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Abstract

We argue that the complex interactions of competitive heterogeneous firms lead to
a statistical equilibrium distribution of firms’ profit rates, which turns out to be an
exponential power (or Subbotin) distribution. Moreover, we construct a diffusion
process that has the Subbotin distribution as its stationary probability density,
leading to a phenomenologically inspired interpretation of variations in the shape
parameter of the statistical equilibrium distribution. Our main finding is that firms’
idiosyncratic efforts and the tendency for competition to equalize profit rates are
two sides of the same coin.
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A Statistical Equilibrium Model of

Competitive Firms

“Profit is so very fluctuating, that the person who carries on a particular
trade, cannot always tell you himself what is the average of his annual
profit. It is affected, not only by every variation of price in the commodities
which he deals in, but by the good or bad fortune both of his rivals and
of his customers, and by a thousand other accidents, to which goods, when
carried either by sea or by land, or even when stored in a warehouse, are
liable.”

Adam Smith [16, p. 58]

1 Competition and Profitability

Competition comes in many forms and varieties, and it is certainly one of
the most pervasive concepts in the history of economic thought [19,23]. The
dominant strand of thought, following Cournot, associates (perfect) competi-
tion with a particular market form, and emphasizes the efficient allocation of
resources at points where prices equal marginal costs [12].

Another important strand of thought originates with Adam Smith’s notion
of competition as a dynamic process that leads to a tendency for profit rate
equalization, which we henceforth label as classical competition. 1 Classical
competition essentially describes a negative feedback mechanism. Capital will
seek out sectors or industries where the profit rate is higher than the economy-
wide average, typically attracting labor, raising output, and reducing prices
and profit rates, which in turn provides an incentive for capital to leave the
sector, thereby leading to higher prices and profit rates for firms that remain
in the sector [7]. As a result, classical competition tends to equalize profit
rates, yet it simultaneously leads to perpetual changes in technologies and
competitive practices. Coupled with continually changing tastes of consumers,
and the entry and exit dynamics of rival firms, the very nature of (classical)
competition renders a complete elimination of differences in and across sectoral
profit rates improbable.

Modeling the process of competition is made all the more difficult by the inter-
actions among firms, which in themselves create a complex environment that

1 Evolutionary theories of industrial dynamics [5] or Schumpeter’s [14] theory of
creative destruction, for instance, also highlight the intrinsically dynamic character
of economic competition, and would be consistent with the notion of ‘classical’
competition from this viewpoint.
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feeds back into the destinies of individual companies. One company’s gain is
often the loss of others, particularly in situations where resources are limited,
for instance when it comes to the hiring of exceptional talent, the retain-
ment and acquisition of clients, or the patenting of new technologies. Positive
feedbacks, typically arising from symbiotic relationships and synergetic inter-
actions, further increase the complexity of the competitive environment. 2

The interactions of competitive firms and their idiosyncratic efforts to stay
ahead of the game give rise to an enormous amount of information and com-
plexity that is hard to approach from a deterministic viewpoint. In light of
the intricate connections and interactions among business firms, our focus
shifts accordingly from a fixed-point equilibrium to the notion of a statistical
equilibrium in the spirit of Foley [6]. Formally, Foley’s statistical equilibrium
theory of markets revolves around the maximum entropy principle (MEP) of
Jaynes [9]. After all, MEP derives the combinatorially most likely (or infor-
mationally least biased) distribution of a random variate subject to moment
constraints. Thus, instead of considering competitive equilibrium as a situa-
tion in which all economic agents face an identical profit rate, our statistical
equilibrium model emphasizes the stationary distribution of profit rates.

Approaching the profitability of business firms from a probabilistic perspective
is of course not unique to statistical equilibrium modeling, but rather follows
a long-standing tradition that stresses distributional regularities in a wide
range of socio-economic variables [4,8,10,13,15,18]. In order to apply the max-
imum entropy formalism to any kind of economic phenomenon, one essentially
needs to encode the economic content in terms of moment constraints [3,6,21].
Hence, modeling classical competition with the maximum entropy principle
boils down to expressing competition in the form of moment constraints. We
take the position that the average profit rate corresponds to a measure of cen-
tral tendency, while the complex movements of capital in search of profit rate
equalization and the resulting feedback mechanisms translate into a generic
measure of dispersion around the average. When the number of competitive
firms in a decentralized type of market organization is large, probabilistic fac-
tors can give rise to statistical regularities in the distribution of profit rates.
The distribution of profit rates that can be achieved in the most evenly dis-
tributed number of ways under the dispersion constraint is then the statistical
equilibrium or maximum entropy distribution of profit rates, and turns out to
be an exponential power or Subbotin [22] distribution.

The Subbotin distribution has three parameters: a location, a scale, and a

2 An early description of positive economic feedbacks, probably ranking among
the most well-known together with Young’s [24] notion of increasing returns, is
Smith’s elaboration “That the Division of Labour is Limited by the Extent of the
Market” [16, Book I, Chapter III].
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shape parameter. Structural differences in the statistical equilibrium model
stem from differences in the shape parameter, because operating on the loca-
tion or scale parameter does not change the qualitative features of the Sub-
botin distribution. If the shape parameter is equal to two, the Subbotin dis-
tribution reduces to the Gaussian (normal) distribution, and if it is equal to
unity, the Subbotin distribution reduces to the Laplace (double-exponential)
distribution.

Interestingly, there is evidence that the cross-sectoral distribution of firm
growth rates is Laplacian [17], as are many distributions on the sectoral level,
although some deviations from the Laplace distribution do show up on the
sectoral level as well [2]. In a first approximation that neglects real frictions
and time-lag structures, profit and firm growth rates would appear as reason-
able proxies, speaking in favor of the model’s phenomenological relevance. To
further emphasize the empirical relevance of the model, we briefly illustrate
that the empirical density of profit rates is indeed reasonably described by a
Laplace distribution. This prompts us to ask why the empirical shape parame-
ter is close to unity, what this implies about the competitive environment that
firms are facing, and whether variations in the shape parameter correspond to
qualitative changes in the competitive environment.

Since the maximum entropy principle only informs us of the stationary distri-
bution, it hardly provides answers to the above questions, and neither does it
shed light on the dynamics that lead to the stationary distribution. In order
to extend the model in a dynamic direction, we utilize a particular class of
stochastic processes known as diffusion processes, and construct a diffusion
process that has the Subbotin as its stationary density. The rationale for re-
sorting to diffusion processes is twofold. First, the process is parsimoniously
described by only two functions, the so-called drift and diffusion function and,
second, a considerable analytical apparatus relating to diffusion processes is
already in place. This diffusion process will be introduced heuristically at first,
starting from the assumption that the Subbotin distribution is the stationary
distribution. Moreover, since the arising drift function has a singularity at m,
we shall also provide a rather careful mathematical treatment of this process
in Appendix A.

Examination of the diffusion process extends the maximum entropy results in
two important ways. First, it provides additional insights into variations of the
shape parameter of the stationary distribution. We show that the benchmark
Laplace case, where the shape parameter equals unity, corresponds to a drift
term that is independent of the current state of the profit rate, implying
that competition is a ‘global’ mechanism that acts with equal force on all
companies, no matter how far their profitability deviates from the average
rate of profit.
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Second, the diffusion process shows that the complex mechanisms of competi-
tion simultaneously generate (i) the fluctuations in the destinies of individual
companies and (ii) the drift towards an average profit rate. Thus competi-
tion cannot be described by a deterministic skeleton with superimposed noise,
because the drift function depends on the scale of fluctuations in the diffu-
sion function. Put differently, switching off the noise in the diffusion process
also eliminates the systematic drift towards the average rate of profit. Viewed
from this perspective, classical competition becomes a truly stochastic phe-
nomenon, where the fluctuations of individual destinies and the dissipation of
profitable business opportunities are two sides of the same coin.

2 Maximum Entropy Distribution of Profit Rates

We view profit rates as an inherently stochastic phenomenon, and take the
position that competition among firms disperses their profit rates, denoted
x, around an exogenously given measure m of central tendency. More for-
mally, we assume that dispersion is measured by the standardized α-th mo-
ment, σα = E|x−m|α, with x, m ∈ R and α, σ > 0. At first, the assumption
that the complexities of economic competition disperse profit rates around
some average rate does not seem to get us anywhere. But by further assuming
that in the absence of further information all profit rate outcomes around m
are most evenly distributed, MEP establishes a correspondence between the
moment constraint and a statistical distribution [9].

Formally, MEP under a standardized α-th moment constraint defines a varia-
tional problem that maximizes the entropy H[f(x)] of the profit rate density
f(x), defined as

H[f(x)] ≡ −
∫ +∞

−∞
f(x) log f(x) dx, (1)

subject to the constraint on the standardized α-th moment,∫ +∞

−∞
f(x)

∣∣∣∣x−m

σ

∣∣∣∣α dx = 1 . (2)

and subject to the natural constraint that normalizes the density,∫ +∞

−∞
f(x) dx = 1 . (3)

Proposition 1 The maximum entropy distribution of profit rates under the
standardized α-th moment constraint (2) is a Subbotin distribution,

f(x; m, σ, α) =
1

2σα1/αΓ(1 + 1/α)
exp

(
− 1

α

∣∣∣∣x−m

σ

∣∣∣∣α) . (4)
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PROOF. The Lagrangian associated with the variational program (1)–(3) is

L = H[f(x)]− µ
[∫ +∞

−∞
f(x) dx− 1

]
− λ

[∫ +∞

−∞

∣∣∣∣x−m

σ

∣∣∣∣α f(x) dx− 1
]
,

where µ and λ denote the multipliers. Letting ξ ≡ 1 + µ, the first order
condition implies that the solution will have the functional form

f(x) = exp(−ξ) · exp
(
−λ

∣∣∣∣x−m

σ

∣∣∣∣α) . (5)

Integrating by substitution in order to invert the constraints, and using the
definition of the gamma function, Eq. (3) yields the normalizing constant, or
partition function,

exp(−ξ) =
1

2σ

1

α1/αΓ(1 + 1/α)
, (6)

and consequently Eq. (2) yields

λ =
1

α
. (7)

Since f(x) is a positive function, ∂ 2L/∂f(x)2 = −1/f(x) < 0, and the solution
is a maximum. 2

The Subbotin distribution (4), illustrated in Figure 1, is characterized by a
location parameter m, a scale parameter σ > 0, and a shape parameter α > 0.
If α is smaller (greater) than two, the distribution is leptokurtic (platykurtic).
If α = 1 the Subbotin reduces to the Laplace distribution, if α = 2 it reduces
to the Gaussian, and if α →∞ it tends to a uniform. If α → 0, the statistical
equilibrium distribution turns into Dirac’s δ-distribution at m, including as
a special case the more conventional competitive equilibrium concept of a
situation in which each firm ‘faces’ an identical profit rate. 3

From a methodological viewpoint, statistical equilibrium modeling is less am-
bitious than conventional Walrasian theory because it does not seek, nor is
it able, to predict the actual profit rate outcome for each individual busi-
ness firm. On the other hand, the statistical equilibrium approach is capable
of translating a parsimonious description of the system, given by the disper-
sion constraint (2), into the distributional outcome (4). The distribution is a
stationary or statistical equilibrium outcome in the sense that it measures the
competitive tendency for profit rate equalization on a characteristic time scale
that is large enough to accommodate the time scale of idiosyncratic shocks.

3 From the viewpoint of entropy maximization, this particular case is the most im-
probable of all feasible results because it has a multiplicity of unity, which generally
applies to unique competitive Walrasian equilibria [6].
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Fig. 1. Subbotin distribution with m = 0, σ = 1, and varying shape parameter α.
On semi-log scale, the Laplace distribution (α = 1, solid curve) has linear slope
while the Gaussian (α = 2, dash-dotted curve) becomes a parabola.

Paraphrasing Foley’s economic interpretation of MEP, the outcome of the par-
ticular maximum entropy program (1)–(3) corresponds to the profit rate dis-
tribution that arises from the most decentralized activity of competitive firms.
Business firms typically engage in a plethora of competitive strategies that aim
more or less directly at the maximization of profit, for instance by seeking in-
creases in market share or revenues through product differentiation, price un-
dercutting, advertising, customer relationship management, etc. In addition,
firms might simultaneously or separately seek to reduce costs by downsizing
operations, by exploiting increasing returns to scale, or by adopting or invent-
ing cost-cutting technologies. It is exactly in the presence of such complex and
multi-dimensional environments that MEP comes into its own. While MEP
cannot identify the impact of particular competitive strategies, all such strate-
gies, along with the ensuing complex feed-back mechanisms, are in principle
included in the statistical equilibrium outcome of Proposition 1. The only
prerequisite for interpreting the MEP distribution as the outcome of the most
decentralized economic activity under the dispersion constraint (2), or as the
outcome that can be achieved in the most evenly distributed number of ways
under the dispersion constraint, is that the number of firms in the economy is
large [6]. Statistical equilibrium modeling thus excludes situations of system-
wide collusion, which in any case should become increasingly difficult to realize
as the number of firms increases.

MEP cannot provide information about the individual destinies of companies,
yet it manages to associate a distributional outcome with the dispersion con-
straint that presumably reflects the behavioral process of competition. In light
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Fig. 2. Empirical density of annual profit rates (16 956 pooled observations) for
publicly traded non-bank companies in the United States. Profit rates (or ROAs)
are calculated as the ratio of operating income to total assets for the 628 companies
that are present during the period 1980-2006, corresponding to the time coverage of
our data set from Thomson Datastream. These companies are operating in 36 sectors
on a two-digit classification level, with a median profit rate of m = 9.5% over this
time span. Maximum likelihood estimation of the Subbotin shape parameter yields
α = 0.94 ± 0.02 with a scale parameter σ = 0.057 ± 0.001. The (thick) dashed
curve illustrates the corresponding fit, while the (thin) dash-dotted curve shows a
Gaussian fit using the sample mean and standard deviation. It is noteworthy that
these are raw data that have not been standardized or normalized in any way.

of Figure 2, the Laplace distribution would appear to represent a reasonable
benchmark case for the empirical density of profit rates, 4 begging the question
what a shape parameter close to unity implies about the competitive environ-
ment in which firms are operating. More generally, what kind of qualitative
changes in the competitive environment could be reflected in significant devia-
tions of α from unity? Such questions, however, are hard to answer with MEP
because the principle offers little in the direction of economically interpreting
the parameters α and σ. Hence we extend the statistical equilibrium model
into a dynamical setting by considering a diffusion process whose stationary
distribution will be given by the Subbotin density.

4 Since our primary interest lies in the theoretical aspects of competition, Figure 2
is not intended as a conscientious econometric exercise, yet it illustrates that the
statistical equilibrium model certainly has some phenomenological relevance.
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3 The Dynamic Evolution of Profit Rates

There are essentially three reasons why we take recourse to diffusion processes
among the much broader class of stochastic processes to describe the dynamic
evolution of profit rates {Xt, t ≥ 0}. First, a diffusion is parsimoniously de-
scribed by two functions, the drift and the diffusion function. Second, an
analytical apparatus relating for instance to existence and uniqueness theo-
rems is available for diffusions, and third, a simple closed-form solution for the
stationary distribution turns out to exist in our case of interest.

We consider a time-homogeneous diffusion on the real line, which takes the
general form

dXt = A(Xt) dt +
√

D(Xt) dWt , (8)

where A(x) and D(x) > 0 denote the drift and diffusion function, and dWt

denotes Wiener increments. A diffusion thus decomposes the profit rate incre-
ment dXt into two factors: a random term governed by the diffusion function,
and a systematic effect captured by the drift term, both of which are due to
the complex and continually evolving environment that business firms create,
as we will argue shortly. Finally, from an economic point of view, the assump-
tion of a time-homogeneous diffusion implies that the nature of the underlying
competitive mechanism is time invariant.

Our strategy is to heuristically construct a diffusion that has the Subbotin
density as its stationary distribution, and to demonstrate subsequently with
mathematical rigour that this indeed yields a regular diffusion on the real
line. Regularity here means that from any starting point x any other real y
is reached in finite time with positive probability. If a stationary distribution
with density pe(x) to the diffusion process (8) exists, 5 it obeys (in most cases
of interest) the textbook formula

pe(x) =
κ

D(x)
exp

(
2
∫ x

x0

A(y)

D(y)
dy

)
, (9)

where κ is the normalizing constant. We will subsequently show that this is
indeed the case in our situation. Here x0 may be chosen freely and κ of course
depends on x0. Therefore, Eq. (9) serves to establish a relationship between
our stationary distribution of interest, and the drift and diffusion function
that we want to identify. Knowledge of the functional form of the stationary
distribution is, however, not sufficient to uniquely characterize the diffusion
process since there is still a degree of freedom. Following the principle of
parsimony, we opt to exploit this degree of freedom in a simple manner by

5 The existence of a stationary distribution, in fact, implies additional conditions on
the drift and diffusion, and a full characterization of the process at the boundaries for
the different values of the underlying parameters, which we consider in Appendix A.
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assuming a constant diffusion function D(x) = D, meaning that idiosyncratic
shocks are independent of the current state of a firm’s profit rate. 6 Then,
straightforward manipulation of Eq. (9) uniquely expresses the drift A(x) as
a function of the stationary distribution and its derivative p′e(x),

A(x) =
D

2

p′e(x)

pe(x)
. (10)

Hence, utilizing the functional form of the Subbotin distribution (4) in Eq. (10),
we obtain the drift function

A(x) = −D

2σ
sgn(x−m)

∣∣∣∣x−m

σ

∣∣∣∣α−1

, (11)

where sgn(·) denotes the signum function, and A(m) = 0. This result motivates
the following proposition:

Proposition 2 The stochastic differential equation

dXt = −D

2σ
sgn(Xt −m)

∣∣∣∣Xt −m

σ

∣∣∣∣α−1

dt +
√

D dWt (12)

defines a regular diffusion on the real line for all α, σ > 0 and m ∈ R, with a
Subbotin stationary distribution given by (4).

PROOF. See Appendix A.

Our economic interpretation of the dynamic evolution of profit rates rests on
the assumption that all firms are subject to the same process (12), possibly
with different diffusion constants, since pe(x) is independent of D, but with
identical parameters α, σ and m. Then each firm’s destiny corresponds to a
different realization of (12), such that the stationary distribution represents
the cross-sectional statistical equilibrium outcome (4) arising from the interac-
tions of competitive firms. Put differently, the diffusion process decomposes the
complexities of a competitive environment into a drift and diffusion function,
whereby the latter captures idiosyncratic factors, while the former describes
the systematic tendency for competition to equalize profit rates. Figure 3 il-
lustrates that this mean-reverting drift towards m is generally non-linear, and
depends qualitatively on the value of α.

Notably, an equilibrium Laplace distribution (α = 1) is obtained from the
diffusion

dXt = −D

2σ
sgn(Xt −m) dt +

√
D dWt , (13)

6 Alternatively one could, for instance, prescribe a linear drift term and then con-
struct diffusion functions that yield particular stationary distributions of interest [1].
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Fig. 3. The qualitative behavior of the drift function A(x), given by Eq. (11), de-
pends on the parameter α. The axes originate in (m, 0), and the curves are plotted
for α = 0.5 (solid curve), α = 1 (dashed), and α = 1.5 (dash-dotted). The strength
with which profit rates are pulled back towards m is equal for all parametrizations
of α > 0 when x = ±σ.

showing that the empirical benchmark case corresponds to a scenario in which
the drift is constant, and therefore independent of a firm’s current profit rate.

4 Diffusion, Dispersion, and the Process of Competition

Viewed from the perspective of the diffusion process, deviations of the empir-
ical shape parameter from unity measure qualitative changes in the economic
environment created by competitive firms. If α > 1, the systematic force to-
wards profit rate equalization becomes stronger the further profit rates deviate
from m, and symmetrically, if α < 1, this force becomes weaker the further
profit rates deviate from m. In a more applied setting, it would probably pay
off to study the defining characteristics of sectors that show deviations of α in
either direction in order to understand why certain industries are more or less
prone to large deviations of profit rates from the average. A firm that operates
in an environment where α < 1, and succeeds in being very profitable at a
given point in time, should look more optimistically into the future than a
firm whose profitability is equally far from the average, but which operates in
an environment where α > 1. Looking at profitability from this angle suggests
that α is an aggregate measure of competitive pressures within and across
industries.

11



Furthermore, if α = 0 the diffusion turns into a particular case of a Bessel
process, with an equilibrium δ-distribution at m. Actually, Karlin and Tay-
lor [11, Example 6, pp. 238–9] show that the point m then behaves as an exit
boundary with total absorption in finite time. Here, the case α = 0 leads to
a change in the nature of the diffusion’s boundary condition, whereas MEP
relates this case to an outcome with minimal multiplicity. None the less both,
the diffusion and MEP, highlight the peculiarity of a situation in which all
firms are equally profitable.

The most salient point of our model is that the level of idiosyncratic noise
D turns up in the drift A(x), given by (11). Hence, our diffusion model de-
composes the metaphor of competition into the contemporaneous presence of
individual fluctuations and a systematic tendency towards profit rate equal-
ization. Redefining the coefficients of the drift and diffusion as

µ =
D

2σα
and λ =

√
D , (14)

we obtain the fundamental relationship

λ2

2µ
= σα , (15)

which adeptly ties up the diffusion model with the entropy formalism, since
the Subbotin distribution arises from MEP if we prescribe the dispersion

σα = E |x−m|α . (16)

It is the simultaneous and inseparable presence of individual fluctuations and
a mean-reverting drift towards m that ultimately leads to the emergence of
an equilibrium distribution. Strikingly, Eq. (15) reveals that the dispersion of
profit rates measures the relative strength of one effect over the other.

Our pre-analytical vision of competition as a complex feed-back mechanism
results in the diffusion (12), and as a consequence methodologically rules out
a deterministic skeleton with some added noise on top of it. The introduc-
tory quote from Smith already illuminates the intrinsically random and inter-
connected nature of competition among economic agents, highlighting that
the success of one firm cannot be attributed to its effort alone, but crucially
depends on what other agents are doing as well. Therefore Eq. (12) does
not represent the fate an atomistic firm might desire for itself, but rather
demonstrates the impossibility of exactly such an endeavor in a competitive
environment.
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5 Conclusion

To capture the stochastic and intertwined aspects of competition, we have pro-
posed a statistical equilibrium model that starts from a dispersion constraint,
motivated by the notion of classical competition, which MEP translates into
a Subbotin distribution of profit rates. Extending the statistical equilibrium
model to a diffusion that has an equilibrium Subbotin distribution, we are then
able to decompose the process of competition into two interdependent terms,
the drift and diffusion function, which respectively capture the systematic
tendency towards profit rate equalization on the one hand, and idiosyncratic
factors on the other. As it turns out, dispersion measures the relative strength
of these two effects.

Essentially, our model considers the distribution of profit rates as a statisti-
cal equilibrium outcome arising from the decentralized complex interactions
of competitive firms, and the corresponding diffusion suggests that the em-
pirical benchmark of a Laplace distribution represents a collection of firms
whose interactions create a ‘competitive field’ that influences individual firms
independently of their current profit rate.

Our model is, of course, far from being complete. By treating the average profit
rate as an exogenous variable, we have effectively eliminated its determining
factors from consideration. Nevertheless, from a methodological viewpoint,
our diffusion model shows that the process of competition is an inherently
stochastic phenomenon, because the level of idiosyncratic fluctuations enters
the systematic tendency for profit rate equalization. Thus it is not possible
to switch off the idiosyncratic noise without eliminating the systematic drift
towards an average profit rate, casting some doubt on models that approach
competition from a purely deterministic perspective.

A Proof of Proposition 2

A.1 General considerations

We recall the definition of

A(x) = −D

2σ
sgn(x−m)

∣∣∣∣x−m

σ

∣∣∣∣α−1

with A(m) = 0. If α = 2, then A(x) is Lipschitz continuous, which is the
usual condition for the existence of a regular diffusion on the real line as a
solution to the stochastic differential equation (12). The arising diffusion is the
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well-known Ornstein-Uhlenbeck process. Lipschitz continuity no longer holds
for α 6= 2. The case 0 < α < 2 is the more intricate one because there is a
singularity at m for α < 1, and we will consider it in detail in sections A.2 to
A.6. We shortly remark on the case α > 2 in section A.7. For easier notation
we henceforth use m = 0, σ = 1.

A.2 The diffusion on (0,∞)

First we obtain a solution to (12) on the positive half-line. For α = 1, A(x) is
constant on (0,∞). Hence, according to A.1, we obtain a diffusion on (0,∞)
that solves (12). For 0 < α < 2, α 6= 1, A(x) is not Lipschitz continuous on
(0,∞) due to the behaviour in x = 0. To obtain a diffusion on (0,∞) we
apply the usual localization argument. For each n ∈ N we choose a bounded
Lipschitz continuous function An(x) on (0,∞) such that An(x) = A(x) for
x ∈ ( 1

n
,∞). Then we solve (12) with An(x) instead of A(x). This yields a

diffusion Y n
t . Here Y n+1

t extends Y n
t in the way that they are equal (with

probability one) up to the random time when one of them leaves the state
space interval ( 1

n
,∞). Hence they may be glued together to define a regular

diffusion Yt on (0,∞) that solves (12). To extend this to a diffusion on the
entire real line, it is necessary to investigate the boundary behaviour at 0
utilizing the scale and speed measure.

A.3 Scale and speed measure

In general, the scale function and scale measure are given by

S(x) =
∫ x

x0

s(y)dy with s(y) = exp

(
−
∫ y

1

2A(z)

D(z)
dz

)
, x ∈ (0,∞),

S[a, b] = S(b)− S(a), 0 < a < b < ∞.

Here any x0 ∈ (0,∞) may be inserted, and subsequently we will use x0 = 1.
The speed density and speed measure are given by

m(x) =
1

D(x)s(x)
, x ∈ (0,∞), M [a, b] =

∫ b

a
m(y)dy, 0 < a < b < ∞.

For the boundary 0, we define

S(0, b] = lim
a↓0

S[a, b], M(0, b] = lim
a↓0

M [a, b].

14



Obviously 0 < S[a, b] < ∞, 0 < M [a, b] < ∞ for all 0 < a < b < ∞, and we
compute

s(y) = exp
(
−
∫ y

1
(−1)zα−1dz

)
= exp

(
yα

α
− 1

α

)
,

S(0, 1] =
∫ 1

0
s(y)dy =

∫ 1

0
exp

(
yα

α
− 1

α

)
dy < ∞,

thus S(0, b] < ∞ for all 0 < b < ∞. Similarly,

m(y) =
1

D
exp

(
−yα

α
+

1

α

)
,

M(0, 1] =
1

D

∫ 1

0
exp

(
−yα

α
+

1

α

)
dy < ∞,

hence M(0, b] < ∞ for all 0 < b < ∞. Furthermore,

S[a,∞) = lim
b↑∞

S[a, b] = ∞, M [a,∞) < ∞ for all 0 < a < ∞.

A.4 Boundary behaviour

For any arbitrarily chosen a > 0, let

Σ(0) =
∫ a

0
M [y, a]dS(y), N(0) =

∫ a

0
S[y, a]dM(y),

Σ(∞) =
∫ ∞

a
M [a, y]dS(y), N(∞) =

∫ ∞

a
S[a, y]dM(y).

Using [11, Lemma 6.3, Chapter 15], we obtain from A.3

Σ(0) < ∞, N(0) < ∞ and Σ(∞) = ∞,

and an easy argument shows that

N(∞) =
∫ ∞

a

∫ y

a

1

D
exp

(
zα

α
− 1

α

)
dz exp

(
−yα

α
+

1

α

)
dy = ∞.

In the terminology of [11, p. 234], ∞ is a natural boundary (as ∞ is for
Brownian motion) and can be omitted from the state space, whereas 0 is
a regular boundary. A regular boundary can be added to the state space.
To specify the behavior in 0, we set M({0}) = 0 which stands for instant
reflection. So we have defined a diffusion Yt with state space [0,∞) that is
a solution of (12) and is immediately reflected when it reaches 0. Using [11,
pp. 192–197], one can show that Yt reaches 0 with probability one in finite
expected time from any starting point x.
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A.5 The diffusion on (−∞,∞)

Having defined Yt as a diffusion on [0,∞) that satisfies (12) with instant
reflection, we have, with Y ′

t = −Yt, a diffusion on (−∞, 0] which again sat-
isfies (12) with instant reflection in 0, and is characterized by s′(y) = s(−y),
S ′[c, d] = S[−c,−d], m′(y) = m(−y), M ′[c, d] = M [−c,−d]. These two may
be glued together to define a diffusion Xt on (−∞,∞). An informal way
to describe this is the following: We use an independent randomization each
time the process reaches the boundary zero. Using this randomization we let
Xt = Yt or Xt = Y ′

t , each with probability 1
2
, up to the next time point

when the process reaches the boundary zero. Starting the process with a
symmetric distribution on (−∞,∞), this defines a symmetric distribution on
(−∞,∞). More formally, we consider the functions s̄, m̄ with s̄ = s(x), x > 0,
s̄ = −s(x), x < 0, m̄ = m(x), x > 0, m̄ = m(−x), x < 0, and define the cor-
responding scale measure S̄ and speed measure M̄ on (−∞,∞). Then there
exists a diffusion Xt on (−∞,∞) that has scale and speed measures corre-
sponding to our informal construction; see e.g. [20].

A.6 The stationary distribution

Since the restoring force−D
2

sgn(x)|x|α−1 is directed towards zero, the diffusion
Xt is positive-recurrent because from any starting point x the point zero is
reached in finite expected time according to A.4. Hence there exists a unique
stationary distribution. Utilizing the scale function and speed density, this
stationary distribution can be expressed as

pe(x) = m(x)[K1S(x) + K2],

where K1, K2 > 0 are normalizing constants, see [11, p. 221]. Recalling N(∞) =
∞ in A.4, we have in our case

∫
m(x)S(x)dx = ∞, and hence K1 = 0. This

yields

pe(x) =
κ

D(x)
exp

(
2
∫ x

x0

A(y)

D(y)
dy

)
,

which is formula (9). So for any m ∈ R, σ > 0 we obtain

pe(x) =
κ

D
exp

(∫ x

0
− 1

σ
sgn(y −m)

∣∣∣∣y −m

σ

∣∣∣∣α−1

dy

)
=

κ

D
exp

(
− 1

α

∣∣∣∣x−m

σ

∣∣∣∣α) ,

which proves formula (4).
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A.7 The case α > 2

For α > 2, the function A(x) is not Lipschitz continuous on the entire real
line, but on any interval [−n, n]. For any n ∈ N we use a bounded Lipschitz
continuous function An which is equal to A on [−n, n]. Similarly to (A.2), we
obtain a diffusion on the real line which satisfies (12). As in the previous case,
this diffusion has a unique stationary distribution with density given by (4).

B Simulation

We simulate the processes Yt and Xt with the Euler-Maruyama method. Let
X0 be normally distributed and Y0 = |X0|. Let ∆t > 0. For all n ∈ N we
compute

Ỹn∆t = Y(n−1)∆t + A(Y(n−1)∆t)∆t + σZn

where Zn is normal distributed with mean 0 and variance ∆t. Since Ỹn∆t

can become negative, we define Yn∆t = max
(
Ỹn∆t, 0

)
. If X(n−1)∆t 6= 0 let

Xn∆t = sgn(X(n−1)∆t)Yn∆t. If X(n−1)∆t = 0, we set Xn∆t equal to Yn∆t or
−Yn∆t, both with probability 1

2
.
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Fig. B.1. The simulated process Xt and the stationary distribution compared with
the Subbotin distribution for m = 0, σ = 1 and α = 0.5.
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Fig. B.2. The simulated process Xt and the stationary distribution compared with
the Subbotin distribution for m = 0, σ = 1 and α = 1.
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Fig. B.3. The simulated process Xt and the stationary distribution compared with
the Subbotin distribution for m = 0, σ = 1 and α = 2.
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