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1 Introduction

The purpose of this paper is to solve linear dynamic rational expectations
models with anticipated shocks by using the generalized Schur decomposition
method. We also determine the optimal unrestricted and restricted policy re-
sponses to temporary as well as permanent shocks which both are anticipated
by the public.

Our paper is closely related to the work of Söderlind (1999), who also uses
the generalized Schur decomposition method to solve linear rational expecta-
tions models with optimal policy. Our approach differs in one important respect,
namely the possibility to deal with anticipated shocks. In this case, the occur-
rence of all future shocks is known exactly at the time when the solution of
the model is computed. Thus, our RE model is deterministic. In deterministic
RE models the concept of rational expectations is equivalent to perfect fore-
sight. Söderlind (1999), on the other hand, only considers stochastic models
with white noise shocks which are, by definition, unpredictable. Our method
contains unanticipated shocks as a borderline case and can therefore be seen as
a generalization of the work by Söderlind (1999).

The paper is organized as follows: Section 2 discusses optimal policies in
RE models with anticipated temporary shocks. We first determine the optimal
unrestricted policy under precommitment and calculate the minimal value of
the intertemporal loss function. We then consider optimal simple rules and
show how the Schur decomposition can be used in this case to solve the model.
Section 3 deals with permanent anticipated shocks while section 4 presents a
short discussion of the well known stochastic case with i.i.d. shocks.

2 The Model

In this paper we discuss the following linear expectational difference equations

A

(

wt+1

Et vt+1

)

= B

(

wt

vt

)

+ Cut + Dνt+1 (1)

where wt is an n1 × 1 vector of predetermined variables with w0 given, vt an
n2 × 1 vector of non-predetermined variables, ut an m × 1 vector of policy
instruments and νt+1 an r× 1 vector of exogenous shocks. The matrices A and
B are n × n (where n = n1 + n2), while the matrices C and D are n × m and
n × r respectively. We allow the matrix A to be singular which is the case if
static (intratemporal) equations are included among the dynamic relationships.
The vector w of backward-looking variables can include exogenous variables
following autoregressive processes. Et vt+1 denotes rational (model consistent)
expectations of vt+1 formed at time t. Equation (1) could represent a New
Keynesian macroeconomic model with forward-looking expectations where the
economy is being subjected to supply-side and demand-side shocks (see, for
example, Clarida, Gaĺı and Gertler (1999) or Walsh (2003)). We assume that
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the shocks are anticipated by the public in advance and take the following form

νt =

{

ν for t = T > 0

0 for t 6= T
(2)

where ν = (ν1, . . . , νr)
′ is a constant non-zero r×1 vector. It is assumed that at

time t = 0 the public anticipates a shock of the form (2) to take place at some
future date T > 0. A macroeconomic example is the credible announcement
of the OPEC that a temporary increase in the price of crude oil (pO) will take
place at some future date T > 0 where pO follows the autoregressive AR(1)
process

pO,t = βpO,t−1 + κt (0 ≤ β < 1) (3)

with the one-unit price shock

κt =

{

1 for t = T > 0

0 for t 6= T
(4)

Then pO,t would be a predetermined variable wj,t while κt would be part of the
general shock vector νt. Since the shocks are anticipated by the public we have
Et νt+1 = νt+1. For notational convenience, define the n × 1 vector kt by

kt =

(

wt

vt

)

(5)

Define further an n3 × 1 target vector st by

st = Ãkt + B̃ut (6)

where the matrices Ã and B̃ are n3 × n and n3 × m respectively. Assume that
the policy maker´s welfare loss at time t is given by

Jt =
1

2
Et

∞
∑

i=0

λi{s′t+iW1st+i + u′

t+iW2ut+i} (7)

where W1 and W2 are symmetric and non-negative definite and λ is a discount
factor with 0 < λ ≤ 1. We can rewrite Jt as

Jt =
1

2
Et

∞
∑

i=0

λi{k′

t+iW̃kt+i + 2k′

t+iPut+i + u′

t+iRut+i} (8)

where W̃ = Ã′W1Ã and R = W2 + B̃′W1B̃ are symmetric and non-negative
definite and P = Ã′W1B̃.
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2.1 Optimal Policy with Precommitment

In the following the policy maker´s optimal policy rule at time t = 0 is devel-
oped. It is assumed that the policy maker is able to commit to such a rule.
From the Lagrangian

L0 =
1

2
E0

∞
∑

t=0

λt{k′

tW̃kt + 2k′

tPut + u′

tRut

+ 2ρ′t+i[Bkt + Cut + Dνt+1 − Akt+1]} (9)

with the n × 1 multiplier ρt+1 we get the first-order conditions with respect to
ρt+1, kt and ut:





A 0n×m 0n×n

0n×n 0n×m λB′

0m×n 0m×m −C ′









kt+1

ut+1

ρt+1





=





B C 0n×n

−λW̃ −λP A′

P ′ R 0m×n









kt

ut

ρt



+





D

0n×r

0m×r



 νt+1 (10)

To solve the system of equations (10) expand the state and costate vector kt and
ρt as (w′

t, v
′

t)
′ and (p′wt, p

′

vt)
′ respectively and reorder the rows of the (2n+m)×1

vector (k′

t, u
′

t, ρ
′

t)
′ by placing the predetermined vector pvt after wt. Since vt is

forward-looking with freely chosen initial value v0, the corresponding Lagrange
multiplier pvt is predetermined with initial value pv0 = 0. Reorder the columns
of the (2n + m) × (2n + m) matrices in (10) according to the reordering of
(k′

t, u
′

t, ρt)
′ and write the result as

F

(

w̃t+1

ṽt+1

)

= G

(

w̃t

ṽt

)

+





D

0n×r

0m×r



 νt+1 (11)

where

w̃t =

(

wt

pvt

)

(12)

and

ṽt =





vt

ut

pwt



 (13)

The n× 1 vector w̃t contains the ’backward-looking’ variables of (10) while the
(n + m) × 1 vector ṽt contains the ’forward-looking’ variables.

Equation (10) implies that the (2n + m) × (2n + m) matrix F is singular.
To solve equation (11) we apply the generalized Schur decomposition method
[Söderlind (1999), Klein (2000)]. The decomposition of the square matrices F

and G are given by

F = Q
′

SZ
′

, G = Q
′

TZ
′

(14)
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or equivalently

QFZ = S, QGZ = T (15)

where Q,Z, S and T are square matrices of complex numbers, S and T are
upper triangular and Q and Z are unitary, i.e.

Q · Q
′

= Q
′

· Q = I(2n+m)×(2n+m) = Z · Z
′

= Z
′

· Z (16)

where the non-singular matrix Q
′

is the transpose of Q, which denotes the
complex conjugate of Q. Z

′

is the transpose of the complex conjugate of Z.
The matrices S and T can be arranged in such a way that the block with the
stable generalized eigenvalues (the ith diagonal element of T divided by the
ith diagonal element of S) comes first. Premultiply both sides of equation (11)
with Q and define auxiliary variables z̃t and x̃t by

(

z̃t

x̃t

)

= Z
′

(

w̃t

ṽt

)

(17)

Partition the triangular matrices S and T conformably with z̃ and x̃ and set

Q





D

0n×r

0m×r



 =

(

Q1

Q2

)

(18)

where Q1 is n× r and Q2 is (n + m)× r. We then obtain the equivalent system

(

S11 S12

0(n+m)×n S22

)(

z̃t+1

x̃t+1

)

=

(

T11 T12

0(n+m)×n T22

)(

z̃t

x̃t

)

+

(

Q1

Q2

)

νt+1 (19)

where the n×n matrix S11 and the (n+m)× (n+m) matrix T22 are invertible
while S22 is singular. The square matrix T11 may also be singular. The lower
block of equation (19) contains the unstable generalized eigenvalues and must
be solved forward. Since

x̃t+s = T−1
22 S22x̃t+s+1 − T−1

22 Q2νt+s+1 (s = 0, 1, 2, . . .) (20)

the unique stable solution for x̃t is given by

x̃t = −

∞
∑

s=0

(T−1
22 S22)

sT−1
22 Q2 Et νt+s+1

=

{

−(T−1
22 S22)

T−1−tT−1
22 Q2ν for 0 ≤ t < T

0 for t ≥ T
(21)

The upper block of (19) contains the stable generalized eigenvalues and can be
solved backward. Since

z̃t+1 = S−1
11 T11z̃t + S−1

11 (T12x̃t − S12x̃t+1) + S−1
11 Q1νt+1 (22)
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the general solution is given by

z̃t = (S−1
11 T11)

tK +
t−1
∑

s=0

(S−1
11 T11)

t−s−1S−1
11 (T12x̃s − S12x̃s+1 + Q1νs+1)

=























(S−1
11 T11)

tK +
∑t−1

s=0(S
−1
11 T11)

t−s−1S−1
11 (T12x̃s − S12x̃s+1) for 0 ≤ t < T

(S−1
11 T11)

tK +
∑T−1

s=0 (S−1
11 T11)

t−s−1S−1
11 (T12x̃s − S12x̃s+1)

+(S−1
11 T11)

t−T S−1
11 Q1ν for t ≥ T

(23)

where x̃s is defined in (21). The constant K can be determined using the initial
value of the predetermined vector w̃. Premultiply equation (17) with Z and
partition the matrix Z conformably with z̃ and x̃. We then obtain

(

w̃t

ṽt

)

=

(

Z11 Z12

Z21 Z22

)(

z̃t

x̃t

)

(24)

and therefore

w̃0 = Z11z̃0 + Z12x̃0 (25)

with

w̃0 = (w′

0, 0
′

n2×1)
′ (26)

z̃0 = K (27)

and

x̃0 = −(T−1
22 S22)

T−1T−1
22 Q2ν (28)

where T > 0 is assumed.1 Equation (25) implies

K = Z−1
11 w̃0 − Z−1

11 Z12x̃0 (29)

provided the inverse Z−1
11 exists. A necessary condition is that the dynamic

system (11) has the saddle path property, i.e., that the number of backward-
looking variables (n1 + n2 = n) coincides with the number of stable generalized
eigenvalues [Söderlind (1999), Klein (2000)]. If Z11 is invertible, equation (24)
implies

ṽt = Z21z̃t + Z22x̃t = Z21(Z
−1
11 w̃t − Z−1

11 Z12x̃t) + Z22x̃t = Nw̃t + Ẑx̃t (30)

where

N = Z21Z
−1
11 , Ẑ = Z22 − Z21Z

−1
11 Z12 (31)

1In the special case T = 0 (unanticipated shocks) we have x̃0 = 0 and z̃t = (S−1

11
T11)

tK +
(S−1

11
T11)

tS−1

11
Q1ν implying z̃0 = K + S−1

11
Q1ν and K = Z−1

11
w̃0 − S−1

11
Q1ν with w0 6= 0. By

contrast, the initial value w0 can be normalized to zero if T > 0.
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Write equation (30) as





vt

ut

pw t



 =





N11 N12

N21 N22

N31 N32





(

wt

pv t

)

+





Ẑ1

Ẑ2

Ẑ3



 x̃t (32)

Assume the invertibility of the n2 × n2 matrix N12. Then the optimal policy
rule under commitment can be written as

ut = N21wt + N22pv t + Ẑ2x̃t

= N21wt + N22N
−1
12 (vt − N11wt − Ẑ1x̃t) + Ẑ2x̃t

= N22N
−1
12 vt + (N21 − N22N

−1
12 N11)wt + (Ẑ2 − N22N

−1
12 Ẑ1)x̃t (33)

where x̃t is given by (21). For t < T ut depends on the auxiliary variable x̃t

while for t ≥ T ut is only a linear function of the predetermined state variables
wt and pvt where pvt can be substituted by the original state variables vt and wt.

Minimal Value of the Loss Function

To determine the minimal value of the loss function Jt at time t = 0 we express
Jt as function of w̃ and ṽ. The loss function (8) can be written as

Jt =
1

2

∞
∑

i=0

λi(k′

t+i, u
′

t+i)H

(

kt+i

ut+i

)

=
1

2

∞
∑

i=0

λi(w′

t+i, v
′

t+i, u
′

t+i)H





wt+i

vt+i

ut+i



 (34)

where the (n + m) × (n + m) matrix H is given by

H =

(

W̃ P

P ′ R

)

(35)

with H = H ′. Define the n1 × n matrix D̃1 and the (n2 + m)× (n + m) matrix
D̃2 by

D̃1 = (In1×n1
, 0n1×n2

) (36)

and

D̃2 = (I(n2+m)×(n2+m), 0(n2+m)×n1
) (37)

respectively. Then

w = D̃1

(

w

pv

)

= D̃1w̃ (38)

(

v

u

)

= D̃2





v

u

pw



 = D̃2ṽ (39)

and




w

v

u



 = D̃

(

w̃

ṽ

)

(40)

6



with

D̃ =

(

D̃1 0n1×(n+m)

0(n2+m)×n D̃2

)

=

(

In1×n1
0n1×n2

0n1×(n2+m) 0n1×n1

0(n2+m)×n1
0(n+m)×n2

I(n2+m)×(n2+m) 0(n2+m)×n1

)

(41)

which is an (n+m)×(2n+m) matrix. The loss function Jt can now be rewritten
as

Jt =
1

2

∞
∑

i=0

λi(w̃′

t+i, ṽ
′

t+i)D̃
′HD̃

(

w̃t+i

ṽt+i

)

= J
(1)
t + J

(2)
t (42)

where

J
(1)
t =

1

2

T−1
∑

i=0

λi(w̃′

t+i, ṽ
′

t+i)D̃
′HD̃

(

w̃t+i

ṽt+i

)

(43)

and

J
(2)
t =

1

2

∞
∑

i=T

λi(w̃′

t+i, ṽ
′

t+i)D̃
′HD̃

(

w̃t+i

ṽt+i

)

(44)

We want to calculate J
(2)
t at first. Since

ṽt = Nw̃t (N = Z21Z
−1
11 ) for t ≥ T (45)

we get for t ≥ T

(

w̃t

ṽt

)

= Ñw̃t (46)

where

Ñ =

(

In×n

N

)

(47)

is a (2n + m) × n matrix. J
(2)
t can be the rewritten as

J
(2)
t =

1

2

∞
∑

i=T

λiw̃′

t+iÑ
′D̃′HD̃Ñw̃t+i =

1

2

∞
∑

i=T

λiw̃′

t+iH
∗w̃t+i (48)

with

H∗ = Ñ ′D̃′HD̃Ñ (49)

H∗ is a symmetric n × n matrix. From (23) and (24) we obtain for t ≥ T

w̃t = Z11z̃t = Z11[(S
−1
11 T11)

tK +
T−1
∑

s=0

(S−1
11 T11)

t−s−1S−1
11 (T12x̃s − S12x̃s+1)

+ (S−1
11 T11)

t−T S−1
11 Q1ν] (50)
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which can be written as

w̃t = Z11M
t−T K̃ (t ≥ T ) (51)

with

M = S−1
11 T11 (52)

(which is not invertible in general),

K̃ = MT K + S−1
11 Q1ν +

T−1
∑

s=0

MT−s−1S−1
11 (T12x̃s − S12x̃s+1) (53)

and

x̃s = −(T−1
22 S22)

T−1−sT−1
22 Q2ν for 0 ≤ s < T (54)

Inserting (51) in (48) we obtain

J
(2)
t =

1

2
(M tK̃)′λT

(

∞
∑

i=T

λi−T (Z11M
i−T )′H∗(Z11M

i−T )

)

M tK̃

=
1

2
λT ϕ′

tV
∗ϕt =

1

2
λT trace(V ∗ϕtϕ

′

t) (55)

where

ϕt = M tK̃ (56)

and V ∗ is the (convergent) geometric sum of matrices

V ∗ =

∞
∑

i=T

λi−T (Z11M
i−T )′H∗(Z11M

i−T ) (57)

V ∗ is n × n and satisfies the Lyapunov equation [Currie and Levine (1993)]

V ∗ = Z ′

11H
∗Z11 +

∞
∑

i=T+1

λi−T (Z11M
i−T )′H∗(Z11M

i−T )

= Z ′

11H
∗Z11 +

∞
∑

i=T

λi+1−T (Z11M
i+1−T )′H∗(Z11M

i+1−T )

= Z ′

11H
∗Z11 + λM ′V ∗M (58)

To solve for V ∗, we use the matrix identities [Rudebusch and Svensson (1999),
Klein (2000)]

vec(A + B) = vec(A) + vec(B) (59)

and

vec(ABC) = [C ′ ⊗ A] vec(B) (60)

8



where vec(A) denotes the vector of stacked column vectors of the matrix A, and
⊗ denotes the Kronecker product of matrices. We then obtain the equation

vec(V ∗) − [λM ′ ⊗ M ′] vec(V ∗) = vec(Z ′

11H
∗Z11) (61)

with the solution

vec(V ∗) = [In×n − λM ′ ⊗ M ′]−1 vec(Z ′

11H
∗Z11) (62)

where

vec(Z ′

11H
∗Z11) = [Z ′

11 ⊗ Z ′

11] vec(H
∗) (63)

with

vec(H∗) = [(D̃Ñ)′ ⊗ (D̃Ñ)′] vec(H) (64)

For t = 0 we get

J
(2)
0 =

1

2
λT trace(V ∗ϕ0ϕ

′

0) =
1

2
λT trace(V ∗K̃K̃ ′) (65)

The next step is the calculation of the finite sum J
(1)
t for t = 0. Since

(

w̃

ṽ

)

= Z

(

z̃

x̃

)

(66)

we obtain

J
(1)
0 =

1

2

T−1
∑

i=0

λi(w̃′

i, ṽ
′

i)D̃
′HD̃

(

w̃i

ṽi

)

=
1

2

T−1
∑

i=0

λi(z̃′i, x̃
′

i)Z
′D̃′HD̃Z

(

z̃i

x̃i

)

(67)

where z̃i and x̃i are defined in (23) and (54) respectively.
The optimal unrestricted policy under commitment yields a loss given by

J0 = J
(1)
0 + J

(2)
0 (68)

where

J
(2)
0 =

1

2
λT trace(V ∗ϕ0ϕ

′

0) =
1

2
λT trace(V ∗K̃K̃ ′) (69)

In the special case T = 0 (unanticipated shocks) we have

J0 = J
(2)
0 =

1

2
K̃ ′V ∗K̃ (70)

where

K̃ = K
∣

∣

∣

T=0
+ S−1

11 Q1ν = Z−1
11 w̃0 − S−1

11 Q1ν + S−1
11 Q1ν = Z−1

11 w̃0 (71)

Then

J0 =
1

2
w̃′

0Z
−1′

11 V ∗Z−1
11 w̃0 =

1

2
w̃′

0V w̃′

0 =
1

2
trace(V w̃0w̃

′

0) (72)
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where

w̃0w̃
′

0 =

(

w0

pv 0

)

(w′

0, p
′

v 0) =

(

w0w
′

0 0n1×n2

0n2×n2
0n2×n2

)

(73)

and V = Z−1′

11 V ∗Z−1
11 satisfies the matrix equation

V = Z−1′

11 V ∗Z−1
11 = H∗ + λZ−1′

11 M ′V ∗MZ−1
11

= H∗ + λZ−1′

11 M ′Z ′

11Z
′
−1

11 V ∗Z−1
11 Z11MZ−1

11 = H∗ + λΓ′V Γ (74)

with

Γ = Z11MZ−1
11 (M = S−1

11 T11) (75)

2.2 Optimal Simple Rule

The policy maker could alternatively commit to a suboptimal simple rule of the
form

ut = Λkt + Ψ Et kt+1 (76)

where the constant matrices Λ and Ψ are m×n. Assuming rational expectations
and exogenous shocks of the form (2) which are anticipated in t = 0 we get the
dynamic system

(

A 0n×m

Ψ 0m×m

)(

kt+1

ut+1

)

=

(

B C

−Λ Im×m

)(

kt

ut

)

+

(

D

0m×r

)

νt+1 (77)

The generalized Schur decomposition yields the system of equations

F

(

w̃t+1

ṽt+1

)

= G

(

w̃t

ṽt

)

+

(

D

0m×r

)

νt+1 (78)

where w̃ = w is an n1×1 vector, ṽ = (v′, u′)′ is an (n2+m)×1 vector and where
the square matrices F and G are (n + m) × (n + m) with the decomposition

QFZ = S, QGZ = T (79)

Q, Z, S and T are (n + m) × (n + m) matrices. Since

(

w̃

ṽ

)

=

(

Z11 Z12

Z21 Z22

)(

z̃

x̃

)

(80)

the matrices Z11, Z12, Z21 and Z22 are now n1×n1, n1×(n2+m), (n2+m)×n1

and (n2 + m) × (n2 + m) respectively. The auxiliary variables z̃ and x̃ satisfy
the system of equations

(

S11 S12

0(n2+m)×n1
S22

)(

z̃t+1

x̃t+1

)

=

(

T11 T12

0(n+m)×n1
T22

)(

z̃t

x̃t

)

+

(

Q1

Q2

)

νt+1 (81)

10



where S11 and T11 are n1 × n1 matrices, S22 and T22 are (n2 + m) × (n2 + m)
and S12 and T12 are n1 × (n2 + m). The matrices Q1 and Q2 are n1 × r and
(n2 + m) × r respectively with

(

Q1

Q2

)

= Q

(

D

0m×r

)

(82)

The solution of (81) is given by (21) and (23). For t ≥ T we get

ṽt = Nw̃t = Nwt (83)

where N = Z21Z
−1
11 is now an (n2 + m) × n1 matrix.

The loss function (42) simplifies to

Jt =
1

2

∞
∑

i=0

λi(w′

t+i, ṽ
′

t+i)H

(

wt+i

ṽt+i

)

(84)

since D̃1 = In1×n1
, D̃2 = I(n2+m)×(n2+m) and therefore D̃ = I(n+m)×(n+m) (cf.

(41)). Jt can be partitioned via (42). J
(2)
t can be written as (48) with

H∗ = Ñ ′HÑ (85)

and

Ñ =

(

In1×n1

N

)

(86)

The value of the loss function J0 for given matrices Λ and Ψ is given by J0 =

J
(1)
0 + J

(2)
0 , where J

(1)
0 and J

(2)
0 are defined in (67) and (69) respectively. The

minimization of J0 with respect to the coefficients of the matrices Λ and Ψ yields
an optimal simple rule of the form (76). The loss under such a policy rule is
greater than the loss under the unrestricted optimal policy under commitment.

3 Anticipated Permanent Shocks

Up to now we have discussed the solution method in case of anticipated tempo-

rary shocks. Let us now discuss the the case of anticipated permanent shocks
which take the following form:

νt =

{

ν0 for 0 ≤ t < T

ν1 (6= ν0) for t ≥ T
(87)

Such a shock could be a permanent increase in the price of crude oil taking
place at time t = T which the public anticipates at time t = 0. The Schur
decomposition (19) can again be used to solve the dynamic system in case of
permanent anticipated shocks. The steady state system of (19) is given by

(

S11 S12

0(n+m)×n S22

)(

z̃

x̃

)

=

(

T11 T12

0(n+m)×n T22

)(

z̃

x̃

)

+

(

Q1

Q2

)

ν (88)

11



where

z̃ =

{

z̃0 for 0 ≤ t < T

z̃1 for t ≥ T
(89)

and

x̃ =

{

x̃0 for 0 ≤ t < T

x̃1 for t ≥ T
(90)

The dynamics of the Schur decomposition can be written in the form

x̃t = T−1
22 S22x̃t+1 − T−1

22 Q2νt+1 (91)

z̃t+1 = S−1
11 T11z̃t + S−1

11 (T12x̃t − S12x̃t+1) + S−1
11 Q1νt+1 (92)

Since

lim
n→∞

(T−1
22 S22)

n = 0 (93)

we get

lim
t→∞

x̃t = x̃1 (94)

Equation (94) already holds for t ≥ T , i.e.,

x̃t = x̃1 for t ≥ T (95)

which follows from the general solution formula (21): For t ≥ T we have
νt+s+1 = ν1 and therefore

x̃t = −

( ∞
∑

s=0

(T−1
22 S22)

sT−1
22 Q2

)

ν1 (96)

Let Λ̃ be the geometric sum of matrices

Λ̃ = −

∞
∑

s=0

(T−1
22 S22)

sT−1
22 Q2 (97)

We then obtain the matrix equation

Λ̃ = −T−1
22 Q2 −

∞
∑

s=1

(T−1
22 S22)

sT−1
22 Q2

= −T−1
22 Q2 −

∞
∑

s=0

(T−1
22 S22)

s+1T−1
22 Q2

= −T−1
22 Q2 − (T−1

22 S22)

∞
∑

s=0

(T−1
22 S22)

sT−1
22 Q2

= −T−1
22 Q2 + (T−1

22 S22)Λ̃ (98)

12



with the solution

Λ̃ = −(I − T−1
22 S22)

−1T−1
22 Q2 = (S22 − T22)

−1Q2 (99)

Equation (96) now implies

x̃t = Λ̃ν1 = (S22 − T22)
−1Q2ν1 = x̃1 (t ≥ T ) (100)

where the formula for x̃1 directly follows from the lower block of the steady
state system (88) or from equation (91).

The solution formula for x̃t over the anticipation phase 0 ≤ t < T can be
either derived by backward iteration or from the general solution (21). Equation
(91) implies for t = T − 1

x̃T−1 = T−1
22 S22x̃1 − T−1

22 Q2ν1 (101)

and for t = T − 2

x̃T−2 = T−1
22 S22x̃T−1 − T−1

22 Q2ν0

= (T−1
22 S22)

2x̃1 − (T−1
22 S22)T

−1
22 Q2ν1 − T−1

22 Q2ν0 (102)

For t = T − 3 we get

x̃T−3 = T−1
22 S22x̃T−2 − T−1

22 Q2ν0

= (T−1
22 S22)

3x̃1 − (T−1
11 S22)

2T−1
22 Q2ν1 − (T−1

22 S22)T
−1
22 Q2ν0 − T−1

22 Q2ν0

(103)

and for t = T − n

x̃T−n = (T−1
22 S22)

nx̃1 − (T−1
22 S22)

n−1T−1
22 Q2ν1 −

n
∑

j=2

(T−1
22 S22)

n−jT−1
22 Q2ν0

2

(104)

We therefore obtain for 0 ≤ t < T

x̃t = (T−1
22 S22)

T−tx̃1 − (T−1
22 S22)

T−t−1T−1
22 Q2ν1

−

T−t
∑

j=2

(T−1
22 S22)

T−t−jT−1
22 Q2ν0 (105)

where

x̃1 = (S22 − T22)
−1Q2ν1 = −(I − T−1

22 S22)
−1T−1

22 Q2ν1 (106)

2Note that
∑n

j=2
(T−1

22
S22)

n−jT−1

22
Q2ν0 = (I − M̃)−1(I − M̃n−1)T−1

22
Q2ν0 where M̃ = T−1

22
S22

and n ≥ 2.

13



An equivalent representation of the solution formula for x̃t over the interval
0 ≤ t < T follows from (21):

x̃t = −

∞
∑

s=0

(T−1
22 S22)

sT−1
22 Q2νt+s+1

= −
T−t−2
∑

s=0

(T−1
22 S22)

sT−1
22 Q2ν0

−

∞
∑

s=T−t−1

(T−1
22 S22)

sT−1
22 Q2ν1 (0 ≤ t < T ) (107)

where

−

T−t−2
∑

s=0

(T−1
22 S22)

sT−1
22 Q2ν0 = −

T−t
∑

j=2

(T−1
22 S22)

T−t−jT−1
22 Q2ν0

= (I − T−1
22 S22)

−1(I − (T−1
22 S22)

T−t−1)T−1
22 Q2ν0

(108)

and

−

∞
∑

s=T−t−1

(T−1
22 S22)

sT−1
22 Q2ν1 = −(I − T−1

22 S22)
−1(T−1

22 S22)
T−t−1T−1

22 Q2ν1

(109)

The show that the right-hand side of (109) equals the sum of the first two
expressions on the r.h.s. of (105), rewrite this sum as follows:

(T−1
22 S22)

T−tx̃1 − (T−1
22 S22)

T−t−1T−1
22 Q2ν1

= −
[

(T−1
22 S22)

T−t(I − T−1
22 S22)

−1 + (T−1
22 S22)

T−t−1
]

T−1
22 Q2ν1

= −(T−1
22 S22)

T−t−1
[

T−1
22 S22(I − T−1

22 S22)
−1 + I

]

T−1
22 Q2ν1

= −(T−1
22 S22)

T−t−1
[

T−1
22 S22(I − T−1

22 S22)
−1

+ (I − T−1
22 S22)(I − T−1

22 S22)
−1
]

T−1
22 Q2ν1

= −(T−1
22 S22)

T−t−1
[

T−1
22 S22 + (I − T−1

22 S22)
]

(I − T−1
22 S22)

−1T−1
22 Q2ν1

= −(T−1
22 S22)

T−t−1(I − T−1
22 S22)

−1T−1
22 Q2ν1 (110)

(110) is equivalent to (109) if and only if

(T−1
22 S22)

T−t−1(I − T−1
22 S22)

−1 = (I − T−1
22 S22)

−1(T−1
22 S22)

T−t−1 ⇔ (111)

(I − T−1
22 S22)(T

−1
22 S22)

T−t−1 = (T−1
22 S22)

T−t−1(I − T−1
22 S22) ⇔ (112)

(T−1
22 S22)

T−t−1 − (T−1
22 S22)

T−t = (T−1
22 S22)

T−t−1 − (T−1
22 S22)

T−t (113)

It is obvious that equation (113) holds so that the solution formula (107) is
equivalent to (105).
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Consider now the first subsystem of the Schur decomposition, equation (92).
The general solution is given by (23) with the constant K defined in (29). For
t < T we have

z̃t = (S−1
11 T11)

tK +
t−1
∑

s=0

(S−1
11 T11)

t−s−1S−1
11 (T12x̃s − S12x̃s+1)

+

t−1
∑

s=0

(S−1
11 T11)

t−s−1S−1
11 Q1ν0 (0 ≤ t < T ) (114)

where

t−1
∑

s=0

(S−1
11 T11)

t−s−1S−1
11 Q1ν0 =

( t−1
∑

k=0

(S−1
11 T11)

k

)

S−1
11 Q1ν0

= (I − S−1
11 T11)

−1(I − (S−1
11 T11)

t)S−1
11 Q1ν0 (115)

For t ≥ T we get

z̃t = (S−1
11 T11)

tK +

T−1
∑

s=0

(S−1
11 T11)

t−s−1S−1
11 T12x̃s

+
t−1
∑

s=T

(S−1
11 T11)

t−s−1S−1
11 T12x̃1 −

T−2
∑

s=0

(S−1
11 T11)

t−s−1S−1
11 S12x̃s+1

−

t−1
∑

s=T−1

(S−1
11 T11)

t−s−1S−1
11 S12x̃1 +

T−2
∑

s=0

(S−1
11 T11)

t−s−1S−1
11 Q1ν0

+
t−1
∑

s=T−1

(S−1
11 T11)

t−s−1S−1
11 Q1ν1 (t ≥ T ) (116)

Let M = S−1
11 T11. Then3

t−1
∑

s=T

M t−s−1S−1
11 T12x̃1 =

( t−T−1
∑

k=0

Mk

)

S−1
11 T12x̃1

= (I − M)−1
(

I − M t−T
)

S−1
11 T12x̃1 (117)

t−1
∑

s=T−1

M t−s−1S−1
11 S12x̃1 =

( t−T
∑

k=0

Mk

)

S−1
11 T12x̃1

= (I − M)−1
(

I − M t−T+1
)

S−1
11 T12x̃1 (118)

3Note that

n−1
∑

k=0

M
k = (I − M)−1(I − M

n)

n−1
∑

k=m

M
k =

n−1
∑

k=0

M
k
−

m−1
∑

k=0

M
k = (I − M)−1(Mm

− M
n)
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T−2
∑

s=0

M t−s−1S−1
11 Q1ν0 =

( t−1
∑

k=t−T+1

Mk

)

S11Q1ν0

= (I − M)−1
(

M t−T+1 − M t
)

S−1
11 Q1ν0 (119)

t−1
∑

s=T−1

M t−s−1S−1
11 Q1ν1 = (I − M)−1

(

I − M t−T+1
)

S−1
11 Q1ν1 (120)

Inserting (117) to (120) in (116) yields for t ≥ T

z̃t = M tK +

T−1
∑

s=0

M t−s−1S−1
11 T12x̃s + (I − M)−1

(

I − M t−T
)

S−1
11 T12x̃1

−

T−2
∑

s=0

M t−s−1S−1
11 S12x̃s+1 − (I − M)−1

(

I − M t−T+1
)

S−1
11 S12x̃1

+ (I − M)−1
(

M t−T+1 − M t
)

S−1
11 Q1ν0

+ (I − M)−1
(

I − M t−T+1
)

S−1
11 Q1ν1 (t ≥ T ) (121)

Since M = S−1
11 T11 is a stable matrix, i.e.,

lim
t→∞

M t = 0 (122)

z̃t converges towards its steady state value

z̃1 = (I − M)−1S−1
11 T12x̃1 − (I − M)−1S−1

11 S12x̃1 + (I − M)−1S−1
11 Q1ν1

= (I − M)−1S−1
11

(

(T12 − S12)x̃1 + Q1ν1

)

= (S11 − T11)
−1
(

(T12 − S12)x̃1 + Q1ν1

)

(123)

The formula for z̃1 also results from the steady state system (88) and the
dynamic equation (92).

Combining (121) and (123) yields for t ≥ T

z̃t − z̃1 = M tK +

T−1
∑

s=0

M t−s−1S−1
11 T12x̃s −

T−2
∑

s=0

M t−s−1S−1
11 S12x̃s+1

− (I − M)−1M t−T S−1
11 T12x̃1

+ (I − M)−1
(

M t−T+1 − M t
)

S−1
11 Q1ν0

+ (I − M)−1M t−T+1S−1
11

(

S12x̃1 − Q1ν1

)

(124)

Note that similar to (111) we have

(I − M)−1M t−T = M t−T (I − M)−1 (125)

(125) is equivalent to

(S−1
11 T11)

t−T (I − S−1
11 T11) = (I − S−1

11 T11)(S
−1
11 T11)

t−T ⇔

(S−1
11 T11)

t−T − (S−1
11 T11)

t+1−T = (S−1
11 T11)

t−T − (S−1
11 T11)

t+1−T (126)
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For t ≥ T we therefore get

z̃t − z̃1 = M t−T K̃ (127)

where

K̃ = MT K +

T−1
∑

s=0

MT−s−1S−1
11 T12x̃s −

T−2
∑

s=0

MT−s−1S−1
11 S12x̃s+1

− (I − M)−1S−1
11 T12x̃1 +

(

M − MT
)

(I − M)−1S−1
11 Q1ν0

+ M(I − M)−1S−1
11 (S12x̃1 − Q1ν1) (128)

In order to determine the minimal value of the loss function Jt, replace in
(42) ṽt and w̃t by ˆ̃vt and ˆ̃wt respectively, where

ˆ̃vt =

{

ṽt − ṽ0 for 0 ≤ t < T

ṽt − ṽ1 for t ≥ T
(129)

and

ˆ̃wt =

{

w̃t − w̃0 for 0 ≤ t < T

w̃t − w̃1 for t ≥ T
(130)

with

w̃ = Z11z̃ + Z12x̃ (131)

and

ṽ = Z21z̃ + Z22x̃ (132)

Then J0 = J
(1)
0 + J

(2)
0 where

J
(1)
0 =

1

2

T−1
∑

i=0

λi(ˆ̃z′i, ˆ̃x′

i)Z
′D̃′HD̃Z

(

ˆ̃zi

ˆ̃xi

)

(133)

with

ˆ̃z = z̃ − z̃, ˆ̃x = x̃ − x̃ (134)

and

J
(2)
0 =

1

2
λT trace(V ∗K̃K̃ ′) (135)

with V ∗ defined by (58) and K̃ given by (128).

17



4 The Stochastic Case

Assume now that νt+1 is an r × 1 vector of white noise disturbances inde-
pendently distributed with covariance matrix Σνν = E(νtν

′

t). The i.i.d shocks
are, by definition, unpredictable (T = 0) and occur at time t = 0. Since
Et(νt+1) = 0r×1, equation (11) implies

F · Et

(

w̃t+1

ṽt+1

)

= G

(

w̃t

ṽt

)

(136)

The Schur decomposition yields the system of equations

(

S11 S12

0 S22

)

Et

(

z̃t+1

x̃t+1

)

=

(

T11 T12

0 T22

)(

z̃t

x̃t

)

(137)

where
(

w̃t

ṽt

)

=

(

Z11 Z12

Z21 Z22

)(

z̃t

x̃t

)

(138)

and x̃t = 0 for all t ≥ T = 0. Partition the matrices A and B in equation (1)
conformably with wt and vt, i.e.

A =

(

A11 A12

A21 A22

)

, B =

(

B11 B12

B21 B22

)

(139)

Equation (1) then implies

A11wt+1 + A12 Et vt+1 = B11wt + B12vt + C1ut + D1νt+1 (140)

and

A11 Et wt+1 + A12 Et vt+1 = B11wt + B12vt + C1ut (141)

where

C =

(

C1

C2

)

, D =

(

D1

D2

)

(142)

From (140) and (141) we get

A11(wt+1 − Et wt+1) = D1νt+1 (143)

so that

wt+1 − Et wt+1 = A−1
11 D1νt+1 (144)

holds (provided A−1
11 exists). The corresponding equation for the costate vector

pv is given by [Backus and Driffill (1986)]

pv,t+1 − Et pv,t+1 = 0n2×1 (145)
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Equations (137) and (138) and the definition of w̃t = (w′

t, p
′

vt)
′ then imply

w̃t+1 − Et w̃t+1 = Z11(z̃t+1 − Et z̃t+1) = Z11(z̃t+1 − S−1
11 T11z̃t) =

(

A−1
11 D1νt+1

0n2×1

)

(146)

and therefore

z̃t+1 = (S−1
11 T11)z̃t + Z−1

11

(

A−1
11 D1νt+1

0n2×1

)

= (S−1
11 T11)z̃t + Z−1

11

(

A−1
11 D1

0n2×r

)

νt+1

(147)

The solution of the VAR(1) process (147) has the general form

z̃t = (S−1
11 T11)

tK +

t−1
∑

s=0

(S−1
11 T11)

t−s−1Z−1
11

(

A−1
11 D1

0n2×r

)

νs+1 (148)

where

K = z̃0 = Z−1
11 w̃0 = Z−1

11

(

w0

0n2×1

)

(149)

Since E0 νs+1 = 0 the expected time path of z̃t is given by

E0 z̃t = (S−1
11 T11)

tZ−1
11 w̃0 (150)

Premultiply (147) with Z11 and use w̃t = Z11z̃t to obtain the VAR(1) process

w̃t+1 = Γw̃t +

(

A−1
11 D1

0n2×r

)

νt+1 (151)

where

Γ = Z11(S
−1
11 T11)Z

−1
11 (152)

Then

w̃t = Γtw̃0 +

t−1
∑

s=0

Γt−s−1

(

A−1
11 D1

0n2×r

)

νs+1 (153)

and the expected future path of w̃t is given by

E0 w̃t = Γtw̃0 = Γt

(

A−1
11 D1

0n2×r

)

ν0 (154)

The solution of the forward-looking vector ṽt follows from

ṽt = Z21z̃t = Z21Z
−1
11 w̃t = Nw̃t (N = Z21Z

−1
11 ) (155)

by inserting the solution time path of w̃t.
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To determine the minimal value of the loss function J0 set

εt+1 =

(

A−1
11 D1

0n2×r

)

νt+1 (156)

According to (34), (42), (48) and (153) we then obtain

J0 =
1

2
E0

∞
∑

i=0

λi(w′

i, v
′

i, u
′

i)H





wi

vi

ui





=
1

2
E0

∞
∑

i=0

λi(w̃′

i, ṽ
′

i)D̃
′HD̃

(

w̃i

ṽi

)

=
1

2
E0

∞
∑

i=0

λiw̃′

iÑ
′D̃′HD̃Ñw̃i
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where we have used

E0 εs+1 = 0 (158)

Set

V =
∞
∑

i=0

λiΓi′H∗Γi (159)

Then V satisfies the matrix equation (cf. (74))

V = H∗ + λΓ′V Γ (160)

and

1

2
w̃′

0

(

∞
∑

i=0

λiΓi′H∗Γi
)

w̃0 =
1

2
w̃′

0V w̃0 =
1

2
trace(V w̃0w̃

′

0) (161)
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To calculate the last expression in (157) note that
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)
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i−1ε1)
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)

εi (162)

since E0(ε
′

iεj) = 0 for i 6= j and the covariance matrix

E0(εiε
′

i) = E0(εjε
′

j) = Σεε (163)

is independent of i and j. We then obtain
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+
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Σεε

)

=
1

2
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trace(V Σεε) (164)

with V defined in (160). The optimal value of the loss function J0 in the
stochastic case (with T = 0) is then given by

J0 =
1

2
trace(V w̃0w̃

′

0) +
1

2

λ

1 − λ
trace(V Σεε) (165)

Note that (165) is a generalization of (72) where we have assumed that the
shock in t = 0 is deterministic (Σεε = 0). The formula (165) holds for a
discount factor λ with 0 < λ < 1.4 The right-hand side of (165) is not defined
in the special case λ = 1. If the discount factor λ approaches unity we must
scale the intertemporal loss function J0 by the factor (1 − λ) [Rudebusch and
Svensson (1999)]. Equation (165) then implies

(1 − λ)J0 =
1

2
(1 − λ) trace(V w̃0w̃

′

0) +
1

2
λ trace(V Σεε) (166)

The scaled intertemporal loss function (1−λ)J0 converges if λ approaches unity.
(166) implies

lim
λ→1

(1 − λ)J0 =
1

2
trace(V Σεε) (167)

Note that in case T = 0 and λ = 1 the r.h.s. of (167) equals the r.h.s of (72)
if w0w

′

0 = Σεε. In this special case the stochastic and deterministic case are
equivalent. If the off-diagonal elements of W1 and W2 in the loss function (7)
are equal to zero, then the limit value of (1 − λ)J0 can be expressed as

lim
λ→1

(1 − λ)J0 =
1

2
E(Lt) (168)

4In the deterministic case, where Σεε = 0, (165) also holds for λ = 1.
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where E(Lt) is the unconditional mean of the period loss function

Lt = (s′t, u
′

t)

(

W1 0
0 W2

)(

st

ut

)

=

n3
∑

i=1

wii,1s
2
i,t +

m
∑

i=1

wii,2u
2
i,t (169)

Then

E(Lt) =

n3
∑

i=1

wii,1 Var si,t +
m
∑

i=1

wii,2 Var ui,t (170)

The period loss function can also be written as

Lt = Y ′

t HYt (171)

where Y ′

t = (k′

t, u
′

t) and H defined in (35). Then the unconditional period loss
also fulfills

E(Lt) = E(Y ′

t HYt) = trace(HΣY Y ) (172)

where ΣY Y is the unconditional covariance matrix of the vector Y .

5 Summary

In this paper, we present a method to solve linear dynamic rational expecta-
tions models with anticipated shocks and optimal policy by using the general-
ized Schur decomposition method. We determine the optimal unrestricted and
restricted policy responses to anticipated temporary and permanent shocks. In
particular, our method can be applied to analyze optimal monetary policy in
New Keynesian dynamic general equilibrium models. Our approach allows also
the evaluation of the widely discussed case of unpredictable shocks and can
therefore be seen as a generalization of the methods summarized by Söderlind
(1999).
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