, though it is
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Figure 4: Simulations of the HL model under additive and normalized price shocks.

Note: Bold solid line (blue) in the bottom panel originates with (NPS), thin solid line (red)
with (APS); the dotted line depicts the fundamental value.

The line designated APS? in Figure 5 illustrates that ACF(|rt|) is sensitive to the
specific realization of the shocks to the fundamental value, in the sense that not the
qualitative pattern, but the general level, of the autocorrelations is dependent on whether
the deviations of pt from p̄ = 100 are positive or negative. Actually, the coefficients of
the APS? line are computed for the subperiod [3500, 9700], over which pt > p̄. Partly pt

is here two or even four times higher than p̄, so that the impact of the additive price
shocks is two or four times weaker. This means that the relative price changes and thus
the returns tend to be much smaller over this period, as it is clearly seen in the second
panel of Figure 4. A further implication, then, is that also the coefficients of ACF(|rt|)
over this period lie below those of the entire sample period.

extremely slow. One needs at least 200 lags to recognize that ACF(|rt|) decreases in a, practically,
linear way, and even at lag 1,000 the coefficient is still in the region of 0.10 (these computations
are based on 25,000 observations).
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Figure 5: ACF of absolute returns in the HL model
under different price shock scenarios.

Note: On the basis of 15,000 observations, except for APS?, which is based on the subin-
terval [3500, 9700]. The dashed lines are ±2 times the Bartlett standard deviation of the
coefficients. ‘RW’ results from a price random walk with standard deviation 1.15.

HL (2007, p. 3406) contend that three factors work together to produce the volatility
clustering and the apparent long memory: (1) the nature of the endogenous variations
of the conditional variance σ2

2,t of excess returns on the part of the trend-followers; (2)
the noisy fundamental process; (3) the noise in the determination of the market price. In
fact, their arguments appear so persuasive that the three points almost read as a recipe
for generating the stylized facts in other agent-based models.

After the discussion of the GH model, however, the litmus test is now the normalization
of the price shocks. Correspondingly, we again respecify (APS) as,

pt+1 = p̂t+1 (1 + σ̃ε εt) , εt ∼ N(0, 1) , σ̃ε = σε/p̄ = 0.010 (NPS)

Certainly, our simulations with (NPS) adopt the same shock sequences {εt} and {φt} as
before.

The bottom panel of Figure 4 illustrates an immediate consequence of the modification
(NPS). Together with the fundamental value p?

t (the dotted line), the panel depicts the
prices resulting from (APS) and (NPS), respectively, over a period where all prices are
considerably below p̄. In this stage of the process, the price shocks in the (APS) scenario
have a stronger impact than under (NPS). This in turn triggers stronger reactions of
the trend-followers, so that their destabilizing potential leads to larger deviations of the
price from the fundamental value and also to larger price changes, or wider fluctuations
of returns. On the other hand, over periods where the prices move persistently above p̄,
the picture will be reversed. Hence, so far, the normalization of the price shocks (NPS)
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indicates no straightforward effects on the returns.
Let us therefore consider the returns resulting from (NPS) in the HL model directly,

which is done in the third panel in Figure 4. As in the bottom panel in Figure 3 for
the GH model, there are clearly no more signs of volatility clustering. This statement is
authenticated by the ACF of the absolute returns, which is depicted as the lower bold
(red) line in Figure 5. As the confidence band of the dotted lines shows, virtually all
coefficients have become insignificant.

For the GH model it was revealed that its stylized facts were due to the long periods
of time over which the model nearly behaves like a random walk (with purely additive
increments, that is). By contrast, in the HL model a similar feature is not that easy to
detect. We thus try more indirect evidence, in that we simulate a pure random walk of
the price, pt+1 = pt+σRW φt with φt ∼ N(0, 1), compute its ACF of the absolute returns,
and compare it to the ACF of the original HL model. Since the ACF of the random walk
shifts upward as the standard deviation σRW is increased, we scale the latter such that
ACF(|rt|) at the first lag coincides with that of the HL model (which is achieved by
σRW = 1.15).

The resulting function is the topmost thin solid (green) line in Figure 5. With its
extremely slow decay, it looks very much like the ACF(|rt|) of the HL model under
(APS). A slightly lower σRW would actually shift it downward, so that the two ACF
could no longer be significantly distinguished from each other.

The ACF structure of the original HL model can now be reconsidered as follows. (1)
The random walk in the fundamental value ensures a sufficient overall variability of pt,
which chases p?

t as a moving target. (2) In the absence of price shocks, the unit root
behaviour of the fundamental value would essentially carry over to the market price and
even to the returns; see the low-lag ACF(rt) and ACF(|rt|) near unity in the top row of
Figure 3 in HL (2007, p. 3405). (3) The random shocks to the price can then be viewed
as a short-term noise that, in particular, renders the ACF of the raw returns insignificant
(as pointed out by HL, p. 3406). At the same time, this noise also reduces the low-lag
ACF of the absolute returns and raises the ACF at the long lags. However, as we have
seen, for this phenomenon to come about it is absolutely necessary that the price shocks
are additive. If they are normalized in the same way as the shocks to the fundamental
value, as for lack of any other evidence it would be conceptually appropriate, the pleasant
features of long memory and volatility clustering cease to exist.

4. Conclusion

The paper has reassessed two of the most promising small-scale agent-based models
from the literature that, featuring fundamentalists and trend-followers, purport to be ca-
pable of matching the ‘stylized facts’ of volatility clustering and long-range dependence
in the (daily) returns of a risky asset. It revealed that the corresponding autocorrelation
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(AC) pattern of the absolute returns is basically due to the models’ particular specifica-
tion of the random shocks to the market price, which are supposed to be additive. Our
criticism is that this assumption loses its innocence and is even artificial if, as it is the
case in both models, the price happens to undergo wide fluctuations.

The problem is best understood if we consider a random walk of the price (with
additive innovations). As the returns rt are then given by dividing these independent
shocks through the current level of the price, the absolute values of rt will over longer
passages of time be persistently above or below their mean. This implies significantly
positive ACs of |rt|, which are only slowly declining as the lag length increases. By
construction, decisive for these effects are the (slow) variations in the denominator of the
definition of the returns.

With their additive price shocks, the same mechanism is also present in the two mod-
els here discussed and thus at least partially responsible for their observed long memory.
Now, however, the denominator mechanism is combined with the variability in the nu-
merator, which (mainly) reflects the models’ internal structure. So the dynamic feedbacks
in the numerator may make a contribution as well, and this is indeed what the descrip-
tions and evaluations of the models suggest. An easy way to check the contribution of
the structural part of the models is to eliminate their denominator mechanism. That is,
the additive price shocks are replaced with innovations that are proportionally scaled to
the current level of the price. After all, in the absence of any other evidence and knowing
of the possibly large price fluctuations, this normalization is the obvious and appropriate
way to model price perturbations. The main result of the paper was that this elementary
respecification causes all the long memory effects in the ACs of the absolute returns to
vanish.

For these ACs it may thus be briefly said that, in the definition of the returns, the
denominator mechanism, which originated with an artificial specification of the models’
stochastic noise, has clearly dominated the numerator mechanism, which reflects the
models’ internal structure. 16 Despite its broad scope for price variability, the numerator
mechanism did not prove sufficient to generate the desired positive ACs of |rt| with
their slow decay. Explaining them primarily by the endogenous interactions between the
groups of, in some sense, fundamentalists and trend-followers still remains a challenging
task.
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